I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
2
,
A
p
r
il
201
8
,
p
p
.
7
7
1
~7
7
9
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v8
i
2
.
7
7
1
-
779
771
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
K
a
l
m
a
n
F
il
ter Al
g
o
rith
m
f
o
r Mit
ig
a
tion o
f
Pow
er Sys
te
m
H
a
r
m
o
n
ics
K
.
Dhin
esh
ku
m
a
r
1
,
C.
Su
br
a
m
a
ni
2
1
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
i
n
e
e
rin
g
,
S
t.
P
e
ter’s
Un
iv
e
rsity
,
Ch
e
n
n
a
i
6
0
0
0
5
4
,
In
d
ia
2
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
i
n
e
e
rin
g
,
S
RM
In
stit
u
te o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
Ka
n
c
h
e
e
p
u
ra
m
6
0
3
2
0
3
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
2
,
2
0
1
7
R
ev
i
s
ed
Dec
2
7
,
2
0
1
7
A
cc
ep
ted
J
an
7
,
2
0
1
8
T
h
e
m
a
id
e
n
a
p
p
li
c
a
ti
o
n
o
f
a
v
a
ria
n
t
o
f
Ka
l
m
a
n
F
il
ter
(KF)
a
lg
o
rit
h
m
s
k
n
o
w
n
a
s
L
o
c
a
l
En
se
m
b
le
T
ra
n
s
f
o
rm
Ka
l
m
a
n
F
il
ter
(
L
ET
-
KF)
a
re
u
se
d
f
o
r
m
it
ig
a
ti
o
n
a
n
d
e
stim
a
ti
o
n
p
o
w
e
r
s
y
ste
m
h
a
r
m
o
n
ics
a
re
p
ro
p
o
s
e
d
in
th
is
p
a
p
e
r
.
T
h
e
p
ro
p
o
se
d
a
lg
o
rit
h
m
is
a
p
p
li
e
d
f
o
r
e
sti
m
a
ti
n
g
th
e
h
a
r
m
o
n
ic
p
a
ra
m
e
ters
o
f
p
o
w
e
r
si
g
n
a
l
c
o
n
t
a
in
in
g
h
a
rm
o
n
ics
,
su
b
-
h
a
rm
o
n
ics
a
n
d
i
n
ter
-
h
a
rm
o
n
ics
in
p
re
se
n
c
e
o
f
r
a
n
d
o
m
n
o
ise
.
T
h
e
KF
g
ro
u
p
o
f
a
l
g
o
rit
h
m
s
a
r
e
tes
ted
a
n
d
a
p
p
li
e
d
f
o
r
b
o
t
h
sta
ti
o
n
a
ry
a
s
w
e
ll
a
s
d
y
n
a
m
ic
sig
n
a
l
c
o
n
tai
n
in
g
ha
rm
o
n
ics
.
T
h
e
p
ro
p
o
se
d
L
ET
-
K
F
a
lg
o
rit
h
m
is
c
o
m
p
a
re
d
w
it
h
c
o
n
v
e
n
ti
o
n
a
l
KF
b
a
se
d
a
lg
o
rit
h
m
s
li
k
e
KF,
En
se
m
b
le
Ka
l
m
a
n
F
il
ter
(En
-
KF)
a
lg
o
rit
h
m
s
f
o
r
h
a
rm
o
n
ic
e
sti
m
a
ti
o
n
w
it
h
th
e
ra
n
d
o
m
n
o
ise
v
a
lu
e
s
0
.
0
0
1
,
0
.
0
5
a
n
d
0
.
1
.
Am
o
n
g
th
e
se
th
re
e
n
o
ise
s,
0
.
0
1
ra
n
d
o
m
n
o
is
e
re
su
lt
s
w
il
l
g
iv
e
b
e
tt
e
r
th
a
n
o
th
e
r
tw
o
n
o
ise
s.
Be
c
a
u
se
th
e
p
h
a
se
d
e
v
iatio
n
a
n
d
a
m
p
li
tu
d
e
d
e
v
iatio
n
les
s in
0
.
0
1
ra
n
d
o
m
n
o
ise
.
T
h
e
p
ro
p
o
se
d
a
lg
o
rit
h
m
g
iv
e
s
th
e
b
e
tt
e
r
re
su
lt
s
t
o
im
p
ro
v
e
th
e
e
ff
icie
n
c
y
a
n
d
a
c
c
u
ra
c
y
in
ter
m
s o
f
si
m
p
li
c
it
y
a
n
d
c
o
m
p
u
tati
o
n
a
l
f
e
a
tu
re
s.
He
n
c
e
th
e
re
a
r
e
les
s
m
u
lt
ip
li
c
a
ti
v
e
o
p
e
ra
ti
o
n
s,
w
h
ich
re
d
u
c
e
th
e
ro
u
n
d
i
n
g
e
rro
rs.
It
is
a
lso
les
s
e
x
p
e
n
siv
e
a
s
it
re
d
u
c
e
s
th
e
r
e
q
u
i
re
m
e
n
t
o
f
sto
rin
g
larg
e
m
a
tri
c
e
s,
su
c
h
a
s
t
h
e
Ka
l
m
a
n
g
a
in
m
a
tri
x
u
se
d
in
o
th
e
r
KF
b
a
se
d
m
e
th
o
d
s.
K
ey
w
o
r
d
:
Kal
m
a
n
f
ilter
P
o
w
er
q
u
ali
t
y
P
o
w
er
s
y
s
te
m
h
ar
m
o
n
ics
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
C
.
Su
b
r
a
m
an
i,
Dep
ar
t
m
en
t o
f
E
lectr
ical
an
d
E
lectr
o
n
ics E
n
g
i
n
ee
r
in
g
,
SR
M
I
n
s
tit
u
te
o
f
Sc
ien
ce
a
n
d
T
ec
h
n
o
lo
g
y
,
Kattan
k
u
lath
u
r
,
Kan
c
h
ee
p
u
r
a
m
–
6
0
3
2
0
3
,
T
am
il
n
ad
u
,
I
n
d
ia
.
E
m
ail: c
s
m
s
r
m
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Fo
r
th
e
d
ev
elo
p
m
e
n
t
o
f
e
f
f
e
ctiv
e
P
o
w
er
Qu
a
lit
y
(
P
Q)
m
o
n
ito
r
in
g
tech
n
iq
u
e
s
,
g
r
ea
ter
ef
f
o
r
t
s
ar
e
m
ad
e
b
y
t
h
e
r
esear
ch
er
s
to
w
ar
d
s
t
h
e
d
ev
elo
p
m
en
t
o
f
l
ess
-
co
m
p
le
x
an
d
m
o
r
e
ef
f
ici
en
t
tech
n
iq
u
e
s
f
o
r
d
etec
tio
n
,
class
i
f
icatio
n
,
id
en
t
if
icatio
n
o
f
p
o
w
er
q
u
alit
y
d
is
t
r
ib
u
tio
n
.
A
n
o
t
h
er
k
e
y
a
n
d
ch
allen
g
in
g
p
r
o
b
lem
r
ep
o
r
ted
r
ec
en
tly
b
y
t
h
e
r
ese
ar
ch
es
r
elate
d
to
p
o
w
er
q
u
ali
t
y
i
s
t
h
e
es
ti
m
a
tio
n
o
f
h
ar
m
o
n
ics
p
ar
a
m
eter
s
f
o
r
f
u
n
d
a
m
en
ta
l,
in
ter
-
h
ar
m
o
n
ic
s
an
d
s
u
b
-
h
ar
m
o
n
ic
s
co
m
p
o
n
e
n
ts
o
f
v
o
lta
g
e
a
n
d
cu
r
r
en
ts
s
i
g
n
als.
A
cc
u
r
ate
an
d
esti
m
atio
n
o
f
h
ar
m
o
n
ic
s
f
r
o
m
d
is
to
r
ted
v
o
lta
g
e
s
i
g
n
al
s
i
s
a
n
i
m
p
o
r
tan
t
is
s
u
e
f
o
r
c
h
ec
k
in
g
a
n
d
a
n
al
y
s
is
o
f
p
o
w
er
q
u
alit
y
p
r
o
b
le
m
s
.
Har
m
o
n
ic
s
co
m
p
o
n
e
n
ts
ar
e
d
is
to
r
ted
p
er
io
d
ic
w
av
e
f
o
r
m
,
w
h
o
s
e
f
r
eq
u
en
cie
s
t
h
at
ar
e
in
te
g
r
al
m
u
ltip
le
s
o
f
t
h
e
f
u
n
d
a
m
en
tal
f
r
eq
u
e
n
c
y
.
I
n
p
o
w
er
elec
tr
o
n
ic
b
ase
lo
ad
s
an
d
p
o
w
er
s
y
s
te
m
n
et
w
o
r
k
u
s
e
o
f
n
o
n
li
n
ea
r
lo
ad
s
h
as
c
au
s
e
m
u
c
h
m
o
r
e
h
ar
m
o
n
ic
p
o
llu
tio
n
,
w
h
ic
h
a
lo
t
o
f
d
eter
io
r
ates
th
e
p
o
w
er
q
u
alit
y
.
W
ith
esti
m
ated
p
ar
a
m
eter
s
,
s
u
c
h
a
s
a
m
p
lit
u
d
e
a
n
d
p
h
ase
s
,
co
r
r
ec
t
co
m
p
e
n
s
a
tio
n
s
y
s
te
m
ca
n
b
e
d
esig
n
ed
f
o
r
i
m
p
r
o
v
in
g
th
e
p
o
o
r
q
u
alit
y
p
er
f
o
r
m
a
n
ce
s
[
1
]
.
Ma
n
y
r
ec
u
r
s
i
v
e
al
g
o
r
ith
m
s
a
r
e
also
p
r
o
p
o
s
ed
to
s
o
lv
e
h
ar
m
o
n
ic
est
i
m
a
tio
n
p
r
o
b
lem
s
b
u
t
ea
ch
o
f
t
h
e
m
h
a
s
s
ev
er
al
li
m
itatio
n
s
i
n
ter
m
s
o
f
ac
cu
r
ac
y
an
d
co
n
v
er
g
e
n
ce
.
T
h
e
L
ea
s
t
Me
a
n
Sq
u
ar
e
(
L
M
S)
alg
o
r
ith
m
s
h
av
e
th
e
d
r
a
w
b
ac
k
s
f
o
r
th
eir
p
o
o
r
c
o
n
v
er
g
e
n
ce
in
ad
d
itio
n
to
b
ein
g
f
ailu
r
e
in
c
ase
o
f
s
ig
n
al
d
r
if
ti
n
g
a
n
d
ch
an
g
i
n
g
co
n
d
itio
n
s
.
R
L
M
al
g
o
r
ith
m
s
in
v
o
l
v
e
m
o
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
870
8
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
7
1
–
7
7
9
772
co
m
p
lica
ted
m
at
h
e
m
atica
l o
p
e
r
atio
n
s
a
n
d
r
eq
u
ir
e
m
u
c
h
co
m
p
u
tatio
n
al
r
e
s
o
u
r
ce
s
.
T
h
e
ac
cu
r
ac
y
is
al
s
o
li
m
ited
f
o
r
R
L
S,
L
MS
clas
s
o
f
al
g
o
r
ith
m
s
[
2
]
,
[
3
].
An
o
th
e
r
e
x
te
n
s
i
v
el
y
u
s
ed
al
g
o
r
ith
m
i
s
t
h
e
KF,
w
h
ic
h
i
s
k
n
o
w
n
f
o
r
its
s
i
m
p
lic
it
y
,
lin
ea
r
it
y
an
d
r
o
b
u
s
tn
es
s
.
T
h
e
Kal
m
an
F
ilte
r
alg
o
r
ith
m
i
s
ca
p
ab
le
en
o
u
g
h
to
esti
m
ate
h
ar
m
o
n
ic
p
ar
a
m
e
ter
s
in
p
r
esen
ce
o
f
n
o
is
e
a
n
d
o
t
h
er
n
o
n
-
lin
ea
r
it
y
’
s
p
r
esen
t
in
h
ar
m
o
n
ic
s
ig
n
a
l
[
4
-
6
]
.
Ho
w
e
v
er
,
th
e
m
ain
li
m
itatio
n
i
s
t
h
at
it
r
eq
u
ir
es
p
r
io
r
in
f
o
r
m
atio
n
o
f
t
h
e
s
ta
tis
tic
s
o
f
th
e
h
ar
m
o
n
ic
s
ig
n
a
l
an
d
t
h
e
i
n
it
ializatio
n
o
f
th
e
s
tate
m
atr
ix
i
n
an
ac
cu
r
ate
a
n
d
f
aster
w
a
y
is
t
h
e
m
ai
n
c
h
alle
n
g
e
[
7
-
10
].
T
h
e
v
ar
ian
t
KF
ca
l
led
E
n
K
F
is
p
r
o
p
o
s
ed
f
o
r
ac
cu
r
ate
e
s
t
i
m
atio
n
o
f
a
m
p
li
tu
d
e
a
n
d
p
h
ase
o
f
th
e
h
ar
m
o
n
ic
co
m
p
o
n
e
n
ts
o
f
d
is
t
o
r
ted
p
o
w
er
s
y
s
te
m
s
i
g
n
a
l.
T
h
e
p
r
o
p
o
s
e
m
et
h
o
d
u
s
ed
s
a
m
p
le
co
v
ar
ian
ce
i
n
Kal
m
a
n
g
ain
in
s
tead
o
f
s
tate
co
v
ar
ian
ce
to
a
v
o
id
th
e
s
i
n
g
u
lar
it
y
p
r
o
b
le
m
a
n
d
co
m
p
u
tat
i
o
n
al
f
ea
s
ib
ilit
y
f
o
r
h
ig
h
-
d
i
m
en
s
io
n
al
s
y
s
te
m
[
2
0
]
.
B
u
t
t
h
e
p
r
o
m
i
n
en
t
li
m
itat
io
n
o
f
t
h
e
m
o
s
t
E
n
K
F
-
b
ased
s
y
s
t
e
m
s
is
p
er
h
ap
s
t
h
e
r
eso
u
r
ce
li
m
ited
e
n
s
e
m
b
le
s
iz
e
[
2
1
-
2
3
]
.
T
h
is
is
tr
u
e
ev
e
f
o
r
m
ed
iu
m
-
s
ize
s
y
s
te
m
s
,
w
it
h
th
e
m
o
d
el
s
tate
v
ec
to
r
s
ize
o
f
th
e
o
r
d
er
o
f
j
u
s
t te
n
s
o
f
th
o
u
s
a
n
d
s
,
n
o
t to
m
en
t
io
n
t
h
e
lar
g
e
-
s
ca
le
ap
p
licatio
n
s
[
1
1
-
14
]
.
T
h
e
m
ai
n
o
j
ec
tiv
es o
f
t
h
e
p
r
o
p
o
s
ed
w
o
r
k
i
n
th
i
s
p
ap
er
ar
e
.
a.
Ma
id
en
ap
p
licatio
n
o
f
L
o
ca
l
E
n
s
e
m
b
le
T
r
an
s
f
o
r
m
Kal
m
an
Fil
ter
A
l
g
o
r
ith
m
f
o
r
esti
m
ati
n
g
a
m
p
lit
u
d
es
a
n
d
p
h
ase
s
o
f
t
h
e
f
u
n
d
a
m
en
ta
l,
s
u
b
-
h
ar
m
o
n
ics,
i
n
ter
-
h
ar
m
o
n
ics
i
n
p
r
esen
ce
R
an
d
o
m
n
o
is
e
I
p
o
w
er
s
y
s
te
m
s
i
g
n
al.
b.
T
o
esti
m
ate
t
h
e
co
m
p
ar
ativ
e
p
er
f
o
r
m
an
ce
o
f
KF,
E
n
K
F a
n
d
p
r
o
p
o
s
ed
L
E
T
-
KF a
lg
o
r
it
h
m
s
to
f
i
n
d
th
e
b
est h
ar
m
o
n
ic
e
s
ti
m
ato
r
.
c.
T
o
test
th
e
ac
c
u
r
ac
y
an
d
t
i
m
e
o
f
co
n
v
er
g
en
ce
f
o
r
h
ar
m
o
n
ic
s
i
g
n
al
e
s
t
i
m
at
io
n
w
it
h
t
h
e
p
r
o
p
o
s
e
L
E
T
-
KF a
l
g
o
r
ith
m
.
d.
T
o
esti
m
ate
th
e
p
er
f
o
r
m
an
c
e
o
f
th
e
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
ith
m
f
o
r
ac
cu
r
atel
y
esti
m
ati
n
g
h
ar
m
o
n
ic
s
i
g
n
al
p
ar
a
m
eter
s
o
n
r
ea
l
ti
m
e
d
ata
o
b
tain
ed
f
r
o
m
a
r
ea
l
ti
m
e
i
n
d
u
s
tr
ial
d
ata
s
etu
p
f
o
r
h
ar
m
o
n
ic
esti
m
atio
n
.
2.
K
F
AL
G
O
R
I
T
H
M
Sev
er
al
v
ar
ian
t
s
o
f
K
F
al
g
o
r
ith
m
s
,
w
h
ic
h
ar
e
ap
p
lied
f
o
r
h
ar
m
o
n
ic
e
s
ti
m
atio
n
p
r
o
b
le
m
s
,
ar
e
d
is
cu
s
s
ed
in
th
i
s
s
ec
tio
n
.
T
h
e
d
etail
p
r
o
ce
d
u
r
e
o
f
th
e
L
E
T
-
KF
al
g
o
r
ith
m
f
o
r
Har
m
o
n
ic
E
s
ti
m
a
tio
n
is
also
r
ep
o
r
ted
in
th
i
s
p
ar
t.
2
.
1
.
K
a
l
m
a
n F
ilte
r
I
n
t
h
is
al
g
o
r
ith
m
X
is
th
e
v
ec
to
r
o
f
u
n
k
n
o
w
n
p
ar
a
m
eter
tak
en
an
d
u
p
d
ates
th
e
w
ei
g
h
ts
a
s
KF
alg
o
r
ith
m
is
ap
p
lied
in
E
q
u
at
i
o
n
(
1
)
.
T
h
e
KF is d
is
cu
s
s
ed
in
th
is
s
ec
tio
n
i
s
r
ef
er
r
ed
f
r
o
m
[
9
]
,
[
1
8
]
.
(
)
(
⁄
)
(
)
(
(
)
(
⁄
)
(
)
)
(
1
)
W
h
er
e
k
is
th
e
Ka
l
m
a
n
g
ai
n
,
H
is
t
h
e
o
b
s
er
v
atio
n
m
atr
i
x
,
Q
is
t
h
e
n
o
i
s
e
co
v
ar
ian
ce
o
f
t
h
e
s
i
g
n
al.
P
=SI
is
co
v
ar
ian
ce
m
atr
i
x
,
w
h
er
e
S is
th
e
lar
g
e
n
u
m
b
er
an
d
I
is
th
e
s
q
u
ar
e
id
en
tit
y
m
atr
ix
.
T
h
e
co
v
ar
ian
ce
m
atr
i
x
is
r
elat
ed
w
it
h
Kal
m
an
g
ai
n
as g
iv
e
i
n
th
e
f
o
llo
w
i
n
g
es
ti
m
atio
n
.
(
⁄
)
(
⁄
)
(
)
(
)
(
⁄
)
(
2
)
Her
e
th
e
u
p
d
ated
esti
m
ated
s
ta
te
v
ec
to
r
is
r
elate
d
w
it
h
ea
r
lier
s
tate
v
ec
to
r
as f
o
llo
w
s
̂
(
)
̂
(
⁄
)
(
)
(
(
)
(
)
̂
(
⁄
)
)
⁄
(
3
)
Af
ter
u
p
d
ati
n
g
t
h
e
w
ei
g
h
t
v
e
cto
r
,
am
p
lit
u
d
e,
p
h
ases
o
f
t
h
e
f
u
n
d
a
m
e
n
tal
a
n
d
n
th
h
ar
m
o
n
ic
p
ar
a
m
eter
s
ar
e
f
o
u
n
d
o
u
t u
s
i
n
g
t
h
e
ab
o
v
e
eq
u
atio
n
s
.
2
.
2
.
E
ns
e
m
ble K
a
l
m
a
n F
ilte
r
(
E
n
-
K
F
)
T
h
e
E
n
-
KF
m
et
h
o
d
is
a
Mo
n
t
e
C
ar
lo
ap
p
r
o
x
i
m
atio
n
m
et
h
o
d
o
f
th
e
Kal
m
a
n
Fil
ter
,
w
h
ic
h
let
alo
n
e
ev
o
lv
i
n
g
t
h
e
co
v
ar
ia
n
ce
m
atr
i
x
o
f
t
h
e
P
r
o
b
ab
ilit
y
Den
s
it
y
F
u
n
ct
io
n
(
P
DF)
o
f
t
h
e
s
ta
te
v
ec
to
r
,
X.
I
n
t
h
is
ca
s
e,
th
e
d
is
tr
ib
u
t
io
n
is
r
ep
r
esen
ted
b
y
a
s
a
m
p
le,
w
h
ich
i
s
ca
lled
an
en
s
e
m
b
le.
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
K
a
lma
n
F
ilter
A
lg
o
r
ith
m
fo
r
Mit
ig
a
tio
n
o
f P
o
w
er S
ystem
Ha
r
mo
n
ics (
K
.
Dh
in
esh
ku
ma
r
)
773
W
h
er
e
X
i
s
a
nN
m
a
tr
ix
,
w
h
o
s
e
co
lu
m
n
s
ar
e
t
h
e
e
n
s
e
m
b
le
m
e
m
b
er
s
,
a
n
d
it
i
s
ca
lled
th
e
p
r
io
r
d
is
tr
ib
u
tio
n
.
As e
v
er
y
E
n
-
K
F
s
tep
ties
en
s
e
m
b
le
m
e
m
b
er
s
to
g
eth
er
s
o
t
h
e
y
ar
e
n
o
t
in
d
ep
en
d
en
t.
Si
g
n
al
d
ata
y
(
t)
is
ar
r
an
g
ed
as
m
atr
i
x
.
So
th
e
v
ec
to
r
o
f
u
n
k
n
o
w
n
p
ar
a
m
eter
/En
s
e
m
b
le
as in
E
q
u
a
ti
o
n
(
5
)
an
d
E
q
u
atio
n
(
6
)
(
)
(
)
(
)
(
)
(
)
(
5
)
(
)
(
)
(
)
(
)
(
)
(
6
)
T
h
e
en
s
e
m
b
le
m
ea
n
a
n
d
co
v
ar
ian
ce
ar
e
(
)
∑
(
)
(
7
)
(
8
)
(
)
(
9
)
T
h
e
u
p
d
at
ed
th
e
en
s
e
m
b
le
i
s
g
iv
e
n
t
h
e
n
̂
(
)
(
)
(
1
0
)
C
o
lu
m
n
s
o
f
X
r
ep
r
esen
ts
a
s
a
m
p
le
f
r
o
m
th
e
p
r
io
r
p
r
o
b
ab
i
lit
y
d
is
tr
ib
u
t
io
n
an
d
co
lu
m
n
s
o
f
̂
w
ill
f
o
r
m
a
s
a
m
p
le
p
o
s
ter
io
r
p
r
o
b
ab
ilit
y
d
is
tr
ib
u
tio
n
.
T
h
e
E
n
-
KF
is
n
o
w
o
b
tai
n
ed
b
y
r
ep
lacin
g
th
e
s
tate
co
v
a
r
ian
ce
P
in
Ka
l
m
a
n
g
ai
n
m
atr
i
x
(
)
b
y
t
h
e
s
a
m
p
le
co
v
ar
ia
n
ce
,
C
co
m
p
u
ted
f
r
o
m
t
h
e
en
s
e
m
b
le
m
e
m
b
er
s
.
R
is
a
co
v
ar
ian
ce
m
atr
i
x
,
w
h
ic
h
is
a
w
a
y
s
p
o
s
iti
v
e
s
e
m
i
d
ef
i
n
ite
an
d
u
s
u
all
y
p
o
s
iti
v
e
d
ef
in
i
te,
s
o
th
e
i
n
v
er
s
e
o
f
t
h
e
ab
o
v
e
ex
i
s
ts
.
Usi
n
g
E
q
u
atio
n
(
7
)
to
E
q
u
atio
n
(
9
)
)
o
b
tain
th
e
a
m
p
lit
u
d
es,
p
h
ase
s
o
f
th
e
f
u
n
d
a
m
e
n
tal
a
n
d
n
th
h
ar
m
o
n
ic
s
p
ar
a
m
eter
s
.
2
.
3
.
B
a
ck
g
ro
un
d t
heo
ry
o
f
L
E
T
-
K
F
a
lg
o
rit
hm
T
h
e
b
ac
k
g
r
o
u
n
d
t
h
eo
r
y
d
is
c
u
s
s
ed
in
th
i
s
s
ec
t
io
n
ab
o
u
t
L
E
T
-
KF
is
ta
k
en
f
r
o
m
[
2
1
-
2
3
]
.
T
h
e
m
a
in
f
ea
t
u
r
es
o
f
L
E
T
-
KF
m
e
th
o
d
ar
e
w
ell
k
n
o
w
n
f
o
r
its
m
o
r
e
e
f
f
icien
c
y
a
n
d
ac
cu
r
ac
y
a
n
d
also
less
m
u
lt
ip
licativ
e
o
p
er
atio
n
s
th
a
t
r
ed
u
ce
r
o
u
n
d
i
n
g
er
r
o
r
s
.
T
h
is
m
et
h
o
d
is
v
er
y
less
e
x
p
an
s
e,
b
ec
au
s
e
o
f
t
h
e
r
ed
u
ctio
n
o
f
s
to
r
ag
e
o
f
lar
g
e
m
atr
ices
t
h
at
i
n
cl
u
d
e
Kal
m
a
n
g
ai
n
m
atr
i
x
(
k
e
)
.
T
o
d
escr
ib
e
th
e
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
ith
m
,
co
n
s
id
er
th
e
en
s
e
m
b
le
s
ize
to
b
e
N
an
d
r
ep
r
esen
ted
b
y
th
e
lo
ca
l
f
o
r
ec
asted
en
s
e
m
b
le
m
e
m
b
er
s
b
y
,
ea
ch
o
f
w
h
ich
le
n
g
t
h
n
.
(
1
1
)
T
h
e
f
o
r
ec
asted
en
s
e
m
b
le
m
ea
n
is
g
iv
e
n
b
y
̅
̅
̅
∑
(
1
2
)
Fo
r
ec
asted
en
s
e
m
b
le
m
atr
i
x
is
also
d
ef
in
ed
b
y
√
(
)
(
1
3
)
W
h
er
ea
s
th
e
f
o
r
ec
asted
en
s
e
m
b
le
p
er
tu
r
b
atio
n
m
atr
ix
i
s
d
ef
i
n
ed
b
y
√
(
̅
̅
̅
̅
̅
̅
̂
(
1
4
)
T
h
e
E
ig
en
v
al
u
e
d
ec
o
m
p
o
s
iti
o
n
is
u
s
ed
o
n
a
m
atr
i
x
o
f
m
ea
s
u
r
ed
,
r
ea
l
d
ata,
th
e
in
v
er
s
e
m
a
y
b
e
less
v
alid
w
h
e
n
all
E
i
g
en
v
al
u
es
a
r
e
u
s
ed
u
n
m
o
d
i
f
ied
.
T
h
is
is
b
ec
au
s
e
as
E
i
g
e
n
v
al
u
es
b
ec
o
m
e
r
elati
v
el
y
s
m
a
ll.
Th
eir
co
n
tr
ib
u
tio
n
to
th
e
in
v
e
r
s
e
is
v
er
y
lar
g
e.
T
h
o
s
e
n
ea
r
Z
er
o
o
r
at
th
e
n
o
is
e
o
f
th
e
m
ea
s
u
r
e
m
en
t
s
y
s
te
m
w
il
l
h
a
v
e
u
n
d
u
e
in
f
l
u
e
n
ce
an
d
co
u
ld
h
a
m
p
er
s
o
lu
tio
n
s
u
s
i
n
g
t
h
e
i
n
v
er
s
e.
E
ig
e
n
v
a
lu
e
d
ec
o
m
p
o
s
i
tio
n
w
it
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
870
8
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
7
1
–
7
7
9
774
av
o
id
th
e
p
r
o
b
le
m
s
,
th
e
s
ca
l
ed
an
d
f
o
r
ec
asted
o
b
s
er
v
at
io
n
e
n
s
e
m
b
le
o
f
th
e
p
er
tu
r
b
ati
o
n
m
a
tr
ix
ca
n
b
e
in
tr
o
d
u
ce
d
as
w
h
ich
ca
n
b
e
r
ep
lace
d
b
y
(
)
(
1
5
)
L
i
n
ea
r
o
b
s
er
v
atio
n
o
p
er
ato
r
h
=
H
is
co
n
s
id
er
ed
t
h
en
th
e
m
ea
n
o
f
th
i
s
en
s
e
m
b
le
is
an
d
t
h
e
̅
̅
̅
̅
̅
̅
̅
en
s
e
m
b
le
p
er
tu
r
b
atio
n
s
ar
e
r
ep
lace
d
b
y
(
)
(
̅
̅
̅
̅
̅
̅
̅
)
(
)
(
)
̅
̅
̅
̅
̅
(
̅
)
(
1
6
)
Af
ter
,
u
p
d
atin
g
t
h
e
v
ec
to
r
o
f
u
n
k
n
o
w
n
p
ar
a
m
ete
r
s
u
s
in
g
t
h
e
L
E
T
-
K
F
alg
o
r
it
h
m
,
a
m
p
li
tu
d
es
an
d
p
h
ases
o
f
t
h
e
f
u
n
d
a
m
e
n
tal
a
n
d
n
th
h
ar
m
o
n
ic
p
ar
a
m
eter
s
ca
n
b
e
co
m
p
u
ted
u
s
in
g
t
h
e
f
o
ll
o
w
i
n
g
e
x
p
r
ess
io
n
(
1
4
)
to
(
1
6
):
√
(
1
7
)
ϕ
n
=
tan
-
1
(
1
8
)
(
1
9
)
(
)
(
2
0
)
3.
L
E
T
-
K
F
AL
G
O
RI
T
H
M
F
O
R
H
ARM
O
NIC E
ST
I
M
AT
I
O
N
T
h
e
s
tep
w
is
e
al
g
o
r
ith
m
o
f
L
E
T
-
KF f
o
r
h
ar
m
o
n
ics es
ti
m
atio
n
g
i
v
e
n
as
:
a.
I
n
itialize
Am
p
lit
u
d
e,
P
h
ase
an
d
Fre
q
u
en
c
y
o
f
f
u
n
d
a
m
en
tal
an
d
Har
m
o
n
ic
co
m
p
o
n
e
n
ts
an
d
f
o
r
ec
asted
en
s
e
m
b
le
v
ec
to
r
(
L
o
ca
l M
e
m
b
er
s
o
f
th
e
E
n
s
e
m
b
l
e)
.
b.
Gen
er
ate
t
h
e
p
o
w
er
s
ig
n
al
co
n
tain
i
n
g
f
u
n
d
a
m
e
n
tal
co
n
d
itio
n
s
as
-
o
n
e
p
er
io
d
o
f
t
h
e
s
i
g
n
al
s
a
m
p
les
at
2
.
5
KHz
r
ate
an
d
also
co
n
f
o
r
m
to
2
0
0
-
m
s
w
i
n
d
in
g
i
n
p
r
ac
tice.
c.
Dis
cr
ete
an
d
Mo
d
el
th
e
s
i
g
n
al
in
p
ar
a
m
etr
ic
f
r
o
m
u
s
i
n
g
E
q
u
a
tio
n
(
1
1
).
d.
I
n
itialize
t
h
e
n
u
m
b
er
o
f
u
n
k
n
o
w
n
p
ar
a
m
eter
s
/e
n
s
e
m
b
le
s
an
d
s
p
ec
if
y
er
r
o
r
co
v
ar
ian
ce
m
atr
i
x
(
R
)
.
e.
E
v
alu
a
tio
n
est
i
m
a
tio
n
er
r
o
r
u
s
in
g
E
q
u
atio
n
s
(
1
3
)
-
(
1
4
).
f.
C
alcu
late
th
e
f
o
r
ec
asted
en
s
e
m
b
le
m
ea
n
an
d
f
o
r
ec
aste
d
en
s
e
m
b
le
m
a
tr
ix
a
n
d
f
o
r
ec
asted
en
s
e
m
b
le
p
er
tu
r
b
atio
n
m
atr
ix
o
f
en
s
e
m
b
le
u
s
i
n
g
E
q
u
a
tio
n
(
1
5
)
g.
Ob
tain
th
e
e
s
ti
m
atio
n
f
o
r
ec
ast
ed
en
s
e
m
b
le
v
ec
to
r
u
s
i
n
g
E
q
u
atio
n
(
1
6
).
h.
I
f
f
i
n
al
iter
atio
n
is
n
o
t r
ea
ch
ed
,
g
o
t to
s
tep
-
5
.
i.
E
s
ti
m
a
te
a
m
p
lit
u
d
e
an
d
p
h
ase
o
f
f
u
n
d
a
m
e
n
tal
a
n
d
h
ar
m
o
n
ic
co
m
p
o
n
e
n
t
s
an
d
d
c
d
ec
ay
i
n
g
co
m
p
o
n
e
n
t
s
u
s
i
n
g
E
qu
atio
n
(
1
7
)
to
E
q
u
atio
n
(
2
0
)
f
r
o
m
f
i
n
al
esti
m
ate
o
f
t
h
e
f
o
r
ec
asted
en
s
e
m
b
le
v
ec
to
r
.
4
.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
AND
DIS
CUSS
I
O
N
4
.
1
.
Sta
t
io
na
ry
Sig
na
l C
o
rr
up
t
ed
w
it
h Ra
nd
o
m
N
o
is
e
T
o
ev
alu
ate
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
ith
m
f
o
r
esti
m
ati
n
g
th
e
h
ar
m
o
n
ics
a
m
p
lit
u
d
es
a
n
d
p
h
a
s
es
f
o
r
h
ar
m
o
n
ic,
s
u
b
-
h
ar
m
o
n
ic
s
a
n
d
in
ter
h
ar
m
o
n
ic
s
,
a
d
i
s
cr
ete
s
i
g
n
a
l
h
av
in
g
a
f
u
n
d
a
m
en
ta
l
f
r
eq
u
e
n
c
y
o
f
,
th
ir
d
h
ar
m
o
n
ic
f
r
eq
u
e
n
c
y
,
f
i
f
t
h
h
ar
m
o
n
ic
f
r
eq
u
e
n
c
y
,
s
ev
en
t
h
h
ar
m
o
n
ic
f
r
eq
u
e
n
c
y
an
d
elev
en
t
h
h
ar
m
o
n
ics
f
r
eq
u
en
c
y
is
g
en
er
ated
u
s
in
g
M
A
T
L
A
B
.
T
h
e
s
tatio
n
ar
y
p
o
w
er
s
i
g
n
a
l
co
n
s
i
s
ti
n
g
o
f
1
st
,
3
rd
,
5
th
,
7
th
,
1
1
th
o
r
d
e
r
o
f
h
ar
m
o
n
ics
is
g
i
v
en
i
n
E
q
u
atio
n
(
1
7
)
.
T
h
is
t
y
p
e
o
f
s
ig
n
al
is
t
y
p
icall
y
p
r
ese
n
t
in
i
n
d
u
s
tr
ial
lo
ad
co
m
p
r
i
s
in
g
o
f
p
o
w
er
elec
tr
o
n
ic
d
ev
ices
a
n
d
ar
c
f
u
r
n
ac
es
.
=
1
.
5
s
in
(
2
πf
1
t+8
0
0
)
+
0
.
5
s
in
(
2
πf
3
t+6
0
0
)
+
0
.
2
s
in
(
2
πf
5
t+4
5
0
)
+
0
.
1
5
s
in
(
2
πf
7
t+3
6
0
)
+
0
.
1
s
in
(
2
πf
11
t+3
0
0
)
+
μ
n
(
21
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
K
a
lma
n
F
ilter
A
lg
o
r
ith
m
fo
r
Mit
ig
a
tio
n
o
f P
o
w
er S
ystem
Ha
r
mo
n
ics (
K
.
Dh
in
esh
ku
ma
r
)
775
Fig
u
r
e
1,
Fig
u
r
e
2
an
d
Fig
u
r
e
3
r
ep
r
esen
ts
t
h
e
a
m
p
li
tu
d
e
an
d
p
h
ase
esti
m
atio
n
p
lo
t
o
f
t
h
e
h
ar
m
o
n
ic
s
ig
n
al
co
n
tai
n
i
n
g
f
u
n
d
a
m
en
ta
l
h
ar
m
o
n
ic
w
i
th
d
if
f
er
en
t
r
an
d
o
m
n
o
is
e
i.e
.
is
0
.
0
1
r
an
d
o
m
,
0
.
0
5
r
an
d
o
m
,
0
.
1
r
an
d
o
m
.
0
.
0
1
R
a
n
d
o
m
v
al
u
e
p
r
o
d
u
ce
d
th
e
les
s
n
o
is
e
a
n
d
also
p
r
o
d
u
ce
d
b
etter
ef
f
ic
ie
n
c
y
,
ac
cu
r
ac
y
to
t
h
e
0
.
0
5
,
an
d
0
.
1
r
an
d
om
n
o
i
s
es.
T
h
is
th
r
ee
r
a
n
d
o
m
n
o
is
es
u
s
e
d
th
en
co
m
p
ar
is
o
n
b
et
w
ee
n
th
e
s
u
b
–
h
ar
m
o
n
ics,
f
u
n
d
a
m
en
ta
l,
I
n
ter
–
h
ar
m
o
n
ic
s
,
d
y
n
a
m
ic
h
ar
m
o
n
ics,
3
rd
,5
th
,7
th
,
1
1
th
h
ar
m
o
n
ics.
Fig
u
r
e
1
.
Fu
n
d
a
m
e
n
tal
Har
m
o
n
ic
s
i
g
n
al
(
R
an
d
o
m
: 0
.
0
1
)
Fig
u
r
e
2
.
Fu
n
d
a
m
e
n
tal
Har
m
o
n
ic
s
i
g
n
al
(
R
an
d
o
m
: 0
.
0
5
)
Fig
u
r
e
3
.
Fu
n
d
a
m
e
n
tal
Har
m
o
n
ic
s
i
g
n
al
(
R
an
d
o
m
: 0
.
1
)
Fig
u
r
e
4
.
E
lev
en
t
h
Har
m
o
n
ic
s
ig
n
al
(
R
a
n
d
o
m
: 0
.
0
1
)
R
an
d
o
m
n
o
is
es
0
.
0
1
,
0
.
0
5
an
d
0
.
1
ar
e
u
s
ed
in
elev
en
th
h
ar
m
o
n
ic
s
an
d
th
e
co
r
ee
s
p
o
n
d
in
g
r
esp
o
n
s
e
h
as
s
h
o
w
n
i
n
Fig
u
r
e
4
,
Fi
g
u
r
e
5
an
d
Fi
g
u
r
e
6
.
Su
b
a
n
d
i
n
ter
h
ar
m
o
n
ic
g
r
ap
h
s
s
h
o
w
s
ac
t
u
a
l
v
er
s
e
s
est
i
m
a
ted
v
alu
e
s
o
f
s
i
g
n
al
u
s
in
g
f
o
u
r
d
if
f
er
en
t
al
g
o
r
ith
m
s
.
I
n
ca
s
e
o
f
L
E
T
-
KF
alg
o
r
ith
m
,
ac
tu
al
v
er
s
e
s
esti
m
ated
s
ig
n
al
s
al
m
o
s
t
m
atc
h
w
i
th
ea
c
h
o
t
h
e
r
w
it
h
l
ittl
e
d
ev
iatio
n
.
T
o
s
t
u
d
y
t
h
e
p
er
f
o
r
m
an
ce
o
f
t
h
e
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
ith
m
f
o
r
s
u
b
h
ar
m
o
n
ics
s
ig
n
a
ls
,
a
s
i
g
n
al
as
g
i
v
e
n
b
y
(
3
4
)
is
cr
ea
ted
in
M
A
T
L
A
B
.
T
h
e
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
ith
m
i
s
ap
p
lied
an
d
th
e
n
a
m
p
l
itu
d
e
a
n
d
p
h
ase
ar
e
e
s
ti
m
ated
.
Fig
u
r
e
7
r
ep
r
esen
t
s
th
e
a
m
p
lit
u
d
e
o
f
esti
m
atio
n
p
lo
t
alo
n
g
w
it
h
ac
t
u
al
s
ig
n
al
o
f
t
h
e
s
u
b
h
ar
m
o
n
i
c
s
ig
n
al
in
p
r
ese
n
ce
w
i
th
R
a
n
d
o
m
n
o
is
e
o
b
tai
n
ed
w
it
h
L
E
T
-
KF a
l
g
o
r
ith
m
.
I
t is
f
o
u
n
d
th
a
t th
e
es
ti
m
atio
n
er
r
o
r
ac
h
iev
ed
w
it
h
t
h
e
p
r
o
p
o
s
ed
al
g
o
r
ith
m
f
o
r
th
e
s
u
b
h
ar
m
o
n
ic
s
i
g
n
al
is
v
er
y
m
u
c
h
r
ed
u
ce
d
an
d
al
m
o
s
t
m
atc
h
e
s
w
it
h
th
e
ac
tu
al
s
i
g
n
al.
Fi
g
u
r
e
8
r
ep
r
esen
ts
th
e
a
m
p
lit
u
d
e
esti
m
atio
n
p
lo
t
alo
n
g
w
it
h
ac
tu
a
l
s
i
g
n
al
co
n
tai
n
in
g
in
ter
h
ar
m
o
n
ic
s
u
s
i
n
g
L
E
T
-
KF
alg
o
r
ith
m
a
t
1
3
0
Hz
f
r
eq
u
e
n
c
y
.
T
h
e
e
s
ti
m
a
tio
n
s
ig
n
al
o
b
tain
ed
w
it
h
th
e
p
r
o
p
o
s
ed
L
E
T
-
KF
al
m
o
s
t
m
atc
h
es
w
it
h
t
h
e
ac
t
u
a
l
in
ter
h
ar
m
o
n
ic
s
ig
n
al.
T
ab
le
1
,
T
a
b
le
2
an
d
T
ab
le
3
s
h
o
w
s
t
h
e
co
m
p
ar
ati
v
e
p
er
f
o
r
m
an
ce
o
f
KF,
E
n
KF
an
d
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
ith
m
f
o
r
esti
m
ati
n
g
h
ar
m
o
n
ic
p
ar
am
e
ter
s
f
o
r
f
u
n
d
a
m
en
tal,
th
ir
d
,
f
i
f
th
,
s
e
v
en
th
an
d
elev
en
t
h
o
r
d
er
h
ar
m
o
n
ics
a
lo
n
g
w
it
h
s
u
b
a
n
d
in
ter
h
ar
m
o
n
ics
co
r
r
esp
o
n
d
i
n
g
to
th
e
r
an
d
o
m
n
o
is
e
s
0
.
0
1
,
0
.
0
5
an
d
0
.
1
.
T
h
e
esti
m
ated
v
al
u
es
o
b
tain
ed
w
it
h
all
th
r
ee
alg
o
r
it
h
m
s
f
o
r
ea
ch
o
f
a
m
p
lit
u
d
e
an
d
p
h
ase
i
s
r
ep
o
r
ted
w
it
h
th
eir
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
870
8
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
7
1
–
7
7
9
776
co
m
p
u
tatio
n
al
t
i
m
e
a
s
w
ell.
I
t
is
ev
id
e
n
t
f
r
o
m
t
h
e
T
ab
le
1
,
T
ab
le
2
an
d
T
ab
le
3
th
at
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
p
r
o
p
o
s
ed
L
E
T
-
KF a
lg
o
r
ith
m
i
s
b
etter
th
an
a
n
y
o
f
th
e
o
t
h
er
tw
o
al
g
o
r
ith
m
s
i
n
ter
m
s
o
f
ac
c
u
r
ac
y
.
Fig
u
r
e
5.
E
lev
en
t
h
Har
m
o
n
ic
s
ig
n
al
(
R
a
n
d
o
m
: 0
.
0
5
)
Fig
u
r
e
6
.
E
lev
en
t
h
Har
m
o
n
ic
s
ig
n
al
(
R
a
n
d
o
m
: 0
.
1
)
Fig
u
r
e
7
.
Su
b
Har
m
o
n
ic
s
i
g
n
a
l
Fig
u
r
e
8
.
I
n
ter
-
1
Har
m
o
n
ic
s
i
g
n
al
4
.
2
.
Dy
na
m
ic
Sig
na
l
D
y
n
a
m
ic
s
i
g
n
al
ar
e
ti
m
e
d
e
p
en
d
en
t
s
ig
n
al
s
w
h
o
s
e
p
ar
a
m
eter
s
s
u
ch
as
a
m
p
lit
u
d
e,
p
h
ase
a
n
d
f
r
eq
u
en
c
y
v
ar
ies
w
it
h
r
esp
ec
t
to
ti
m
e.
T
h
e
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
ith
m
i
s
ev
al
u
ated
f
o
r
d
y
n
a
m
ic
s
ig
n
al
u
s
i
n
g
E
qu
atio
n
(
2
2
)
.
T
h
e
am
p
lit
u
d
e,
p
h
ase
an
d
f
r
eq
u
en
c
y
ar
e
esti
m
ated
b
y
th
e
al
g
o
r
ith
m
o
n
e
b
y
o
n
e
an
d
p
er
f
o
r
m
a
n
ce
i
s
ev
a
lu
ated
.
T
h
e
d
y
n
a
m
ic
p
er
f
o
r
m
an
ce
is
i
n
v
esti
g
a
ted
f
o
r
th
r
ee
d
if
f
er
en
t
f
r
eq
u
en
cie
s
,
s
u
c
h
as
1
Hz,
3
Hz,
a
n
d
6
Hz
an
d
d
if
f
er
en
t a
m
p
li
tu
d
es.
y
(
t)
={
1
.
5
+a
1
(
t)
}sin
(
ω
0
t+8
0
0
)
+{
0
.
5
+
a
3
(
t)
}sin
(
3
ω
0
t+6
0
0
)
+{
0
.
2
+a
5
(
t)
}sin
(
5
ω
0
t+
45
0
)
+μ
n
(
2
2
)
W
h
er
e,
a
1
=
0
.
1
5
s
in
2
πf
1
t +
0
.
0
5
s
in
2
πf
5
t
,
a
3
=
0
.
0
5
s
in
2
πf
3
t +
0
.
0
0
2
s
in
2
πf
5
t
,
a
5
=
0
.
0
2
5
s
in
2
πf
1
t+0
.
0
0
5
s
in
2
πf
5
t
f
1
=
1
.
0
Hz
,
f
2
=
3
.
0
Hz
,
f
3
=
6
.
0
Hz
.
T
h
e
L
E
T
_
KF
alg
o
r
ith
m
h
as
a
p
p
lied
f
o
r
o
b
tain
in
g
t
h
e
p
er
f
o
r
m
an
ce
o
f
d
y
n
a
m
ic
s
i
g
n
al
an
d
th
e
r
es
u
lt
s
ar
e
s
h
o
w
n
i
n
F
ig
u
r
e
9
,
Fig
u
r
e
1
0
an
d
Fig
u
r
e
1
1
.
I
t
ca
n
b
e
o
b
s
er
v
ed
th
at
ac
t
u
al
v
er
s
es
e
s
ti
m
ated
s
ig
n
al
al
m
o
s
t
m
atc
h
w
it
h
ea
ch
o
th
er
w
i
th
l
it
t
le
d
ev
iati
o
n
i
n
ca
s
e
o
f
L
E
T
-
K
F a
lg
o
r
ith
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
K
a
lma
n
F
ilter
A
lg
o
r
ith
m
fo
r
Mit
ig
a
tio
n
o
f P
o
w
er S
ystem
Ha
r
mo
n
ics (
K
.
Dh
in
esh
ku
ma
r
)
777
Fig
u
r
e
9
.
D
y
n
a
m
ic
Har
m
o
n
ic
s
ig
n
al
(
R
a
n
d
o
m
: 0
.
0
1
)
F
ig
u
r
e
1
0
.
Dy
n
a
m
ic
Har
m
o
n
ic
Sig
n
al
(
R
an
d
o
m
: 0
.
0
5
)
Fig
u
r
e
1
1
.
Dy
n
a
m
ic
Har
m
o
n
ic
Sig
n
al
(
R
a
n
d
o
m
: 0
.
1
)
T
ab
le
1
.
P
er
f
o
r
m
a
n
ce
o
f
KF,
E
n
-
KF a
n
d
p
r
o
p
o
s
ed
L
E
T
-
KF a
lg
o
r
ith
m
f
o
r
h
ar
m
o
n
ic
p
ar
a
m
e
ter
esti
m
at
io
n
in
cl
u
d
in
g
s
u
b
an
d
in
ter
h
ar
m
o
n
ics,
w
it
h
0
.
0
1
r
an
d
o
m
v
alu
e
s
A
l
g
o
r
i
t
h
m
P
a
r
a
me
t
e
r
s
S
u
b
F
u
n
d
3
rd
I
n
t
e
r
-
1
I
n
t
e
r
-
2
5
th
7
th
1
1
t
h
A
c
t
u
a
l
F
r
e
q
u
e
n
c
y
20
50
1
5
0
1
3
0
1
8
0
2
5
0
3
5
0
5
5
0
A
mp
(
V
)
0
.
2
1
.
5
0
.
5
0
.
1
0
.
1
5
0
.
2
0
.
1
5
0
.
1
P
h
a
se
(
d
e
g
)
75
80
60
65
10
45
36
30
KF
A
mp
(
V
)
0
.
2
0
2
0
1
.
5
0
0
0
.
5
0
1
0
0
.
0
9
9
9
0
.
1
5
2
5
0
.
2
0
2
9
0
.
1
4
8
3
0
.
0
9
8
9
Er
r
o
r
(
%)
-
0
.
0
0
3
-
0
.
0
0
1
-
0
.
0
0
0
3
0
.
0
0
1
1
5
0
.
0
0
2
-
0
.
0
0
2
8
0
.
0
0
1
6
5
9
0
.
0
0
2
9
P
h
a
se
7
4
.
8
0
3
5
7
9
.
9
5
9
.
7
0
6
4
.
3
7
5
8
.
5
8
9
9
4
4
.
7
9
9
3
5
.
5
3
2
5
3
0
.
5
3
8
4
Er
r
o
r
(
%)
0
.
9
-
0
.
1
1
0
.
2
0
.
9
8
4
5
1
.
4
1
0
1
0
.
0
6
2
0
.
4
6
7
5
-
0
.
5
3
8
4
En
-
KF
A
mp
(
V
)
0
.
2
0
7
1
1
.
5
0
2
3
0
.
5
1
0
8
0
.
1
0
2
1
0
.
1
4
9
0
0
.
2
0
2
1
0
.
1
5
2
4
0
.
1
0
2
3
Er
r
o
r
(
%)
-
0
.
0
1
-
0
.
0
0
2
-
0
.
0
0
1
-
0
.
0
1
3
3
-
0
.
0
0
1
5
-
0
.
0
0
2
3
-
0
.
0
0
2
3
8
-
0
.
0
0
2
3
P
h
a
se
7
3
.
1
0
1
8
0
.
2
5
6
0
.
5
7
6
7
.
4
5
0
2
1
1
.
4
6
2
7
4
5
.
5
7
3
6
.
5
2
5
1
2
9
.
4
7
Er
r
o
r
(
%)
7
.
4
-
0
.
1
-
0
.
7
1
5
.
7
7
1
-
1
.
4
6
2
7
-
0
.
8
-
0
.
5
2
5
1
0
.
5
2
6
3
L
E
T
-
KF
A
mp
(
V
)
0
.
2
0
1
9
1
.
4
9
9
0
0
.
5
0
0
7
0
.
0
9
9
9
0
.
1
5
2
4
0
.
2
0
2
7
0
.
1
4
8
3
0
.
0
9
8
8
Er
r
o
r
(
%)
-
0
.
0
0
4
0
.
0
0
1
0
5
-
0
.
0
0
2
0
.
0
0
1
2
1
2
-
0
.
0
0
1
3
-
0
.
0
0
2
7
0
.
0
0
1
7
4
9
0
.
0
0
1
1
6
1
P
h
a
se
7
4
.
7
9
1
0
7
9
.
7
5
9
.
6
5
6
4
.
3
7
3
1
8
.
5
9
6
2
4
4
.
7
9
2
3
5
.
5
3
4
4
3
.
5
4
1
2
Er
r
o
r
(
%)
0
.
5
0
.
2
0
.
3
0
.
9
8
8
8
1
.
4
0
3
8
0
.
0
6
2
0
.
4
6
5
6
-
0
.
5
4
1
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
870
8
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
7
1
–
7
7
9
778
T
ab
le
2.
P
er
f
o
r
m
a
n
ce
o
f
KF,
E
n
-
KF a
n
d
p
r
o
p
o
s
ed
L
E
T
-
KF a
lg
o
r
ith
m
f
o
r
h
ar
m
o
n
ic
P
ar
am
eter
s
esti
m
atio
n
in
cl
u
d
in
g
s
u
b
an
d
in
ter
h
a
r
m
o
n
ics
w
i
th
0
.
0
5
r
an
d
o
m
v
al
u
es
A
l
g
o
r
i
t
h
m
P
a
r
a
me
t
e
r
s
S
u
b
F
u
n
d
3
r
d
I
n
t
e
r
-
1
I
n
t
e
r
-
2
5
th
7
t
h
11
th
A
c
t
u
a
l
F
r
e
q
u
e
n
c
y
20
50
1
5
0
1
3
0
1
8
0
2
5
0
3
5
0
5
5
0
A
mp
(
V
)
0
.
2
1
.
5
0
.
5
0
.
1
0
.
1
5
0
.
2
0
.
1
5
0
.
1
P
h
a
se
(
d
e
g
)
75
80
60
65
10
45
36
30
KF
A
mp
(
V
)
0
.
2
0
4
5
1
.
4
9
9
8
0
.
5
0
5
1
0
.
0
9
9
7
0
.
1
6
3
5
0
.
2
1
4
3
0
.
1
4
1
8
0
.
0
9
4
6
Er
r
o
r
(
%)
-
0
.
0
1
2
0
.
0
0
0
1
-
0
.
0
0
5
0
3
0
.
0
0
0
3
0
-
0
.
0
1
3
5
-
0
.
0
1
4
2
3
0
.
0
0
8
1
9
0
.
0
0
5
5
P
h
a
se
7
5
.
5
5
4
5
7
9
.
8
2
5
6
0
.
8
9
2
7
6
1
.
8
7
8
8
3
.
4
0
9
3
4
4
.
9
3
3
3
.
5
5
4
3
3
2
.
8
1
5
7
Er
r
o
r
(
%)
-
0
.
5
5
-
0
.
0
5
6
-
0
.
3
6
0
3
.
1
1
9
8
.
0
0
.
0
6
8
8
2
2
.
4
4
7
-
2
.
8
1
5
0
En
-
KF
A
mp
(
V
)
0
.
2
1
2
1
1
.
5
1
0
0
0
.
5
1
0
0
0
.
1
1
0
7
0
.
1
5
9
2
0
.
2
1
0
7
0
.
1
6
0
6
0
.
1
1
0
5
Er
r
o
r
(
%)
-
0
.
0
0
4
5
-
0
.
0
0
1
1
-
0
.
0
0
9
7
-
0
.
0
1
0
7
-
0
.
0
0
4
-
0
.
0
1
-
0
.
0
1
2
-
0
.
0
1
2
P
h
a
se
7
5
.
2
5
4
7
7
7
.
7
9
6
0
.
1
6
7
9
6
7
.
0
2
5
9
1
2
.
1
4
0
9
4
8
.
2
3
7
.
4
3
8
1
2
7
.
7
4
7
8
Er
r
o
r
(
%)
0
.
2
5
0
.
1
7
-
1
.
0
-
2
.
0
2
5
9
-
5
.
0
-
3
.
6
-
0
.
0
1
0
6
2
.
5
L
E
T
-
KF
A
mp
(
V
)
0
.
2
0
4
4
1
.
4
9
9
8
0
.
5
0
4
8
0
.
0
9
9
6
0
.
1
6
3
4
0
.
2
1
4
2
0
.
1
4
1
7
0
.
0
9
4
5
Er
r
o
r
(
%)
-
0
.
0
0
4
4
0
.
0
0
1
2
-
0
.
0
0
4
7
3
0
.
0
0
0
3
6
-
0
.
0
1
3
2
0
.
0
1
4
0
4
0
.
0
0
8
4
0
.
0
0
5
7
P
h
a
se
7
5
.
5
4
1
7
7
9
.
8
0
3
6
0
.
1
7
0
8
6
1
.
8
7
5
0
3
.
4
1
5
9
4
4
.
9
3
3
3
.
5
5
6
6
3
2
.
8
1
8
0
Er
r
o
r
(
%)
-
0
.
5
3
9
-
0
.
0
5
-
0
.
3
5
4
3
.
1
2
5
7
.
9
6
0
.
0
6
8
7
4
0
.
0
0
8
2
7
-
2
.
8
1
7
3
T
ab
le
3
.
P
er
f
o
r
m
a
n
ce
o
f
KF,
E
n
KF,
an
d
p
r
o
p
o
s
ed
L
E
T
-
KF a
lg
o
r
ith
m
f
o
r
h
ar
m
o
n
ic
P
ar
am
eter
s
esti
m
atio
n
in
cl
u
d
in
g
s
u
b
an
d
in
ter
h
ar
m
o
n
ics
w
i
th
0
.
1
r
an
d
o
m
v
al
u
es
6
.
CO
NCLU
SI
O
N
A
n
e
w
v
ar
ian
t
o
f
KF
an
d
L
E
T
-
KF
is
ap
p
lied
f
o
r
th
e
f
ir
s
t
ti
m
e
f
o
r
th
e
esti
m
at
io
n
o
f
a
m
p
litu
d
e
an
d
p
h
ase
o
f
a
ti
m
e
v
ar
y
i
n
g
f
u
n
d
a
m
en
tal
s
ig
n
al,
it
s
h
ar
m
o
n
ics,
s
u
b
h
ar
m
o
n
ics
an
d
i
n
ter
h
ar
m
o
n
ic
s
co
r
r
u
p
t
w
it
h
r
an
d
o
m
n
o
is
e.
T
h
e
h
ar
m
o
n
ic
p
ar
am
eter
s
ar
e
esti
m
ated
u
s
i
n
g
th
e
p
r
o
p
o
s
ed
L
E
T
-
KF
an
d
o
th
er
t
w
o
v
ar
ian
t
s
o
f
Kal
m
a
n
Fil
ter
,
i.e
.
K
F
a
n
d
E
n
-
KFal
g
o
r
it
h
m
s
,
f
o
r
ev
al
u
ati
n
g
th
eir
co
m
p
ar
ativ
e
p
er
f
o
r
m
a
n
ce
w
ith
t
h
e
r
an
d
o
m
n
o
is
e
v
a
lu
e
s
0
.
0
0
1
,
0
.
0
5
an
d
0
.
1
.
Am
o
n
g
t
h
ese
t
h
r
ee
n
o
is
e
s
,
0
.
0
1
r
an
d
o
m
n
o
is
e
r
es
u
lt
s
w
il
l
g
i
v
e
b
ett
er
th
a
n
o
th
er
t
w
o
n
o
is
e
s
.
B
ec
au
s
e
t
h
e
p
h
ase
d
ev
iatio
n
a
n
d
a
m
p
li
tu
d
e
d
ev
ia
tio
n
les
s
i
n
0
.
0
1
r
an
d
o
m
n
o
is
e.
T
h
e
p
er
f
o
r
m
a
n
ce
r
es
u
lt
s
o
b
tain
ed
w
it
h
all
t
h
e
t
h
r
ee
alg
o
r
it
h
m
s
r
ev
ea
ls
t
h
at
t
h
e
p
r
o
p
o
s
ed
L
E
T
-
KF
alg
o
r
it
h
m
is
t
h
e
b
est
a
m
o
n
g
s
t
all
t
h
e
t
h
r
ee
alg
o
r
ith
m
s
i
n
ter
m
s
o
f
ac
cu
r
a
c
y
in
es
ti
m
atin
g
h
ar
m
o
n
ic,
s
u
b
-
h
ar
m
o
n
ic,
in
ter
h
ar
m
o
n
ics.
I
t
i
s
also
le
s
s
e
x
p
en
s
i
v
e,
as
i
t
d
o
es
n
o
t
r
eq
u
ir
e
th
e
s
to
r
i
n
g
o
f
lar
g
e
Kal
m
an
g
ain
m
atr
ices
l
ik
e
i
n
th
e
o
th
er
KF b
ased
m
e
th
o
d
s
.
RE
F
E
R
E
NC
E
S
[1
]
Ch
e
n
Ch
e
n
g
I,
Ch
i
n
Ch
e
n
Y.
“
Co
m
p
a
ra
ti
v
e
stu
d
y
o
f
h
a
r
m
o
n
ic an
d
in
ter h
a
rm
o
n
ic es
ti
m
a
ti
o
n
m
e
th
o
d
s f
o
r
sta
ti
o
n
a
ry
a
n
d
ti
m
e
-
v
a
r
y
in
g
si
g
n
a
ls
”
.
IEE
E
T
ra
n
s I
n
d
u
stry
El
e
c
tro
n
2
0
1
4
;
6
1
(1
):3
9
7
4
0
4
.
[2
]
Ortm
e
y
e
r
T
H,
Ch
a
k
ra
v
a
rth
i
KR,
M
a
h
m
o
u
d
AA
.
“
T
h
e
e
ff
e
c
ts
o
f
p
o
w
e
r
s
y
ste
m
h
a
r
m
o
n
ics
o
n
p
o
w
e
r
e
q
u
ip
m
e
n
t
a
n
d
lo
a
ds
”
.
IEE
T
ra
n
s p
o
we
r A
p
p
a
r
S
y
st
1
9
8
5
:1
0
4
2
5
5
5
-
63.
[3
]
Ka
ri
m
i
G
h
a
rte
m
a
n
i
M
,
Ira
v
a
n
i
M
R.
“
M
e
a
su
re
m
e
n
t
o
f
h
a
r
m
o
n
ics
/i
n
ter
h
a
rm
o
n
ics
o
f
ti
m
e
v
a
r
y
in
g
f
re
q
u
e
n
c
ies
”
.
IEE
E
T
ra
n
s P
o
we
r De
li
v
2
0
0
5
;
2
0
(1
):
2
3
–
3
1
.
[4
]
G
.
P
ra
k
a
sh
,
C.
S
u
b
ra
m
a
n
i
,
“
S
p
a
c
e
V
e
c
to
r
a
n
d
S
in
u
so
i
d
a
l
P
u
ls
e
Wi
d
th
M
o
d
u
lati
o
n
o
f
Qu
a
si
Z
-
S
o
u
r
c
e
In
v
e
rter
f
o
r
P
h
o
t
o
v
o
lt
a
ic S
y
ste
m
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
p
o
we
r ele
c
tro
n
ics
a
n
d
Dr
ive
s S
y
ste
ms
,
2
0
1
6
:
7
(3
).
[5
]
L
in
HC.
“
P
o
w
e
r
h
a
rm
o
n
ics
a
n
d
i
n
ter
h
a
rm
o
n
ics
m
e
a
su
re
m
e
n
t
u
si
n
g
re
c
u
rsiv
e
g
ro
u
p
-
h
a
rm
o
n
ic
p
o
w
e
r
m
in
i
m
izin
g
a
lg
o
rit
h
m
”
.
IEE
E
T
ra
n
s
In
d
El
e
c
t
ro
n
2
0
1
2
;
5
9
(
2
):
1
1
8
4
–
9
3
.
A
l
g
o
r
i
t
h
m
P
a
r
a
me
t
e
r
s
S
u
b
F
u
n
d
3
rd
I
n
t
e
r
-
1
I
n
t
e
r
-
2
5
t
h
7
t
h
11
th
A
c
t
u
a
l
F
r
e
q
u
e
n
c
y
20
50
1
5
0
1
3
0
1
8
0
2
5
0
3
5
0
5
5
0
A
mp
(
V
)
0
.
2
1
.
5
0
.
5
0
.
1
0
.
1
5
0
.
2
0
.
1
5
0
.
1
P
h
a
se
(
d
e
g
)
75
80
60
65
10
45
36
30
KF
A
mp
(
V
)
0
.
2
0
9
1
1
.
4
9
9
5
0
.
1
5
0
2
0
.
0
0
9
9
7
0
.
1
7
8
9
0
.
2
2
8
6
0
.
1
3
3
9
0
.
0
8
9
4
Er
r
o
r
(
%)
-
0
.
0
0
9
0
.
7
-
0
.
0
0
1
0
-
0
.
0
0
0
3
-
0
.
0
2
7
4
-
0
.
0
2
8
5
0
.
0
1
6
2
0
.
0
1
0
5
P
h
a
se
7
6
.
0
8
4
7
7
9
.
4
9
2
6
0
.
3
3
6
5
8
.
7
4
7
7
-
2
.
1
1
4
1
4
4
.
8
7
1
3
0
.
8
1
4
5
3
5
.
9
6
4
Er
r
o
r
(
%)
-
0
.
2
8
0
.
0
6
0
-
0
.
3
3
5
6
.
2
5
2
4
1
2
.
1
2
0
.
1
2
9
5
.
1
8
6
9
-
5
.
9
6
4
En
-
KF
A
mp
(
V
)
0
.
2
2
3
6
0
.
1
5
1
5
6
0
.
5
1
8
6
0
.
1
1
8
8
0
.
1
7
7
1
0
.
2
2
1
8
0
.
1
6
5
9
0
.
1
1
6
3
Er
r
o
r
(
%)
-
0
.
0
2
4
-
0
.
0
1
8
-
0
.
0
1
8
-
0
.
0
1
8
7
-
0
.
0
2
7
-
0
.
0
2
1
-
0
.
0
1
7
-
0
.
0
1
6
P
h
a
se
7
5
.
2
8
1
9
7
9
.
6
6
0
.
6
2
5
6
3
0
7
7
0
6
9
.
6
2
9
5
4
6
.
5
6
3
6
.
2
2
0
9
2
6
.
5
3
9
Er
r
o
r
(
%)
0
.
1
0
.
5
8
-
0
.
6
2
1
.
1
-
0
.
3
7
-
1
.
5
2
-
0
.
1
3
.
8
L
E
T
-
KF
A
mp
(
V
)
0
.
2
0
8
9
1
.
4
9
8
5
0
.
0
5
0
9
8
0
.
0
9
9
6
0
.
1
7
8
7
0
.
2
2
8
5
0
.
1
3
3
8
0
.
0
8
9
4
Er
r
o
r
(
%)
-
0
.
0
0
8
7
1
.
9
-
0
.
0
0
9
7
-
0
.
0
0
0
4
-
0
.
0
2
7
2
-
0
.
0
2
8
0
.
0
1
6
2
3
0
.
0
1
0
6
P
h
a
se
7
6
.
0
7
1
9
7
9
.
9
3
7
6
0
.
3
3
2
5
8
.
7
4
4
4
-
2
.
1
0
7
5
4
4
.
8
7
1
1
3
0
.
8
1
7
2
3
5
.
9
6
5
Er
r
o
r
(
%)
-
0
.
2
6
0
.
0
7
1
-
0
.
3
3
7
6
.
2
5
5
4
1
2
.
1
3
0
.
1
2
8
9
1
5
.
1
8
2
-
5
.
9
6
6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
K
a
lma
n
F
ilter
A
lg
o
r
ith
m
fo
r
Mit
ig
a
tio
n
o
f P
o
w
er S
ystem
Ha
r
mo
n
ics (
K
.
Dh
in
esh
ku
ma
r
)
779
[6
]
Be
tt
a
y
e
b
M
,
Qid
w
a
i
U.
“
Re
c
u
rs
iv
e
e
sti
m
a
ti
o
n
o
f
p
o
w
e
r
s
y
ste
m
h
a
rm
o
n
ics
”
.
El
e
c
tric
Po
we
r
S
y
st
Res
1
9
9
8
;
4
7
:
143
–
1
5
2
.
[7
]
Ch
e
n
C
-
I,
C
h
a
n
g
GW
,
Ho
n
g
RC,
L
i
HM.
“
Ex
ten
d
e
d
re
a
l
m
o
d
e
l
o
f
Ka
l
m
a
n
f
il
ters
f
o
re
ti
m
e
-
v
a
ry
in
g
h
a
r
m
o
n
ics
e
sti
m
a
ti
o
n
”
.
IEE
E
T
ra
n
s P
o
we
r De
li
v
2
0
1
0
;
2
5
(1
):
1
7
–
2
6
.
[8
]
M
a
H,
G
irg
is
A
d
l
y
A
.
“
Id
e
n
ti
f
ica
ti
o
n
a
n
d
trac
k
in
g
o
f
h
a
r
m
o
n
ic
so
u
rc
e
s
in
a
p
o
we
r
s
y
ste
m
u
sin
g
a
Ka
l
m
a
n
F
il
ter
”
.
IEE
E
T
ra
n
s P
o
we
r De
li
v
1
9
9
6
;
1
1
(3
):
1
6
5
9
–
6
5
.
[9
]
M
u
h
a
m
m
a
d
A
li
Ra
z
a
A
n
ju
m
.
,
“
A
Ne
w
A
p
p
ro
a
c
h
to
A
d
a
p
ti
v
e
S
ig
n
a
l
P
ro
c
e
ss
in
g
”
,
In
d
o
n
e
si
a
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
I
n
fo
rm
a
ti
c
s
,
3
(2
),
2
0
1
5
,
p
p
.
9
3
~
1
0
8
[1
0
]
M
T
a
m
il
v
a
n
i,
K
Nith
y
a
,
M
S
rin
iv
a
sa
n
,
S
U
P
ra
b
h
a
,
“
Ha
r
m
o
n
ic
Re
d
u
c
ti
o
n
in
V
a
riab
le
F
re
q
u
e
n
c
y
Driv
e
s
Us
in
g
A
c
ti
v
e
P
o
w
e
r
F
il
ter
”
,
Bu
l
letin
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
a
n
d
In
f
o
r
ma
ti
c
s,
3
(
2
),
2
0
1
4
,
p
p
.
1
1
9
~
1
2
6
[1
1
]
Ku
m
a
r
A
,
D
a
s
B,
S
h
a
r
m
a
J.
“
Ro
b
u
st
d
y
n
a
m
ic
sta
te
e
sti
m
a
ti
o
n
o
f
p
o
w
e
r
s
y
ste
m
h
a
r
m
o
n
ics
”
.
El
e
c
tr
Po
we
r
En
e
rg
y
S
y
st
2
0
0
6
;
2
8
:6
5
–
7
4
.
[1
2
]
Be
id
e
s
Hu
sa
m
M
,
He
y
d
t
GT
.
“
D
y
n
a
m
ic
st
a
te
e
sti
m
a
ti
o
n
o
f
p
o
w
e
r
s
y
st
e
m
h
a
r
m
o
n
ics
u
sin
g
Ka
l
m
a
n
F
il
ter
m
e
th
o
d
o
lo
g
y
”
.
IEE
E
T
ra
n
s
Po
we
r De
li
v
1
9
9
1
;
6
(4
):
1
6
6
3
–
7
0
.
[1
3
]
P
ig
a
z
o
A
,
M
o
re
n
o
Vic
to
r
M
.
“
3/
-
3
x
sig
n
a
l
m
o
d
e
l
f
o
r
p
o
we
r
s
y
ste
m
h
a
r
m
o
n
ics
a
n
d
u
n
b
a
lan
c
e
id
e
n
ti
f
ica
ti
o
n
u
sin
g
Ka
l
m
a
n
F
il
terin
g
”
.
IEE
E
T
ra
n
s P
o
we
r De
li
v
,
2
0
0
8
;
2
3
(2
):
1
2
6
0
–
1.
[1
4
]
Da
sh
P
K,
P
ra
d
h
a
n
A
K,
P
a
n
d
a
G
.
“
F
re
q
u
e
n
c
y
e
sti
m
a
ti
o
n
o
f
d
isto
rted
p
o
w
e
r
s
y
ste
m
si
g
n
a
ls
u
sin
g
e
x
t
e
n
d
e
d
c
o
m
p
lex
Ka
l
m
a
n
F
il
ter
”
.
IEE
E
T
ra
n
s
Po
w
e
r De
li
v
1
9
9
9
;
1
4
(3
):
7
6
1
–
6.
Evaluation Warning : The document was created with Spire.PDF for Python.