I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
6
,
No
.
6
,
Decem
b
er
201
6
,
p
p
.
2
5
8
1
~
2
5
8
8
I
SS
N:
2088
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
6i
6
.
1
1
9
2
1
2581
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
O
pti
m
a
l
Lo
ca
tion
o
f
SV
C using
Particle
Sw
a
r
m
O
pti
m
i
z
a
tion
a
nd
Vo
ltag
e St
a
bi
lity Index
es
M.
N.
Da
za
hra
,
F.
E
l
m
a
ria
mi
,
A.
B
elf
qih
,
J.
B
o
uk
hero
u
a
a
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
Ne
t
w
o
rk
s an
d
S
tatic C
o
n
v
e
rters
,
Na
ti
o
n
a
l
su
p
e
rio
r
S
c
h
o
o
l
o
f
El
e
c
tri
c
it
y
a
n
d
M
e
c
h
a
n
ics
,
M
o
ro
c
c
o
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l 2
1
,
2
0
1
6
R
ev
i
s
ed
Oct
1
5
,
2
0
1
6
A
cc
ep
ted
Oct
29
,
2
0
1
6
F
lex
ib
le
A
C
tran
s
m
issio
n
s
y
ste
m
a
re
w
id
le
y
u
se
d
in
p
o
w
e
r
s
y
t
e
m
s
to
e
n
su
re
v
o
lt
a
g
e
sta
b
il
it
y
,
in
v
irt
u
e
o
f
th
e
ir
h
ig
h
c
o
st
th
e
c
h
o
ise
o
f
th
e
b
e
st
l
o
c
a
ti
o
n
in
e
lec
tri
c
a
l
n
e
tw
o
rk
is
e
ss
e
n
ti
a
l
.
Th
e
p
o
r
p
o
se
o
f
t
h
is
p
a
p
e
r
is
to
p
re
se
n
t
a
n
e
w
m
e
th
o
d
f
o
r
f
in
d
in
g
th
e
o
p
ti
m
a
l
lo
c
a
ti
o
n
,
siz
e
a
n
d
n
u
m
b
e
r
o
f
S
tatic
V
a
r
Co
m
p
e
n
sa
to
r
in
o
rd
e
r
to
e
n
h
a
c
e
th
e
v
o
lt
a
g
e
st
a
b
il
it
y
o
f
e
le
c
tri
c
a
l
n
e
tw
o
rk
.
T
h
e
o
p
ti
m
a
l
so
lu
ti
o
n
h
a
s
b
e
e
n
f
o
u
n
d
b
y
u
sin
g
th
e
e
v
o
lu
ti
o
n
a
ry
p
ro
g
ra
m
m
in
g
a
lg
o
rit
h
m
,
p
a
rti
c
le
sw
a
r
m
o
p
ti
m
iz
a
ti
o
n
,
c
o
m
b
in
e
d
w
it
h
v
o
lt
a
g
e
sta
b
il
it
y
in
d
e
x
e
s
u
se
d
f
o
r
th
e
e
sti
m
a
ti
o
n
o
f
th
e
v
o
lt
a
g
e
c
o
ll
a
p
se
in
p
o
w
e
r
s
y
ste
m
s.T
h
e
p
ro
p
o
se
d
a
lg
o
rit
h
m
h
a
s
b
e
e
n
v
a
li
d
a
ted
b
y
a
p
p
li
c
a
ti
o
n
o
n
b
o
th
sim
u
latio
n
n
e
tw
o
rk
m
o
d
e
l
IEE
E
30
-
B
u
se
s
u
n
d
e
r
d
if
f
e
r
e
n
t
lo
a
d
c
a
se
s
a
n
d
th
e
e
lec
tri
c
n
e
tw
o
rk
m
o
d
e
l
o
f
Ca
sa
b
lan
c
a
re
g
io
n
in
M
o
r
o
c
c
o
.
T
h
e
re
su
lt
s
o
f
th
e
a
p
p
li
c
a
ti
o
n
h
a
v
e
b
e
e
n
a
n
a
l
y
s
e
d
a
n
d
c
o
m
p
a
re
d
in
e
a
c
h
c
a
se
in
o
rd
e
r
to
g
e
t
th
e
o
p
ti
m
a
l
n
u
m
b
e
r
o
f
S
tatic V
a
r
C
o
m
p
e
n
sa
to
r
to
b
e
u
se
d
.
K
ey
w
o
r
d
:
F
A
C
T
S
Op
ti
m
al
lo
ca
tio
n
P
SO
SVC
Vo
ltag
e
s
tab
ili
t
y
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Daz
ah
r
a
Mo
h
a
m
ed
No
u
h
,
Dep
ar
t
m
en
t o
f
E
lectr
ical
Net
w
o
r
k
s
an
d
Stat
ic
C
o
n
v
er
ter
s
,
Natio
n
al
s
u
p
er
io
r
Sch
o
o
l o
f
E
lectr
icit
y
a
n
d
Me
ch
an
ics
,
R
o
ad
E
l
J
ad
id
a
,
K
m
7
,
B
P
: 8
1
1
8
,
Oasis
–
C
asab
lan
ca
,
Mo
r
o
cc
o
.
E
m
ail:
m
.
n
.
d
az
ah
r
a
@
g
m
a
il.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
elec
tr
ic
s
y
s
te
m
s
ar
e
in
c
r
ea
s
in
g
l
y
b
ec
o
m
i
n
g
m
o
r
e
co
m
p
lex
an
d
h
ea
v
il
y
lo
ad
ed
.
A
lo
n
g
w
it
h
ec
o
n
o
m
ic
a
n
d
e
n
v
ir
o
n
m
en
ta
l
co
n
s
tr
ain
ts
.
On
e
o
f
th
e
m
aj
o
r
co
n
ce
r
n
s
i
n
p
o
w
er
s
y
s
te
m
s
i
s
v
o
ltag
e
s
tab
ili
t
y
.
T
h
e
v
o
ltag
e
m
u
s
t
b
e
m
ai
n
t
ain
ed
ac
ce
p
tab
le
at
all
n
o
d
es
o
f
t
h
e
s
y
s
te
m
i
n
n
o
r
m
a
l
f
u
n
ctio
n
o
r
af
ter
d
is
tu
r
b
an
ce
[
1
]
.
T
h
e
i
n
s
tab
ilit
y
o
f
v
o
lta
g
e
is
c
h
ar
ac
ter
ized
b
y
a
p
r
o
g
r
ess
iv
e
an
d
u
n
co
n
tr
o
llab
le
d
ec
r
ea
s
e
in
v
o
ltag
e
le
v
el
ca
u
s
ed
b
y
a
d
is
t
u
r
b
an
ce
,
as
t
h
e
m
aj
o
r
it
y
o
f
s
y
s
te
m
s
o
p
er
ate
clo
s
e
to
th
eir
li
m
it
s
th
e
co
n
tr
o
l
o
f
s
u
c
h
in
s
tab
ilit
y
is
i
m
p
o
s
s
ib
le.
Dif
f
er
en
t
ap
p
r
o
ac
h
es
h
a
v
e
b
ee
n
g
i
v
e
n
f
o
r
th
e
s
t
u
d
y
o
f
v
o
ltag
e
s
tab
ili
t
y
[
2
]
.
T
h
e
o
p
tim
al
v
alu
e
a
n
d
th
e
v
o
lta
g
e
s
tab
ilit
y
li
m
its
ar
e
i
m
p
o
r
tan
t
f
o
r
th
e
o
p
er
atio
n
o
f
p
o
w
er
s
y
s
te
m
s
,
th
u
s
th
e
n
ec
ess
it
y
o
f
d
e
f
in
in
g
a
v
o
ltag
e
s
tab
il
it
y
i
n
d
ex
es
ca
p
a
b
le
o
f
p
r
o
v
id
in
g
r
eliab
le
k
n
o
w
led
g
e
o
f
th
e
v
o
lt
a
g
e
s
tab
ilit
y
i
n
a
p
o
w
er
s
y
s
te
m
.
T
h
e
v
alu
e
o
f
t
h
ese
i
n
d
ex
e
s
v
ar
ies in
g
en
er
al
b
et
w
ee
n
0
(
n
o
lo
ad
)
an
d
1
(
v
o
ltag
e
co
llap
s
e)
.
T
h
e
FA
C
T
S
(
Flex
ib
le
A
C
T
r
an
s
m
i
s
s
io
n
S
y
s
te
m
s
)
h
av
e
b
e
en
w
id
el
y
u
s
ed
to
en
s
u
r
e
th
e
s
tab
ilit
y
o
f
v
o
ltag
e
in
p
o
w
er
s
y
s
te
m
s
,
T
h
e
SVC
(
Static
Var
C
o
m
p
e
n
s
a
to
r
)
is
a
s
h
u
n
t
F
A
T
C
S
u
s
ed
t
o
r
eg
u
late
v
o
lta
g
e.
SVC
h
a
s
m
a
n
y
p
o
s
s
ib
le
co
n
f
i
g
u
r
atio
n
s
.
I
n
t
h
i
s
p
ap
er
w
e
u
s
e
T
C
R
-
FC
t
y
p
e
o
f
SVC
[
3
]
.
Du
e
to
t
h
e
ex
p
e
n
s
i
v
e
i
n
v
e
s
t
m
e
n
t
co
s
t
it
i
s
i
m
p
o
r
tan
t
to
c
h
o
o
s
e
t
h
e
s
u
i
tab
le
lo
ca
tio
n
a
n
d
p
ar
a
m
eter
s
e
tti
n
g
s
o
f
SV
C
to
i
n
cr
ea
s
e
s
tab
ilit
y
o
f
v
o
ltag
e
a
n
d
m
i
n
i
m
ize
s
y
s
te
m
lo
s
s
e
s
.
T
h
e
m
o
d
er
n
h
eu
r
is
tics
o
p
ti
m
izat
io
n
tech
n
iq
u
es
s
u
c
h
as
ev
o
lu
tio
n
ar
y
p
r
o
g
r
a
m
m
i
n
g
g
e
n
etic
al
g
o
r
ith
m
(
G
A
)
,
an
d
p
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
(
P
S
O)
ar
e
s
u
cc
ess
f
u
ll
y
i
m
p
le
m
en
ted
to
s
o
l
v
e
co
m
p
le
x
p
r
o
b
le
m
s
[
4
-
8]
.
Ho
w
ev
er
,
t
h
er
e
ar
e
m
o
r
e
ad
v
a
n
ta
g
eo
u
s
p
er
f
o
r
m
an
ce
s
o
f
t
h
e
P
SO
th
a
n
t
h
o
s
e
o
f
G
A
,
t
h
e
P
SO
s
ee
m
s
to
co
n
v
er
g
e
to
its
f
i
n
al
p
ar
a
m
eter
v
al
u
e
s
in
f
e
wer
g
en
er
atio
n
s
t
h
a
n
GA
.
T
h
e
P
SO
m
et
h
o
d
g
iv
e
s
a
b
etter
b
alan
ce
d
m
ec
h
a
n
i
s
m
an
d
b
etter
ad
a
p
tatio
n
to
th
e
g
lo
b
al
an
d
lo
ca
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Op
tima
l Lo
ca
tio
n
o
f S
V
C
u
s
in
g
P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
a
n
d
V
o
lta
g
e
S
ta
b
ilit
y
I
n
d
ex
e
s
(
M.
N
.
Da
z
a
h
r
a
)
2582
ex
p
lo
r
atio
n
ab
ilit
ie
s
.
F
u
r
t
h
er
m
o
r
e,
it
ca
n
b
e
ap
p
lied
to
s
o
lv
e
v
ar
io
u
s
o
p
ti
m
izat
io
n
p
r
o
b
lem
s
i
n
e
lectr
ical
s
y
s
te
m
s
s
u
c
h
as st
ab
ilit
y
o
f
s
y
s
te
m
a
n
d
lo
ca
t
io
n
o
f
v
o
ltag
e
r
eg
u
la
to
r
[
9
-
12]
.
I
n
t
h
e
li
ter
atu
r
e
m
a
n
y
r
esear
c
h
es
h
a
v
e
b
ee
n
d
o
n
e
i
n
o
r
d
er
t
o
f
i
n
d
t
h
e
o
p
ti
m
al
lo
ca
tio
n
o
f
SVC
u
s
i
n
g
P
SO
,
an
d
to
o
b
tain
th
e
o
p
ti
m
al
t
y
p
e,
lo
ca
tio
n
an
d
s
etti
n
g
o
f
F
AC
T
S,
o
p
tim
al
in
v
est
m
e
n
t
co
s
t
an
d
an
n
u
a
l
m
ax
i
m
u
m
b
e
n
e
fi
t
s
[
1
3
-
16]
.
U
n
f
o
r
t
u
n
ate
l
y
t
h
e
o
p
ti
m
al
n
u
m
b
er
o
f
SV
C
h
a
s
n
o
t
b
ee
n
m
en
tio
n
ed
i
n
li
ter
atu
r
e,
s
o
in
t
h
is
p
ap
er
w
e
w
ill
d
esc
r
ib
e
th
e
ap
p
licatio
n
o
f
P
SO
t
o
f
in
d
t
h
e
o
p
ti
m
al
n
u
m
b
er
an
d
lo
ca
tio
n
o
f
SV
C
u
s
i
n
g
v
o
lta
g
e
s
tab
ilit
y
i
n
d
ex
.
T
h
e
ap
p
licatio
n
o
f
th
e
al
g
o
r
ith
m
h
a
s
b
ee
n
ca
r
r
ied
o
u
t
o
n
b
o
th
th
e
I
E
E
E
3
0
-
b
u
s
s
y
s
te
m
u
n
d
er
d
if
f
er
e
n
t lo
ad
in
g
ca
s
es,
a
n
d
th
e
elec
tr
ic
n
et
w
o
r
k
o
f
C
asab
la
n
ca
r
eg
io
n
in
Mo
r
o
cc
o
.
T
h
e
r
est
o
f
th
e
p
ap
er
is
s
tr
u
c
t
u
r
ed
as
f
o
llo
w
.
I
n
s
ec
tio
n
2
t
h
e
P
SO
is
p
r
ese
n
ted
i
n
g
e
n
er
al
f
o
llo
w
ed
b
y
a
d
escr
ip
ti
o
n
o
f
v
o
lta
g
e
s
t
ab
ilit
y
i
n
d
ex
an
d
t
h
e
f
o
r
m
u
lat
io
n
o
f
o
b
j
ec
tiv
e
f
u
n
ctio
n
w
it
h
th
e
ap
p
licatio
n
o
f
P
SO f
o
r
o
p
tim
al
lo
ca
tio
n
o
f
S
VC
.
R
es
u
lt
s
o
f
s
i
m
u
latio
n
ar
e
p
r
o
v
id
ed
in
s
ec
tio
n
3
.
2.
P
RO
P
O
SE
D
SO
L
UT
I
O
N
2
.
1
.
P
a
rt
icle
Swa
r
m
O
pti
m
i
za
t
io
n
P
SO
w
as
in
tr
o
d
u
ce
d
b
y
Ke
n
n
ed
y
an
d
E
b
er
h
ar
t
[
1
7
-
1
8
]
.
I
t
was
i
n
s
p
ir
ed
f
r
o
m
s
o
cial
b
e
h
av
i
o
r
s
o
f
f
i
s
h
s
ch
o
o
lin
g
a
n
d
b
ir
d
f
lo
ck
in
g
.
I
n
P
SO
i
n
d
iv
id
u
als
(
p
ar
ticles)
ch
an
g
e
t
h
eir
p
o
s
itio
n
i
n
ti
m
e
ac
co
r
d
in
g
to
t
h
eir
o
w
n
b
est
e
x
p
er
ien
ce
a
n
d
th
e
b
est
ex
p
er
ien
ce
g
i
v
e
n
b
y
t
h
eir
n
ei
g
h
b
o
r
s
.
L
et
D
b
e
t
h
e
d
i
m
e
n
s
io
n
o
f
t
h
e
s
ea
r
ch
s
p
ac
e,
ea
ch
p
ar
ticle
is
r
ep
r
esen
ted
b
y
a
D
-
d
i
m
e
n
s
i
o
n
al
v
ec
to
r
f
o
r
e
x
a
m
p
le
t
h
e
it
h
p
ar
ticle
is
1
,
2
,
,
.
,
i
i
i
i
i
X
X
X
X
d
X
D
th
e
p
ar
ticle
w
it
h
th
e
s
m
al
le
s
t
o
b
j
ec
tiv
e
f
u
n
ctio
n
v
al
u
e
is
d
en
o
ted
b
y
th
e
in
d
ex
Gb
est
(
g
lo
b
al
b
est),
ea
c
h
b
est
p
o
s
itio
n
o
f
p
ar
ticle
is
r
ec
o
r
d
ed
as
1
,
2
,
,
.
,
i
i
i
i
i
P
P
P
P
d
P
D
w
h
ile
th
e
p
o
s
itio
n
c
h
an
g
e,
t
h
e
v
elo
ci
t
y
also
ch
a
n
g
e
f
lo
w
i
n
g
eq
u
atio
n
(
1
)
.
1
1
.
1
.
2
.
2
.
i
i
i
i
b
e
s
t
i
V
t
W
t
C
R
P
d
X
d
C
R
G
X
d
(
1
)
An
d
th
e
n
e
w
p
o
s
itio
n
o
f
th
e
p
ar
ticle
ca
n
b
e
ca
lcu
lated
b
y
eq
u
atio
n
(
2
)
.
11
i
i
i
X
d
t
X
d
t
V
d
t
(
2
)
W
h
er
e
W
is
th
e
in
er
tia
w
ei
g
h
t
s
.
C
1
an
d
C
2
ar
e
co
n
s
tan
ts
i
n
f
lu
en
cin
g
t
h
e
co
n
v
er
g
e
n
ce
s
p
ee
d
o
f
p
ar
ticles.
R
1
an
d
R
2
ar
e
r
an
d
o
m
n
u
m
b
e
r
s
b
et
w
ee
n
0
an
d
1
.
Velo
cit
y
u
p
d
ates
ar
e
i
n
f
l
u
en
ce
d
b
y
b
o
th
t
h
e
b
es
t
g
lo
b
al
s
o
lu
t
io
n
as
s
o
ciate
d
w
it
h
t
h
e
lo
w
e
s
t
co
s
t
e
v
er
f
o
u
n
d
b
y
a
p
ar
ticle
a
n
d
th
e
b
est
lo
ca
l
s
o
lu
tio
n
a
s
s
o
ciate
d
w
i
th
t
h
e
lo
w
e
s
t
co
s
t
i
n
t
h
e
p
r
ese
n
t
p
o
p
u
latio
n
.
I
f
th
e
b
est
lo
ca
l
s
o
l
u
tio
n
h
a
s
a
co
s
t
less
th
a
n
th
e
co
s
t
o
f
t
h
e
c
u
r
r
en
t
g
lo
b
al
s
o
lu
tio
n
,
t
h
e
n
t
h
e
b
est
lo
ca
l
s
o
l
u
tio
n
r
ep
lace
s
th
e
b
est
g
lo
b
al
s
o
lu
t
i
o
n
.
T
h
e
f
ir
s
t
p
ar
t
o
f
eq
u
a
tio
n
(
1
)
r
ep
r
esen
ts
t
h
e
i
n
er
tia
o
f
t
h
e
p
r
ev
io
u
s
v
elo
cit
y
,
th
e
s
ec
o
n
d
p
ar
t
is
th
e
“
co
g
n
i
ti
o
n
”
p
ar
t
w
h
ich
r
ep
r
esen
t
s
t
h
e
p
r
iv
ate
th
i
n
k
in
g
b
y
it
s
el
f
,
an
d
th
e
th
ir
d
p
ar
t
is
th
e
“
s
o
cial”
p
ar
t
w
h
ich
r
ep
r
esen
ts
th
e
co
o
p
er
atio
n
a
m
o
n
g
th
e
p
ar
ticles.
Usi
n
g
P
SO
o
f
f
er
s
t
h
e
f
o
llo
w
i
n
g
ad
v
a
n
ta
g
es
:
it
is
ea
s
y
to
i
m
p
le
m
en
t
a
n
d
th
er
e
ar
e
f
e
w
p
ar
a
m
eter
s
to
ad
j
u
s
t.
Hen
ce
,
P
SO
w
i
ll
b
e
a
g
o
o
d
o
p
tim
iza
tio
n
tec
h
n
iq
u
e
t
o
u
s
e
i
n
o
u
r
ca
s
e
f
o
r
f
i
n
d
in
g
t
h
e
o
p
ti
m
al
lo
ca
tio
n
an
d
n
u
m
b
er
o
f
SV
C
.
2
.
2
.
Vo
lt
a
g
e
Sta
bil
it
y
I
nd
ex
es
Vo
ltag
e
s
tab
ilit
y
i
n
d
ex
e
s
ca
n
p
r
o
v
id
e
an
esti
m
at
io
n
o
f
h
o
w
a
p
o
w
er
s
y
s
te
m
i
s
clo
s
e
t
o
v
o
ltag
e
co
llap
s
e,
th
e
v
o
lta
g
e
s
tab
ilit
y
is
d
escr
ib
ed
as
f
o
llo
w
s
:
“
T
h
e
v
o
ltag
e
s
tab
ilit
y
is
t
h
e
ab
ilit
y
o
f
a
p
o
w
er
s
y
s
t
e
m
to
m
ai
n
tai
n
s
tead
y
ac
ce
p
tab
le
v
o
ltag
es
at
all
b
u
s
e
s
in
t
h
e
s
y
s
te
m
at
n
o
r
m
al
o
p
er
atin
g
c
o
n
d
itio
n
s
an
d
af
ter
b
ein
g
s
u
b
j
ec
ted
to
a
d
is
tu
r
b
a
n
ce
.
”
[
1
9
]
.
T
h
er
e
ar
e
m
a
n
y
v
o
ltag
e
in
d
e
x
es
,
s
o
m
e
ar
e
b
ased
o
n
p
o
w
er
fl
o
w
J
ac
o
b
ian
m
atr
i
x
b
u
t
th
e
y
r
eq
u
ir
e
lar
g
e
ti
m
e
d
u
e
to
th
e
h
i
g
h
co
m
p
u
tatio
n
al
r
eq
u
ir
e
m
en
ts
.
Oth
er
in
d
e
x
es
u
s
e
th
e
ele
m
e
n
ts
o
f
t
h
e
ad
m
itta
n
c
e
m
atr
i
x
[
20
-
21]
an
d
s
o
m
e
s
y
s
te
m
v
ar
iab
les
s
u
ch
as
b
u
s
v
o
ltag
e
s
a
n
d
p
o
w
er
fl
o
w
t
h
r
o
u
g
h
l
in
e
s
s
u
ch
L
m
n
[
22
]
,
L
QP
[
2
3
]
,
an
d
FVSI
[
2
4
],
th
e
ca
lcu
latio
n
o
f
th
e
s
e
i
n
d
ex
es
r
eq
u
ir
e
less
co
m
p
u
tatio
n
al
ef
f
o
r
t
an
d
ar
e
ad
eq
u
ate
f
o
r
a
f
ast
d
iag
n
o
s
i
n
g
o
f
th
e
v
o
ltag
e
s
tab
ilit
y
.
As
w
e
ar
e
lo
o
k
in
g
f
o
r
th
e
o
p
tim
a
l
lo
ca
tio
n
o
f
SV
C
to
en
s
u
r
e
s
tab
ilit
y
o
f
t
h
e
n
et
w
o
r
k
t
h
ese
i
n
d
ex
e
s
w
ill
b
e
s
u
itab
le
f
o
r
o
u
r
ca
s
e.
A
s
h
o
r
t
d
escr
ip
tio
n
v
o
ltag
e
s
tab
ilit
y
in
d
ex
es is
g
i
v
en
n
ex
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
5
8
1
–
2
5
8
8
2583
2
.
3
.
O
ptim
a
l
L
o
ca
t
io
n o
f
SV
C
T
h
e
th
r
ee
v
o
lta
g
e
s
tab
il
it
y
in
d
ex
es
u
s
ed
i
n
t
h
is
p
ap
er
ar
e
T
h
e
lin
e
s
tab
il
it
y
in
d
e
x
FV
SI
[
2
5
]
,
L
P
Q
[2
6]
[
2
7
]
an
d
L
m
n
.
T
h
ese
in
d
ex
es
ar
e
b
ased
o
n
th
e
co
n
ce
p
t
o
f
p
o
w
er
f
lo
w
in
a
tr
an
s
m
i
s
s
io
n
li
n
e.
T
h
e
lin
e
w
it
h
i
n
d
ex
clo
s
e
to
1
is
a
lin
e
ap
p
r
o
ac
h
in
g
to
its
li
m
its
,
an
d
if
th
e
v
al
u
e
o
f
a
n
in
d
e
x
ex
c
ee
d
s
1
th
en
o
n
e
o
f
b
u
s
es
co
n
n
ec
ted
to
t
h
i
s
li
n
e
e
x
p
er
ien
ce
s
a
s
u
d
d
en
v
o
ltag
e
d
r
o
p
lead
in
g
to
a
v
o
lta
g
e
co
lla
p
s
e
,
th
e
ca
lc
u
latio
n
o
f
th
e
s
e
in
d
ex
e
s
is
g
i
v
en
b
y
eq
u
atio
n
s
(
3
)
,
(
4
)
an
d
(
5
)
:
2
2
4
.
.
.
j
ji
i
ZQ
F
V
S
I
VX
(
3
)
2
22
4
.
.
ij
ii
XX
L
P
Q
P
Q
VV
(
4
)
2
4
*
*
s
i
n
*
*
s
i
n
mn
j
j
j
Q
L
YV
(
5
)
w
h
er
e,
Z
=
li
n
e
i
m
p
ed
an
ce
X
=
lin
e
r
ea
ctan
ce
Qj
=
th
e
r
ea
ctiv
e
p
o
w
er
at
th
e
r
ec
eiv
in
g
b
u
s
Vi=
v
o
ltag
e
at
t
h
e
s
e
n
d
i
n
g
b
u
s
P
i =
ac
tiv
e
p
o
w
er
at
t
h
e
s
e
n
d
i
n
g
b
u
s
.
θ
: is th
e
li
n
e
i
m
p
ed
a
n
ce
an
g
le
δ :
is
th
e
a
n
g
le
d
if
f
er
en
ce
b
et
w
ee
n
th
e
s
u
p
p
l
y
v
o
lta
g
e
an
d
t
h
e
r
ec
eiv
i
n
g
en
d
v
o
lta
g
e.
Yjj
: A
d
m
itta
n
ce
o
f
t
h
e
li
n
e
T
h
e
o
b
j
ec
tiv
e
is
to
f
in
d
t
h
e
o
p
ti
m
al
lo
ca
tio
n
a
n
d
n
u
m
b
er
o
f
S
VC
in
o
r
d
er
to
en
h
a
n
ce
t
h
e
v
o
lta
g
e
s
tab
ilit
y
in
a
n
elec
tr
ical
n
et
w
o
r
k
.
T
h
u
s
,
th
e
p
r
o
b
le
m
ca
n
b
e
p
r
esen
ted
as a
n
o
p
ti
m
izatio
n
p
r
o
b
lem
.
T
o
b
en
ef
it
f
r
o
m
t
h
e
ad
v
an
ta
g
es
o
f
th
e
th
r
ee
v
o
lta
g
e
in
d
e
x
es
FVSI,
L
P
Q
an
d
L
MN
,
th
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
w
ill
co
n
tain
t
h
e
m
ea
n
av
er
ag
e
o
f
t
h
ese
i
n
d
ex
e
s
g
i
v
e
n
b
y
eq
u
atio
n
(
6
)
.
1
3
L
i
n
e
s
i
i
i
i
F
V
S
I
L
P
Q
L
M
N
F
(
6
)
T
h
e
m
o
d
el
o
f
SV
C
u
s
ed
i
s
p
r
esen
ted
i
n
F
ig
u
r
e
1
.
T
h
e
SVC
w
ill
i
n
j
ec
t
o
r
ab
s
o
r
b
its
r
ea
ctiv
e
p
o
w
er
(
QSVC
)
at
th
e
s
elec
ted
b
u
s
,
t
h
e
o
p
er
atin
g
r
an
g
e
o
f
SV
C
i
s
b
et
w
ee
n
-
1
0
0
MV
ar
an
d
+1
0
0
MV
ar
.
Fig
u
r
e
1
.
FC
T
C
R
Mo
d
el
L
et
N
s
v
c
b
e
th
e
n
u
m
b
er
o
f
SV
C
to
b
e
lo
ca
ted
.
T
h
e
d
im
e
n
s
io
n
o
f
t
h
e
p
o
p
u
latio
n
Nd
i
m
is
g
i
v
en
b
y
eq
u
atio
n
7
:
2*
d
i
m
S
V
C
NN
(
7
)
T
h
e
v
ec
to
r
o
f
th
e
p
o
p
u
latio
n
w
il
l b
e
co
d
ed
as f
o
llo
w
[
L
1
,
L
2
,
…L
Nd
i
m
,
Q1
,
Q2
…QNd
i
m
]
w
h
er
e:
L
i: t
h
e
n
u
m
b
er
o
f
P
Q
b
u
s
w
h
e
r
e
SVC
w
ill b
e
in
s
er
ted
Qi: th
e
r
ea
cti
v
e
p
o
w
er
o
f
t
h
e
S
VC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Op
tima
l Lo
ca
tio
n
o
f S
V
C
u
s
in
g
P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
a
n
d
V
o
lta
g
e
S
ta
b
ilit
y
I
n
d
ex
e
s
(
M.
N
.
Da
z
a
h
r
a
)
2584
T
h
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
i
s
ca
lcu
lated
u
s
in
g
eq
u
at
io
n
6
in
w
h
ich
v
o
lta
g
e
s
tab
ilit
y
in
d
ex
w
ill
b
e
ca
lcu
lated
ac
co
r
d
in
g
to
eq
u
at
io
n
s
(
3
)
,
(
4
)
an
d
(
5
)
,
u
s
in
g
v
o
ltag
e,
ac
tiv
e
p
o
w
er
,
r
ea
ctiv
e
p
o
w
er
a
n
d
an
g
les
g
iv
e
n
b
y
t
h
e
ca
lc
u
lat
io
n
o
f
Ne
w
to
n
R
ap
h
s
o
n
m
et
h
o
d
[
2
8
]
.
T
h
e
b
est
s
o
lu
tio
n
u
s
i
n
g
P
SO
g
i
v
es
th
e
b
est
lo
ca
tio
n
o
f
SV
C
an
d
its
s
ize.
T
h
e
f
lo
w
c
h
ar
t o
f
th
e
al
g
o
r
it
h
m
is
p
r
ese
n
ted
in
f
ig
u
r
e
2
.
Fig
u
r
e
2
.
P
SO A
lg
o
r
it
h
m
3.
SI
M
UL
AT
I
O
N
S AN
D
R
E
S
UL
T
S
3
.
1
.
I
E
E
E
3
0
B
us
Sy
s
t
e
m
Ne
t
w
o
rk
I
n
o
r
d
er
to
test
th
e
ef
f
icie
n
c
y
o
f
th
e
p
r
o
p
o
s
ed
s
o
lu
tio
n
,
th
e
P
SO
alg
o
r
ith
m
w
a
s
ap
p
lied
to
th
e
I
E
E
E
3
0
b
u
s
p
o
w
er
s
y
s
te
m
f
o
r
th
r
e
e
d
if
f
er
e
n
t
ca
s
e
s
as
ill
u
s
tr
ate
d
in
Ta
b
le
1
,
in
ea
ch
ca
s
e
t
h
e
lo
ad
o
f
P
Q
b
u
s
es
in
cr
ea
s
ed
as
s
h
o
w
n
in
Fi
g
u
r
e
3
,
th
e
p
r
o
g
r
a
m
f
i
n
d
t
h
e
o
p
tim
al
s
o
l
u
tio
n
o
f
1
SV
C
,
2
SVC
an
d
3
SV
C
.
T
h
e
r
esu
lt
s
o
f
s
i
m
u
latio
n
ar
e
p
r
esen
ted
f
o
r
ea
ch
ca
s
e.
Fig
u
r
e
3
.
L
o
ad
ca
s
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
5
8
1
–
2
5
8
8
2585
T
h
e
lo
ca
tio
n
o
f
2
SVC
an
d
3
SVC
in
ea
c
h
ca
s
e
is
g
i
v
en
in
T
ab
le
1
,
also
th
e
p
o
w
er
lo
s
es
an
d
o
b
j
ec
tiv
e
f
u
n
c
tio
n
o
f
ea
c
h
ca
s
e
ar
e
g
iv
e
n
in
Ta
b
le
2
.
Fo
r
th
e
f
ir
s
t
ca
s
e,
th
e
d
if
f
er
en
ce
b
et
w
ee
n
p
o
w
er
lo
s
s
es
u
s
i
n
g
2
an
d
3
SVC
is
n
o
t
im
p
o
r
ta
n
t;
m
o
r
eo
v
er
,
th
e
v
o
lta
g
e
p
r
o
f
ile
i
s
in
s
tab
ilit
y
zo
n
e,
s
o
th
e
o
p
tim
al
n
u
m
b
er
o
f
SVC
is
2
a
s
ill
u
s
tr
ated
i
n
f
ig
u
r
e
4
.
I
n
th
e
s
ec
o
n
d
ca
s
e,
t
h
e
p
o
w
er
lo
s
s
es
o
b
tai
n
ed
w
it
h
2
SVC
ar
e
b
ig
g
er
t
h
an
th
o
s
e
o
b
tai
n
e
d
w
it
h
3
SV
C
;
al
s
o
,
w
e
n
o
tice
t
h
at
th
e
u
s
e
o
f
3
SV
C
led
to
b
etter
s
tab
ilit
y
o
f
v
o
lt
ag
e,
s
o
t
h
e
o
p
ti
m
al
n
u
m
b
er
o
f
SVC
is
3
a
s
s
h
o
wn
in
F
ig
u
r
e
5
.
I
n
th
e
last
ca
s
e,
t
h
e
r
es
u
lt
s
o
b
tain
ed
w
it
h
3
SV
C
ar
e
b
etter
t
h
an
th
o
s
e
o
b
tain
ed
w
it
h
2
SVC
,
b
u
t
ar
e
n
o
t
s
u
f
f
icie
n
t
s
b
ec
au
s
e
th
e
v
o
ltag
e
in
s
e
v
er
al
b
u
s
e
s
is
u
n
d
er
0
.
9
5
p
u
as
s
h
o
w
n
i
n
f
i
g
u
r
e
6
;
th
u
s
,
th
e
o
p
tim
a
l n
u
m
b
er
o
f
S
VC
i
s
4
as sh
o
w
n
i
n
Fi
g
u
r
e
7
.
T
ab
le
1
.
Op
tim
al
L
o
ca
tio
n
a
n
d
Siz
e
o
f
SVC
i
n
Di
f
f
er
en
t
Ca
s
es
C
a
se
s
S
V
C
B
u
s
S
i
z
e
(
M
V
a
r
)
B
u
s
S
i
z
e
(
M
V
a
r
)
B
u
s
S
i
z
e
(
M
V
a
r
)
C
A
S
E
1
2
S
V
C
30
2
7
.
3
0
2
0
26
15
3
S
V
C
30
1
9
.
9
9
3
9
26
1
4
.
9
9
9
5
29
1
4
.
9
6
3
8
C
A
S
E
2
2
S
V
C
18
5
8
.
0
7
8
2
4
1
0
0
3
S
V
C
7
1
0
0
16
5
0
.
6
3
0
1
18
5
1
.
6
2
9
5
C
A
S
E
3
2
S
V
C
26
2
5
.
3
2
9
2
18
5
8
.
7
3
7
8
3
S
V
C
4
1
0
0
26
2
5
.
4
1
1
3
18
5
8
.
0
3
8
7
T
ab
le
2
.
P
o
w
er
Lo
s
s
e
s
an
d
Ob
j
ec
tiv
e
Fu
n
c
tio
n
i
n
Di
f
f
er
en
t
C
a
s
es
C
a
se
s
S
V
C
P
o
w
e
r
L
o
ss
e
s(
M
V
A
R
)
F
(
p
u
)
C
A
S
E
1
W
i
t
h
o
u
t
S
V
C
2
7
.
6
1
1
3
0
.
1
2
7
3
W
i
t
h
2
S
V
C
1
7
.
9
4
0
2
0
.
0
4
8
8
W
i
t
h
3
S
V
C
1
7
.
4
9
9
8
0
.
0
4
1
4
C
A
S
E
2
W
i
t
h
o
u
t
S
V
C
2
8
.
0
8
8
5
0
.
1
3
0
1
W
i
t
h
2
S
V
C
2
2
.
5
8
5
0
0
.
0
7
6
6
W
i
t
h
3
S
V
C
1
9
.
7
5
3
6
0
.
0
5
7
2
C
A
S
E
3
W
i
t
h
o
u
t
S
V
C
3
6
.
3
2
3
4
0
.
2
0
3
3
W
i
t
h
2
S
V
C
2
5
.
6
4
1
6
0
.
1
1
0
8
W
i
t
h
3
S
V
C
2
3
.
7
0
4
4
0
.
0
9
5
7
Fig
u
r
e
4
.
Vo
ltag
e
P
r
o
f
iles
C
a
s
e
1
Fig
u
r
e
5
.
Vo
ltag
e
P
r
o
f
iles
C
a
s
e
2
Fig
u
r
e
6
.
Vo
ltag
e
P
r
o
f
iles
C
a
s
e
3
Fig
u
r
e
7
.
Vo
ltag
e
P
r
o
f
iles
C
a
s
e
3
Usi
n
g
4
SVC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Op
tima
l Lo
ca
tio
n
o
f S
V
C
u
s
in
g
P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
a
n
d
V
o
lta
g
e
S
ta
b
ilit
y
I
n
d
ex
e
s
(
M.
N
.
Da
z
a
h
r
a
)
2586
3
.
2
.
E
lect
ric
Net
w
o
rk
o
f
Ca
s
a
bla
nca
Reg
io
n
T
h
e
elec
tr
ic
n
et
w
o
r
k
o
f
th
e
c
it
y
C
a
s
ab
lan
ca
i
s
co
n
s
ti
tu
ted
o
f
6
g
en
er
ato
r
s
an
d
1
8
lo
ad
b
u
s
es.
T
h
e
n
et
w
o
r
k
s
u
f
f
er
s
f
r
o
m
v
o
lta
g
e
in
s
tab
ilit
y
an
d
v
io
latio
n
o
f
v
o
ltag
e
li
m
its
in
s
e
v
er
al
b
u
s
es
(
9
,
1
6
,
1
8
,
2
0
,
an
d
2
1
)
.
T
h
e
r
esu
lt
s
o
f
u
s
in
g
t
w
o
,
t
h
r
ee
an
d
f
o
u
r
S
VC
ar
e
g
i
v
en
i
n
Ta
b
les
1
1
an
d
T
a
b
le
1
2
,
an
d
v
o
ltag
e
p
r
o
f
iles
ar
e
p
r
esen
ted
in
F
i
g
u
r
e
7
.
T
ab
le
3
.
Op
tim
al
lo
ca
tio
n
o
f
S
VC
in
C
asab
la
n
ca
ca
s
e
B
u
s
S
i
z
e
(
M
V
a
r
)
B
u
s
S
i
z
e
(
M
V
a
r
)
B
u
s
S
i
z
e
(
M
V
a
r
)
B
u
s
S
i
z
e
(
M
V
a
r
)
2
S
V
C
4
6
9
.
1
0
20
1
0
0
3
S
V
C
4
6
9
.
1
0
20
1
0
0
9
1
0
0
4
S
V
C
4
6
9
.
0
1
20
1
0
0
9
1
0
0
21
8
0
.
0
1
9
1
T
ab
le
4
.
P
o
w
er
L
o
s
s
e
s
an
d
Ob
j
ec
tiv
e
Fu
n
cti
o
n
i
n
C
a
s
ab
lan
c
a
Ca
se
P
o
w
e
r
L
o
ss
e
s
(
M
V
A
R
)
F
(
p
u
)
W
i
t
h
o
u
t
S
V
C
6
3
.
3
2
7
4
0
.
1
0
5
7
W
i
t
h
2
S
V
C
5
8
.
7
4
8
9
0
.
0
7
4
0
W
i
t
h
3
S
V
C
5
6
.
8
4
7
0
0
.
0
6
4
7
W
i
t
h
4
S
V
C
5
5
.
8
3
8
2
0
.
0
5
9
2
Fig
u
r
e
8
.
Vo
ltag
e
P
r
o
f
iles
o
f
C
asab
lan
ca
Ne
t
w
o
r
k
Fro
m
th
e
r
es
u
lts
it
’
s
o
b
v
io
u
s
th
at
th
e
u
s
e
o
f
2
SVC
i
s
in
s
u
f
f
icien
t.
T
h
e
u
s
e
o
f
3
SVC
g
i
v
es
b
etter
r
esu
lt
s
th
a
n
2
SVC
b
u
t v
o
lta
g
e
s
till
d
r
o
p
s
in
s
o
m
e
b
u
s
es.
T
h
e
r
f
o
r
e,
th
e
o
p
ti
m
al
n
u
m
b
er
is
4
SVC
.
4.
CO
NCLU
SI
O
N
T
h
e
r
esu
lts
d
escr
ib
ed
in
th
is
p
ap
er
s
h
o
w
t
h
e
ef
f
icie
n
c
y
o
f
t
h
e
p
r
o
p
o
s
ed
s
o
lu
tio
n
in
ca
s
e
s
o
f
I
E
E
E
3
0
b
u
s
a
n
d
th
e
elec
tr
ic
n
et
w
o
r
k
o
f
C
asab
lan
ca
r
eg
io
n
.
T
h
e
p
r
o
g
r
a
m
h
a
s
d
etec
ted
t
h
e
o
p
ti
m
al
l
o
ca
tio
n
an
d
s
ize
o
f
th
e
S
VC
n
ee
d
ed
f
o
r
v
o
ltag
e
s
tab
ilit
y
.
A
ls
o
t
h
e
n
u
m
b
er
o
f
SVC
ca
n
b
e
d
eter
m
in
ed
b
y
an
al
y
zin
g
v
o
lta
g
e
s
tab
ilit
y
in
d
e
x
an
d
v
o
lta
g
e
p
r
o
f
iles
.
RE
F
E
R
E
NC
E
S
[1
]
P
.
Ku
n
d
u
r
e
t
a
l.
“
De
f
in
it
io
n
a
n
d
c
las
si
f
ica
ti
o
n
o
f
p
o
w
e
r
s
y
ste
m
st
a
b
il
it
y
IEE
E/
CIG
RE
jo
in
t
tas
k
f
o
rc
e
o
n
sta
b
il
it
y
term
s an
d
d
e
f
in
it
io
n
s
”
.
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
P
o
we
r S
y
ste
ms
,
2
0
0
3
;
1
9
(3
)
:
1
3
8
7
-
1
4
0
1
.
[2
]
Is
m
a
il
N.M
e
t
a
l.
“
A
c
o
mp
a
riso
n
o
f
v
o
lt
a
g
e
sta
b
i
li
ty
in
d
e
x
e
s
”
.
P
o
w
e
r
En
g
in
e
e
rin
g
a
n
d
Op
ti
m
iza
t
io
n
Co
n
f
e
re
n
c
e
(P
EOCO).
2
0
1
4
.
[3
]
Na
ra
in
G
.
Hin
g
o
ra
n
l.
“
Un
d
e
rs
ta
n
d
i
n
g
FA
C
T
S
C
o
n
c
e
p
ts
a
n
d
T
e
c
h
n
o
lo
g
y
o
f
Fl
e
x
ib
le
AC
T
ra
n
sm
i
ss
io
n
S
y
ste
ms
”
.
T
h
e
In
stit
u
te
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
i
n
e
e
rs.2
0
0
0
.
[4
]
M
d
.
Im
ra
n
Az
i
m
,
M
d
.
F
a
y
z
u
r
Ra
h
m
a
n
.
"
Ge
n
e
ti
c
A
lg
o
rit
h
m
B
a
se
d
Re
a
c
ti
v
e
P
o
w
e
r
M
a
n
a
g
e
m
e
n
t
b
y
S
V
C"
.
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
E
lec
tric
a
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
.
2
0
1
4
;
4
(
2
):
2
0
0
-
2
0
6
.
[5
]
G
u
p
ta
,
P
.
R.
S
h
a
rm
a
.
“
Op
ti
ma
l
p
la
c
e
me
n
t
o
f
F
ACT
S
d
e
v
ice
s
fo
r
v
o
lt
a
g
e
sta
b
il
i
ty
u
sin
g
li
n
e
i
n
d
i
c
a
to
rs
”
.
P
o
w
e
r
In
d
ia C
o
n
f
e
re
n
c
e
.
2
0
1
2
.
[6
]
Ra
h
m
a
n
,
A
.
K.
M
.
R,
e
t
a
l.
“
L
o
c
a
li
za
ti
o
n
o
f
FA
C
T
S
d
e
v
ice
s
fo
r
o
p
ti
m
a
l
p
o
we
r
fl
o
w
u
si
n
g
Ge
n
e
ti
c
Al
g
o
rith
m
”
.
El
e
c
tri
c
a
l
In
f
o
rm
a
ti
o
n
a
n
d
Co
m
m
u
n
ica
ti
o
n
T
e
c
h
n
o
l
o
g
y
(EI
CT
).
2
0
1
3
.
[7
]
Ra
o
,
V
S
,
R.
S
.
Ra
o
.
“
Co
mp
a
ris
o
n
o
f
v
a
rio
u
s
me
th
o
d
s
fo
r
o
p
ti
ma
l
p
la
c
e
me
n
t
o
f
FA
CT
S
d
e
v
ice
s
”
.
S
m
a
rt
E
lec
tri
c
G
rid
(IS
EG
).
2
0
1
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
5
8
1
–
2
5
8
8
2587
[8
]
T
i
w
a
ri,
R.
,
e
t
a
l.
“
Op
ti
ma
l
lo
c
a
t
io
n
o
f
FA
CT
S
d
e
v
ice
s fo
r imp
r
o
v
in
g
p
e
rfo
rm
a
n
c
e
o
f
th
e
p
o
we
r sy
ste
ms
”
.
P
o
w
e
r
a
n
d
En
e
rg
y
S
o
c
iety
Ge
n
e
ra
l
M
e
e
ti
n
g
.
2
0
1
2
.
[9
]
Jin
g
,
Z.
,
e
t
a
l.
“
T
h
e
a
p
p
li
c
a
ti
o
n
o
f
imp
ro
v
e
d
p
a
rticle
swa
rm
o
p
ti
mi
za
ti
o
n
a
lg
o
r
it
h
m
in
v
o
l
ta
g
e
sta
b
il
it
y
c
o
n
stra
in
e
d
o
p
ti
m
a
l
p
o
we
r fl
o
w
”
.
M
e
a
su
re
m
e
n
t,
I
n
f
o
rm
a
ti
o
n
a
n
d
C
o
n
tr
o
l
(ICM
IC).
2
0
1
3
.
[1
0
]
P
h
a
n
i
n
d
ra
,
G
,
C.
P
a
d
m
a
n
a
b
h
a
Ra
ju
.
“
FA
CT
S
b
a
se
d
p
o
we
r
fl
o
w
c
o
n
tro
l
b
y
u
sin
g
p
a
rticle
swa
rm
o
p
ti
miz
a
ti
o
n
tec
h
n
iq
u
e
”
.
E
lec
tri
c
a
l,
El
e
c
tro
n
ics
,
S
ig
n
a
ls,
Co
m
m
u
n
ica
ti
o
n
a
n
d
O
p
ti
m
iza
ti
o
n
.
2
0
1
5
.
[1
1
]
Ra
v
i,
K.,
M
.
Ra
jar
a
m
.
“
Op
ti
ma
l
lo
c
a
ti
o
n
o
f
FA
CT
S
d
e
v
ice
s
u
sin
g
e
n
h
a
n
c
e
d
p
a
rticle
swa
rm
o
p
ti
miza
ti
o
n
”.
A
d
v
a
n
c
e
d
Co
m
m
u
n
ica
ti
o
n
C
o
n
tr
o
l
a
n
d
Co
m
p
u
ti
n
g
T
e
c
h
n
o
lo
g
ies
(
ICA
CCC
T
),
2
0
1
2
.
[1
2
]
P
ra
k
a
sh
Bu
ra
d
e
,
Ja
g
d
ish
He
lo
n
d
e
.
"
Op
ti
m
a
l
L
o
c
a
ti
o
n
o
f
F
A
CT
S
De
v
ic
e
o
n
E
n
h
a
n
c
i
n
g
S
y
ste
m
S
e
c
u
rit
y
"
.
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
l
o
f
El
e
c
tri
c
a
l
a
n
d
C
o
m
p
u
ter E
n
g
in
e
e
rin
g
.
2
0
1
2
;
2
(3
):
3
0
9
-
3
1
6
.
[1
3
]
S
.
Ch
a
n
sa
re
e
w
it
ta
y
a
,
P
.
Jira
p
o
n
g
.
“
Op
ti
ma
l
a
ll
o
c
a
ti
o
n
o
f
mu
lt
i
-
ty
p
e
FA
CT
S
c
o
n
tr
o
ll
e
rs
fo
r
to
ta
l
tra
n
sfe
r
c
a
p
a
b
il
it
y
e
n
h
a
n
c
e
me
n
t
u
sin
g
h
y
b
rid
p
a
rticle
swa
rm
o
p
ti
miza
t
io
n
”
.
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
/E
lec
tro
n
i
c
s,
Co
m
p
u
ter,
T
e
le
c
o
m
m
u
n
ica
ti
o
n
s an
d
I
n
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
(ECT
I
-
CON
),
2
0
1
4
:1
-
6.
[1
4
]
M
a
lath
y
P
,
S
h
u
n
m
u
g
a
lath
a
A
,
Th
a
in
e
e
sh
P
.
“
En
h
a
n
c
e
m
e
n
t
o
f
tra
n
sm
issio
n
s
y
ste
m
lo
a
d
a
b
il
it
y
d
u
rin
g
c
o
n
ti
n
g
e
n
c
y
b
y
o
p
ti
m
a
l
a
ll
o
c
a
ti
o
n
o
f
F
A
CT
S
d
e
v
ice
s u
sin
g
p
a
rti
c
le sw
a
r
m
o
p
ti
m
iz
a
ti
o
n
”
.
S
p
rin
g
e
r
.
2
0
1
5
:
3
8
1
–
92
[1
5
]
Ju
m
a
a
t
S
A
,
M
u
sirin
I
,
Oth
m
a
n
M
M
,
M
o
k
h
l
is
H.
“
Op
ti
m
a
l
lo
c
a
ti
o
n
a
n
d
siz
i
n
g
o
f
S
V
C
u
si
n
g
p
a
rti
c
le
sw
a
r
m
o
p
ti
m
iza
ti
o
n
tec
h
n
iq
u
e
”
.
IEE
E
:
3
1
2
–
3
1
7
.
[1
6
]
Ch
a
n
g
Y,
Ya
n
g
C.
“
Be
n
e
fi
t
-
Ba
se
d
Op
t
im
a
l
A
ll
o
c
a
ti
o
n
o
f
F
A
C
T
S
:
S
V
C
De
v
ice
f
o
r
I
m
p
ro
v
e
m
e
n
t
o
f
T
r
a
n
s
m
issio
n
Ne
tw
o
rk
L
o
a
d
a
b
il
it
y
”
.
IEE
E
,
2
0
0
7
:
1
–
6
[1
7
]
J.
Ke
n
n
e
d
y
a
n
d
R
.
E
b
e
rh
a
rt,
“
Pa
rticle
swa
rm
o
p
ti
miz
a
ti
o
n
”
.
Ne
u
ra
l
Ne
tw
o
rk
s,
1
9
9
5
.
P
r
o
c
e
e
d
in
g
s.
IEE
E
In
tern
a
ti
o
n
a
l.
1
9
9
5
;
4
:
1
9
4
2
-
1
9
4
8
.
[1
8
]
W
a
rre
n
S
.
G
o
ld
ste
in
.
“
S
w
a
r
m
In
telli
g
e
n
c
e
:
F
o
c
u
s
o
n
A
n
t
a
n
d
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iza
ti
o
n
”
.
I
-
T
e
c
h
Ed
u
c
a
ti
o
n
a
n
d
Pu
b
li
s
h
in
g
.
2
0
0
7
.
[1
9
]
P
.
Ku
n
d
u
r
e
t
a
l.
“
De
f
in
it
io
n
a
n
d
c
las
si
f
ica
ti
o
n
o
f
p
o
w
e
r
s
y
ste
m
st
a
b
il
it
y
IEE
E/
CIG
RE
jo
in
t
tas
k
f
o
rc
e
o
n
sta
b
il
it
y
term
s an
d
d
e
f
in
it
io
n
s
”
.
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
P
o
we
r S
y
ste
ms
.
2
0
0
4
:
1
9
(3
)
:
1
3
8
7
-
1
4
0
1
.
[2
0
]
Ism
a
il
,
N.
A
.
M
.
,
e
t
a
l.
“
A
c
o
mp
a
ris
o
n
o
f
v
o
lt
a
g
e
sta
b
il
it
y
in
d
e
x
e
s
”
.
P
o
w
e
r
En
g
in
e
e
rin
g
a
n
d
Op
ti
m
iza
ti
o
n
Co
n
f
e
re
n
c
e
(P
EOCO).
2
0
1
4
.
[2
1
]
K.
V
e
n
k
a
ta
Ra
m
a
n
a
Re
d
d
y
,
M
.
P
a
d
m
a
Lalit
h
a
,
P
B
C
h
e
n
n
a
iah
.
"
I
m
p
ro
v
e
m
e
n
t
o
f
V
o
lt
a
g
e
P
ro
f
i
le
th
ro
u
g
h
t
h
e
Op
ti
m
a
l
P
lac
e
m
e
n
t
o
f
F
A
C
T
S
Us
in
g
L
-
In
d
e
x
M
e
th
o
d
"
.
In
te
rn
a
ti
o
n
a
l
Jo
u
r
n
a
l
o
f
El
e
c
tri
c
a
l
a
n
d
Co
m
p
u
ter
En
g
in
e
e
rin
g
.
2
0
1
4
;
4
(2
)
:
2
0
7
-
2
1
1
.
[2
2
]
M
.
M
o
g
h
a
v
v
e
m
i,
F
.
M
.
O
m
a
r.
“
T
e
c
h
n
iq
u
e
f
o
r
c
o
n
ti
n
g
e
n
c
y
m
o
n
it
o
ri
n
g
a
n
d
v
o
lt
a
g
e
c
o
ll
a
p
se
p
re
d
ictio
n
”
.
IE
E
Pro
c
e
e
d
in
g
s
-
Ge
n
e
ra
ti
o
n
,
T
ra
n
sm
issio
n
a
n
d
Distrib
u
ti
o
n
.
1
9
9
8
;
1
4
5
(
6
):
6
3
4
-
6
4
0
.
[2
3
]
R.
V
e
ra
y
iah
a
n
d
I.
Z.
A
b
id
i
n
.
“
A
S
tu
d
y
o
n
sta
ti
c
v
o
lt
a
g
e
c
o
ll
a
p
se
p
ro
x
imit
y
i
n
d
ica
to
rs
”
.
P
o
w
e
r
a
n
d
En
e
rg
y
C
o
n
f
e
re
n
c
e
.
2
0
0
8
:
5
3
1
-
5
3
6
.
[2
4
]
M
u
sirin
a
n
d
T
.
K.
A
b
d
u
l
Ra
h
m
a
n
.
“
No
v
e
l
fa
st
v
o
l
ta
g
e
sta
b
i
li
ty
in
d
e
x
(
FV
S
I)
fo
r
v
o
lt
a
g
e
sta
b
il
it
y
a
n
a
lys
is
in
p
o
we
r
tra
n
sm
issio
n
sy
ste
m
”
.
Re
se
a
rc
h
a
n
d
De
v
e
lo
p
m
e
n
t
.
2
0
0
2
:
2
6
5
-
2
6
8
.
[2
5
]
M
u
sirin
,
I.
a
n
d
T
.
K.
A
.
Ra
h
m
a
n
.
“
On
-
li
n
e
v
o
lt
a
g
e
st
a
b
il
i
ty
b
a
se
d
c
o
n
ti
n
g
e
n
c
y
ra
n
k
i
n
g
u
sin
g
fa
st
v
o
lt
a
g
e
sta
b
il
it
y
in
d
e
x
(
FV
S
I)
”
.
T
ra
n
s
m
issio
n
a
n
d
Distrib
u
ti
o
n
Co
n
f
e
re
n
c
e
a
n
d
Ex
h
i
b
it
io
n
.
2
0
0
2
.
[2
6
]
S
u
g
a
n
y
a
d
e
v
ia,
M
.
V
.
a
n
d
C.
K.
Ba
b
u
lal.
“
Esti
ma
ti
n
g
o
f
lo
a
d
a
b
il
it
y
ma
rg
in
o
f
a
p
o
we
r
sy
ste
m
b
y
c
o
mp
a
ri
n
g
Vo
lt
a
g
e
S
ta
b
il
it
y
I
n
d
e
x
e
s
”
.
Co
n
tr
o
l,
A
u
to
m
a
ti
o
n
,
C
o
m
m
u
n
ica
ti
o
n
a
n
d
E
n
e
rg
y
Co
n
se
rv
a
ti
o
n
.
2
0
0
9
.
[2
7
]
M
.
M
o
g
h
a
v
e
m
i.
“
Re
a
l
-
ti
m
e
c
o
n
ti
n
g
e
n
c
y
e
v
a
lu
a
ti
o
n
a
n
d
ra
n
k
in
g
tec
h
n
i
q
u
e
”
.
IEE
E
Pro
c
e
d
u
re
o
n
Ge
n
e
ra
ti
o
n
,
T
ra
n
sm
issio
n
a
n
d
Distrib
u
ti
o
n
.
1
9
9
8
;
1
4
5
(
5
):
5
1
7
-
5
2
4
.
[2
8
]
H.
Am
b
riz
-
P
e
re
z
,
E.
A
c
h
a
a
n
d
C.
R.
F
u
e
rte
-
Esq
u
iv
e
l.
“
A
d
v
a
n
c
e
d
S
V
C
m
o
d
e
ls
f
o
r
Ne
w
to
n
-
Ra
p
h
so
n
lo
a
d
f
lo
w
a
n
d
Ne
w
to
n
o
p
ti
m
a
l
p
o
w
e
r
f
lo
w
stu
d
i
e
s
”
.
in
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
P
o
we
r S
y
ste
ms
.
2
0
0
0
;
1
5
(
1
):
1
2
9
-
1
3
6
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
Da
z
a
h
r
a
M
o
h
a
m
e
d
N
o
u
h
h
a
s
o
b
tain
e
d
it
s
sta
te
e
lec
tri
c
it
y
e
n
g
in
e
e
rin
g
d
e
g
re
e
in
2
0
1
2
f
ro
m
th
e
su
p
e
rio
r
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
e
lec
tr
icity
a
n
d
M
e
c
h
a
n
ics
(ENS
EM
).
C
u
rre
n
tl
y
Da
z
a
h
ra
is
p
u
rsu
i
n
g
h
is
P
h
.
D
.
De
g
re
e
p
ro
g
ra
m
m
e
in
El
e
c
tri
c
a
l
P
o
w
e
r
En
g
in
e
e
rin
g
a
t
ENS
EM
.
He
is
a
m
e
m
b
e
r
o
f
L
a
b
o
ra
to
ry
o
f
El
e
c
tri
c
a
l
Ne
t
w
o
r
k
s
a
n
d
S
tatic
C
o
n
v
e
rters
in
EN
S
EM
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
p
o
w
e
r
sy
ste
m
s sta
b
il
it
y
u
sin
g
F
A
C
T
S
,
S
m
a
rt
G
rid
a
n
d
S
m
a
rt
su
b
sta
ti
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Op
tima
l Lo
ca
tio
n
o
f S
V
C
u
s
in
g
P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
a
n
d
V
o
lta
g
e
S
ta
b
ilit
y
I
n
d
ex
e
s
(
M.
N
.
Da
z
a
h
r
a
)
2588
El
m
a
r
ia
m
i
Fa
y
c
e
l
P
ro
f
e
ss
o
r
a
t
th
e
S
u
p
e
ri
o
r
Na
ti
o
n
a
l
S
c
h
o
o
l
o
f
e
lec
tri
c
it
y
a
n
d
m
e
c
h
a
n
ics
Ca
sa
b
lan
c
a
,
e
lec
tri
c
a
l
e
n
g
in
e
e
rin
g
d
e
p
a
rtme
n
t.
M
e
m
b
e
r
o
f
th
e
stu
d
y
tea
m
"
El
e
c
tri
c
a
l
Ne
t
w
o
rk
s
a
n
d
S
tatic C
o
n
v
e
rters
"
.
He
w
o
rk
s
o
n
t
h
e
sta
b
il
it
y
o
f
th
e
e
lec
tri
c
it
y
n
e
tw
o
rk
a
n
d
s
m
a
rt
g
rid
s
B
e
lfq
ih
Az
iz
P
ro
f
e
ss
o
r
a
t
th
e
N
a
ti
o
n
a
l
Hig
h
S
c
h
o
o
l
o
f
El
e
c
tri
c
it
y
a
n
d
M
e
c
h
a
n
ics
(Un
iv
e
rsit
y
Ha
ss
a
n
II
o
f
Ca
sa
b
lan
c
a
-
M
o
ro
c
c
o
).
P
h
D,
E
n
g
in
e
e
r
a
n
d
h
o
ld
e
r
o
f
th
e
Un
iv
e
rsit
y
Ha
b
il
it
a
ti
o
n
se
a
rc
h
e
s (HDR
).
He
a
d
o
f
th
e
re
se
a
rc
h
tea
m
"
El
e
c
tri
c
a
l
Ne
t
w
o
rk
s
a
n
d
S
tatic
Co
n
v
e
rters
.
“
Tea
c
h
e
r
re
se
a
rc
h
e
r
c
u
rre
n
tl
y
w
o
rk
in
g
o
n
e
lec
tri
c
it
y
n
e
tw
o
rk
a
n
d
s
m
a
rt
g
rid
s
Evaluation Warning : The document was created with Spire.PDF for Python.