Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
5
,
No
. 3,
J
une
2
0
1
5
,
pp
. 44
3~
45
3
I
S
SN
: 208
8-8
7
0
8
4
43
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
LOGIXPRO Based SCADA Simula
tions Model for Packaging
System in Dry
I
C
E
P
l
a
n
t
Prash
u
Jai
n
1
, K. N
i
t
h
i
y
anant
h
an
2
*, R
a
g
h
uram
an
3
, Gowrisha
nka
r
Ka
silinga
m
4
1
Refriger
a
tion
and Ox
y
g
en Co
.
Ltd,
S
a
fa
t,
K
u
w
a
it
.
2, 3 &
4
Faculty
of
Engineering & Computer
Te
c
h
nology
,
AIMST
Unive
r
sity
, Ma
lay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 26, 2014
Rev
i
sed
Feb
25
, 20
15
Accepte
d
Mar 8, 2015
Supervisory
Control and Data
Acqui
sition
(SCADA) sy
stems control
and
monitor
industrial and critical infrastru
ctur
e fu
nctions, such
as electr
i
city
,
gas, wate
r, wast
e, ra
ilwa
y
,
a
nd tra
ffi
c.
T
h
e
m
a
in objective of this work
i
s
t
o
develop SCADA si
mulation model for pack
aging sy
stem in
dry
ice plant.
Dr
y
ice is an important refrigerant
for keeping
foods cold and
preventin
g
bacterial growth
during shipment. Dr
y
ice used f
o
r cooling or freezing foods
must be ver
y
clean and considered food grade
to ensure that f
ood it may
touch will no
t be
contam
ina
t
ed. S
o
m
e
r
ecent d
e
ve
lopm
ents for its use includ
e
using the
pel
l
ets
in b
l
asting
or
cl
eanin
g
and
its
in
creas
ing
use in
transporting
m
e
dical s
p
ec
im
ens
,
including he
arts
, lim
bs
, and tis
s
u
es
, for reatta
chm
e
nt an
d
transplan
t
ation.
The manufactur
i
ng process of dr
y
ice has not changed
significantly
in
many
decad
es and
is a relativ
el
y
sim
p
le
process of
pressurizing
and
cooling gas
e
ous carbon
diox
ide. But b
e
cause of
its growing
dem
a
nd, p
ackag
i
ng becom
e
s
v
ita
l. An
at
tempt
h
a
s been made to
develop and
automate
LOGIXPRO based S
C
ADA
si
mulations for dry
ice plant
to
improve pack
aging and
e
x
ten
s
iv
e
l
y
r
e
d
u
c
e
o
p
e
r
atin
g
lab
o
r
co
st
s.
Keyword:
Dry Ice plant
Ladder Diagra
m
LOGIXPRO
R
e
l
a
y
Logi
c
SCAD
A
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
K. Nith
iyan
an
th
an,
Facu
lty of
En
gin
eer
ing
& C
o
m
p
u
t
er
Technolo
g
y
,
AIMST Un
iversity,
Jalan
Sem
e
lin
g
–
Bedo
ng
, 0810
0 Bedon
g,
K
e
d
a
h D
a
ru
l A
m
an
, Malaysia.
Em
a
il: n
ith
iiee
e
@yaho
o
.co.in n
ith
i@aim
s
t.ed
u.m
y
1.
INTRODUCTION
Indu
s
t
rial p
r
oc
e
sse
s
inv
o
lv
e
ce
rtain
c
h
e
m
i
c
a
l
o
r
me
ch
a
n
i
c
a
l
ste
p
s to
h
e
lp
in
the ma
nu
f
a
c
t
ure
o
f
items
fo
r
th
e ind
u
s
t
r
y
.
T
h
e
y
f
o
rm
th
e ba
sic
co
mpo
n
en
ts of
a larg
e sca
l
e
in
d
u
st
ry
.
T
h
e
r
e
f
o
r
e to
h
e
lp
i
n
pr
o
d
uc
i
n
g
t
h
es
e
g
o
od m
o
re
e
f
fec
t
i
v
ely
and
ef
f
i
c
i
e
n
t
l
y
SC
AD
A s
y
s
t
em
s
are
us
e
d
.
T
h
e
m
a
jor
at
tra
c
t
i
o
n
o
f
SCADA
is
its
a
b
il
ity
to
e
x
te
n
s
iv
e
l
y
red
u
ce o
p
eratin
g
lab
o
r
co
sts
a
s
th
e w
h
o
l
e p
r
o
c
e
s
s
is
au
tom
a
ted
.
T
h
e
com
put
er sy
stem
s used t
o
m
onit
o
r and
cont
rol
m
a
jor i
n
frast
ruct
ur
e are kn
ow
n
by
vari
ous
na
m
e
s,
am
ong t
h
e m
o
st
com
m
on (SC
ADA
) sy
st
em
s. The sy
stem
’s nam
e
refl
ect
s it
s basic funct
i
ons:
i
t
m
u
st
p
r
ov
id
e d
a
ta related
to
th
e
o
p
e
ratin
g
state o
f
th
e syste
m
an
d
al
lo
w o
p
e
rato
rs to
re
m
o
te
ly co
n
t
r
o
l th
e
di
st
ri
but
ed sy
st
em
. By
ut
il
izi
ng t
h
ese services, syste
m
operators
can
effectively res
p
ond to changes in
t
h
e process
operat
i
ng c
o
n
d
i
t
i
ons or a
d
apt
t
o
evol
vi
ng
pro
duct
i
o
n g
o
al
s or c
h
angi
n
g
co
rp
orat
e
d
i
r
e
c
t
i
v
e
s
.
The rising
pre
v
al
ence
of SCADA system
s in in
frastru
c
ture is a resu
lt of t
h
e v
a
riety o
f
b
e
nefit
s
su
ch
syste
m
s c
a
n
prov
id
e t
o
th
e bu
sin
e
sses th
at op
er
ate th
em
.
By sh
iftin
g
away fro
m
p
u
r
p
o
s
e-b
u
ilt h
a
rdware
towa
rds m
o
re
flexible f
u
ll-
fe
ature
d
ha
rd
wa
re r
u
n
n
in
g
ope
rat
i
o
n
-
s
p
eci
fi
c
soft
ware
, de
v
e
l
opm
ent
of c
ont
rol
syste
m
s can be accom
p
lished m
o
re quickl
y and at lowe
r cost. Specialized interf
aces
can be
desi
gned for
sy
st
em
operat
o
rs
t
h
at
m
i
nim
i
ze t
h
e di
ffi
cul
t
y
of m
a
na
gem
e
nt
and al
l
o
w
rapi
d a
n
d
effect
i
v
e
reac
t
i
ons t
o
ch
ang
i
ng
p
r
o
c
ess con
d
ition
s
. Th
e
u
s
e of SCA
D
A
systems allo
w
s
h
i
gh
-l
ev
el m
a
n
a
g
e
men
t
of th
e industrial
pr
ocess
by
m
e
rgi
ng
dat
a
fr
o
m
t
h
e
m
a
ny
d
i
st
ri
but
ed
p
o
rt
i
ons
of t
h
e pr
o
cess. Thi
s
ca
n
hel
p
en
ha
nce
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
44
3 – 4
5
3
44
4
robu
stn
e
ss an
d reliab
ility
o
f
th
e syste
m
. Fin
a
lly, flaws in
t
h
e d
e
si
g
n
of the co
n
t
ro
l system can
b
e
m
o
re easily
addresse
d a
nd operat
ors
m
a
y receive m
a
intena
nce a
n
d
support
from
vendors
of
SCADA s
o
ft
wa
re a
nd
hardware. Ta
ken as a whole, these be
nefits provide a
po
werfu
l
in
cen
tiv
e
to
m
i
g
r
ate to
SCADA so
l
u
tion
s
fo
r
cont
rol
of c
o
m
p
l
e
x di
st
ri
bu
t
e
d pr
oces
ses
[4]
.
T
h
e di
ff
erences i
n
SC
AD
A sec
u
ri
t
y
and t
r
a
d
i
t
i
o
n
a
l
IT
approaches
m
e
an that e
v
e
n
re
liable
an
d trusted
so
lu
tion
s
can
n
o
t
b
e
app
lied
wit
h
ou
t sign
i
f
ican
t testin
g.
Th
e
pote
n
tial damage
of m
a
lfunctions a
n
d loss of a
v
aila
bility of c
r
itical infra
stru
ct
ure
furthe
r necessitat
e
thorough
testi
n
g. Howe
ver, testi
ng new solutions for SC
ADA
system
s
is not easily accom
p
lished. Live
syste
m
s clearly cannot be
used b
ecause
of the
pote
n
tial dam
a
ge unint
ende
d c
o
nsequences c
oul
d c
a
use.
Devel
opi
ng
pa
ral
l
e
l
but
i
n
act
i
v
e sy
st
em
s fo
r t
h
e p
u
r
p
ose
of t
e
st
i
n
g i
s
an ap
pr
oac
h
t
h
a
t
i
s
oft
e
n vi
a
b
l
e
fo
r
testin
g
n
e
t
w
ork
secu
rity, bu
t wo
u
l
d
b
e
p
r
o
h
i
b
itiv
ely ex
p
e
n
s
i
v
e fo
r testing
com
p
lex
in
frastru
cture
in
stallatio
n
s
.
In
stead, th
e com
p
lex
i
t
y
o
f
SCADA system
s calls for a tho
r
ou
gh
so
ft
ware sim
u
latio
n
to
h
e
lp
unc
o
v
er t
h
e b
e
nefi
t
s
an
d co
nse
que
nces o
f
no
vel
securi
t
y
sol
u
t
i
ons
. Sim
u
l
a
t
i
ng SC
AD
A sol
u
t
i
o
n
s
i
s
a
com
p
lex and difficult task, howe
ve
r. Beca
use the
devel
o
pmen
t o
f
a
sing
le-
p
u
r
po
se
simulation t
h
at ca
ptures
t
h
e be
havi
or
o
f
o
n
l
y
a si
ngl
e sy
st
em
woul
d
be i
n
ef
fi
ci
ent
and c
o
st
l
y
, si
m
u
l
a
t
i
ons sh
o
u
l
d
b
e
com
pos
ed o
f
sim
p
l
e
and re
u
s
abl
e
si
m
u
l
a
tion c
o
m
pone
nt
s. Si
m
u
l
a
t
o
rs deal
i
ng
wi
t
h
t
h
e i
n
dust
r
i
a
l
proces
s, t
h
e c
o
nt
r
o
l
l
e
r
soft
ware
, an
d t
h
e i
n
t
e
rve
n
i
n
g
net
w
or
k c
o
ul
d
be c
o
m
b
i
n
ed t
o
f
o
rm
a sim
u
lat
i
on
of t
h
e S
C
AD
A sy
st
em
as a
wh
ol
e. T
h
i
s
re
qui
res co
o
r
di
n
a
t
i
ng a
vari
et
y
of si
m
u
l
a
t
i
on
engi
nes, eac
h
wi
t
h
a
di
ffe
re
n
t
set
of i
n
t
e
rna
l
dat
a
an
d with v
a
ryin
g appro
a
ch
es
to
th
e
progre
ss
ion
of tim
e and eve
n
ts.
2.
SCADA SYSTEM
OVERVIEW
A
wi
de
va
ri
et
y
of i
n
dust
r
i
a
l
pr
ocess
e
s a
r
e
m
a
naged
vi
a
com
put
eri
zed
cont
rol
sy
st
em
s, an
d t
h
ei
r
di
ve
rse
pu
r
pos
es m
ean t
h
at
i
n
d
u
st
ri
al c
ont
rol system
s them
se
lves are
di
verse
in im
plementation. T
h
e ter
m
SC
AD
A i
s
m
o
st
fre
que
nt
l
y
u
s
ed t
o
desc
ri
be
sy
st
em
s whos
e asset
s
are hi
g
h
l
y
di
st
ri
b
u
t
e
d
geo
g
r
ap
hi
cal
l
y
. The
cont
rol
o
f
el
ect
ri
cal
gri
d
s an
d
oi
l
and gas
pi
pel
i
n
es, f
o
r ins
t
ance, invol
v
es
aggreg
at
i
n
g s
e
ns
or m
easurem
ent
s
from
hundre
ds
of wi
dely disperse
d fi
eld
de
vices so that operat
ors ca
n us
e a centralized co
ntrol interface to
manage
t
h
e whole process
in real
ti
m
e
. Fi
el
d
devi
ces
are
l
o
c
a
t
e
d
phy
si
cal
l
y
clo
s
e to
t
h
e
por
tio
n of
t
h
e
p
r
ocess
t
h
at
m
u
st
be
cont
rol
l
e
d
,
an
d m
oni
t
o
r se
n
s
ors
an
d
dr
ive actuators connecte
d
to t
h
e process
.
They are
co
nn
ected to th
e SC
A
D
A
con
t
ro
l cen
ter
v
i
a a w
i
d
e
ar
ea
n
e
two
r
k
wh
ich m
a
y u
s
e a
v
a
riety o
f
topo
logy and
pr
ot
oc
ol
s an
d
be wi
re
d
or
w
i
rel
e
ss. Suc
h
s
y
st
em
s
m
u
st
ty
pi
cal
l
y
t
a
ke int
o
acc
ou
nt
t
h
e l
o
w
ban
d
w
i
d
t
h
an
d
relativ
e lack
of reliab
ility o
f
t
h
e
n
e
two
r
k
s
i
n
u
s
e, p
e
rh
ap
s em
p
l
o
y
in
g
fau
lt-to
leran
t
h
a
rdware
and
al
g
o
rith
m
s
.
In
ad
d
ition
,
they
m
u
st typ
i
call
y
co
n
t
end
with leg
acy
h
a
rd
ware and
pro
t
o
c
o
l
s sin
ce
wi
d
e
ly d
i
sp
ersed
h
a
rdware
devices are
difficult and expensive to upgra
de [1].
Much sm
aller scale operatio
ns, such as che
m
ical
manufact
uri
n
g plants
a
n
d pha
r
m
aceutical
processing facilities, are also ex
a
m
ples of SCADA syste
m
s. These
geographically localized processes m
a
y reside entirel
y with
in
a sing
le p
l
an
t floo
r
an
d
are so
m
e
ti
m
e
s
di
ffe
re
nt
i
a
t
e
d f
r
om
geo
g
ra
p
h
i
cal
l
y
di
sperse
d
SC
A
DA
syst
e
m
s with the
term
Distributed Control Sy
ste
m
s
(DCSs
)
[1]. T
h
ese system
s use
field
devic
e
s that are
lo
cated
ph
ysically clo
s
e t
o
th
e po
rtion
o
f
th
e
pro
cess
un
de
r co
nt
r
o
l
and a
r
e c
o
n
n
e
c
t
e
d t
o
t
h
e m
a
st
er co
nt
r
o
l
ce
nt
er
vi
a t
h
e c
ont
rol
net
w
or
k
.
The c
o
nt
r
o
l
of t
h
e
wh
ol
e
pr
ocess
i
s
m
odul
ari
z
e
d
wi
t
h
t
h
e
use
of
l
o
cal
c
o
nt
r
o
l
l
e
rs t
o
p
r
ovi
de f
a
ul
t
t
o
l
e
r
a
nce a
n
d
re
d
u
c
e
t
h
e
im
pact of a
malfunction at a
single
fi
el
d
d
e
vi
ce.
DC
Ss t
y
pi
cal
l
y
use a
hi
g
h
l
y
rel
i
a
bl
e an
d r
e
l
a
t
i
v
el
y
hi
g
h
b
a
ndwid
th
LAN to
con
n
ect fi
eld
d
e
v
i
ces wit
h
th
e con
t
ro
l cen
t
er. In
add
itio
n, ph
ysical secu
rity
m
a
y
b
e
m
o
r
e
effective si
nce
a geographica
lly centralized syste
m
is
l
e
ss di
ffi
c
u
l
t
an
d
expe
nsi
v
e t
o
p
r
ot
ect
.
Al
t
h
o
u
gh t
h
e
sy
stem
s
that em
ploy
SCADA are widely
v
a
ried in top
o
l
o
gy
, scale, and
pu
r
pose
,
they
are uni
fied by
a single
typ
e
o
f
arch
itectu
r
e. Th
e recog
n
ition
o
f
th
ei
r fu
nd
am
en
ta
l s
i
m
i
larities
is i
m
p
o
r
tan
t
to
th
e research
o
f
SCADA
security, since
it allows rese
arche
r
s to m
a
ke use of
ge
neral
m
o
d
e
ls o
f
th
e class o
f
th
e class o
f
all SCADA
sy
st
em
s. Thi
s
gene
ral
m
odel
i
s
com
posed o
f
fo
u
r
m
a
jor p
a
rt
s:
t
h
e pr
oce
ss t
o
be co
nt
r
o
l
l
e
d, t
h
e fi
el
d
devi
ces
physically connected t
o
it, the centra
lized c
ont
rol ce
nter,
and the
networ
k t
h
at connec
ts the controller a
nd
fi
el
d
devi
ces
.
The
rel
a
t
i
ons
hi
p
bet
w
ee
n t
h
e
s
e com
pone
nt
s i
s
sh
o
w
n
i
n
Fi
g
u
re
1
.
1.
1.
SCADA Archi
t
ecture
The
pr
ocess
i
s
t
h
e
phy
si
cal
p
h
en
om
enon
t
h
at
ope
rat
o
rs s
e
ek t
o
co
nt
r
o
l
.
Thi
s
po
rt
i
o
n
o
f
t
h
e
sy
st
em
w
ill b
e
d
i
stin
ct in
all SCADA syste
m
s. Th
e
p
r
o
cess typ
i
cal
ly can
b
e
br
oken
d
o
wn
in
t
o
a nu
m
b
er
of
smaller
cont
rol
problem
s
. For instance, a pla
n
t produci
ng a
pa
rtic
ular c
h
em
ica
l
in a react
or m
a
y need t
o
cont
rol the
te
m
p
erature a
nd
press
u
re of the reaction
as well as
the volum
es of the reactants.
Each of these
m
a
y be
considere
d
separate control problem
s
, with
local controllers engage
d in
the
m
a
intenance of each va
riable
with
in
estab
lish
e
d
o
p
e
rating
li
mits. Ho
wever, th
ese v
a
ria
b
les are interrelated; the pre
ssure a
nd
vol
ume of
reactants
of the reactor a
ffec
t
its te
m
p
erature a
n
d vi
ce ve
rsa. Local
c
ontrollers performing
localized
tasks
can
no
t effectively
m
a
in
tain
th
e h
i
gh
lev
e
l operatio
n
o
f
t
h
e s
y
ste
m
, necessitating a cent
r
alized m
a
ster control
syste
m
to
p
e
rfo
rm
th
is task
.
Field
d
e
v
i
ces i
n
te
ract
with the proces
s
via s
e
ns
ors
and act
uators.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
LO
GIXP
RO
B
a
se
d
SC
ADA
S
i
mul
a
t
i
o
ns
Mo
del
f
o
r
Pack
a
g
i
ng
Syst
e
m
i
n
Dry
IC
E Pl
ant
(
P
rash
u J
a
i
n
)
44
5
Fig
u
r
e
1
.
SCAD
A Ar
ch
itectur
e
They are s
o
metim
e
s
ter
m
ed
Pro
g
ram
m
able Logic Co
ntr
o
llers (P
LCs),
reflecting the
fact that they act as
cont
rollers on a
local
level. Field
de
vices deal
with
a l
o
cal
i
zed co
nt
r
o
l
pr
o
b
l
e
m
,
but
al
so se
nd
u
pda
t
e
s an
d
receive c
o
mmands from
the master c
ontroller so t
h
at their local control
l
o
op ca
n be operated in acc
ordanc
e
with the overal
l proces
s cont
ro
l strateg
y
. Fo
r in
stan
ce, a field
d
e
v
i
ce con
t
ro
llin
g
th
e liqu
i
d
lev
e
l in
a tank
m
a
y
receive liquid l
e
vel rea
d
ings
from
a sensor a
nd
be a
b
le
to
maintain the appropriate
leve
l by using a
n
a
c
tuator
th
at co
n
t
ro
ls a
runo
ff v
a
lve. It
s lo
cal co
n
t
ro
l
p
r
ob
lem
wo
u
l
d b
e
to
m
a
in
tain
th
e liq
u
i
d
lev
e
l in
th
e tan
k
with
in
som
e
tolerance of a set value
.
Because this set point va
l
u
e
is likely affected by ot
her fa
ctors in the
process,
howe
ver, the
field de
vice woul
d recei
ve c
o
mmands to s
e
t this value
from
the centra
lized control c
e
nter.
Because the
state of t
h
e local
control
problem
likely affects othe
r the
state of
the
proces
s as a whole, t
h
e fiel
d
devi
ce
wo
ul
d
s
e
nd
re
gul
ar
sen
s
or
u
pdat
e
s
or
al
arm
s
t
o
t
h
e cont
rol
ce
nt
er.
Thi
s
f
o
rm
s a hi
gh l
e
vel
co
nt
r
o
l
l
o
o
p
th
at d
r
iv
es t
h
e lo
wer lev
e
l lo
calized
co
n
t
ro
l lo
op
s. Th
e lo
cal co
n
t
ro
l lo
op
’s o
p
e
ratio
n
and
relatio
nsh
i
p
to
the
rest
of t
h
e SC
AD
A sy
st
em
is di
agram
m
ed i
n
fi
gu
re 2
.
Fi
el
d devi
ces
m
a
y
connect
t
o
a si
ngl
e se
n
s
or
or
actuator
or m
a
y be connecte
d
to a
l
a
rge
n
e
t
w
o
r
k
of se
n
s
ors a
n
d act
ua
t
o
rs an
d m
a
i
n
tai
n
a com
p
l
e
x l
o
cal
cont
rol l
o
o
p
[2
]
.
Fi
gu
re
1.
Fi
el
d
De
vi
ce C
o
nt
r
o
l
Lo
op
The c
o
nt
rol
ce
nt
er act
s as
t
h
e
m
a
st
er co
nt
rol
l
er, m
a
i
n
t
a
i
n
i
ng t
h
e
hi
gh l
e
ve
l
ope
rat
i
o
n o
f
t
h
e
pr
ocess
.
Many field de
vices are em
ployed by
SC
ADA system
s to
ope
rate local c
ont
rol loops
,
each affecting
a single
cont
rol
pr
o
b
l
e
m
,
but
i
n
at
y
p
i
cal
proce
ss t
h
ese co
nt
r
o
l problem
s are interrelated. For
instance, t
h
e c
ont
rol
sy
st
em
operat
i
ng a can
al
m
a
y
use a l
a
rge n
u
m
b
er of fi
el
d
devi
ces c
ont
rol
l
i
ng t
h
e wat
e
r
l
e
vel
s
i
n
a sy
stem
of
locks
.
Because
the control strategy of
one l
o
ck directly affects the c
o
ntro
l strategy
of its neighbors, a
hi
gh
l
e
vel
st
rat
e
gy
m
u
st
be em
pl
oy
ed t
o
ens
u
re c
o
r
r
ect
o
p
erat
i
o
n. T
h
e co
nt
r
o
l
cent
e
r se
nd
s cont
rol
c
o
m
m
a
nds an
d
receiv
e
s
sensor u
p
d
a
tes fro
m
th
e field
d
e
v
i
ces
to
a
llo
w th
is
h
i
gh
lev
e
l
co
n
t
ro
l. Dep
e
nd
ing
on
th
e SCADA
depl
oy
m
e
nt
, cont
rol
ce
nt
ers
m
a
y
operat
e
a
u
t
o
m
a
t
i
call
y
or rel
y
on
t
h
e i
n
t
e
r
v
ent
i
o
n
of
hum
an o
p
e
r
at
o
r
s.
The
cont
rol ce
nter
provides the
interface
to t
h
e hum
a
n ope
rators of t
h
e system. This i
n
terface
is called the Hum
a
n
Machine
Interface (HMI) a
n
d a
llows
the
operators to see
an a
g
gre
g
ated
view
of the
sta
t
e of the
proc
e
ss and
provides the
means to send
cont
r
o
l
com
m
ands t
o
fi
el
d
devi
ces i
n
or
der t
o
m
a
i
n
t
a
in co
rrect
o
p
e
r
at
i
on.
A
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
44
3 – 4
5
3
44
6
cont
rol ce
nter
m
a
y include several
HMIs, each
reflect
ing the
require
m
ents of
its
users
.
For instance,
adm
i
ni
st
rat
o
rs
and b
u
si
ness m
a
nagers re
q
u
i
re a di
ffe
rent
set
of dat
a
a
n
d
cont
r
o
l
s
t
h
a
n
sy
st
em
engi
ne
ers. T
h
e
cont
rol ce
nter is connecte
d
to
field de
vices vi
a the cont
r
o
l
netw
or
k, and
may also
b
e
connected to a c
o
rporate
network
or
WAN to allow
re
m
o
te access t
o
e
ngi
neers
and busi
n
ess administrators. T
h
e
c
o
nnection betwee
n
t
h
e co
nt
r
o
l
ce
nt
er a
n
d fi
el
d
devi
ces
i
s
p
r
o
v
i
d
e
d
by
t
h
e
c
ont
rol
net
w
or
k
.
T
h
i
s
m
a
y
be a wi
red
o
r
wi
rel
e
ss
net
w
or
k an
d
m
a
y
operat
e
wi
t
h
a vari
et
y
of net
w
o
r
k p
r
ot
ocol
s. S
o
m
e
cont
r
o
l
net
w
or
ks u
s
e TC
P/
IP w
h
i
l
e
ot
he
rs
use fi
el
db
us
pr
ot
ocol
s
,
w
h
i
c
h a
r
e si
m
p
l
e
prot
oc
ol
s
desi
g
n
e
d
ar
o
u
n
d
t
h
e se
nso
r
u
pdat
e
a
n
d
c
ont
rol
com
m
a
nd c
o
m
m
uni
cat
i
on pat
t
erns
o
f
SC
AD
A
net
w
or
ks
[
3
]
.
De
pen
d
i
n
g
o
n
t
h
e
p
r
ocess,
i
t
m
a
y
be im
port
a
nt
t
o
p
r
ovi
de r
eal
t
i
m
e
guara
nt
e
e
s o
r
pr
o
v
i
d
e
f
a
ul
t
t
o
l
e
ra
nt
o
r
re
du
n
d
ant
net
w
o
r
k
s
. C
o
m
m
uni
cat
i
o
n
o
n
c
ont
rol
net
w
or
ks t
y
pi
c
a
l
l
y
consi
s
t
s
o
f
co
nt
r
o
l
com
m
ands
fr
om
t
h
e co
nt
rol
ce
nt
e
r
an
d se
ns
or
u
pdat
e
s
fr
om
t
h
e fi
el
d
devi
ces
. The c
o
m
m
uni
cat
i
on can be a
s
y
m
met
r
i
c
, wi
t
h
se
n
s
or m
e
ssages b
e
i
ng l
a
r
g
er a
n
d
m
o
re f
r
eq
ue
nt
t
h
a
n
cont
rol
m
e
ssag
e
s. Si
m
e
fi
el
d devi
ces
communicate at
fixe
d inte
rvals
while
othe
rs
use al
arm
s
to communicate
onl
y
si
gni
fi
can
t
eve
n
t
s
.
Pri
o
r
i
t
i
zat
i
on o
f
i
m
po
rt
ant
c
o
nt
r
o
l
m
e
ssages o
v
e
r
bul
k se
n
o
r
r
eadi
n
gs i
s
a t
y
pi
cal
co
mm
u
n
i
catio
n
s
requ
irem
en
t, as is so
m
e
g
u
aran
tee
on
th
e ti
m
e
l
i
n
e
ss an
d stab
ility o
f
m
e
s
s
ag
e
d
e
liv
ery
[3
].
1.
2.
Program
m
able Logic Contr
o
ller (PL
C
)
A p
r
og
ram
m
a
b
le
logic con
t
rol
l
er is
a
co
n
t
rol
l
er
b
a
se
d o
n
micro
-
p
r
o
cess
o
r
w
h
ich
u
s
e
s
certain
logic
to
a
c
c
u
m
u
lat
e
in
s
t
ru
ct
ion
s
a
n
d
carry
o
u
t
ce
rtain
f
u
n
c
ti
o
n
s
to
c
o
n
t
r
o
l
v
a
ri
o
u
s ma
ch
i
n
e
s
a
n
d
p
r
o
c
e
s
s
e
s.
In
p
u
t
d
e
v
i
ces l
i
ke sen
s
o
r
s
an
d ou
t
p
u
t
dev
i
ces l
i
ke
m
o
t
o
rs
and
v
a
l
v
es are
conn
ect
ed
t
o
t
h
e
P
L
C
.
T
h
e pro
g
r
a
m
mer
e
n
te
r
s
th
e v
a
ri
o
u
s se
ts of
i
n
st
ru
ctio
n
s
w
h
ich a
r
e to
b
e
carri
ed
o
u
t
b
y
th
e
PL
C.
Th
e
s
e
ins
t
ru
ct
i
o
n
s
a
r
e
sto
r
e
d
in
th
e
memo
ry
o
f
the PL
C.
PL
Cs
a
r
e
d
e
sig
n
e
d
t
o
co
n
t
ro
l
a
nd m
o
n
ito
r t
a
sk
s
in
a
n
i
n
d
u
stry
. Thu
s
PL
Cs
a
r
e
gen
e
rall
y
d
e
sig
n
ed
to
w
ith
st
a
n
d
h
a
rsh
co
nd
ition
s
li
k
e
h
i
g
h
te
mpe
r
at
u
r
e, v
i
b
r
at
ion
s
a
nd
n
o
ise
.
C
on
ta
in
sl
o
t
s
in
side
th
e
co
n
t
r
o
ll
e
r
w
h
ich
a
r
e req
u
i
r
e
d
fo
r
v
a
ri
o
u
s
in
p
u
t
a
n
d
o
u
t
p
ut
d
e
v
i
ces
a
n
d
i
t
s
e
f
f
o
rtl
e
ssly
p
r
ogram
m
a
b
l
e.
A w
i
de
ra
n
g
e
of PL
Cs
are
a
v
a
i
l
a
b
l
e in
th
e
m
a
rket.
G
e
n
e
r
a
ll
y
PL
Cs
a
r
e in t
h
e
b
o
x
form
c
ont
ai
n
i
ng
s
i
x
,
ei
g
h
t
,
t
w
elv
e
or
t
w
e
n
t
y
i
n
pu
t
s
a
n
d
f
o
ur
,
ei
g
h
t
o
r
s
i
x
t
ee
n
o
u
t
p
ut
s
.
They
ar
e
des
i
g
n
e
d
f
o
r
on
f
i
eld
u
s
e
n
e
ar
th
e
ma
c
h
in
e
it is
d
e
sig
n
ed
f
o
r
.
Sy
ste
m
s
th
a
t
ne
e
d
a
larg
er n
u
mbe
r
o
f
i
n
p
u
ts
a
n
d
o
u
tp
u
t
s a
r
e
li
k
e
ly to
b
e
in
mo
du
lar
fo
rm.
T
h
e
r
e
f
o
r
e
t
h
e
quan
tity
of
mo
d
u
les
c
a
n
e
a
sil
y
b
e
in
cre
a
se
d
a
cco
rd
i
n
g
to
the
n
e
e
d
o
f
t
h
e
user.
Fi
g
u
re
3
sh
ow
s
t
h
e Al
l
e
n-
B
r
ad
l
e
y
P
L
C
in
st
a
l
l
e
d in
a c
o
n
t
ro
l
p
a
n
e
l.
Fi
gu
re
3.
Al
l
e
n
-
B
r
a
d
l
e
y
Pr
o
g
r
am
m
a
bl
e Lo
gi
c co
nt
r
o
l
l
e
r
2.
SC
AD
A B
A
S
E
D D
R
Y
I
C
E
PLANT
M
O
D
EL
The only raw
material used in the m
a
nufact
ure
of
dr
y ice is carbo
n
d
i
ox
i
d
e. Th
is raw m
a
terial is th
e
by
p
r
o
d
u
ct
of t
h
e re
fi
nem
e
nt
of
gases em
i
tted d
u
ri
ng t
h
e
m
a
nufact
ure
o
r
refi
nem
e
nt
of ot
he
r
pr
od
uct
s
. M
o
st
carb
o
n
di
o
x
i
d
e
use
d
i
n
t
h
e
m
a
nu
fact
u
r
e
of
dry
i
ce i
n
t
h
e
Uni
t
e
d
St
at
es i
s
de
ri
ve
d
fr
om
refi
nem
e
nt
of
gases
gi
ve
n o
ff
d
u
ri
ng t
h
e re
fi
ne
m
e
nt
of pet
r
o
l
eum
and am
m
oni
a. The c
a
rb
o
n
di
o
x
i
d
e
em
i
t
t
e
d du
ri
n
g
t
h
ese
p
r
o
cesses is su
ck
ed
off and "scru
b
b
e
d
"
t
o
rem
o
v
e
im
p
u
rities fo
r food
g
r
ad
e carbon
d
i
ox
id
e t
h
at
will
event
u
ally bec
o
m
e
dry ice [7]. It is
ve
ry
m
u
ch ev
i
d
e
n
t
t
h
at
dry
i
ce
m
a
ki
ng
p
r
oce
s
s i
s
re
q
u
i
r
e
d
t
o
be
au
to
m
a
ted
an
d in
terfaced
with
SCADA con
t
ro
l syste
m
.
Th
e figu
re
4 sh
ows th
e g
e
n
e
ric SCADA d
a
ta
com
m
uni
cat
i
ons net
w
o
r
k sui
t
abl
e
f
o
r a
n
y
pr
ocess c
ont
rol
i
n
d
u
st
ry
.
A
u
t
o
m
a
t
i
on l
ogi
c f
o
r p
r
o
p
o
sed m
odel
has
been carried out using L
o
g
i
xPro sim
u
lato
r [6
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
LO
GIXP
RO
B
a
se
d
SC
ADA
S
i
mul
a
t
i
o
ns
Mo
del
f
o
r
Pack
a
g
i
ng
Syst
e
m
i
n
Dry
IC
E Pl
ant
(
P
rash
u J
a
i
n
)
44
7
Fi
gu
re
4.
SC
A
D
A
Dat
a
C
o
m
m
uni
cat
i
ons N
e
t
w
o
r
k
L
o
gix
P
ro
s
i
m
u
l
a
t
o
r
allows
o
n
e
t
o
p
r
a
c
tice an
d
d
e
v
e
l
o
p
p
r
o
g
r
a
m
m
i
n
g
skills.
It co
n
t
a
i
n
s
the
P
L
Cs
a
n
d
al
l
o
t
her
v
a
ri
ous
el
e
c
t
r
i
c
al
c
o
m
pon
e
n
t
s
t
h
at
are
r
e
q
u
i
r
ed
t
o
l
e
ar
n
pr
og
ra
mmi
ng
. V
a
ri
ous
pro
g
r
a
m
m
e
s
u
s
ing
LADDER
L
O
G
I
C
c
a
n
b
e
d
e
v
e
lop
e
d an
d
th
e
req
u
i
r
e
d
sim
u
latio
n
s
c
a
n
b
e
v
i
ew
e
d
.
T
h
e
E
d
it
Pa
ne
l
p
r
o
v
i
d
e
s
a
n
ea
sy
a
cce
ss
to
a
ll
th
e in
st
ru
ction
s
. The
s
e in
st
ru
c
tio
ns
ca
n
e
a
s
il
y
b
e
d
r
a
gged
a
n
d
d
r
o
p
p
e
d
int
o
t
h
e
p
r
ogra
m
.
Usi
n
g lad
d
e
r
logic
v
a
ri
ous
p
r
og
rams
can be crea
t
e
d
.
T
h
e
s
e
programs
c
a
n be e
d
ited u
s
ing
t
h
e
sa
me
e
d
it
p
a
n
e
l.
On
ce th
e
p
r
ogram
is
r
e
a
d
y to
b
e
v
i
e
w
ed
, we cli
c
k
o
n
t
h
e To
g
g
le
Bu
tt
o
n
of
the Ed
it
p
a
ne
l to
b
r
i
n
g th
e
P
L
C
Pan
e
l
in
t
o
v
i
ew
. On
cli
c
k
i
ng
t
h
e d
o
w
n
loa
d
bu
tt
o
n
o
n
the
PL
C
Pan
e
l
o
n
e
c
a
n
d
o
w
n
l
o
a
d
th
e
progr
am
i
n
to
t
h
e
PLC
.
A
f
t
e
r
t
h
e
pr
o
g
r
am
i
s
dow
nl
o
a
d
e
d
,
i
t
c
a
n
t
h
e
n
b
e
plac
e
d
i
n
t
o
R
U
N
mo
de
. T
h
is
initia
te
s
the
sca
n
n
i
ng
of
the
p
r
ogram. Va
ri
o
u
s
Progra
m
m
a
b
l
e
Lo
gic Con
t
ro
llers
, w
h
ich
a
r
e
c
o
n
n
e
c
te
d
t
o
a v
a
ri
e
t
y
o
f
f
i
el
d
se
n
s
ing
d
e
v
i
ce
s.
A
co
m
m
u
n
icat
io
n
s
sy
ste
m
is
u
s
ed
f
o
r th
e
tra
n
s
f
er
of
d
a
ta
b
e
tw
e
e
n
the c
o
mpu
t
e
r
s
p
r
es
e
n
t
in t
h
e
central sy
ste
m
a
nd
f
i
eld da
ta d
e
v
i
ces
. T
h
ese
sy
ste
m
s inclu
d
e
te
leph
o
n
e,
s
a
t
e
ll
ite
, ca
b
l
es,
ra
d
i
o
o
r
a
comb
i
n
a
t
ion
o
f
an
y
o
f
t
h
e
s
e
[6
].
Steps t
o
per
f
o
r
m
SCADA sim
u
lations
f
o
r
d
r
y
ice plant
[7]
:
SCADA co
ntro
l en
gin
e
e
r
s m
a
p
o
u
t sy
stem
th
a
t
in
te
grate
s
HM
I, v
a
ri
o
u
s
a
l
ar
ms
,
co
n
t
ro
ller
comm
u
n
i
catio
n
s
a
n
d
mu
ltip
le
s
e
n
s
o
r
s
fo
r
e
v
e
r
y n
e
w p
r
oj
ect.
T
h
is
gi
v
e
s th
e
b
a
sic
id
ea
of h
o
w th
e
SC
A
DA si
m
u
l
a
t
i
o
n
s
o
f
t
w
a
re
l
o
ok
w
o
u
l
d
l
o
ok
l
i
ke.
Once
the
ma
pp
ing
o
ccurs
a
nd
th
e
ba
sic
de
ta
il
s
regarding
th
e
so
f
t
w
a
re
are
ob
ta
i
n
ed
,
program
min
g
o
f
th
e
P
L
C
’
s
t
a
ke
s
p
l
ace
.
T
e
s
tin
g
a
SCADA sy
ste
m
u
s
u
a
ll
y
ta
k
e
s
p
l
a
c
e o
n
th
e
f
i
e
l
d
o
f
o
p
e
r
a
tio
n
aft
e
r
the
se
t
u
p
of
t
h
e
sy
ste
m
is
co
mp
l
e
te
d
.
In
SC
ADA to ch
an
ge
o
r
mo
d
i
f
y
t
h
e lo
gic
to
me
et
n
e
w
ap
p
l
i
c
a
tio
n n
e
ce
ssities
is
co
mpa
r
ativ
e
l
y
e
a
s
y
.
T
h
e t
r
ai
n
i
ng
o
f
SC
AD
A
o
p
erat
o
r
is
the
res
p
on
si
bili
ty
of
t
h
e p
e
rso
n
t
h
a
t
de
v
e
l
ops
th
e
app
l
i
c
a
t
i
o
n
.
3.
DEVELOPMENT OF LADDER L
OGI
C
M
O
D
EL FOR DR
Y IC
E PLA
N
T
Th
e sim
p
le
ladd
er
l
ogic h
a
s b
e
en
im
p
l
em
en
ted
i
n
LOGIX
P
ro
for
au
t
o
m
a
tion
of
dr
y
i
c
e
p
ack
ag
i
n
g
p
l
an
t
.
Ladd
er
l
o
g
i
c
is w
i
d
e
ly used
t
o
progr
am
PLCs, wh
er
e sequ
en
ti
al
con
t
ro
l of
a process
or
m
a
n
u
fact
u
r
i
ng op
erati
o
n
is
requ
i
r
ed
. Ladder l
o
g
i
c is
u
s
efu
l
for sim
p
le
bu
t critical con
t
ro
l syst
em
s, o
r
for re
worki
ng ol
d
ha
rdwi
red
rel
a
y ci
rc
uit
s
.
As
program
m
a
ble logic
c
o
nt
rolle
rs becam
e more
s
ophis
tica
t
ed
it h
a
s
a
l
so
b
een u
s
ed
in
ve
r
y
c
o
m
p
lex
au
tom
a
tio
n
s
y
s
t
e
m
s
[8
].
Th
e
l
a
dder
l
o
g
i
c
for
r
ung
0
is
sh
o
w
n
in
F
i
g
u
r
e 5
.
T
h
is ru
n
g
giv
e
s
th
e
c
o
n
d
itio
n
fo
r
ma
ch
i
n
e st
a
r
t s
t
at
e
.
H
e
re t
h
e b
i
n
a
ry
sta
r
t
v
a
ri
ab
le
is
e
n
e
r
g
i
z
e
d
w
h
en
the
start
b
u
tt
o
n
is
p
u
shed
.
T
h
is
sta
r
t
b
u
t
t
o
n
is
lat
c
h
e
d
on
w
ith
th
e b
i
n
a
ry
sta
r
t v
a
ri
a
b
l
e
so t
h
a
t
the
sta
r
t
b
i
na
ry
v
a
ri
ab
l
e
rema
in
s en
erg
i
z
e
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
44
3 – 4
5
3
44
8
Fi
g
u
re 5.
Ladd
er l
o
g
i
c f
o
r r
ung
0
It
is
co
nn
e
c
te
d
i
n
s
e
ri
e
s
to
t
h
e sto
p
sw
itch
so
tha
t
w
h
e
n
th
e
st
o
p
b
u
t
t
o
n
i
s
p
u
sh
ed
t
h
e st
art
b
i
n
a
ry
v
a
ri
ab
le ge
ts
d
e
-en
e
rg
i
z
e
d
.
Hen
ce w
h
en
t
h
e
s
t
a
r
t
b
u
tt
o
n
is pu
s
h
e
d
the
sta
r
t
v
a
ri
a
b
le is e
n
e
r
g
i
z
e
d
an
d w
h
e
n
the
st
o
p
sw
itch
is p
u
shed
t
h
e
s
t
a
r
t v
a
ri
a
b
l
e
is d
e
-en
e
rg
i
z
e
d
. T
h
e
lad
d
e
r
logic f
o
r
ru
n
g
1
is
sh
o
w
n
in
Fi
g
u
r
e
6
.
Fi
g
u
re 6
.
La
d
d
er l
o
g
i
c f
o
r r
ung
1
R
ung 1 b
a
si
cal
l
y
t
e
ll
s
t
h
e
rem
a
i
n
i
n
g pr
og
ram
w
h
i
c
h
i
n
p
u
t
m
o
d
e
i
s
sel
e
c
t
e
d
.
Th
e
st
art
v
a
ri
ab
l
e
h
a
s
be
en
co
n
n
e
c
t
e
d
i
n
seri
e
s
to
the
3
in
p
u
t
sw
it
ch
e
s
, in
p
u
t
A, in
p
u
t
B a
n
d
in
p
u
t C
w
h
ich
in tu
rn
are
co
n
n
ected
to thre
e
b
i
nary v
a
ri
ab
les
n
a
m
e
ly co
n
tinuou
s
b
i
n
a
ry
vari
ab
le
,
m
a
n
u
a
l
b
i
nary v
a
ri
ab
l
e
and no
f
ill
b
i
nary
v
a
ri
ab
le
.
W
h
e
n
an
i
n
p
u
t
is s
e
lect
ed
it
e
n
e
r
g
i
z
e
s
th
e
co
n
n
e
ctin
g
o
u
tp
u
t
b
i
n
a
ry
v
a
ri
ab
le.
It me
a
n
s
t
h
a
t
if
in
p
u
t
A is
s
e
lect
e
d
the
n
th
e
co
n
tin
u
o
u
s
b
i
n
a
ry
v
a
ri
ab
le
(B
3
:
0
/
1
)
w
i
ll
ge
t
e
n
erg
i
z
e
d
an
d
o
u
t
p
u
t
regard
ing
c
o
n
d
i
tio
n
A
is
si
m
u
lat
e
d
.
Si
mi
l
a
rl
y
th
a
t
i
f
i
n
p
u
t
B
i
s
se
lect
ed
the
n
t
h
e ma
nu
a
l
b
i
na
ry
v
a
ri
ab
le
ge
t
s
en
e
r
g
i
z
e
d
an
d
th
e
o
u
tp
u
t
rega
rd
ing
co
n
d
itio
n
B
is si
mu
la
ted
.
T
h
e
lad
d
e
r
l
o
gic
f
o
r r
u
n
g
2
is sh
o
w
n
i
n
Fi
g
u
r
e
7
.
Fi
gu
re
7
.
La
d
d
er l
o
g
i
c
f
o
r
r
ung
2
Th
is
ru
n
giv
e
s t
h
e
co
n
d
iti
o
n
s t
o
m
o
v
e
th
e
co
n
v
e
y
o
r
b
e
lt.
Ag
a
i
n
t
h
e
sta
r
t
b
i
n
a
ry
v
a
ri
ab
le
is
co
n
n
e
c
te
d
in se
ri
e
s
w
ith
t
h
e
t
h
re
e
v
a
ri
a
b
les. For th
e
f
i
rs
t ca
se w
h
e
n
c
o
n
t
a
c
t
is
e
n
e
r
g
i
z
e
d
a
n
d
t
h
e
p
r
ox
se
n
s
o
r
i
s
no
t
ene
r
g
i
z
e
d
t
h
e
b
e
l
t
k
e
eps
m
o
v
i
n
g
.
A
s
s
o
on
as
t
h
e
pr
o
x
s
e
ns
or
g
e
t
s
e
n
er
g
i
z
e
d,
t
h
e
c
o
nt
ac
t
i
s
b
r
oken
a
nd
th
e
be
lt
stop
s
mo
v
i
n
g
. For
t
h
e seco
n
d
ca
se
w
h
en
c
o
n
t
a
c
t is
e
n
e
r
g
i
z
e
d
an
d
th
e
sta
r
t
pu
s
h
bu
t
t
o
n
is
p
r
e
sse
d
t
h
en the co
n
v
e
y
o
r
b
e
lt mo
v
e
s.
T
o
k
e
ep
th
e
c
o
n
v
ey
o
r
b
e
lt
mov
i
n
g
th
e
start
sw
itch
co
n
t
a
c
t
is
la
tch
e
d
w
i
t
h
t
h
e m
o
v
i
ng
b
i
nary
v
a
ri
ab
l
e
. As s
oon as t
h
e pro
x
sen
s
o
r
g
e
t
s
en
er
g
i
z
e
d
,
t
h
e
c
o
n
t
act
i
s
b
r
ok
en
and
t
h
e
b
e
lt
sto
p
s
mo
v
i
n
g
.
Th
e f
u
ll b
i
n
a
ry v
a
ri
a
b
le
is
co
n
n
e
c
te
d
i
n
p
a
rall
e
l
t
o
t
h
e
p
r
o
x
sen
s
o
r
con
t
a
c
t
so
th
a
t
w
h
en
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
LO
GIXP
RO
B
a
se
d
SC
ADA
S
i
mul
a
t
i
o
ns
Mo
del
f
o
r
Pack
a
g
i
ng
Syst
e
m
i
n
Dry
IC
E Pl
ant
(
P
rash
u J
a
i
n
)
44
9
th
e box
i
s
f
u
l
l
th
e b
e
l
t
start
s
m
o
v
i
ng ag
ai
n.
I
n
t
h
e t
h
i
r
d
cas
e
w
h
en t
h
e
n
o
f
i
l
l
b
i
nary
v
a
ri
ab
l
e
i
s
en
erg
i
z
e
d
t
h
e
b
e
lt
k
e
eps
mo
v
i
n
g
.
T
h
e Start
b
i
n
a
ry
v
a
ri
ab
le is
co
n
n
e
c
t
e
d
in se
ri
e
s
s
o
t
h
at a
t
a
n
y
ti
m
e
w
h
e
n
t
h
e st
o
p
p
u
sh
b
u
tt
on
is p
r
essed
the
belt sto
p
s
mo
v
i
ng.
T
h
e
lad
d
er
lo
gic f
o
r run
g
3
is sh
o
w
n
in
F
i
g
u
re
8
.
Th
is run
g
gi
v
e
s u
s
t
h
e
co
n
d
itio
n
regard
in
g t
h
e
mo
to
r.
Fi
g
u
re 8.
L
a
d
d
e
r
l
o
g
i
c
for
r
ung
3
Here th
e
m
o
v
i
ng
b
i
nar
y
v
a
r
i
ab
l
e
i
s
co
nn
ect
ed
t
o
t
h
e out
p
u
t
v
a
ri
ab
l
e
m
o
t
o
r
on.
It
me
an
s
t
h
at
w
h
en
ev
e
r
th
e
m
o
v
i
n
g
b
i
n
a
ry
v
a
ri
a
b
le
is
en
e
r
g
i
z
e
d
th
e
m
o
to
r
i
s
sw
itch
e
d
o
n
oth
e
rw
ise
it re
ma
i
n
s off.
T
h
e
l
a
d
d
er l
o
g
i
c f
o
r r
u
ng
4
i
s
s
how
n
i
n
F
i
g
u
re
9. Th
i
s
r
ung t
e
l
l
s
u
s
w
h
en
t
h
e
r
u
n
l
i
g
h
t
s
h
ou
l
d
b
e
sw
i
t
c
h
e
d
on
.
Fi
g
u
re 9.
Lad
d
er l
o
g
i
c f
o
r r
ung
4
Here t
h
e
start b
i
n
a
ry
v
a
ri
ab
le is
co
n
n
e
c
ted
to
th
e o
u
tp
ut
v
a
ri
a
b
le
o
f
th
e ru
n
li
g
h
t
.
Th
is
m
e
a
n
s t
h
a
t
w
h
en
ev
e
r
the
sta
r
t b
i
n
a
ry
v
a
ri
a
b
le
is e
n
erg
i
z
e
d
th
e
run
li
g
h
t
w
i
l
l
b
e
s
w
itc
h
e
d
o
n
. In
oth
e
r w
o
rd
s w
h
en
e
v
e
r
th
e
m
a
ch
in
e
is in
o
p
eration
th
e
ru
n
li
gh
t wi
ll
b
e
sw
itch
e
d
o
n
. T
h
e
la
d
d
er lo
gic
f
o
r
ru
n
g
5
is
s
h
o
w
n
in
f
i
gu
r
e
1
0
.
T
h
is
ru
n
g
giv
e
s
u
s
th
e
co
n
d
itio
n
fo
r
f
i
l
lin
g
sta
t
e
.
Fi
g
u
re 10.
L
a
dd
er
l
o
g
i
c
f
o
r
rung
5
Here t
h
e
fill
in
g
b
i
n
a
ry
v
a
ri
ab
le
is d
e
f
i
n
e
d
.
T
h
is
v
a
ri
a
b
le is
co
n
n
e
c
ted
w
ith
tw
o
o
p
en
co
n
t
a
c
ts
,
s
t
art
bi
n
a
ry
v
a
ri
abl
e
an
d
t
h
e
pr
ox
i
m
it
y
s
e
ns
or
.
Thes
e
s
e
ns
or
s
a
r
e
c
o
nn
e
c
t
ed
t
o
t
w
o
norm
al
l
y
c
l
os
ed
con
t
a
c
t
s
,
no
f
i
l
l
b
i
nary v
a
ri
ab
le
a
nd
f
u
ll b
i
nary v
a
ri
ab
le.
There
f
ore
w
h
en
tw
o
o
p
en
c
o
nta
c
ts
a
r
e
e
n
er
g
i
z
e
d a
nd
t
h
e
t
w
o c
l
o
s
ed
c
o
nt
ac
t
s
are
i
n
de
-
e
ne
rg
i
z
ed
s
t
at
e
t
h
e
f
i
l
l
i
n
g
bi
nary
v
a
ri
a
b
l
e
i
s
energ
i
z
e
d.
It
me
an
s it w
i
l
l
o
n
l
y
b
e
en
erg
i
z
e
d
w
h
e
n
t
h
e
m
a
ch
in
e
is
run
n
i
n
g
,
th
e
p
r
o
x
imity
se
n
s
o
r
is
o
n
, an
d
i
f
the
b
u
ck
et
is
n
o
t
fu
ll
. T
h
e
ladd
er lo
gic
f
o
r ru
n
g
5
is sh
o
w
n
i
n
f
i
g
u
r
e
1
1
. Th
is
run
g
giv
e
s u
s
the
co
n
d
ition
f
o
r
th
e f
i
l
l
li
gh
t.
Fi
g
u
re 11.
La
dd
er
l
o
g
i
c
f
o
r
r
ung
6
Here
th
e
f
i
ll
in
g
b
i
n
a
ry v
a
ri
ab
le
is
co
n
n
e
c
ted
d
i
re
ctl
y
to
t
h
e
ou
t
p
u
t
v
a
ri
ab
l
e
of
f
i
l
l
li
gh
t. T
h
is
me
an
s
w
h
en
th
e
f
i
l
l
v
a
ri
a
b
le i
s
en
erg
i
z
e
d
th
e f
i
l
l
li
g
h
t is
a
l
so
en
ab
le
d
.
I
n
o
t
h
e
r
w
o
rd
s it
me
an
s
t
h
a
t
w
h
en
t
h
e
b
o
x
is
f
i
l
l
i
n
g
t
h
e
f
i
l
l
li
gh
t
w
i
l
l
b
e
o
n
.
T
h
e la
d
d
e
r
logic fo
r
ru
n
g
7
is s
h
o
w
n
in
f
i
gu
re1
2
.
Th
is run
g
t
e
ll
s us
w
h
en
the
s
o
len
o
i
d
v
a
l
v
e
sh
o
u
ld
o
p
e
n
.
Here t
h
e
f
i
l
l
i
n
g
b
i
n
a
ry
v
a
ri
a
b
le
is d
i
r
e
ctly co
n
n
e
c
ted
to
th
e
o
u
tp
ut
v
a
ri
a
b
le
so
le
n
o
i
d
v
a
lv
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
44
3 – 4
5
3
45
0
Fi
g
u
re 12.
l
a
d
d
e
r
l
o
g
i
c
for
r
ung
7
He
n
ce
w
h
en t
h
e
f
i
l
l
i
n
g
v
a
ri
a
b
le is
en
e
r
g
i
z
e
d th
e
o
u
t
p
ut
v
a
ri
ab
le
is
a
l
so
energ
i
z
e
d
.
In
simp
le
w
o
r
d
s
i
t
m
e
an
s
t
h
at
w
h
en
t
h
e
box
t
o
f
i
l
l
i
ng
t
h
e
so
l
e
n
o
i
d
v
a
l
v
e
i
s
op
en.
Fi
g
u
re 13.Lad
d
er l
o
g
i
c f
o
r r
ung
8
T
h
e l
a
dd
er
l
o
g
i
c
f
o
r
ru
ng
8
i
s
s
h
o
w
n i
n
f
i
g
u
re
13
.
Th
i
s
r
u
ng
t
e
l
l
s u
s
w
h
en t
h
e box
i
s
f
u
l
l
.
Here
t
h
e
fu
ll
b
i
n
a
ry
v
a
ri
a
b
le
is
co
n
n
e
c
ted
t
o
th
e p
r
o
x
i
m
ity
se
n
s
o
r
a
n
d
t
h
e lev
e
l
sen
s
o
r
.
T
h
e
lev
e
l se
n
s
o
r
is th
en
l
a
t
c
h
e
d
on w
i
t
h
t
h
e
f
u
l
l
b
i
nary
v
a
ri
abl
e
. Th
i
s
i
s
done so t
h
at
t
h
e
f
u
l
l
b
i
nary
v
a
ri
ab
l
e
re
m
a
i
n
s
t
r
ue
o
n
ce
en
er
g
i
z
e
d.
In
o
t
h
e
r
w
o
rds
th
is
m
e
a
n
s
w
h
en
t
h
e
box
is in p
l
ace an
d is
f
i
ll
ed the box
is
f
u
ll
.
T
h
e
l
a
d
d
er logic f
o
r
ru
n
g
9
is
s
h
o
w
n
i
n
f
i
gu
re
1
4
.
T
h
is
is
the ru
n
g
giv
e
s
th
e co
n
d
itio
n
o
r
fo
r
th
e
f
u
ll
li
gh
t.
Fi
gu
re 1
4
.
La
dd
er
l
o
g
i
c fo
r r
ung 9
Here t
h
e
f
u
ll
v
a
ri
ab
le
a
n
d
b
i
na
ry
sta
r
t
v
a
ri
a
b
le
a
r
e co
n
n
e
c
te
d
to
t
h
e
f
u
ll
li
gh
t
o
u
t
p
u
t
v
a
ri
ab
le.
H
e
n
ce w
h
en
t
h
e
fu
ll
v
a
r
i
ab
le a
n
d
t
h
e sta
r
t
v
a
ri
a
b
le are
e
n
e
r
g
i
z
e
d
t
h
e
fu
ll
li
gh
t
w
i
ll
b
e
sw
i
t
ch
ed
o
n
.
In
si
mp
le
w
o
rd
s
i
t
mea
n
s th
at
w
h
e
n
the
b
o
x
is f
u
ll
an
d
th
e ma
c
h
in
e
is ru
n
n
ing
t
h
e fu
ll
lig
h
t
w
i
l
l
b
e
o
n
.
T
h
e
ladd
er
lo
gic
f
o
r ru
n
g
9
is
sh
o
w
n
i
n
f
i
g
u
r
e
1
5
. T
h
is
is
t
h
e f
i
n
a
l
run
g
a
n
d
it
t
e
ll
s
u
s
th
a
t
th
e
p
r
ogra
m
h
a
s
en
d
e
d
.
Fi
g
u
re 15
.
Lad
d
er l
o
g
i
c
f
o
r r
ung
1
0
3.
1.
Com
p
lete l
a
dder logic diagram
for
Dr
y
I
ce Pac
k
aging
simulati
ons
Co
m
b
in
in
g
all
th
e ru
ng
s t
o
g
e
t
h
er sho
w
s th
e
co
m
p
lete
l
ogi
c fo
r
dry
i
ce
pac
k
agi
n
g
aut
o
m
a
t
i
on.
Fi
g
u
re
1
6
sh
ows th
e
co
m
p
lete lad
d
er log
i
c
d
i
agram
fo
r
d
r
y ice
p
l
an
t
wh
ich
can
b
e
easily d
o
wn
l
o
ad
ed in
to PLC
.
Wh
en
im
p
l
e
m
en
ted
in
a prog
ramm
ab
le lo
g
i
c co
n
t
ro
ller, th
e ru
les are typ
i
cally
ex
ecu
ted
seq
u
e
n
tially b
y
soft
ware
, in a loop. By executing th
e lo
op
fast eno
ugh
, typ
i
cally
m
a
n
y
times per second, the e
f
fect of
sim
u
l
t
a
neous
a
n
d
i
m
m
e
di
at
e execut
i
o
n i
s
o
b
t
ai
ned.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
LO
GIXP
RO
B
a
se
d
SC
ADA
S
i
mul
a
t
i
o
ns
Mo
del
f
o
r
Pack
a
g
i
ng
Syst
e
m
i
n
Dry
IC
E Pl
ant
(
P
rash
u J
a
i
n
)
45
1
Fig
u
re 16
.
C
o
m
p
l
e
te
L
a
d
d
e
r
lo
gic Dry Ice
packagi
n
g sim
u
lations
4.
SIMULATIONS RESULTS
The ladder l
o
gi
c has been im
p
l
em
en
ted and sim
u
lated in
W
i
ndows X
P
based HP workst
ati
ons
connect
ed
i
n
an Et
hernet
LA
N. Fi
gure 17 shows t
h
e scr
e
en of a dry
i
c
e pl
an
t
sim
u
l
a
ti
on result
for
t
h
e proposed
m
odel
[6
]
.
The
box i
s
k
e
pt on a convey
o
r belt
whi
c
h
m
oves w
i
t
h
t
h
e hel
p
of
a
m
o
t
o
r. W
h
en the box is
i
n
place
t
h
e
m
o
t
o
r shoul
d
stop and t
h
e
solenoi
d val
v
e sho
u
l
d
open and
t
h
e box shoul
d start
filli
ng. Th
i
s
i
s
done wit
h
t
h
e hel
p
of
vari
ous sensors.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
44
3 – 4
5
3
45
2
Fig
u
re
17
.
Dr
y
ice p
l
an
t
Simulations
Also
w
h
en
th
e b
o
x
is
be
ing
f
i
l
l
ed
t
h
e f
i
l
l
ligh
t
s
h
o
u
ld
b
e
o
n
,
w
h
en
th
e p
r
o
g
ram
is
ru
n
n
ing
th
e
ru
n
l
i
g
h
t
s
h
o
u
l
d
be
on a
n
d
w
h
en
t
h
e
box
i
s
f
i
l
l
e
d
th
e
fu
l
l
l
i
g
h
t
s
h
o
u
l
d
b
e
on
.
T
h
ere
ar
e
t
h
re
e
sw
i
t
c
h
e
s
t
h
a
t
d
e
t
e
rmin
e h
o
w
th
e si
mu
lat
o
r
sh
o
u
l
d
fu
n
c
tio
n
.
Usi
n
g
sw
itch
A
a
s
s
o
o
n
a
s
the
bo
x
is
f
i
l
l
ed
t
h
e
co
n
v
e
y
o
r
b
e
lt
s
h
ou
l
d
st
art
m
o
v
i
ng
.
I
f
sw
i
t
c
h
B
i
s
sel
ecte
d
t
h
en
a
f
te
r t
h
e
f
i
l
l
i
n
g
o
c
c
u
r
s
,
t
h
e
box
w
i
l
l
on
l
y
m
o
v
e
o
n
c
e
st
art
b
u
tt
o
n
is
p
r
esse
d
.
Inp
u
t c
w
i
l
l
o
n
ly
mo
v
e
t
h
e co
n
v
e
y
o
r
b
e
lt
w
ith
o
u
t
f
i
l
l
i
n
g
t
h
e b
o
x
as
shown
in
Figu
re
18
.
Fi
g
u
re 18
.
Pack
ag
i
n
g p
r
o
c
ess
sim
u
latio
n o
f
dr
y
ice
F
i
g
u
r
e
1
9
s
how
s
th
e
box
is
f
u
ll
and si
gnal from
the level sens
or
will ac
tivate the
m
o
tor. Usi
n
g
t
h
i
s
ap
pr
oac
h
,
di
ffe
re
nt
ki
nd
of l
ogi
c
be t
e
s
t
ed, i
m
pl
em
ented a
nd m
oni
t
o
r co
nt
i
n
uo
us
a
u
t
o
m
a
t
e
d pack
agi
n
g
pr
ocess
re
qui
re
m
e
nt
s.
Evaluation Warning : The document was created with Spire.PDF for Python.