Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
7, N
o
. 3
,
Ju
n
e
201
7, p
p
. 1
452
~145
8
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v7
i
3.1
515
0
1
452
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Characterization of Defect
Induced Multilayer Graphene
Marri
atyi Morsin
1
, Su
haila
Isaak
2
, Ma
rlia
Mo
rsin
3
, Yus
meeraz
Yus
o
f
4
1
Department of
Poly
th
ecnic, Minist
r
y
of
Education Malay
s
ia, Presin
t 4, 62100 W.P Putrajay
a, Malay
s
ia
1,2,4
Departmen
t
of Electron
i
c an
d Computer Eng
i
n
eer
ing,
F
acul
t
y
of E
l
e
c
tri
cal
En
gineer
ing,
Universiti Tekno
logi
Malay
s
ia, J
ohor Bahru,
Joh
o
r, Malay
s
ia
3
Microelectronics and N
a
notech
nolog
y
– Shamsudin Research
C
e
nter
, Univ
ersiti
Tun Hussein On
n Mala
ysi
a
,
Batu Pah
a
t,
Mal
a
y
s
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 8, 2017
Rev
i
sed
Ap
r
17
, 20
17
Accepte
d
May 9, 2017
A study
of ox
y
g
en plasm
a
on multil
ay
er graph
e
n
e
is done with different flow
rates. Th
is is to allow a controlle
d amount of defect fabr
icated on the
graphene. Results from the stud
y
showed
that the intensity
r
a
tio of defect
between
D peak
and G peak was
strongl
y
dep
e
nd
ed on
the
amount of ox
y
g
en
flow rate
thus
af
fect
ed th
e 2D ba
nd of the s
p
e
c
tr
a. Th
e in
ter-d
efe
c
t dis
t
anc
e
L
D
≥
15 nm of each s
a
m
p
le indi
cat
ed that low-d
e
fec
t
dens
it
y wa
s
fabricat
ed.
The surface rou
ghness of the m
u
ltil
ay
er
graph
e
ne also in
creased and r
e
duced
the
conduct
i
vit
y
of the m
u
ltil
ay
er
graphen
e
.
Keyword:
Mu
ltilayer g
r
ap
h
e
n
e
Oxy
g
en plasm
a
Ra
m
a
n spectroscopy
Reactive ion etching
Copyright ©
201
7 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Yusm
eeraz Yusof,
Depa
rt
m
e
nt
of
El
ect
roni
c
an
d
C
o
m
put
er E
ngi
neeri
n
g
,
Fac
u
l
t
y
of
El
ect
ri
cal
En
gi
neeri
n
g
,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia,
Jo
hor
Bah
r
u
,
Jo
hor
, Malaysia.
Em
a
il: yu
s
m
ee
raz@fk
e.u
t
m
.
my
1.
INTRODUCTION
St
udy
a
b
out
g
r
aphe
ne de
fect
has gai
n
e
d
s
o
m
u
ch
i
n
t
e
rest
no
wa
day
s
[
1
]
–
[3]
.
Thi
s
i
s
be
cause of
i
t
s
two
d
i
m
e
n
s
io
nal n
a
tu
re wh
ich
m
a
k
e
s it eas
ier to
ad
d
and rem
o
v
e
carbon
ato
m
s so
th
at it can
fin
e
-tun
e its
el
ect
roni
c
pr
o
p
e
rt
i
e
s [3]
.
Sev
e
ral
m
e
t
hods t
o
i
n
t
r
o
d
u
ce d
e
fe
ct
on
g
r
ap
he
ne
are at
om
bom
bardm
e
nt
[2]
,
pl
asm
a
t
r
eatm
e
nt
[4]
,
[
5
]
,
i
on i
r
radi
a
t
i
on [
6
]
,
foc
u
sed e-
beam
[
1
]
and
pul
se
-
vol
t
a
ge i
n
ject
i
on
[7]
.
Am
on
g al
l
tech
n
i
qu
es,
p
l
asm
a
treat
men
t
is a co
mm
o
n
tech
n
i
q
u
e
used to
in
itiate d
e
fect.
Eve
n
t
h
o
u
gh
p
l
asm
a
et
chi
ng i
s
a com
m
on techni
que t
o
i
n
t
r
o
d
u
ce de
fect
,
ho
we
ver
,
m
a
n
y
aspect
s of
th
e d
i
so
rd
er
gen
e
rated
b
y
this tech
n
i
qu
e
remain
to
b
e
b
e
tter un
d
e
rstood esp
ecially in
m
u
l
tilayer g
r
ap
h
e
n
e
.
St
udy
s
h
ows t
h
at
oxy
ge
n
pl
as
m
a
i
s
very
ag
g
r
essi
ve a
n
d us
u
a
l
l
y
resul
t
s
i
n
drast
i
c
ch
an
ges
of t
h
e st
r
u
ct
u
r
al
and
electr
o
n
i
c pr
oper
ties
of
g
r
ap
hen
e
ev
en
at a s
h
ort tim
e of expos
ure
[8].
An
ot
he
r i
m
port
a
nt
st
ep a
f
t
e
r t
h
e i
n
t
r
o
d
u
c
t
i
on
of
defect
i
s
t
h
e cha
r
ac
t
e
ri
zat
i
on
of t
h
e
gra
phe
ne
surface. T
h
ere
are
m
a
ny instrum
e
nts
use
d
for cha
r
acteriza
tion a
n
d m
easuri
n
g de
fect
on
gra
p
hene
inc
l
uding
ato
m
ic f
o
r
ce micr
o
s
co
p
y
(A
FM)
[2
],[9
],
h
i
gh
r
e
so
l
u
tio
n tr
an
sm
issio
n
electr
o
n
m
i
cr
o
s
copy [
1
0
]
, tr
an
sm
i
ssion
el
ect
ron m
i
cro
s
co
py
[1]
,
sca
nni
ng el
ect
r
o
n
m
i
crosco
py
[
10]
a
nd R
a
m
a
n s
p
ect
ro
sco
p
y
[2]
,
[6]
,
[9]
,
[1
1
]
,[1
2
]
.
Ra
m
a
n
sp
ectro
sco
p
y
is m
o
re fav
o
rab
l
e sin
ce it is
m
o
re sen
s
itiv
e and
a
non-destructive technique for
i
nvest
i
g
at
i
n
g
t
h
e pr
ope
rt
i
e
s of g
r
ap
he
ne. As rep
o
rt
e
d
b
y
Gui
b
ai
et al,
AFM
c
h
ara
c
t
e
ri
zat
i
on m
a
kes
n
o
si
gni
fi
ca
nt
di
ff
erent
bet
w
ee
n pri
s
t
i
n
e
a
n
d de
fect
ed gra
p
he
n
e
,
b
u
t
not
by
us
i
ng
R
a
m
a
n
[
2
]
.
In this st
udy
,
d
i
ffere
nt o
x
y
g
e
n
plasm
a
flow
rates ar
e
used i
n
gradually induci
ng dis
o
rde
r
in chem
ical
v
a
por d
e
po
sitio
n
(CVD) m
u
l
tilayer g
r
aph
e
n
e
and
Ram
a
n
sp
ectro
sco
p
y
is ap
p
lied
t
o
cater th
e ev
o
l
u
tio
n
of
d
i
sor
d
er
. Th
e i
n
ten
s
ity o
f
t
h
e D
,
G
and
2D
b
a
nd
s in
t
h
e Ra
m
a
n
sp
ectr
a
ar
e an
alyzed
to
ex
p
l
o
r
e the oxyg
en
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ch
a
r
a
c
teriza
ti
o
n
o
f
Defect Ind
u
c
ted
Mu
ltila
yer Grap
h
e
n
e
(
M
a
rria
t
yi Mo
rsin
)
1
453
p
l
asm
a
treat
men
t
effect in
CVD m
u
ltilay
e
r grap
h
e
n
e
.
Th
e
AFM characterizatio
n
is u
s
ed
to stud
y th
e
m
o
rph
o
l
o
gy
of
t
h
e g
r
ap
he
ne s
a
m
p
l
e
s
while the electrical prope
rties is done
to cater the
I-V c
h
aracte
r
istics of
th
e sam
p
les.
2.
R
E
SEARC
H M
ETHOD
In
itially th
e stu
d
y
samp
le was C
V
D m
u
ltila
ye
r g
r
aph
e
n
e
pu
rch
a
sed
from Graph
e
n
e
Su
perm
arket
.
c
o
m
.
The 1 cm
× 1 cm
sam
p
le was t
h
e
n
bei
ng
di
ced i
n
t
o
0.
5 cm
× 0.5 cm
respect
i
v
el
y
.
Fo
ur
d
i
fferen
t
sa
m
p
les were u
s
ed
in
th
is stu
d
y
. Th
e sam
p
les
were d
e
no
ted
b
y
S1
–
un
treated
CVD m
u
ltila
yer
gra
p
hene
, S
2
– t
r
eat
ed
t
o
3
0
sccm
oxy
ge
n fl
ow
rat
e
, S
3
–
t
r
eat
ed t
o
50
sccm
oxy
g
e
n fl
ow
rat
e
a
nd
S4
-
t
r
eat
ed t
o
8
0
sc
cm
oxy
ge
n
fl
o
w
r
a
t
e
.
In t
h
i
s
e
xpe
ri
m
e
nt
, d
r
y
et
chi
n
g usi
ng
oxy
ge
n pl
asm
a
t
r
eatm
e
nt
was carri
ed o
u
t
at
ro
om
t
e
m
p
erat
ure.
This treatm
e
nt was
done
using the
reactive i
on etc
h
in
g (R
IE) system
capacitively couple
d
plasm
a
(CCP) type
di
scha
rge
d
f
r
o
m
SNTEK, m
odel
B
E
P5
00
2 t
o
fab
r
i
cat
e t
h
e di
so
rde
r
o
n
t
h
e
C
VD m
u
l
t
i
l
a
yer gra
p
hene
. In
t
h
i
s
case, o
x
y
g
e
n
p
l
asm
a
was released
and
ex
po
sed
d
i
rectl
y
to
th
e CVD g
r
aph
e
n
e
m
u
ltila
yer su
rface. The
p
a
ram
e
ters set fo
r th
e
ox
yg
en
p
l
asm
a
treat
men
t
were
30
sccm
, 50 sccm
and
80 sccm
for t
h
e
oxy
gen fl
ow
r
a
tes,
5
0
W
a
tt
p
o
w
e
r
,
20
0 m
T
o
r
r
p
r
essur
e
and
tim
e o
f
exposu
r
e of
5
s.
To
stud
y th
e crystallizatio
n
stru
cture of th
e u
n
t
r
eate
d
and the expose
d gra
p
hene samples, Ram
a
n
spect
r
o
sc
opy
f
r
om
R
a
m
a
n Xpl
o
ra Pl
us
, H
O
R
I
B
A
Sci
e
nt
i
f
i
c
wi
t
h
g
r
at
i
ng
1
2
0
0
nm
and
vi
si
bl
e wa
v
e
l
e
ngt
h
53
2
nm
(2.
33
eV i
n
e
n
e
r
gy
)
wi
t
h
Nd
Ya
g,
l
a
ser t
y
pe w
a
s
use
d
. T
h
e m
easurem
ent
s
we
r
e
per
f
o
rm
ed at
ro
om
t
e
m
p
erat
ure
.
T
o
be e
x
act
,
onl
y
t
h
e ex
p
o
se
d
gra
p
hene
area
whic
h was
t
h
e center
a
r
ea were
cha
r
acterized.
The at
om
i
c
f
o
rce m
i
crosco
py
(AFM
) (X
E-1
0
0
, K
o
re
a)
was use
d
t
o
st
udy
m
o
rp
h
o
l
o
gy
of t
h
e
sam
p
l
e
s, and t
h
e 2
-
poi
nt
pr
o
b
e f
r
om
Kei
t
h
l
e
y
was use
d
t
o
m
easure t
h
e
el
ect
ri
cal
pro
p
e
rt
y
of t
h
e
g
r
a
phe
ne
devi
ce.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
3.
1.
R
a
ma
n Ch
a
r
ac
t
e
r
i
za
t
i
o
n
Fi
gu
re 1 (a
) com
p
ari
s
on
of t
h
e 5
32 nm
R
a
m
a
n spect
ra of
grap
he
ne S1
-
S
4. T
h
e fi
g
u
re
sho
w
s t
h
r
e
e
m
o
st in
ten
s
e featu
r
es;
wh
ich
are the
G-pea
k
at ~ 1580 c
m
-1
, t
h
e 2D
-
p
e
a
k at
~
2
7
00 c
m
-1
and the
D-peak at
~1
300
cm
-1
. Accor
d
i
n
g t
o
Z
h
eng Ji
a
n
et al
th
e G-p
e
ak
is
du
e to
th
e E
2g
m
ode at the
-
poi
nt
[1
3]
. T
h
e 2D
-
ban
d
o
r
p
r
evi
ousl
y
k
n
o
w
n as G’ i
s
i
n
t
h
e ran
g
e of
25
00
– 2
8
0
0
cm
-1
; was a sig
n
a
tu
re of graphitic sp
2
materials. The 2D
band wa
s also
use
d
i
n
det
e
rm
i
n
i
ng t
h
e n
u
m
b
er of l
a
y
e
r
s
of g
r
a
phe
ne [
11]
,
[
1
3
]
.
The
D-
ba
nd
o
r
as kno
wn
as th
e d
i
so
rd
er
ind
u
c
ed
b
a
nd
wh
ich app
e
ar
ed
at ~
1
345 c
m
-1
[14]
. T
h
i
s
ban
d
e
xhi
bi
t
e
d t
h
e
prese
n
ce of disorder
in sp
2
-hy
b
ri
dized ca
rbon system
resu
l
t
s
i
n
res
ona
nce R
a
m
a
n
spect
ra
.
As s
h
ow
n i
n
Fi
gu
re
1
(a),
sam
p
l
e
S
1
, t
h
e
unt
reat
ed sam
p
l
e
s sh
owe
d
t
h
e sl
i
ght
a
p
peara
n
ce
of
D
-
peak
wh
ich
m
a
y b
e
cau
sed
b
y
th
e crystallin
e of
th
e m
u
ltila
ye
r g
r
aph
e
n
e
du
ri
n
g
th
e
p
r
od
uctio
n
.
As th
e
sam
p
les
were e
x
pose
d
t
o
t
h
e
oxy
gen
g
a
s pl
asm
a
(O
2
), the D-peak
be
ca
m
e
intense.
A
l
t
h
o
u
gh t
h
e d
i
sor
d
er
pea
k
be
cam
e
in
ten
s
e, on
ly a
slig
h
t
ch
ang
e
hap
p
e
n
e
d
to th
e
2
D
-band
.
Th
is
in
d
i
cated th
at t
h
e
g
r
aph
e
n
e
layers still ex
isted
.
Furt
her
i
nvest
i
g
at
i
on was do
ne
o
n
t
h
e G and
t
h
e
D ba
nd
.
B
a
sed on Fi
gu
re
1 (b
), t
h
e
D-
pea
k
i
n
crease
d
i
n
t
e
n
s
el
y
wi
t
h
t
h
e i
n
creasi
ng am
ount
of
oxy
ge
n fl
o
w
rat
e
. T
h
e
R
a
m
a
n spect
ra
sho
w
e
d
a sl
i
g
ht
D-
peak at S1 sam
p
le to a strong
D-pea
k
for sa
m
p
les S2,
S3 and S
4
. T
h
e G
-
peak
di
d
not s
h
ow m
u
ch difference
relativ
ely. In
terestin
g
l
y
h
e
re,
at S3
and
S4
sam
p
les, th
e D’-peak started to
arise at 1662
c
m
-1. As in Ec
kmann
et
al
[11]
, t
h
e D’
-pea
k m
a
y due t
o
t
h
e exi
s
t
e
nt
of l
a
ttice d
e
fect. In
o
ppo
sitio
n
with
th
e D’-p
eak
,
th
e
D-p
e
ak
was
n
o
t
sensitiv
e to th
e
d
e
fect g
e
o
m
etry.
Fi
gu
re
1 (c)
s
h
o
w
s t
h
e e
v
ol
ut
i
on
o
f
2
D
-
b
a
n
d
.
As m
e
nt
i
o
ned ea
rl
i
e
r, t
h
e 2D
-b
an
d i
s
a
si
gnat
u
re
of
g
r
aph
itic sp
2
material. Th
e 2D-b
an
d
sho
w
ed
a bro
a
d
e
r b
a
n
d
as
stud
ies sh
ow th
at m
u
lti
layer g
r
ap
h
e
n
e
ex
h
i
b
i
t
br
oa
dens
2D
-
b
and
[1
3]
,[
1
5
]
.
The 2
D
-
b
a
nd
of S
2
an
d S
4
s
h
o
w
e
d
sy
m
m
e
tri
cal
bel
l
-
sha
p
e but
f
o
r S
1
, t
h
e 2
D
-
ban
d
sh
o
w
ed t
h
at
t
h
e peak c
o
m
p
ri
sed wi
t
h
2 com
pone
nt
p
eaks i
n
i
t
.
An
d
t
h
ere was a sl
i
ght
ba
nd s
h
i
f
t
i
ng t
o
th
e left on
t
h
e
S4
sam
p
les of
th
e 2D-ba
n
d.
According to
Z
e
ng Jian
et al
[13] a
n
d Chih-J
en Shih
et
al
[
15]
, t
h
e
spectra s
h
a
p
e
of S1 sam
p
le is
m
o
stly reflected to be t
h
icker
th
an
6-
layer
s
of
gr
a
phe
ne.
W
h
i
l
s
t
f
o
r
S
2
and S4
sam
p
les, the spectra
were m
o
stly
refl
ect
ed
5 l
a
y
e
rs
or l
e
ss aft
e
r c
o
m
p
ari
n
g wi
t
h
t
h
e
obt
ai
ne
d
2
D
R
a
m
a
n
sp
ectra
with the literatu
re i
n
[1
3
]
,[16
].
An
d
for S3
, th
e p
e
ak
was sm
all, so
th
is p
e
ak
m
a
y b
e
reflected to
less
th
an
3
layers.
An
ot
he
r el
em
ent
can
be
ret
r
i
e
ved
f
r
om
t
h
e 2
D
-
b
a
nd
was
t
h
e ful
l
wi
dt
h o
f
hal
f-m
axi
m
u
m
val
u
e
.
T
h
i
s
val
u
e
de
pe
nde
d
on
t
h
e
sha
p
e o
f
t
h
e
2
D
-
b
and
w
h
e
r
e i
t
was
best
ru
n
wi
t
h
t
h
e
L
o
re
nt
z pea
k
s
anal
y
s
i
s
. Th
e
Lore
nt
z pe
aks
anal
y
s
i
s
fo
r S
1
, S2
, an
d S
4
w
e
re gi
ven t
h
e v
a
l
u
e o
f
f
u
l
l
wi
dt
h
of
hal
f
-m
axi
m
u
m
(FWH
M
)
o
f
81
.3
7 cm
-1
, 76.38 cm
-1
, and
64
.3
9 cm
-1.
Bu
t since the 2D peak
for S3
wa
s sm
al
l
,
t
h
e F
W
HM
co
ul
d
not
be
calculated. T
h
e D and
G-ba
nd
overs
h
a
d
owed t
h
e FWHM
val
u
e
of S
3
2
D
-
b
a
n
d. T
h
e cut
do
w
n
val
u
e
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
7,
No
. 3,
J
u
ne 2
0
1
7
:
14
5
2
– 14
58
1
454
F
W
HM
co
nfi
r
m
e
d t
h
e dec
r
e
a
sed l
a
y
e
r o
f
gra
p
hene
. The
sm
al
l
val
u
e o
f
F
W
HM
i
n
di
cat
ed t
h
e l
e
ss
l
a
y
e
r of
gra
p
hene
[
17]
.
The D,
t
h
e
G, and
2D peaks were use
f
ul
t
o
m
on
ito
r th
e st
ru
ct
u
r
al ch
anges in
g
r
ap
h
e
n
e
lattice an
d
l
a
y
e
rs [8]
.
Fr
o
m
Fi
gure 1
(b
)
and Fi
gu
re 1
(
c
) t
h
e i
n
t
e
nsi
t
y
rat
i
o
of t
h
e
D
and
G pea
k
s I
D
/I
G
and
th
at th
e ratio
of
2D a
n
d G
p
eaks I
2D
/I
G
as a f
u
n
c
tio
n
of
oxyg
en
p
l
asm
a
f
l
o
w
r
a
te (
s
ccm
)
can
b
e
calcu
lated
.
The v
a
lue o
f
I
D
and I
G
was taken
fro
m
th
e v
a
lu
es
o
f
t
h
e
p
eak in
ten
s
ity o
f
the D-pea
k
a
nd t
h
e G-peak res
p
ectively to calculate
th
e d
e
fect in
ten
s
ity ratio
o
f
t
h
e sp
ectra. The I
D
/I
G
ratio
was less th
an
0.20
for un
treated S1
sam
p
le in
dicatin
g
th
e crystallin
e o
f
th
e C
V
D
m
u
l
tilayer g
r
ap
h
e
n
e
sam
p
le d
u
ring
the prod
u
c
tion
.
Th
e I
D
/I
G
increase
d
as the
oxy
gen
flow rate increase
d
,
indicating the
increasing
am
ount of
defect. At short e
x
posure tim
e, the I
G
was
practically increased a
nd
remained
co
nstan
t
afterward
,
wh
i
l
e
I
D
st
ro
ngl
y
i
n
crease
d
wi
t
h
oxy
gen pl
asm
a
fl
ow
rate.
While fo
r
I
2D
th
e in
ten
s
ity d
ecreased
rap
i
d
l
y. Th
is tren
d
was e
xpect
ed as the Raman spect
ra ha
ve shown
chan
gi
n
g
a
n
d s
h
i
f
t
i
n
g el
em
ent o
n
2D
-
ba
nd
a
n
d
pea
k
.
(a)
(b
)
(c)
Fig
u
r
e
1
.
Evo
l
u
tio
n of
t
h
e f
i
rst-
or
d
e
r
an
d seco
nd-
or
d
e
r
Raman
sp
ectr
a
for
sam
p
les S1-
S
3
d
e
po
sited on
an
SiO
2
s
ubst
r
at
e,
su
b
j
ect
ed t
o
t
h
e sam
e
oxy
ge
n
pl
asm
a
t
r
eatm
e
nt
wi
t
h
di
ffe
r
e
nt
am
ount
of
f
l
ow
rat
e
s.
(a)
C
o
m
p
ari
s
on
o
f
R
a
m
a
n spect
r
a
at
5
3
2
nm
fo
r
di
f
f
ere
n
t
dose
s
o
f
oxy
gen
fl
o
w
r
a
t
e
s.
(b
) E
v
ol
ut
i
o
n
of
G
-
p
eak
and
D
-
peak
R
a
m
a
n spect
ra
(c
) E
vol
ut
i
o
n
o
f
2D
-b
an
d at
~
2
65
0 cm
-1
**
N
o
t
e
f
o
r
Fi
g
u
re
1
(
b
)
a
n
d
(c
), t
h
e
bl
ac
k c
o
l
o
u
r
R
a
m
a
n spe
c
t
r
a i
s
f
o
r
S
1
,
r
e
d c
o
l
o
ur R
a
m
a
n s
p
ect
ra i
s
f
o
r S
3
,
gree
n c
o
l
o
ur
R
a
m
a
n spect
r
a
i
s
f
o
r
S3
, a
n
d
bl
ue c
o
l
o
ur
R
a
m
a
n s
p
ect
ra i
s
f
o
r S
4
.
The value of I
2D
/I
G
decrease
d
whe
n
the value of I
D
/I
G
increased. A further cal
cul
a
t
i
on
was d
one t
o
classify the
defect states usi
n
g I
D
/I
D’.
Ec
km
a
n
n
et al
has
cla
ssified
t
w
o
types
of de
fect
sta
t
es which I
D
/I
D’
> 7
fo
r sp
3
-type de
fects and I
D
/I
D’
< 7 fo
r vaca
n
c
y
defect
s [1
1]
. In t
h
i
s
st
u
d
y
,
onl
y
S4 sam
p
l
e
exhi
bi
t
e
d t
h
e D’-
peak, a
n
d the
value of
I
D
/I
D’
was 1.84
, wh
ich
w
a
s i
n
ag
r
eemen
t of
t
h
e f
o
rm
at
i
on
of
vaca
nc
y
defect
.
Oth
e
r feat
u
r
e
can
b
e
retrieved
fro
m
th
is i
n
ten
s
ity ratio
I
D
/I
G
was the
distance of defe
ct, L
D
. Ado
Jori
o
et al
st
ates that
,
i
n
i
o
n
bom
bardm
e
nt
gra
phe
ne,
t
h
e di
s
o
r
d
er
i
s
bet
t
e
r qua
nt
i
f
i
e
d by
t
h
e
de
fect
conce
n
t
r
at
i
o
n,
1/
L
D
2
, whe
r
e t
h
e L
D
is a
typical interde
f
ect distance
,
wi
t
h
defe
ct
bei
ng
a p
o
i
n
t
-
l
i
k
e
(z
ero
-
di
m
e
nsi
onal
)
s
t
ruct
u
r
e [
1
2]
. There a
r
e se
ve
ral
equ
a
t
i
ons
r
e
l
a
t
e
d t
o
cal
cul
a
t
i
ng t
h
e L
D.
O
n
e i
s
fr
om
C
a
ncado
et
al
[
1
8]
, f
o
r
l
o
w
-
de
fect
de
nsi
t
y
re
gi
m
e
;
L
2
D
(nm
2
) = (1
.
8
0.5)
×
10
-9
4
L
(I
D
/I
G
)
-1
(1
)
wh
ere in th
is case
is
532
nm
. The calculated L
D
f
o
r
S
1
,
S2,
S
3
an
d
S4
are 3
5
.
3
2
nm
, 23
.9
4
nm
, 13.
3
7
nm
,
and
1
3
.
6
9
nm
respect
i
v
el
y
.
Th
ose val
u
es a
t
t
r
i
but
ed t
o
t
h
e
gra
d
ual
i
n
crea
se of
I
D
/I
G
val
u
e for each sa
m
p
le.
10
00
15
00
20
00
25
00
30
00
3
500
D
G
2D
S1
R
a
m
a
n Shi
ft
(
c
m
-1
)
S2
S3
S4
N
o
r
m
a
l
iz
e
d
I
n
t
e
n
s
it
y
1
200
130
0
1400
15
00
1600
1700
18
00
0
2000
4000
6000
8000
1
0000
In
t
e
n
s
i
t
y
Ra
man
Shif
t
(
cm
-1
)
D
G
D'
2
500
260
0
2
700
280
0
0
1
000
2
000
3
000
4
000
In
t
e
ns
it
y
Ram
a
n
Sh
i
f
t
(cm
-1
)
2D
I
D
/I
G
=
0.
7
8
L
D
=
13.
6
9
nm
I
D
/I
G
=
0.
8
2
L
D
=
13.
3
7
nm
I
D
/I
G
=
0.
2
5
L
D
=
23.
9
4
nm
I
D
/I
G
=
0.
1
2
L
D
=
35.
3
2
nm
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ch
a
r
a
c
teriza
ti
o
n
o
f
Defect Ind
u
c
ted
Mu
ltila
yer Grap
h
e
n
e
(
M
a
rria
t
yi Mo
rsin
)
1
455
And
th
is L
D
e
quat
i
o
n (
1
) i
s
val
i
d
f
o
r R
a
m
a
n dat
a
u
s
i
n
g
exci
t
a
t
i
on wa
v
e
l
e
ngt
h i
n
vi
si
bl
e ran
g
e
whi
c
h i
s
obt
ai
ne
d
fr
om
gra
p
hene
sam
p
l
e
s wi
t
h
p
o
i
n
t
defect
se
pa
rat
e
d
by
L
D
≥
10
n
m
.
3.
2.
AF
M Cha
r
ac
t
eriz
a
tion
Fi
gu
re
2 s
h
o
w
s
t
h
e A
F
M
m
o
rph
o
l
o
gy
of t
h
e
no
n
-
t
r
eated a
n
d treate
d
sam
p
les. T
h
e AFM
m
o
rphology
co
nsists of
3-D i
m
ag
e co
rr
espo
nd
ing
t
o
each typ
e
of
sam
p
les. T
h
e col
o
r of 3-D the
pea
k
(s) a
n
d the
vall
ey (s)
of the graphe
ne surface
. The
red and
yello
w co
lo
r ind
i
cate th
e
peak
of the
surface
, wh
ilst th
e g
r
een
sh
ows th
e
flat surface, a
nd t
h
e bl
ue indicates the val
l
eys or th
e
de
epest valley (s
). Figure 2
for S1 we can se
e the
q
u
a
litativ
ely, th
e S1
shows th
e m
o
st h
o
m
o
g
e
nou
s p
e
ak
s
co
m
p
ared
to
o
t
h
e
r
g
r
aph
e
n
e
sa
m
p
les ex
po
sed
to
the
oxy
gen
pl
asm
a
t
r
eat
m
e
nt
. Th
e scat
t
e
ri
n
g
am
ou
nt
of
re
d col
o
ur (peak) dominated
th
e
surface
of t
h
e
gra
phe
ne.
Whi
l
s
t
f
o
r S
2
,
S3 a
n
d S
4
,
t
h
e
am
ount
o
f
re
d
peak
di
m
i
ni
shed
wi
t
h
t
h
e
i
n
c
r
eased am
ou
nt
of
o
x
y
g
e
n
fl
o
w
rat
e
.
Fi
gu
re
2.
A
F
M
anal
y
s
i
s
:
t
h
ree
-
di
m
e
nsi
onal
(
3
-
D
)
i
m
age cor
r
esp
o
ndi
ng
t
o
t
h
e
x-a
x
i
s
of
ea
ch sam
p
l
e
s
Tabl
e 1 i
s
t
o
concl
u
de t
h
e
rel
a
t
i
ons
hi
ps
bet
w
ee
n t
h
e a
v
era
g
e s
u
r
f
ace
ro
u
g
h
n
ess a
n
d t
h
e R
M
S
r
oug
hn
ess
v
a
l
u
e of
all sam
p
les.
Tab
l
e 1
.
C
o
m
p
ar
ison
o
f
ro
ughn
ess p
a
r
a
m
e
ter
s
fo
r
d
i
ff
er
en
t o
x
y
g
e
n
p
l
asm
a
f
l
ow
r
a
te
Para
m
e
ter
S1
S2
S3
S4
Aver
age r
oughness (
R
a.
) in n
m
6.
79
11.
45
5.
77
15.
28
Root
m
ean squar
e
r
oughness (
R
q)
in n
m
8.
60
15.
22
7.
34
19.
12
3.
3.
Electrical characteriz
a
ti
on
Th
e cu
rren
t
–
v
o
ltag
e
ch
aract
eristics was
d
o
n
e
to
g
a
in m
o
re in
fo
rm
atio
n
ab
ou
t th
e effect o
f
su
rface
ro
u
g
h
n
ess
d
u
e
t
o
oxy
ge
n
p
l
asm
a
t
r
eatm
e
nt
. Fi
gu
re
3
sho
w
s
t
h
e c
u
rre
nt
-
vol
t
a
ge
charact
e
r
i
s
t
i
c
of
t
h
e
m
u
l
tilayer g
r
ap
h
e
n
e
with
Al
metal co
n
t
act. It obv
iou
s
ly
sh
owed
th
at t
h
e m
u
lt
ilayer g
r
ap
h
e
n
e
eith
er in S1
or
exp
o
se
d t
o
di
f
f
ere
n
t
d
o
ses
of
o
x
y
g
e
n
pl
asm
a
ex
hi
bi
t
e
d
o
h
m
i
c
beha
vi
o
u
r.
Am
ong
t
h
ese
sam
p
l
e
s, S1 s
h
owe
d
th
e h
i
g
h
est ohmic b
e
h
a
v
i
o
r
co
m
p
ared
t
o
t
h
e
o
t
h
e
r m
u
ltil
ayer graph
e
n
e
d
e
v
i
ce expo
sed
sam
p
les. From
th
is
fi
g
u
re, t
h
e resi
st
ance o
f
m
u
l
t
i
l
a
y
e
r grap
he
n
e
devi
ce wa
s st
ro
ngl
y
af
fect
ed by
t
h
e am
ount
o
f
fl
ow
ra
t
e
s of
o
x
y
g
e
n
p
l
asm
a
, th
us it d
ecreased
th
e con
d
u
c
tan
ce of th
e m
u
ltilayer d
e
v
i
ce. Th
is
find
ing
was su
ppo
rted
b
y
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
1
456
st
udy
struct
u
Fig
u
4.
C
cont
r
o
sam
p
l
th
e s
t
in
ten
s
num
b
th
e lo
of
t
h
e
lo
we
r
AC
K
N
un
de
r
Min
i
s
i
ndi
v
i
REF
E
[1]
T
S
[2]
G
2
[3]
L
[4]
A
N
[5]
I
t
E
Vo
l.
7
,
N
o
.
f
r
om
K. Ki
m
u
ral defe
cts
i
n
u
re 3.
Cu
rre
nt
-
C
O
NCL
USI
O
The
p
ur
p
o
o
lled ox
y
g
en
p
l
es were then
t
udy
, i
t
sho
w
s
ity
ratio
o
f
I
D
b
er of
the
gra
p
w-defect-den
s
e
m
u
lti
lay
e
r
g
r
ed the c
o
ndu
c
NOWLED
G
E
This rese
a
r
th
e
Vo
te no
.
s
t
r
y
of H
i
gh
e
i
dual
s
w
h
o a
r
e
E
RE
NC
ES
T
. X
u
,
et
al.
,
“
S
ys
t.
, vol. 1
,
p
p
G
. X
i
e
,
et
al.
,
2
280–4, 2014
.
L
. D
.
Car
r
and
M
A
. Felten
,
et
a
N
anotechnolo
gy
I
. Childres,
et
a
t
ransport meas
u
3
,
Jun
e
201
7
m
et
al
[18]
w
h
n
t
r
o
d
u
ce
d by
t
-
vol
t
a
ge
cha
r
a
respectivel
y
O
N
o
se of
th
is st
u
p
lasm
a flow
r
bei
n
g cha
r
ac
t
w
ed
th
at th
e i
n
D
/I
G.
The
ox
y
p
hene
. F
r
o
m
t
s
ity d
i
stan
ce
o
ra
phene
.
T
h
e
c
tiv
ity of t
h
e
m
E
MENTS
a
rc
h i
s
fu
nde
d
12J10. The a
u
e
r Edu
cation
M
e
eithe
r
direct
l
“
Fabric
ation
of
p
. 637–640,
201
“A general ro
u
M
. T
.
Lus
k
, “
G
a
l.
, “Gold clus
t
gy
,
vol/issue:
1
7
a
l.
,
“E
ffe
ct
of
o
u
re
me
n
t
s,
”
N
e
w
:
14
5
2
– 14
5
h
i
c
h re
po
rt
ed
t
t
h
e
ox
yg
en
p
l
a
a
cteristics o
f
m
y
. Insert
sho
w
u
dy
wa
s t
o
de
ates on
the
C
V
t
erized usi
n
g
t
n
ten
s
ity rati
o
y
ge
n pl
asm
a
f
l
t
he val
u
es
o
f
o
f th
e sam
p
le
s
i
n
crease
d
a
m
m
u
ltilayer g
r
a
p
d
by
t
h
e R
e
se
a
u
t
h
or
s w
o
ul
d
M
alaysia for
l
y
or i
n
di
rec
t
l
y
n
a
nopores usi
n
3.
u
te
towards de
f
G
raphene gets d
e
t
er
s on oxy
g
e
n
7
(8)
,
pp. 1954–
1
o
x
y
gen plasma
w
J.
Phys
.
, vol.
1
5
8
t
h
a
t th
e co
nd
u
asm
a
.
m
u
ltilayer g
r
a
p
w
s the v
a
lu
es
o
e
m
o
n
s
trate th
e
V
D m
u
ltilaye
r
t
he R
a
m
a
n s
p
o
of I
2D
/I
G
de
c
fl
ow
r
a
te also
I
D
/I
G
, the
de
fe
s
. T
h
e
oxy
ge
n
m
ount
o
f
o
x
y
g
a
ph
en
e.
a
rch U
n
iversi
t
lik
e to th
an
k
t
th
eir
supp
o
r
l
y
i
nvol
ve
d
i
n
n
g electron
be
a
f
ect and
pore
e
esigner def
e
cts
n
plasma func
t
1
959, 2006.
etching on gra
p
13
, 2
011.
u
ctance of
gr
a
p
h
e
ne fo
r pris
o
f resi
stance
a
e
effect
of th
e
r
g
r
a
phe
ne.
T
h
ect
r
osc
opy
, t
h
c
reased prop
o
affected the
2
fe
ct distance
w
n
plasm
a
also
g
g
en flo
w
rates
t
y G
r
an
t
o
f
U
n
t
he Researc
h
M
r
t
and c
o
ope
r
th
is proj
ect.
a
m,”
8
t
h Annu
.
e
ngin
e
ering in
,”
N
at. Publ.
G
t
ionalized carb
p
hene studied
u
p
hene de
vi
ce
t
ine
,
30 s
ccm
,
n
d cond
u
c
tan
e
reactive
i
o
n
h
e defects
fa
b
h
e
AFM
and
t
o
rtio
n
a
lly wi
t
2
D-
b
a
nd w
h
i
c
w
as also calc
u
g
a
v
e im
pact t
o
i
n
crease
d
th
e
n
iv
ersiti Tek
n
M
anagem
ent
r
at
i
on i
n
cl
ud
i
IEEE I
n
t. Co
n
g
r
a
p
he
ne
,
”
Sm
r
.
, vol/issue: 5(
o
n nan
o
tubes:
u
sing Raman s
p
ISS
N
:
2
can
b
e
attrib
u
, 50 s
c
cm
an
d
n
ce
etching usi
n
g
b
ric
a
ted o
n
t
h
e
t
he 2-
p
oi
nt
pr
o
t
h the increa
s
c
h rep
r
ese
n
t
e
d
u
lated
wh
ich
r
t
o the surface
e
s
u
rface rou
g
n
o
l
og
i Malay
s
C
e
nt
re of U
T
i
ng st
ude
nt
s
n
f.
Nano/M
i
c
r
o
m
all
, vol/is
sue:
(
5)
, pp
.
316–31
7
XPS a
n
d T
E
M
p
ectros
c
opy an
d
2
088
-87
08
u
ted
to
the
d
80
sccm
g
di
ffe
rent
e
g
r
a
phe
ne
o
be. From
s
ed
of
th
e
d
th
e
l
a
y
e
r
r
esulted
in
r
o
ug
hne
ss
g
hn
ess bu
t
s
ia (UTM
)
M an
d the
an
d ot
h
e
r
o
Eng
.
Mol
.
10(11), pp.
7
, 2010
.
M
studies,”
d
el
ectro
ni
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ch
a
r
a
c
teriza
ti
o
n
o
f
Defect Ind
u
c
ted
Mu
ltila
yer Grap
h
e
n
e
(
M
a
rria
t
yi Mo
rsin
)
1
457
[6]
Y.
Hajati,
et a
l
.
,
“Improved gas sensing activ
ity
in structur
al
ly
defected
bilay
e
r
gr
aphene,” vol. 50
5501.
[7]
I. Yanagi,
et al.
, “Fabricating
nanopores with
diam
eters of su
b-
1 nm
to 3 nm
using m
u
ltilevel pulse-vo
ltag
e
inje
ction
,
”
Sci. Rep.
, vol. 4
,
pp
. 5
000, 2014
.
[8]
A.
Felten,
et
a
l
.
, “Controlled
modification of
mono- and bila
y
e
r gr
aphen
e
in O2, H2
and
CF4 plasmas,”
Nanotechnolog
y
, vol/issue: 24(35
), pp
. 355705
, 2
013.
[9]
G. Compagnini,
et al.
, “Ion irradiation and def
e
ct form
ation in single lay
e
r graphene,”
Carbon N. Y.
, vol/issue:
47(14), pp
. 3201
–3207, 2009
.
[10]
Y.
Yamada,
et al.
, “Subnanometer vacan
cy
def
e
cts introdu
ced o
n
graphene b
y
o
x
y
gen
gas,”
J.
Am. Chem. So
c.
,
vol/issue:
136(6)
, pp
. 2232–5
, 20
14.
[11]
A. Eckmann,
et al.
, “Probing the nature of def
ects in
graphene b
y
Raman spectroscop
y
,”
Nano
Lett.
, vol/issue:
12(8), pp
. 3925–
3930, 2012
.
[12]
A. Jorio,
et al.
, “Measuring Disorder in Graphene with Raman Spectroscop
y
,
”
Phys. Appl. Graphene - Exp
.
, p
p
.
439–454, 2009
.
[13]
J. Zeng,
et al.
, “
Irradiation eff
ects of graphene and thin la
y
e
r grap
hite induced b
y
swift heav
y
ions,”
Chines
e Ph
ys
.
B
, vo
l/issue: 24(
8), pp
. 1–7
, 201
5.
[14]
M
.
M
.
Lu
cch
es
e
,
et al.
, “Quantif
y
i
ng
ion-indu
ced defects
and
Raman relax
a
tion
length
in graph
e
n
e
,”
Carbon N.
Y.
,
vol/issue: 48(5), pp.
1592–1597
, 2010.
[15]
C. J. Shih,
et al.
, “Bi- and trilayer graphen
e
solutions Supporting Information,”
N
a
t. Nanotechnol.
, vol/issue: 6(7)
,
pp. 439–445
, 20
11.
[16]
C. J. Lo,
et al.
, “Fabrication
of sy
mmetric sub-5 nm nanop
or
es using focused ion and electron beams,”
Nanotechnolog
y
, vol/issue: 17(13
), pp
. 3264–326
7, 2006
.
[17]
Y.
Hao,
et al.
, “
P
robing lay
e
r nu
mber and stacking order of
few-lay
e
r gr
aphene b
y
Raman Spectr
oscop
y
,”
Small
,
vol/issue:
6(2), p
p
. 195–200
, 201
0.
[18]
L. G. Can
cado,
et al.
, “Quantif
ying defects in graphe
ne via Raman spectroscop
y
at di
ffer
e
nt exci
t
a
tion
en
ergi
es
,
”
Nano Lett.
, vol/issue: 11(8), pp.
3190–3196, 201
1.
BIOGRAP
HI
ES OF
AUTH
ORS
M
a
rriat
yi
M
o
rs
in rec
e
ived h
e
r Bache
l
or de
gree in
Ele
c
tri
cal
Engine
ering
(Biom
e
dica
l
Engineering)
an
d Master d
e
gree
at Univ
ersiti
Teknologi
Tun Hu
ssein Onn (UTHM), Batu
Pahat
in 2002 and 20
05. She is currently
a Ph D.candida
te in Faculty
of Electrical Engineering at
Universiti
Tekno
logi Mal
a
y
s
ia (U
TM), Johor. Her
resear
ch int
e
rest
s focus on defect
ed graph
e
ne-
based sensors.)
S
uhaila
Is
aak
r
ece
ived
her
Ba
chelor
Degre
e
i
n
El
ectr
i
c
a
l
and
Electron
i
c
Eng
i
neer
ing
from
Universiti
Tekn
ologi Mal
a
y
s
ia in 1998, the
Ma
ster in Science (
E
lectroni
c)
degree from
Universiti
Putra
Mala
y
s
ia
in 200
1, and
th
e Ph.D
degree
in
El
ectr
i
cal
and
El
ectron
i
cs
Engin
eering
from
Univers
i
t
y
of Nottingh
am
,
England
in 201
1. Her m
a
jor
re
s
earch
inter
e
s
t
s
are h
i
gh-s
p
eed
avalanche pho
todiodes and InP-GaAs photod
etecto
r design
, simulation and
fabrication
.
In
addition
,
she is
also working on integr
ated
linear array
photon
cam
e
ra
using FPGA. Currentl
y
,
s
h
e is
invo
lved
o
n
s
p
ectros
c
op
y
s
y
s
t
em
for
s
o
il
an
al
y
s
is
.
Marlia Morsin
was born in Malay
s
ia in 1980
. She received
the B.Eng
.
d
e
gr
ee in
computer
engineering fro
m
Universiti T
echnolog
i Mal
a
y
s
ia
(UTM) in
2002, th
e M.En
g. in
el
ectr
i
cal
engineering fro
m
Universiti Tu
n Hussien Onn Ma
lay
s
ia (UTH
M) in 2004 and
the Ph.D. d
e
gree
in m
i
croengin
e
ering and nano
electroni
cs from
Un
iversiti Keb
a
ng
saan Malay
s
i
a
(
UKM) in 2014.
She joined Univ
ersity
Tun
Hussien Onn Malay
s
ia (UTHM), Malay
s
ia in
2004. S
i
nce 2004
, she
has
been with F
acul
t
y
of E
l
ec
tri
cal and Eng
i
ne
e
r
ing, UTHM
where s
h
e is
currentl
y
a s
e
nior
lec
t
urer
. Her m
a
i
n
areas
of r
e
s
ear
ch int
e
res
t
ar
e na
nom
ateria
l and p
l
as
m
onic s
e
ns
or.
Dr. M
a
rlia
is
a Principal Researcher at Mi
cro
e
lectronics & Nanotechnolog
y
-
Shamsuddin R
e
search Cen
t
r
e
(MiNT-SRC), In
stitute
of In
tegr
a
t
ed
Engine
er
ing
(I2E),
Universit
i
Tun Hussein
Onn Mala
ysi
a
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
7,
No
. 3,
J
u
ne 2
0
1
7
:
14
5
2
– 14
58
1
458
Yus
m
eeraz Yusof receiv
e
d the
B.S
.
degree in
ele
c
troni
cs
and the M
.
S
.
degree
in integrat
ed
design engin
eer
ing from Keio Univ
ersity
, Japan
,
in 2002 and
20
04, respectiv
ely
,
and th
e Ph.D.
degree in electrical engin
eer
ing and computer
science from Nag
o
y
a
University
,
Japan, in 2011.
Before she join
ed Universiti
Teknologi Malays
ia (UTM) as
a facu
lty
member in 2006
, she
worked as
an R
&
D engine
er wit
h
Alps
Elec
tric
M
a
la
y
s
ia for
two
y
e
ars
.
S
h
e
is
c
u
rrentl
y
a S
e
nior
Lec
t
urer with
th
e F
acult
y of
El
e
c
tri
cal
Engine
ering, UTM. Her current
inte
re
sts inc
l
ude
CMOS
DNA chip, semiconductor
and
n
e
w material bios
en
sors, and
point-of-care
biomedical devices.
Evaluation Warning : The document was created with Spire.PDF for Python.