Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
63
9
~
65
3
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
296
6
39
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Design of a Wireless Sensor Node
for Vibration Monitoring of
Industrial Machinery
Alaa Abdulhady Jaber
*
, Robert
Bicker
**
* School of
Mechanical
and S
y
stems E
ngineer
ing
,
Newcastle University
, UK
* Mechan
ical
En
gineer
ing Dep
a
rtment, Unversity
of Technolog
y
,
I
r
aq
** School of
Mechanical and
S
y
s
t
ems E
ngineerin
g, Newcastle Un
iversity
, UK
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 2, 2015
Rev
i
sed
D
ec 11
, 20
15
Accepte
d Ja
n
6, 2016
M
achine h
eal
th
y m
onitoring is
a t
y
pe
of maintenance inspectio
n techniqu
e
b
y
which an ope
ration
a
l asset is m
onitored and t
h
e data obt
ain
e
d
is anal
y
s
ed
to detect signs of
degrad
ation
,
diagnos
e the
causes
of fau
lts and
thu
s
reducing
the m
a
int
e
nan
c
e
costs. Vibra
tio
n signal an
al
ysi
s
was extensive
l
y
us
ed for
machines fault d
e
tection a
nd diagnosis in various indus
trial applica
tions, as it
responds immediately
to manifest itself
if an
y
change is app
e
ared in the
monitored machine. However
,
recent
dev
e
lo
pments in electronics
and
computing hav
e
opened n
e
w horizons in th
e
area
of condition monitoring
and
have shown their practicality
in
fault
d
e
tection and diagnosis pro
cesses. Th
e
m
a
in aim
of using wireless s
y
st
e
m
s is to allow data
anal
ysis to
b
e
carr
i
ed ou
t
loca
ll
y
at f
i
eld
le
vel
and tr
ansm
itt
ing the
resul
t
s wirel
e
ssl
y
to th
e b
a
se sta
tion
,
which as a resul
t
will help
to ov
ercom
e
the n
eed
for wiringand p
r
ovides an
eas
y
and cos
t
-ef
f
ect
ive s
e
ns
ing t
echniqu
e to dete
ct faul
ts
in m
achines
.S
o, th
e
m
a
in focuses of this research is to
design and
develop an online conditio
n
monitoring s
y
stem based on wireless tec
hnolog
y that can be used to detect
and diagnose th
e most common f
a
ults in the
trans
m
ission sy
stems (gears and
bearings) of
an
industrial robot
join
ts using v
i
bration sign
al
analysis.
Keyword:
Ar
dui
n
o
m
i
crocont
rol
l
e
r
Co
nd
itio
n m
o
n
ito
ring
Fau
lt d
e
tection
V
i
br
atio
n an
al
ysis
W
i
rel
e
ss se
ns
o
r
no
de
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Al
aa A
b
dul
had
y
Jaber
,
Sch
ool
o
f
M
e
c
h
ani
cal
a
n
d Sy
st
em
s Engi
neer
i
ng,
Newcastle Un
iv
ersity,
St
ephe
ns
o
n
B
u
i
l
d
i
ng,
N
E
1
7R
U,
Ne
wcast
l
e
u
p
o
n
Ty
ne,
U
K
Em
a
il: a.j
a
b
e
r@n
c
l.ac.uk
1.
INTRODUCTION
B
a
sed o
n
t
h
e c
once
p
t
o
f
wi
rel
e
ss sens
or
net
w
o
r
k
s
(
W
S
N
s)
, w
h
i
c
h c
o
m
p
ri
se of a
n
u
m
b
er of
bat
t
e
ry
-
po
we
red
(o
r t
a
ke ad
va
nt
age
of
near
by
p
o
w
er s
u
ppl
y
i
f
avai
l
a
bl
e) se
ns
or
no
des
,
eac
h o
f
w
h
i
c
h c
o
nt
ai
ns
di
ffe
re
nt
(o
r t
h
e sam
e
) sensors t
y
pes t
o
m
oni
t
o
r di
f
f
e
rent
va
ri
abl
e
s and t
r
a
n
sm
it
t
h
e dat
a
wi
rel
e
ssl
y
,
em
bedde
d sy
st
em
s have
been
ext
e
nsi
v
el
y
us
ed f
o
r
b
u
i
l
d
i
n
g
di
ffe
re
nt
heal
t
h
m
oni
t
o
ri
n
g
s
y
st
em
s. The t
y
pi
cal
sens
or
n
o
d
e
s
h
o
u
l
d
be
sm
al
l
si
ze, l
o
w
p
o
we
r c
o
nsum
pt
i
o
n
an
d l
o
w c
o
st
.
WS
N
sol
u
t
i
ons
are
bei
n
g
i
n
creasi
n
gl
y
em
pl
oy
ed i
n
m
oni
t
o
ri
n
g
a
ppl
i
cat
i
ons,
fo
r e
x
am
pl
e i
n
vehi
cl
e faul
t
di
ag
n
o
si
s [
1
]
.
Th
e s
y
st
em
com
p
rises a large num
b
er of s
e
ns
ors a
b
le to comm
unicat
e
with each
othe
r through a
wireless network,
able to
g
e
t liv
e d
a
ta
fro
m
th
e v
e
h
i
cle, su
ch
as
oil te
m
p
er
ature, wheel
balanc
e, and fuel le
vel. T
h
e em
bedde
d
micro
p
r
o
cessors g
a
t
h
er th
e
data an
d
send
the
m
to
an
ex
tern
al m
o
n
ito
ring en
tity. Ano
t
h
e
r p
a
p
e
r h
a
s su
gg
ested
an
in
tellig
en
t
d
i
agn
o
sis system
co
m
b
in
in
g
WSN wit
h
a
m
u
l
ti-ag
en
t sy
ste
m
(MAS)
[2
]; to
satisfy th
e
n
eeds
fo
r hi
g
h
sam
p
l
i
ng
rat
e
s,
hi
g
h
preci
si
on
, hi
g
h
s
p
eed a
n
d l
a
rge am
ou
nt
s o
f
dat
a
t
r
a
n
sm
i
t
t
e
d f
r
om
m
echani
cal
eq
u
i
p
m
en
t. The efficien
cy of th
e syste
m
fo
r a co
al
prep
aratio
n
p
l
an
t was in
v
e
stig
ated
,
an
d
its practicab
ility
was
dem
onst
r
a
t
ed.
Ot
he
r a
p
p
l
i
cat
i
ons o
f
W
S
N
sy
st
em
sare f
o
u
n
d
i
n
st
r
u
ct
ural
heal
t
h
m
oni
t
o
ri
ng
. R
a
d a
n
d
Sha
f
ai [3] utilized wireless e
m
bedded se
nsors as a successful alternative
to
fiber optics sensors to assess the
st
at
e of t
h
e i
n
f
r
ast
r
uct
u
re
o
f
bri
dges
i
n
N
o
r
t
h Am
eri
ca.
WSNs
ha
ve al
s
o
sh
ow
n s
u
ffi
ci
ent
p
o
t
e
nt
i
a
l
i
n
dat
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
63
9 – 6
5
3
64
0
collection whe
n
they ha
ve
be
en applied to
m
onitor wi
nd
turbine blades [4].
He
re piez
otronic accelerometers
were
use
d
t
o
p
i
ck
up
t
h
e
si
g
n
a
l
s
fr
om
bl
ade
s
i
n
b
o
t
h
heal
t
h
y
an
d
dam
a
ged st
at
es,
an
d t
h
e sens
o
r
s
were
fi
xe
d
at
d
i
fferen
t
lo
catio
n
s
o
n
th
e b
l
ad
es and
wireless
d
a
ta acqu
isitio
n
u
tilized
.Micro
-electro
-m
ech
an
ical-sen
so
rs
(MEMS) h
a
v
e
also
b
e
en
u
s
ed
for co
nd
ition
m
o
n
ito
ri
n
g
.
Fo
r ex
am
p
l
e, a tin
y and
v
e
ry lig
h
t
weigh
t
MEMS
accelerom
eter has
been m
o
unted on a
rotor s
h
aft to m
onitor its dynam
i
c
b
e
havi
or [5]. The
accelerom
ete
r
was
con
n
ect
ed t
o
a
wi
rel
e
ss se
ns
or
no
de
fo
r t
h
e wi
rel
e
ss t
r
a
n
sm
i
ssi
on o
f
vi
brat
i
o
n si
g
n
al
s
.
W
i
t
h
out
a
n
y
adde
d
im
balance and at differe
nt rotating
spee
ds,
vibration m
easurem
ents such
as acceleration value
s
were
taken
with accepta
ble perform
a
nce. It was re
porte
d
that this technique assisted
in reduci
ng the num
ber of se
nsors
n
eed
ed
to
m
o
nito
r
th
e ro
tating
p
a
r
t
s. A
w
i
reless e
m
b
e
d
d
e
d
system h
a
s b
een
app
lied
to
h
e
licop
ter
gear
box
m
oni
t
o
ri
ng
[
6
]
,
wi
t
h
t
h
e ai
m
of
desi
g
n
i
n
ga se
nso
r
n
ode
fi
xe
d t
o
t
h
e
pl
a
n
et
ary
gea
r
s’
car
ri
er i
n
o
r
der t
o
g
a
t
h
er
vibration
signa
l
s to an e
x
ternal
receiver through the a
n
te
nna
whic
h exte
nds
into the
gearbox. T
h
e ac
qui
red
si
gnal
was a
n
al
y
zed usi
n
g si
g
n
al
p
r
ocessi
n
g
m
e
t
hods
. A
n
e
xpe
ri
m
e
nt
al
syst
em
consi
s
t
i
n
g
of a
set
of
pl
anet
ary
g
ears
bu
ilt u
s
in
g
on
e sun
g
e
ar and
fo
ur
p
l
anetary g
ears
was
co
nstru
c
ted
,
an
d
four
wirel
e
ss
sen
s
o
r
no
des
were
installed in t
h
e
space
betwee
n
each
two neighboring gears.
A research
st
u
d
y
h
a
s im
p
l
emen
ted
th
e env
e
lop
e
an
alysis alg
o
rith
m
for wi
reless
b
e
aring
health
m
oni
t
o
ri
ng
bas
e
d o
n
vi
brat
i
o
n si
g
n
al
s m
easurem
ent
,
ho
we
ver
,
t
o
o
v
erc
o
m
e
t
h
e l
i
m
i
t
a
t
i
ons
of m
e
m
o
ry
si
ze
an
d restricted
co
m
p
u
t
atio
n
a
l
cap
ab
ilities in
th
e co
mm
ercia
lly av
ailab
l
e wireless no
d
e
s, t
h
e au
tho
r
s h
a
ve u
s
ed
a 32
-bi
t
m
i
cro
c
ont
rol
l
e
r t
y
pe
TM
4C
1
2
3
3
H
6PM
f
r
om
Texas Inst
r
u
m
e
nt
s al
on
g wi
t
h
Zi
g
b
ee wi
rel
e
ss m
o
d
u
l
e
.
In
terestin
g
l
y, t
h
e rap
i
d
d
e
v
e
l
o
p
m
en
ts in
sm
artph
o
n
e
s
and
p
o
rtab
le
d
e
v
i
ces h
a
v
e
ch
anged
th
e trad
ition
a
l way
of
usi
n
g t
h
em
.
R
e
searche
r
s ha
ve de
vel
o
pe
d a scal
abl
e
and
r
o
i
d appl
i
cat
i
o
n base
d o
n
a sm
art
p
ho
ne t
o
di
a
g
no
s
e
som
e
ty
pes of
faul
t
i
n
an i
n
d
u
st
ri
al
ai
r com
p
ress
o
r
[
8
]
.
Th
ey
m
e
nt
i
oned
t
h
at
t
h
e devel
o
ped sy
st
em
i
s
very
rel
i
a
bl
e. A
n
ot
h
e
r pa
per
has
p
r
esent
e
d a rem
o
t
e
m
oni
t
o
ri
n
g
sy
st
em
for a r
o
t
a
t
i
ng m
achi
n
e whi
c
h ca
n b
e
ru
n
base
d o
n
sm
artph
o
n
e o
r
PD
A (pe
r
s
onal
di
gi
t
a
l
assi
st
ant
)
[9]
.
In t
h
i
s
pa
pe
r t
h
e de
vel
o
pers
put
t
h
e capa
b
i
l
i
t
y
of
in
fo
rm
in
g
th
e con
cern
e
d
u
s
er if a
fau
lt ap
p
e
ars in
t
h
e
rem
o
tely
m
o
n
ito
red
m
ach
in
e. Sim
ilarl
y, a
p
a
p
e
r
proposes
a
real-tim
e
m
e
thod t
o
perfor
m
the m
onitoring of t
e
m
p
erature,
hum
idity, air qua
lity and vi
brati
ons
of
ope
rat
i
n
g m
a
chi
n
e
r
y
i
n
a
fac
t
ory
zo
ne
usi
n
g sm
art
ph
one
s [1
0]
. T
h
e
de
vel
o
ped
sy
st
em
was abl
e
t
o
i
n
st
ant
l
y
provide
num
erical results,
de
pending
on the
receive
d a
n
d
analysed data, to
the
sm
ar
t phones
of the
factory
man
a
g
e
r.
Howev
e
r, in th
is p
a
p
e
r th
e aim
is t
o
d
e
sign a low
co
ast
wireless
sen
s
o
r
nod
e t
h
at can
b
e
u
tilized
for
heal
t
h
y
m
oni
t
o
ri
ng
o
f
di
ffe
r
e
nt
m
achi
n
es
vi
a vi
brat
i
o
n
s
i
gnal
a
n
al
y
s
i
s
.
Vi
b
r
at
i
o
n a
n
a
l
y
s
i
s
of a
n
i
n
d
u
st
ri
al
ro
b
o
t
has
bee
n
use
d
t
o
co
nfi
r
e
m
t
h
e pe
rf
orm
a
nce
of
t
h
e
des
i
gne
d
no
de i
n
s
i
gnal
ca
pt
u
r
i
n
g
an
d t
r
a
n
si
m
i
ting
.
2.
DESIG
N
OF THE
SENS
O
R
NO
DE
The sens
o
r
n
ode
, as depi
ct
ed i
n
Fi
g
u
re
1, i
s
an em
b
e
dde
d sy
st
em
usual
l
y
out
fi
t
t
e
d wi
t
h
a
m
i
croco
n
t
r
ol
l
e
r u
n
i
t
(M
C
U
)
(o
r di
gi
t
a
l
si
gnal
pr
ocess
o
r
(DS
P
)
)
,
radi
o
fre
que
ncy
(R
F
)
t
r
ansc
ei
ver
,
po
we
r
sup
p
l
y
, an
d
m
e
m
o
ry
al
on
g wi
t
h
vari
o
u
s se
nso
r
s a
nd act
uat
o
r d
e
pen
d
i
n
g
on
t
h
e ap
pl
i
cat
i
on. T
h
e
micro
c
on
tro
ller with
m
e
m
o
r
y
to
sto
r
e th
e d
a
ta acts
as th
e cen
tral co
m
p
u
tin
g
an
d
co
n
t
ro
lling
d
e
v
i
ce o
f
th
e
sens
or n
ode
. The radi
o
t
r
a
n
scei
ver
m
o
d
u
l
e
,
w
h
i
c
h
al
l
o
ws t
w
o
-
way
r
a
di
o c
o
m
m
uni
cat
i
on
bet
w
ee
n se
veral
no
des
i
n
o
r
de
r
t
o
di
st
ri
b
u
t
e
t
h
e i
n
f
o
rm
ati
on,
rep
r
ese
n
t
s
t
h
e
com
m
uni
cat
i
on s
u
bsy
s
t
e
m
of t
h
e
n
ode
. T
h
e
po
we
r
sup
p
l
y
s
ubsy
s
t
e
m
i
s
i
n
cha
r
g
e
o
f
po
weri
ng
t
h
e w
h
ol
e se
ns
or
n
o
d
e, a
n
d i
s
n
o
rm
al
l
y
com
posed
of
bat
t
eri
e
s,
wh
ich
o
f
fer an easily av
ailable, low co
st, an
d h
i
gh
ca
pacity
source of powe
r,
an
d
ha
v
e
bec
o
m
e
com
p
ani
o
n
with
sensor nod
es.In
t
h
is wo
rk
,
o
n
e
n
o
d
e
will b
e
fix
e
d
on
th
e ro
bo
t arm
a
n
d
will b
e
in
ch
arg
e
of performin
g
th
e
v
i
b
r
ation sig
n
a
ls cap
t
u
ri
ng
and
th
en send
ing
t
h
e info
rmatio
n
to
t
h
e
b
a
se station
,
wh
ich is co
nn
ect
ed
t
o
a
PC
f
o
r
dat
a
vi
s
u
al
i
zat
i
on a
n
d
ro
b
o
t
heal
t
h
as
sessem
e
nt
. So,
t
h
e
n
ode
ha
s t
o
be
of
l
i
g
ht
w
e
i
ght
a
n
d sm
all
si
ze,
easi
l
y
att
ached
and d
o
es n
o
t
add e
x
t
r
a l
o
a
d
i
n
g o
n
t
h
e ro
b
o
t
arm
.
The node
has t
o
be o
f
a r
easo
n
abl
e
p
r
i
ce and
easy
t
o
pr
od
u
ce, fo
r f
u
t
u
re
expa
nsi
o
n
of
t
h
e wi
rel
e
ss syste
m
s. In
th
is sectio
n
th
e selectio
n
o
f
the
accelerom
eter, microcontroller, tra
n
scei
ve
r and
the powe
r supply
source of
t
h
e node
is discuss
e
d.
Howeve
r,
th
e propo
sed
d
e
sign
m
e
th
o
d
o
l
og
y is no
t li
m
i
ted
for i
n
du
strial ro
bo
ts
an
d cou
l
d
b
e
u
tilized
fo
r
h
ealt
h
m
oni
t
o
ri
ng
o
f
di
ffe
re
nt
m
achines.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Desi
g
n
of
a Wi
rel
e
ss Se
ns
or
N
ode
f
o
r
Vi
br
a
t
i
on M
o
ni
t
o
ri
n
g
of
I
n
dust
r
i
a
l
Mac
h
i
n
ery (
A
l
a
a
A
b
d
u
l
h
a
d
yJ
abe
r)
64
1
Fi
gu
re 1.
W
i
rel
e
ss
sen
s
o
r
no
d
e
ha
rd
ware
arc
h
i
t
ect
ure [
11]
2.1 Accelerom
e
ter
Selec
t
ion
Accelerom
eter
s are electrom
e
chanical
de
vic
e
s that convert
the
m
echan
ical signals, suc
h
as vibration
and
f
o
rce
,
t
o
e
l
ect
ri
cal
si
gnal
s
, an
d a
r
e a
n
e
x
t
e
nsi
v
el
y
use
d
f
o
r
fa
ul
t
det
e
ct
i
on i
n
m
a
ny
m
achi
n
es bec
a
u
se
of
their accuracy, robust
ness and sensitiv
ity. Selecting an appropriate acceler
om
eter and the way it is
mounte
d
o
n
a m
ach
in
e are sign
ifican
t factors in
d
e
term
in
i
ng t
h
e success
of
any
co
ndi
t
i
o
n
m
oni
t
o
ri
ng
p
r
o
g
ram
.
Misleading dat
a
can be produced
if
a
n
unsui
t
able accelerometer is selected
for the m
achine
unde
r st
udy or a
n
app
r
op
ri
at
e o
n
e
i
s
m
ount
e
d
i
n
an i
n
c
o
r
r
ect
l
o
cat
i
on
o
n
t
h
e
m
achi
n
e. T
h
e
m
a
jor
pa
ram
e
ters w
h
i
c
h
nee
d
t
o
be
considere
d
for accelerom
et
er selection are [12]: se
nsitivity, range, bandwi
dth, freque
ncy resolution,
reliab
ility, ac
cu
racy,
op
eratio
n
env
i
ronmen
t an
d
co
st. MEMS (Micro-electro-m
ech
an
ical-sen
so
rs)
accelerom
eters com
p
ared
with the c
o
nve
ntional piezoelect
ric
accelerom
eters,
c
ons
um
e less powe
r, a
r
e
sm
a
l
l
i
n
si
ze, l
i
ght
w
e
i
ght
, l
o
w cost
and ca
n achi
e
ve g
o
o
d
p
e
r
f
o
r
m
a
nce [1
3]
. C
ons
eq
ue
nt
l
y
, they
are m
o
re sui
t
a
bl
e
for wireless syste
m
s design
, and
will be used he
re.
Howe
ve
r, a variety of MEMS accelerom
et
ers are
co
mmercially
av
ailab
l
e.
Aft
e
r tak
i
n
g
th
e
all-i
m
p
o
r
tan
t
t
echnical
requi
r
em
ents in the conside
r
ation, t
h
e
ADXL
001 ME
MS accelerom
eter has
bee
n
c
hos
en.
The ADXL001 is a MEMS based, single-axis
accelerometer developed
by Analog Devices.
It
p
r
ov
id
es a h
i
gh
p
e
rf
or
m
a
n
ce, w
i
d
e
b
a
nd
w
i
dth
of
2
2
kH
z,
an
d is sm
all in
size. Th
e ADX
L0
01
o
p
e
r
a
tes on
a
3.3V
or 5V s
u
pply, and outputs an
anal
ogue voltage,
whic
h allows the
di
rect connection of the accelerom
eter
out
put t
o
the a
n
alogue
input
pins
on
a data acquisition device
(DAQ) or
a
microcontroller. The accelerom
eter
is available i
n
3 full-scale
dynamic
ran
g
es
o
f
±7
0,
±
2
50
,
an
d ±
5
0
0
g.
For
t
h
i
s
w
o
r
k
t
h
e
±
7
0 g ra
n
g
e was
deem
ed appropriate.
An e
v
a
l
uation
boa
rd is specifically designe
d
by
Analog de
vice for this accele
r
om
eter
m
a
ki
ng i
t
easi
e
r t
o
use
.
T
o
p
r
eve
n
t
a
n
t
i
-
al
i
a
si
ng
, t
h
e
eval
u
a
t
i
on
boa
r
d
pr
ovi
des a
use
r
c
o
n
f
i
g
ura
b
l
e
l
o
w-
pass
filter on t
h
e a
ccelerom
eter output. M
o
re
over,
due to
stre
ss,
ove
r accele
r
ation or
fabri
cation e
r
rors
MEMS
accelerom
eter
can de
velop flaws; a
nd fortunately, ADXL
00
1 accelerometer like othe
r MEMS accelerom
eter
has a bui
l
d
i
n
s
e
l
f-t
est
pi
n, w
h
i
c
h can be use
d
t
o
t
e
st
both the electrical circuit and
the mechanical
struc
t
ure
of
the accelerom
e
t
er. Furthe
rm
ore, using just one accelerom
et
er for robot he
alth
m
onito
ring was not cons
idere
d
suf
f
i
c
i
e
nt
, si
nc
e whe
n
t
h
e r
o
bot
i
s
pe
rf
orm
i
ng a ge
ne
ral
t
a
sk i
t
s
joi
n
t
s
are r
o
t
a
t
i
ng ar
ou
n
d
di
f
f
ere
n
t
axes,
therefore, the
accelerom
eter
may be
m
o
re sensitive to specific j
o
ints th
an ot
hers yielding the m
onitoring
syste
m
unreliable. For this reason, it was decide
d to
fix three ADXL
001 accelerom
e
t
ers in an orthogona
l
con
f
i
g
urat
i
o
n t
o
m
easure t
h
e
vi
b
r
at
i
on i
n
X
,
Y, a
nd Z
di
rect
i
ons
usi
n
g a
pu
rp
ose
desi
g
n
e
d
al
um
i
n
i
u
m
adapt
e
r,
as sho
w
n i
n
F
i
gu
re 2. T
o
fi
x t
h
i
s
ada
p
t
e
r cor
r
ect
l
y
on t
h
e ro
bot
f
o
r ac
curat
e
pi
c
k
-
u
p
of vi
brat
i
o
n s
i
gnal
s
,
adhe
si
ve m
o
u
n
t
i
ng
usi
n
g s
u
pe
rgl
u
e
was a
d
o
p
t
ed he
re.
Fi
gu
re
2.
Desi
gne
d
3 a
x
i
s
acc
el
erom
et
er ada
p
t
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
63
9 – 6
5
3
64
2
2.2 Microc
o
ntroller
Selection
A m
i
croco
n
t
r
o
l
l
e
r u
n
i
t
(M
C
U
) i
s
a
pr
og
ra
m
m
a
bl
e devi
c
e
t
h
at
com
b
i
n
es el
ect
ro
ni
cs
com
pone
nt
s,
i
n
cl
ude ce
nt
ral
pr
ocessi
n
g
u
n
i
t
(C
PU), m
e
m
o
ry
and peri
phe
ral
de
vi
ces,
i
n
t
e
grat
ed i
n
t
o
a si
ngl
e c
h
i
p
[
14]
.
There
are t
w
o
fam
i
l
i
e
s of m
i
croc
o
n
t
r
ol
l
e
rs:
C
I
SC
(C
om
plex I
n
st
r
u
ct
i
o
n
Set
C
o
m
put
er)
and
R
I
SC
(R
e
duce
d
Inst
ruction Set
Co
m
puter). CISC is charact
erized
by
a si
ngl
e b
u
s bet
w
een t
h
e C
P
U
and m
e
m
o
ry
,
whi
c
h
m
eans a si
ngl
e
m
e
m
o
ry
for
b
o
t
h
dat
a
an
d i
n
st
ruct
i
o
ns, a
n
d
i
s
com
m
onl
y
kno
w
n
as V
o
n
Neum
an arc
h
i
t
ect
ure.
Because
of t
h
is, it involves
more t
h
an one m
achine cycle
for thee
xec
u
tion
of eac
h i
n
struc
tion; this c
o
nstitutes
t
h
e di
sa
dva
nt
a
g
e
of t
h
i
s
fam
i
l
y
. R
I
SC
m
i
croc
o
n
t
r
ol
l
e
rs
,
on t
h
e
ot
he
r h
a
nd
, are
t
h
e
Har
v
ar
d a
r
chi
t
ect
ure
,
whic
h
provi
de
s the program and data m
e
m
o
ry physically
separated
from
each othe
r, two sepa
rate
buses
bet
w
ee
n t
h
e
C
P
U a
n
d
dat
a
-m
em
ory
,
a
n
d
bet
w
een
t
h
e C
P
U
an
d
pr
og
ram
m
e
m
o
ry
. The
m
i
croco
n
t
r
ol
l
e
r t
o
be
u
tilized
in
a sen
s
or
n
o
d
e
is resp
on
si
b
l
e fo
r t
h
e acqu
i
s
itio
n, p
r
o
cessi
n
g
,
com
p
ressio
n
,
reco
rd
ing
an
d
st
o
r
ag
e
of
dat
a
. T
h
ere a
r
e
a consi
d
era
b
l
e
num
ber o
f
m
i
croc
o
n
t
r
ol
l
e
r
b
o
ar
ds
pr
od
uce
d
by
di
ffe
re
nt
com
p
ani
e
s ava
i
l
a
bl
e,
and
key
req
u
i
r
em
ent
s
t
h
at
need t
o
be t
a
ke
n
i
n
t
o
a cou
n
t
w
hen sel
ect
i
n
g a
m
i
crocont
rol
l
er fo
r co
nst
r
uc
t
i
ng a
sensi
n
g
n
ode
are e
n
er
gy
c
o
nsum
pt
i
o
n
,
c
o
st
, p
r
oc
essi
n
g
spee
d, m
e
m
o
ry
si
ze, p
h
y
s
i
c
a
l
si
ze an
d s
u
p
p
o
r
t
f
o
r
peri
phe
ral
s
. T
h
e sel
ect
ed m
i
croc
o
n
t
r
ol
l
e
r
m
u
st
have a fast
, hi
g
h
res
o
l
u
t
i
on a
n
al
o
g
u
e
t
o
di
gi
t
a
l
con
v
ert
e
r
(ADC)
with at
least three i
n
put ch
a
n
nels,
one for eac
h
of
the three si
ngl
e
axis MEMS
accelerom
eters. The
sam
p
l
i
ng freq
u
e
ncy
of t
h
e
A
D
C
has t
o
be f
a
st
eno
u
gh t
o
c
ove
r t
h
e hi
ghe
st
sam
p
l
i
ng fre
que
ncy
t
h
at
co
ul
d b
e
use
d
for ca
pturi
ng the
vibration si
gnals from
the accelerom
et
ers. So, in order to
s
e
lect an appropriat
e
m
i
croco
n
t
r
ol
l
e
r t
o
be
use
d
i
n
t
h
e sens
or
n
o
d
e
, a com
p
rehe
n
s
i
v
e eval
uat
i
o
n
of t
h
e a
v
ai
l
a
bl
e pr
od
uct
s
has
been
per
f
o
r
m
e
d. Se
veral
m
i
croco
n
t
rol
l
e
r
fam
i
l
i
e
s fr
om
, fo
r e
x
a
m
pl
e, M
i
croch
i
p,
Ar
d
u
i
n
o, a
n
d
Te
xas
In
st
r
u
m
e
nt
s
co
m
p
an
ies h
a
ve b
een
assessed
.
The Ardu
ino
was fou
n
d
to
b
e
well su
ited
for th
is proj
ect, as it
m
e
e
t
s th
e
requ
irem
en
ts an
d also h
a
s a larg
e co
mm
u
n
ity
sup
port wh
ich m
a
k
e
s th
e d
e
velo
p
m
en
t p
r
o
c
ess sim
p
ler.
Ar
dui
n
o
of
fer
several
m
i
croc
ont
rol
l
e
r m
ode
l
s
wi
t
h
di
f
f
ere
n
t
cha
r
act
eri
s
t
i
c
s. T
h
e m
a
i
n
di
ffe
re
nce
s
bet
w
ee
n t
h
ese
m
odel
s
are t
h
e
t
y
pe
of
p
r
oces
sor
,
t
h
e
num
ber
of
i
n
put
s
an
d
o
u
t
p
ut
s
p
o
rt
s,
and
t
h
e
capa
c
i
t
y
of
m
e
m
o
ry
. Ar
du
i
no c
ont
r
o
l
l
e
rs
are rel
a
t
i
v
el
y
effi
ci
ent
,
c
ons
um
e l
e
ss powe
r
, chea
p, a
n
d sui
t
a
bl
e fo
r u
s
e
i
n
a
hars
h en
vi
r
o
n
m
ent
[15]
. To
reduce t
h
e
n
u
m
b
er of avai
l
a
bl
e Ard
u
i
n
o
opt
i
o
ns i
t
was deci
ded t
o
l
o
o
k
at
Ar
dui
n
o
boa
r
d
s t
h
at
have hi
gh s
p
eci
fi
cat
i
o
n an
d
m
eet
t
h
e desi
red re
q
u
i
rem
e
nt
s, such
as DUE an
d Int
e
l
Galileo
,
wh
ich is a n
e
w bo
ard
d
e
si
g
n
e
d
to
b
e
co
m
p
atib
le
with
Ardu
ino
h
a
rdware an
d
so
ft
ware an
d
i
s
b
a
sed
o
n
In
tel arch
it
ectu
r
e.Th
e
In
tel Galileo
bo
ard was tho
r
ou
gh
l
y
tested
, bu
t desp
ite th
e h
i
g
h
fun
c
tion
a
lity i
t
was
estab
lish
e
d th
at th
e sign
al captu
r
ing
p
r
o
cess
tak
e
s
v
e
r
y
long ti
m
e
in
o
r
d
e
r to
cap
t
ur
e
4
096 sam
p
les, as it is th
e
defa
ul
t
n
u
m
b
er o
f
sam
p
l
e
s, f
r
om
one a
n
al
o
gue i
n
p
u
t
cha
n
nel
;
as a res
u
l
t
was re
ject
ed
.
The
Ar
dui
no
DUE
b
o
a
rd
was tested
and
foun
d
to
b
e
m
o
re th
an
cap
ab
le for th
is wo
rk
in
term
s
o
f
sig
n
a
l cap
tu
ring
speed
,
pr
ocessi
ng
spe
e
d, m
e
m
o
ry
si
ze, p
o
w
er c
o
ns
um
pt
i
on an
d,
of c
o
urse
, c
o
st
.The
A
r
d
u
i
n
o
DUE
(Fi
g
u
r
e
3
)
i
s
a
n
o
p
e
n-
sour
ce, sin
g
l
e-bo
ard
m
i
cr
o
c
on
tr
o
ller
based
on
a 32
-b
it, RI
SC, A
t
mel SA
M3
X8E A
R
M Co
r
t
ex
-
M
3
p
r
o
cesso
r. It
offers a relativ
el
y s
m
all size fo
rm
,
measu
r
ing
1
0
1
.
6
mm
x
53.3
mm
, an
d
com
p
at
ib
ility wit
h
m
o
st
of t
h
e st
an
da
rd
Ar
d
u
i
n
o s
h
i
e
l
d
s.
The
A
r
d
u
i
n
o
DUE
b
o
ar
d
has a
n
84 M
H
z cl
ock
f
r
eq
ue
ncy
,
USB
c
o
n
n
ect
i
o
n
,
four UARTs (Uni
versal
asynchronous
recei
ver/tra
n
sm
itter)
serial ports,
a power
jack
, a reset button,
and a
n
erase b
u
tton
.
Th
ere
is
a 1
2
-b
it
reso
lu
tion
an
alog
u
e
to
d
i
g
ital co
nv
erto
r (ADC) bu
ilt in
in
si
d
e
th
e pro
cesso
r
wi
t
h
1 M
S
P
S
(
m
ega sam
p
l
e
s per sec
o
n
d
)
sa
m
p
li
ng f
r
eq
ue
ncy
and
1
2
i
n
p
u
t
chan
nel
s
. T
h
e b
o
ar
d com
e
s wi
t
h
512 KB
flas
h me
m
o
ry,
and 96 KB of
SRAM.Whilst othe
r Arduino
boards acce
pt up t
o
5V
on I/
O pi
ns, t
h
e
Ardui
no Due
board is
base
d on
3.3V
on the
I/O
pins
, fort
unately, the se
le
cted accelerometer can
work
using
3.3V
or
5V
which
m
a
kes the connection of the acceler
om
eter to the board does
not re
quire any conditioning
circu
it.
Fig
u
re 3
.
Arduin
o
DUE
m
i
cro
c
on
tro
ller bo
ard
[h
ttp
s://www.ardu
i
no
.cc]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
a Wi
rel
e
ss Se
ns
or
N
ode
f
o
r
Vi
br
a
t
i
on M
o
ni
t
o
ri
n
g
of
I
n
dust
r
i
a
l
Mac
h
i
n
ery (
A
l
a
a
A
b
d
u
l
h
a
d
yJ
abe
r)
64
3
2.3 Wireless T
echnol
o
gy
Selection
C
o
m
m
uni
cat
i
o
n de
vi
ces are
use
d
t
o
exc
h
a
nge
dat
a
bet
w
een t
h
e
no
des
of
wi
rel
e
ss net
w
o
r
k
s
. T
h
e
adva
nces i
n
wi
rel
e
ss ap
pl
i
cat
i
ons
ha
ve l
e
d c
o
m
p
ani
e
s t
o
d
e
vel
o
p di
ffe
re
nt
t
y
pes o
f
wi
r
e
l
e
ss st
anda
rd
.
These
stan
d
a
rds are u
s
u
a
lly classified
b
y
th
eir cap
ab
ilitie
s
an
d
prop
erties, an
d
d
e
sign
ed
to
su
it d
i
fferen
t
ap
p
lication
s
, su
ch
as fau
lt d
e
tectio
n
o
r
hu
man
h
ealth
m
o
n
ito
ring
. In
th
is sectio
n
,
three wid
e
ly u
s
ed
wireless
net
w
or
k t
ech
n
o
l
o
gi
es are
di
scusse
d, i
n
o
r
der t
o
i
n
vest
i
g
at
e t
h
ei
r
pr
o
s
an
d c
ons
an
d al
so
t
o
sel
e
ct
t
h
e
appropriate technology
for
the work
here
. T
h
ese tec
h
nologies are
[16, 17]:
The
IEEE
8
0
2
.
11
x
fam
i
ly
of
st
anda
rd
s i
s
m
eant
f
o
r wirele
ss local area
ne
twork
(WLAN), wh
ich is
also
k
nown as
W
i
reless Fid
e
lity (W
i
-
Fi). Th
ere are fo
ur gen
e
ration
s
of W
i
-Fi p
r
od
ucts av
ailab
l
e which
are
IEEE 802.11a/
b/g/n, ope
rate in
hi
gh
freque
ncy, unli
cense
d Industrial, S
c
ientific
, and
Medical (ISM) radi
o
ban
d
s ra
ngi
ng fr
om
2.4 GHz
t
o
5 G
H
z.
Ty
p
i
cal
l
y
,
i
t
i
s
adapt
e
d fo
r rel
a
t
i
v
el
y
hi
gh ba
n
d
w
i
d
t
h
an
d hi
g
h
dat
a
trans
f
er
rate, range
s from
as low as
1 MBPS (m
egab
yte per
second
)
t
o
ov
er
50
MBPS,
an
d
co
mm
o
n
l
y u
s
ed
fo
r m
obi
l
e
co
m
put
i
ng de
vi
c
e
s, s
u
ch
as l
a
pt
ops
.
Wi
t
h
t
h
e
use
of
a st
a
nda
rd
ant
e
nna
t
h
e
t
r
ansm
i
ssi
on ra
nge
c
a
n
b
e
up
to
30
0
feet, an
d
it can
be sig
n
i
fican
tly i
m
p
r
ov
ed
b
y
utilizin
g
a d
i
rectio
n
a
l h
i
gh
g
a
i
n
an
ten
n
a
. Altho
ugh
t
h
e dat
a
t
r
ans
m
i
ssi
on and r
a
t
e
ranges a
r
e
eno
u
g
h
f
o
r
wi
rel
e
ss sens
o
r
net
w
or
k ap
p
l
i
cat
i
on, t
h
e p
o
we
r
requ
irem
en
t g
e
n
e
rally li
m
ited
its u
s
ag
e in
wireless sen
s
or
ap
p
lication
.
Bl
u
e
too
t
h
(IEEE8
0
2
.
15
.1
) is ano
t
h
e
r
st
anda
rd t
h
at
h
a
s l
o
we
r p
o
we
r t
h
an
IEEE
8
0
2
.
1
1
,
an
ope
rat
i
ng f
r
e
que
ncy
2.
4 G
H
z wi
t
h
i
n
t
h
e I
S
M
ba
n
d
, a
n
d
represe
n
ts a pe
rsonal area
network
(PAN) st
anda
rd. It is
specifically aime
d to serve
a
ppl
i
cat
i
ons t
h
at
re
qui
re
sho
r
t
ra
n
g
e
co
m
m
uni
cat
i
on, suc
h
as
dat
a
t
r
ans
f
er bet
w
ee
n
com
put
ers a
nd ot
he
r peri
p
h
eral
devi
ces l
i
k
e
keyboards or cell
phone
t
o
replace wire
c
o
nnectivity.
Bluetooth s
u
pports star
net
w
ork topology, and ca
n
enable up to se
ven
rem
o
te nodes to
com
m
unicate with a single ba
se station.
Howe
ve
r, in addition to its short
rang
e app
licatio
n
an
d
scalab
i
lity p
r
o
b
l
em
(l
o
w
n
u
m
b
e
r of n
o
d
e
s p
e
r n
e
t
w
ork), th
e
o
t
her d
i
sadv
an
tages o
f
B
l
uet
oot
h are hi
g
h
p
o
we
r co
nsum
pt
i
on a
n
d
no
des t
h
at
nee
d
a l
o
n
g
t
i
m
e
to be sy
nc
hr
o
n
i
zed wi
t
h
t
h
e n
e
t
w
o
r
k
whe
n
ret
u
rni
n
g
fr
om
sl
eep m
ode, a
n
d
wh
ic
h i
n
crease
s
the
average
system
powe
r
.
The IE
EE
80
2.
15
.4 st
a
nda
r
d
was de
si
g
n
ed
f
o
r l
o
w
dat
a
rat
e
t
r
ansm
i
ssi
ons, l
o
w c
o
st
, a
n
d l
o
w p
o
we
r
con
s
um
pt
i
on
wi
rel
e
ss
pers
o
n
al
area
net
w
o
r
ks
(
W
P
A
N
)
.
I
n
t
e
rm
s of c
o
m
m
uni
cat
i
on r
a
nge
, t
h
i
s
st
a
n
dar
d
ca
n
be co
nsi
d
ere
d
as a
m
i
ddl
e gr
ou
n
d
sol
u
t
i
o
n bet
w
ee
n IE
E8
02
.1
1 (
W
i
-
Fi
)
and
IEEE
8
0
2
.
15
.1
(B
l
u
et
o
o
t
h
)
,
an
d
sup
p
o
rt
s
m
u
l
t
i
pl
e t
r
a
n
sm
i
ssi
on
fre
que
nci
e
s,
m
u
lt
i
p
l
e
dat
a
r
a
t
e
s, an
d t
w
o
t
o
p
o
l
o
gi
es,
st
ar
an
d
poi
nt
-t
o
-
poi
nt
(p
air t
o
po
log
y
), wh
ich
m
a
k
e
s it a flex
ib
le st
an
d
a
rd
. It
ope
r
ates in the unl
i
censed
ISM bands at 868 MHz in
Eu
rop
e
, 91
5
MHz
in
th
e USA
and
2
.
4
GHz worldwid
e, with
d
a
ta
rates 20
Kbp
s
(k
ilo
b
it
p
e
r
second
), 4
0
Kb
ps
an
d
2
5
0
Kbp
s
,
resp
ectiv
ely. Zig
B
ee is a stan
d
a
rd
d
e
si
g
n
e
d
b
y
th
e Zig
B
ee Allian
ce, wh
ich
is an
asso
ciat
io
n
of
co
m
p
an
ies work
i
n
g
t
o
g
e
th
er to
en
ab
le
reliab
l
e, co
st-e
ffe
ctive, an
d l
o
w
-
p
o
w
e
r
wireles
s
netw
o
r
k
[
18]
. It i
s
base
d o
n
I
E
E
E
8
0
2
.
1
5
.
4
st
a
nda
r
d
w
h
i
c
h
m
eans t
h
at
Zi
gB
ee can t
a
ke
ful
l
ad
va
nt
ag
e of t
h
i
s
st
an
dar
d
.
I
n
ad
d
ition
it can
acco
m
m
o
d
a
t
e
m
u
lt
ip
le n
e
tworks topo
logi
es lik
e star,
p
o
i
n
t
-to-po
in
t
,
and
m
e
sh
n
e
twork
s
.
Also, a ZigBe
e
network can have at
m
o
st 6
5
000 nodes
,
making it a very
scalable standard. Because of the
afo
r
em
ent
i
one
d feat
ures
, t
h
e Zi
gB
ee st
anda
r
d
has
be
en ad
o
p
t
e
d i
n
m
a
ny
wi
rel
e
ss sens
or
n
e
t
w
o
r
k
ap
p
lication
s
,
an
d will
b
e
t
h
e b
e
st
cand
i
d
a
t
e
fo
r th
e wo
rk
d
e
scrib
e
d
in th
is t
h
esis.
Ad
d
ition
a
lly, Zi
g
B
ee
m
odul
es are
n
o
w
aday
s
avai
l
a
b
l
e i
n
t
h
e m
a
rke
t
i
n
sm
al
l
si
ze
wi
t
h
very
a
f
f
o
r
d
abl
e
p
r
i
ces.
2.4 Z
i
gBee Module
Selection
There a
r
e m
a
n
y
param
e
t
e
rs
need t
o
be co
nsi
d
e
r
ed
whe
n
sel
ect
i
ng a ZigB
ee m
odul
e. From
t
h
ese
p
a
ram
e
ters, b
u
t n
o
t
li
m
i
ted
to
th
e
m
, are p
o
wer con
s
u
m
p
tion
,
op
eratin
g
freq
u
e
n
c
y, flex
ib
ility, co
v
e
rage rang
e,
the m
odule and testing c
o
sts, and t
h
e c
o
m
p
atibility w
ith the m
i
crocont
roller unit.
Howeve
r, m
a
ny certified
sem
i
cond
uct
o
r
com
p
ani
e
s, su
ch as Te
xas I
n
st
rum
e
nt
s, Fre
e
scal
, Di
gi
I
n
t
e
rnat
i
o
nal
,
a
r
e
pr
o
v
i
d
i
n
g s
u
cc
essful
desi
g
n
fo
r Zi
g
B
ee pr
o
duct
s
.
Aft
e
r
re
vi
si
n
g
t
h
e avai
l
a
bl
e p
r
o
d
u
ct
s t
h
e
X
B
ee m
odul
e f
r
o
m
Di
gi
I
n
t
e
rn
at
i
onal
has
been selec
t
ed, as it m
eets the a
b
ove mentione
d
re
qui
rem
e
n
t
s, is com
p
at
ib
le with
th
e selected
Ardu
ino
boa
rd, and inc
l
udes ot
her fac
t
or, i.e. previ
o
us succes
sf
ul expe
rience
, popularity,
and available developm
ent
reso
u
r
ces.
X
B
e
e i
s
a t
r
ade
na
m
e
from
Di
gi
i
n
t
e
r
n
at
i
onal
,
a
n
d
i
t
i
s
a wi
rel
e
ss m
odul
e d
e
s
i
gne
d f
o
r ap
pl
i
cat
i
ons
th
at req
u
i
re red
u
c
ed
d
a
ta commu
n
i
catio
n
wh
ile
h
a
v
i
ng
l
o
ng
ran
g
e
capab
ilities with
l
e
ss power consu
m
p
tio
n
.
XB
ee m
odul
es
com
e
i
n
di
ffe
rent
f
o
rm
at
s for
di
ffe
re
nt
ki
nds
of a
p
pl
i
cat
i
on. T
h
ere a
r
e
t
w
o t
y
pes o
f
XB
ee
m
odul
es, seri
e
s
1 (s
1) a
n
d se
ri
es 2 (
s
2
)
.
As
sho
w
n i
n
Ta
bl
e 1,
XB
ee s2 c
ons
um
es sl
i
ght
l
y
l
e
ss powe
r
a
nd
has
a better ra
nge than t
h
e s
1
. T
h
e
XBee s1 a
n
d s
2
are
pin-fo
r
-
p
i
n
com
p
at
i
b
l
e
,
but
base
d o
n
di
ffe
rent
c
h
i
p
set
s
an
d
running dif
f
ere
n
t pr
otoc
ols. T
h
e s1 m
odule
uses the I
EEE
802.
15.
4
standard
pr
otoc
ol,
while the s
2
m
o
dule
rel
i
e
s o
n
Zi
gB
ee p
r
ot
ocol
.
F
u
rt
herm
ore,
b
o
t
h seri
es
com
e
i
n
t
w
o
di
f
f
ere
n
t
t
r
a
n
sm
i
ssi
o
n
po
we
rs,
re
gu
l
a
r an
d
Pro
.
The re
g
u
l
a
r versi
on i
s
si
m
p
ly
call
e
d XB
ee, and i
s
l
e
ss expe
nsi
v
e t
h
an Pr
o ver
s
i
o
n
;
t
h
e Pro ver
s
i
on
use
s
m
o
re powe
r
and i
s
sl
i
ght
l
y
l
a
rger t
h
an
t
h
e reg
u
l
a
r versi
o
n
,
b
u
t
,
on t
h
e
ot
he
r
han
d
, has a
l
ong
e
r
comm
unication
range. T
h
e
XBee s2 (Fi
g
ure
4)
has
bee
n
se
lected for this
research,
as it pr
ov
id
es goo
d i
n
-do
o
r
range, good data
rate,
low-e
n
ergy
consumption,
better receiver se
nsitiv
ity and it supports m
e
sh and t
r
ee
net
w
or
ks. T
h
i
s
m
a
kes t
h
e s
y
st
em
scal
abl
e
and
rel
i
a
bl
e fo
r f
u
t
u
re de
v
e
l
opm
ent
.
XB
ee
m
odul
es c
a
n be
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
63
9 – 6
5
3
64
4
attached t
o
DUE usi
n
g a
wirel
e
ss s
h
ield
(Figure
3)
de
sign
ed
f
o
r
easy
conn
ectio
n to
the
XBee.
The
shi
e
ld acts
as a daugh
ter
bo
ard
and
is attach
ed on
t
o
p of
th
e DU
E. I
t
h
a
s an
op
tion
a
l on
-bo
a
rd
m
i
cr
o
SD
-
c
ard
co
nn
ectio
n
cap
ab
ility for serv
i
n
g
d
a
ta
o
n
a card ov
er th
e n
e
two
r
k
.
In
the sh
ield
t
h
ere is an
on
-bo
a
rd
switch
lab
e
lled
Serial
Select, wh
ich d
e
term
in
es
h
o
w t
h
e
wireless sh
ield
'
s
serial c
o
mm
unication c
o
nnects t
o
t
h
e se
rial
com
m
uni
cat
i
on bet
w
een t
h
e
m
i
croco
n
t
r
ol
l
e
r an
d t
h
e
US
B
-
t
o
-se
r
i
a
l
chi
p
o
n
t
h
e
A
r
d
u
i
no
boa
r
d
. T
h
e
swi
t
c
h
allows t
w
o
settings
which
are
Micro a
n
d
US
B; in Mi
cro m
ode
, the
XBee
m
odule will com
m
unicate with the
micro
c
on
tro
ller an
d
t
h
e sen
t
d
a
ta fro
m
th
e
micro
c
on
tr
o
ller will
b
e
tran
smit
ted
to
the co
m
p
u
t
er throug
h USB
as well as
being se
nt wireless
ly by the wireless m
odul
e,
but the m
i
crocont
roller
will not be
program
m
able vi
a
USB
i
n
t
h
i
s
m
ode. I
n
US
B
m
ode, t
h
e
m
i
croco
n
t
r
ol
l
e
r
on
t
h
e
b
o
a
r
d i
s
by
pa
ssed
an
d t
h
e m
o
d
u
l
e
ca
n
co
mm
u
n
i
cate d
i
rectly with th
e co
m
p
u
t
er, an
d h
e
l
p
s i
n
u
tilizin
g
th
e Ardu
ino
’
s USB-to-Serial con
n
ect
io
n to
con
f
i
g
ure
t
h
e
XB
ee m
odul
es
.
Table
1. C
o
m
p
arison
betwee
n XBee s
2
a
n
d s
2
Specifications
XB
e
e
s
1
XB
e
e
s
2
Indoor range (
m
)
30
40
Outdoor range
(
m
)
100
120
Frequen
c
y band (
G
Hz)
2.
4 2.
4
Trans
m
it
pow
er (m
W
)
1 2
Supply voltage (V
)
2.
8-
3.
4 2.
8-
3.
6
Data rate (
K
b
p
s)
(
k
ilo bit
per se
cond
250
250
Trans
m
it
curr
ent
(
m
A)
45
40
Receive cu
rrent
(
m
A
)
50
40
Receiver sensi
t
ivi
t
y (db
m
)
-
92 -
96
Fi
gu
re
4.
XB
ee
m
odul
e an
d t
h
e wi
rel
e
ss
shi
e
l
d
fo
r
Ar
dui
n
o
[h
ttp
s://www.sp
a
rk
fun
.
co
m
;
h
t
tp
s://www.ardu
i
no
.cc]
2.
5 Ante
nn
a
T
y
pe Sel
ecti
o
n
XBee m
odules
m
u
st have an
antenna to send and r
eceive signals, of whi
c
h
there
a
r
e
four diffe
rent
typ
e
s o
f
fered
o
n
XBee s2, na
m
e
ly wh
ip
, ch
ip
,
U.FL, a
nd RPSMA, as illu
strated
Fi
g
u
re 5
[
1
9
]
. Th
e wire (or
whi
p
) a
n
d chi
p
ant
e
nna
s co
m
e
pre-c
o
n
n
e
c
t
e
d t
o
t
h
e
X
B
ee
m
odul
es,
whi
l
e
t
h
e
U.
FL an
d R
P
S
M
A ar
e
d
e
ri
v
a
tiv
es of th
e con
n
ect
o
r
typ
e
s, offering
ch
ip
with
c
o
nnectors on the board. T
h
e wire
antenna is a single
piece
of wire that
protrude
s
from
the XBee and provi
de
s
an
om
nidirectional ra
diation, which im
plies the
max
i
m
u
m
tran
smissio
n
d
i
stan
ce in
all d
i
rectio
n
s
is th
e sa
m
e
if th
e an
ten
n
a
is orien
t
ed
in
up
ri
g
h
t
d
i
rectio
n
per
p
e
ndi
c
u
l
a
r
on t
h
e m
odul
e.
The c
h
i
p
a
n
t
e
nna i
s
a
fl
at
ce
ram
i
c chi
p
t
h
at
i
s
m
ount
e
d
on
t
h
e XB
ee
. T
h
e fo
rm
o
f
sign
al rad
i
atio
n
b
y
th
is an
t
e
n
n
a
is
h
eart-sh
ap
ed
or
card
i
o
i
d
,
wh
ich m
e
an
s t
h
at th
e
sign
al will
b
e
atten
u
a
ted
in m
a
ny directions
.
Howe
ver,
because
the
c
h
ip ante
nna is
nearly flus
h,
tha
t
m
a
kes it a s
u
itable choice
for a
n
y
sens
or that ne
eds to be l
o
cated in
a sm
all
space. It is also
robust com
p
ared to th
e
whip antenna which is
subjecte
d
to m
echanical stres
s
. In
som
e
appl
ication the XB
ee
m
odule
nee
d
s
to
be fitted i
n
side a m
e
tal box; in
whi
c
h case a
U.FL
ant
e
nna
has t
o
be
use
d
.
Thi
s
t
y
pe
of a
n
t
e
n
n
as
has a
very
sm
al
l
connect
o
r
o
n
t
h
e
m
odul
e
and t
o
achie
ve
the physical connection to t
h
e
external an
tenna an a
d
a
p
ter c
a
ble is use
d
. T
h
e adva
ntage
of this
opt
i
o
n i
s
t
h
e
X
B
ee m
odul
e ca
n
be e
n
cl
ose
d
i
n
a casi
n
g
an
d t
h
e
ant
e
nna
m
ount
ed
on
t
h
e o
u
t
s
i
d
e
of
t
h
e case.
Sim
ilarly,
the RPSMA connector is a
di
ff
erent
t
y
pe of
soc
k
et
fr
om
t
h
e U.FL co
n
n
e
c
t
o
r. It
i
s
bi
g
g
e
r and
m
ount
ed di
rec
t
l
y
t
o
t
h
e XB
ee wi
t
h
o
u
t
a
con
n
ect
i
n
g ca
bl
e. T
h
ese l
a
st
t
w
o o
p
t
i
o
ns
are m
o
re ex
pen
s
i
v
e.
Gen
e
rally, an
ex
tern
al an
tenn
a allows
b
e
tter sign
al tr
a
n
sm
i
ssi
on a
n
d
rece
pt
i
o
n
,
a
n
d a l
a
r
g
er
ra
ge.
The
i
n
d
o
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Desi
g
n
of
a Wi
rel
e
ss Se
ns
or
N
ode
f
o
r
Vi
br
a
t
i
on M
o
ni
t
o
ri
n
g
of
I
n
dust
r
i
a
l
Mac
h
i
n
ery (
A
l
a
a
A
b
d
u
l
h
a
d
yJ
abe
r)
64
5
range
of t
h
e se
lected XBee module is
o
n
l
y
4
0
m
e
t
e
rs and s
o
m
e
tim
es noi
se i
n
t
h
e m
e
di
um
di
st
ort
t
h
e si
gnal
s
an
d thu
s
sho
r
ten
i
ng
th
e rang
e. Th
erefo
r
e, it
was
d
ecid
e
d
t
o
u
tilize an
ex
tern
al an
tenn
a ty
p
e
RPSM
A.
Fi
gu
re
5.
Ty
pe
s o
f
a
n
t
e
n
n
a
[1
9]
2.6 P
o
wer Source Selection
Rechargeable
batteries are
c
o
mm
only e
m
ployed as
a power
source for
the wireless
s
e
ns
or node
s.
Sev
e
ral ch
aracteristics sh
ou
ld b
e
con
s
id
ered wh
en
c
hoosing a battery for a wireless sensor
node. T
h
e
m
o
st
im
portant of these attributes are ener
gy
de
nsi
t
y
, char
ge/
d
i
s
char
ge cycle, size, self-disc
h
arge rate and cost
.
Th
ere is no
any b
a
ttery tech
no
log
y
th
at m
e
e
t
s all th
ese
criteria, s
o
a com
p
rom
i
se
m
u
st be m
a
de. Each
battery
t
y
pe has
i
t
s
a
dva
nt
age
s
a
n
d
di
sa
dva
nt
age
s
wi
t
h
a
wi
rel
e
ss se
nso
r
n
o
d
e
. T
h
e m
o
st
c
o
m
m
on recha
r
geabl
e
b
a
tteries typ
e
s are: lead
acid
,
n
i
ck
el-cad
m
i
u
m
(Ni-Cd
), n
i
ck
el-m
etal
h
y
d
r
id
e (Ni-M
h
), lith
iu
m
-
io
n
(Li-Ion
)
,
an
d
lith
iu
m
-
ion
po
lym
e
r (Li
-
Po). Th
e co
mp
ariso
n
o
f
t
h
e d
i
fferen
t
typ
e
s o
f
b
a
tteries can
b
e
seen
in Tab
l
e
1[
2
0
]
.
Li
t
h
i
u
m
-
base
d
bat
t
e
ri
es are t
ech
ni
cal
l
y
m
o
re adva
nc
ed, m
o
st
wi
del
y
used a
nd
fas
t
est
gro
w
i
n
g e
n
er
gy
so
urces. Co
m
p
aring
to
th
e
o
t
h
e
r t
h
ree
b
a
ttery typ
e
s, Li
-Ion
and
Li-Po
hav
e
h
i
g
h
e
r sp
ecific en
erg
y
d
e
n
s
ities
and
o
ffe
r a l
o
wer
self-
d
isc
h
arge
rate tha
n
bot
h
Ni-Cd
an
d
Ni
-M
h
,
wi
t
h
o
n
l
y
l
ead aci
d
havi
ng
a l
o
wer
rat
e
.
Lith
iu
m
-
Po
b
a
tteries are similar to
Lith
ium
-Io
n
h
o
we
ve
r wi
t
h
a
di
ffe
rent
t
y
pe
o
f
e
l
ect
rol
y
t
e
used
, a
n
d
fu
rt
he
rm
ore o
f
fer t
h
e a
d
vant
a
g
e
of
bei
n
g
ver
y
t
h
i
n
a
n
d l
i
g
h
t
wei
g
ht
, t
h
u
s
al
l
o
wi
n
g
t
h
em
t
o
b
e
easi
l
y
i
n
c
l
ude
d
in sensor
node
s while occ
u
pying
very little
space.In t
h
is re
gard, a Tu
rnigy
Li-Po battery
(Figure 6) ha
s
be
e
n
chosen as a
power source for the
wireless
node
. T
h
e
ba
ttery has
an e
n
ergy capa
c
ity
at 7
.
4
V
/
10
00
m
A
h (1
ho
u
r
c
ont
i
n
u
o
u
s
l
y
wo
rki
n
g at
7.
4
V
wi
t
h
1
A
di
sc
har
g
e c
u
rr
ent
)
wi
t
h
wei
g
ht
62
g
a
n
d
si
z
e
7
4
x
3
5
x
1
3
m
m
,
wh
ich
can
fit easily in
th
e
n
ode
enclosure as
shown later.
Table
2. C
o
m
p
arison am
ong rechargea
b
le ba
tteries
Specifications
Lead Acid
Nic
k
el-
C
ad
m
i
u
m
Nic
k
el-Me
t
al hyd
r
ide
Lithiu
m
-
Ion
Lithiu
m
-
Ion poly
m
e
r
Energy density
(Wh/
k
g
)
30-
50
45-
80
60-
120
110-
16
0
100-
13
0
Charge/Discharge cycle
200-
30
0
1500
300-
50
0
500-
10
00
300-
50
0
Self-disc
h
arge/Month
5% 20%
30%
10%
~10%
Fig
u
re
6
.
Lith
i
u
m
-Io
n po
lymer (Li-Po
) b
a
tt
ery
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
63
9 – 6
5
3
64
6
3.
X
BEE MODULES
CONFIGURATION
In
WS
N m
u
st
bet
h
e
r
e i
s
a
n
o
d
e c
o
n
f
i
g
ure
d
t
o
w
o
r
k
a
s
a c
o
o
r
di
nat
o
r
(o
r
base st
at
i
o
n)
[
19]
a
n
d
t
h
e
ot
he
rs as sens
or
no
des. T
h
e
coo
r
di
nat
o
r re
prese
n
t
s
t
h
e n
e
t
w
o
r
k c
ont
rol
l
er and i
s
res
p
onsi
b
l
e
fo
r set
t
i
ng u
p
and
m
a
i
n
t
a
i
n
ing t
h
e
net
w
or
k,
whi
c
h s
h
ou
l
d
be c
o
nnect
ed t
o
a
rel
i
a
bl
e, u
n
i
n
t
e
r
r
upt
e
d
p
o
w
er
so
ur
c
e
, an
d
req
u
i
r
es t
o
be
i
n
t
e
rface
d t
o
a PC
f
o
r
f
u
r
t
her
dat
a
p
r
oc
essi
ng
an
d
vi
sual
i
zat
i
on.
I
n
or
de
r t
o
al
l
o
w t
h
e
transceive
r m
odules
on the s
e
ns
or node and base station
to talk to each othe
r, th
ey have
to be
correctly
co
nfigu
r
ed
i
n
div
i
d
u
a
lly,
b
y
utilizin
g
sp
ecifi
c software,
b
e
fore
u
s
ing
th
em
in
a n
e
two
r
k
.
Th
e con
f
iguration
i
n
cl
ude
s va
ri
o
u
s as
pect
s s
u
c
h
as cl
assi
fi
cat
i
on
of
t
h
e
no
d
e
(co
o
r
di
nat
o
r,
ro
ut
er
o
r
en
d
devi
ce
),
net
w
o
r
k
ID
,
d
e
stin
ation
address and
so
on
. X-CT
U (XBee co
nfigu
r
ation an
d
testing
u
t
i
lity) is win
d
o
ws-b
ased
ap
p
licatio
n
soft
ware
de
vel
ope
d
by
Di
gi
a
n
d
re
pres
ent
s
t
h
e
of
fi
ci
al
con
f
i
g
urat
i
o
n s
o
ft
ware
f
o
r
XB
ee
m
odul
es [
1
9]
. M
a
ny
versi
o
ns of firm
ware can be
selected and written in
to aZi
g
Bee
m
odule
via RS232
or
US
B port, de
pe
nding
on
the use
d
interface board.
For this purpos
e
, the XBIB-U-DE
V
de
ve
lopm
ent kit (Figure 7)
from Digi
In
tern
ation
a
l was em
p
l
o
y
ed
, an
d will b
e
u
tilized
later
for the cov
e
rag
e
rang
e test. Fi
g
u
re
8
sh
ows t
h
e layo
ut
o
f
X-CTU so
ft
ware and its fo
ur m
a
in
tab
s
. Th
e PC
se
ttin
g
s
tab
is u
s
ed
to
fi
n
d
th
e port th
ro
ugh
wh
ich
t
h
e
XBee m
odule has bee
n
connected and als
o
to help the
use
r
to select the
XBee m
odule for confi
g
uration from
a rang
e
o
f
p
l
ug
g
e
d
i
n
d
e
v
i
ces. Th
e rang
e test tab
is
u
tilized
to
p
e
rfo
r
m
a wireless co
mm
u
n
i
catio
n
cov
e
rag
e
rang
e test, as
will b
e
ex
p
l
ained
later. Term
i
n
al tab
is
u
s
ed
to
op
en
th
e X-CTU term
in
al wind
ow, wh
ich
can
b
e
use
d
t
o
rea
d
t
h
e dat
a
bei
n
g re
cei
ved
by
t
h
e con
n
ect
ed
m
o
d
u
l
e
. The m
ode
m
confi
g
u
r
at
i
o
n t
a
b al
l
o
w
s
ch
angi
ng
the firm
ware versi
o
n, writing the firm
ware setting to
the m
odule, as well as setting the m
odul
e as a
coo
r
di
nat
o
r,
ro
ut
er
or a
n
e
nd
devi
ce
by
usi
n
g i
t
s
t
h
ree s
u
b
-
t
a
bs
dr
o
p
-
d
o
w
n m
e
nus
na
m
e
d
m
odem
XB
ee an
d
fu
nct
i
o
n set
,
re
spect
i
v
el
y
.
T
h
e
Fi
rm
ware i
s
i
n
st
r
u
ct
i
o
n
s
pr
o
g
ram
m
ed i
n
t
h
e m
odul
e’s m
e
m
o
ry
whi
c
h
co
nt
r
o
l
s
t
h
e de
vi
ce a
n
d
p
r
o
v
i
d
es
se
ve
ral
i
n
st
r
u
ct
i
o
ns
o
n
ho
w t
h
e
de
vi
ces ca
n c
o
m
m
uni
cat
e wi
t
h
ot
he
r
har
d
wa
re
. T
h
e
con
f
i
g
urat
i
o
n
pr
o
g
ress i
n
cl
u
d
es t
w
o st
ag
es, co
or
di
nat
o
r co
nfi
g
u
r
at
i
o
n an
den
d
de
vi
ce (sen
so
r no
de
)
con
f
i
g
urat
i
o
n
.
In
p
r
act
i
s
e, w
h
en t
h
ese
m
odul
es are c
o
nfi
g
u
r
ed, t
h
e c
o
o
r
di
n
a
t
o
r a
u
t
o
m
a
t
i
c
al
l
y
scans t
o
se
l
ect
a
com
m
uni
cat
i
on c
h
an
nel
a
n
d
i
t
al
way
s
l
i
s
t
e
ni
ng
t
o
t
h
e se
ns
o
r
no
de a
n
d rece
i
v
e t
h
e i
n
c
o
m
i
ng
dat
a
.
Figu
re 7.
XB
I
B
-U-
D
E
V
a
d
a
p
ter fo
r XBee con
f
ig
uratio
n
Th
e firm
ware typ
e
XB
2
4
-B, wh
ich
sup
p
o
r
t
s
th
e fu
ll fun
c
tio
n
a
lity o
f
Zig
B
ee
p
r
o
t
o
c
o
l
, is selected
fr
om
m
odem
sub
-
t
a
b i
n
t
h
e
m
odem
confi
g
urat
i
o
n t
a
b f
o
r
bot
h c
o
o
r
di
na
t
o
r an
d en
d de
vi
ce, an
d t
h
e l
a
t
e
st
versi
o
n
o
f
t
h
i
s
fi
rm
ware i
s
re
qui
red t
o
be d
o
w
n
l
o
a
d
e
d
on t
h
e
m
odul
es. The fi
rm
ware
sup
p
o
rt
s
c
o
or
d
i
nat
o
r
,
ro
ut
er
an
d e
n
d
de
vi
ce c
o
n
f
i
g
urat
i
o
ns.
T
h
e
con
f
i
g
ure
d
pa
r
a
m
e
t
e
rs are l
i
s
t
e
d i
n
Ta
bl
e 3
an
d t
h
e sc
ree
n
sh
ot
s
sho
w
i
n
g t
h
e c
o
n
f
i
g
urat
i
o
n
o
f
bot
h m
odul
es
are as sh
o
w
n i
n
Fi
g
u
re
8. T
h
e fu
nct
i
o
n set
sub
-
t
a
b
was
us
ed t
o
con
f
i
g
ure t
h
e
fu
nct
i
o
ns t
h
at
t
h
e XB
ee m
o
dul
es
pr
ovi
de,
whi
c
h a
r
e as a coor
di
nat
o
r
and an e
nd
d
e
vi
ce
.
Ho
we
ver
,
al
l
u
s
ed
XB
ee m
odul
es (
h
ere
j
u
st
t
w
o
)
m
u
st
hav
e
t
h
e sam
e
per
s
on
al
area
net
w
o
r
k
(P
A
N
)
I
D
a
n
d
bau
d
rat
e
e.
g.
12
3
4
an
d 1
9
2
0
0
. T
h
e dest
i
n
at
i
on a
d
d
r
ess
hi
gh
(D
H) a
n
d l
o
w
(DL
)
f
o
r t
h
e coo
r
di
nat
o
r s
h
o
u
l
d
be t
h
e sam
e
as t
h
e seri
al
hi
gh
(SH
)
an
d seri
al
l
o
w (SL
)
of
t
h
e end de
vi
c
e
and vi
ce
ver
s
a, an
d w
h
i
c
h
can be
found
written
on the bac
k
side of the
XBee m
odules. The
node ide
n
tifier
is a
user confi
g
ura
b
le text na
m
e
that
can be
set
t
o
e
a
si
l
y
i
d
ent
i
f
y
a
m
odul
e.
Acc
o
rdi
ngl
y
,
by
cl
i
c
ki
n
g
t
h
e
wri
t
e
but
t
o
n i
n
t
h
e
m
odem
confi
g
urat
i
o
n
tab, the
s
e settings
will
be
downl
o
ade
d
on t
h
e c
o
nnecte
d
m
odule.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
a Wi
rel
e
ss Se
ns
or
N
ode
f
o
r
Vi
br
a
t
i
on M
o
ni
t
o
ri
n
g
of
I
n
dust
r
i
a
l
Mac
h
i
n
ery (
A
l
a
a
A
b
d
u
l
h
a
d
yJ
abe
r)
64
7
Tabl
e
3. T
h
e
c
o
n
f
i
g
ure
d
pa
ra
m
e
t
e
rs i
n
t
h
e
X
B
ee m
odul
es
Para
m
e
ters to
be configured
Setting
Coordinator
End device
Fir
m
w
a
re
ZNE
T
2.5 COOR
DINA
TOR
AT
ZNE
T
2.5 ROU
T
E
R
/END
DEV
I
CE
AT
Fir
m
w
a
re Versio
n
1047
1220
PAN I
D
1234
1234
Destination A
ddr
ess High
(D
H)
13A200
13A200
Destination A
ddr
ess Low
(DL)
409C8E
6
9
40AC168
2
No
de Identi
fier
Coor
dinator
E
nd
device
Baud Rate
1920
0
1920
0
Othe
r Para
m
e
ter
s
Default Default
a)
Coor
d
i
n
a
to
r
co
nf
igu
r
ation
b)
En
d d
e
v
i
ce conf
igu
r
ation
Fi
gu
re
8.
XB
ee
m
odul
es c
o
n
f
i
g
u
r
at
i
o
n
usi
n
g
X-C
T
U
4.
CO
VER
A
GE RA
NGE
TES
T
Th
e
pu
rpo
s
e
o
f
th
is test is to
stu
d
y
t
h
e effect
s
of XBee
t
r
ansmit
powe
r
on the actual cove
rage ra
nge
an
d co
mm
u
n
i
catio
n
q
u
a
lity between
t
h
e
b
a
se statio
n
and
t
h
e sen
s
o
r
no
deu
n
d
e
r real
wo
rk
ing
co
nd
itio
ns. Th
e
o
p
tim
u
m
co
n
f
ig
uratio
n
p
a
rameters w
ill b
e
th
e o
u
t
co
me
o
f
th
is study,an
d
t
h
e receiv
ed
sign
al streng
th
i
ndi
cat
o
r
(R
SS
I),
whi
c
h i
s
de
fi
ne
d as t
h
e si
gnal
st
re
n
g
t
h
l
e
vel
of a
wi
rel
e
ss de
vi
ce
m
easure
d
i
n
(dB
m
) of t
h
e
last received
packet [21], is
use
d
.
A l
o
op-back test
using X-CTU
soft
ware
is
performed to investigate the
rel
a
t
i
ons
hi
p
be
t
w
een
R
SSI
a
n
d t
h
e
di
st
ance
f
o
r
a
poi
nt
-t
o
-
p
o
i
n
t
c
o
m
m
uni
cat
i
on
w
h
en
di
ff
erent
c
o
nfi
g
u
r
a
t
i
ons
are i
n
t
r
o
duce
d
.
Fi
g
u
re
9 s
h
ow
s t
h
e sc
reens
h
o
t
s of
ra
nge
t
e
st
i
n
X
-
C
T
U, i
t
pr
o
v
i
d
es t
h
e R
SSI i
ndi
cat
i
o
n
bar i
n
dBm
where -40 dBm
repres
e
n
ts the st
ronge
st signal recei
ved
by the m
odule a
nd
-104
dBm
is
the we
akest.
The ra
nge test proce
d
ure was
carried
ou
t as fo
llo
ws. Th
e coo
r
d
i
n
a
t
o
r m
o
du
le
is connecte
d
to PC and se
nds a
packet
o
f
dat
a
t
o
a rem
o
t
e
mod
u
l
e
. Eac
h
of
t
h
e coo
r
di
nat
o
r a
nd rem
o
t
e
m
odul
e are i
n
st
al
l
e
d on a XB
IB
-U
-
DEV
ki
t
,
as i
t
has a feat
ure t
o
per
f
o
r
m
a l
oop-
bac
k
t
e
st
as s
h
o
w
n be
f
o
re
ha
nd i
n
Fi
g
u
r
e 7
.
The rem
o
t
e
m
o
d
u
l
e
will send the
received
packet
directly
back to the coordi
nator m
odule a
n
d the X-CT
U es
tim
a
tes the value of
t
h
e R
S
S
I
ba
sed
o
n
t
h
e
l
a
st
re
cei
ved
pac
k
et
by
t
h
e c
o
or
di
n
a
t
o
r m
o
d
u
l
e
, a
n
d
sh
o
w
s i
t
i
n
dB
m
[22]
.
“P
acket
delay”, “Data
packets
num
b
er” and “
D
ata
receive
d tim
e
out” a
r
e
para
meters by which a
wide
range of
scenari
o
s ca
n be si
m
u
l
a
t
e
d, and al
s
o
, t
h
e
d
a
t
a
si
ze t
h
at
i
s
neede
d
t
o
be
sent
d
u
ri
ng t
h
e
expe
ri
m
e
nt
s can b
e
cont
rol
l
e
d
usi
n
g “C
reat
e
dat
a
” t
a
b.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
63
9 – 6
5
3
64
8
Figure
9. Range test scree
n
shot
4.
1 T
e
s
t
Sce
n
a
r
i
o
There a
r
e m
a
ny
param
e
t
e
rs that
affect
t
h
e p
o
we
r co
ns
um
ed by
t
h
e XB
ee
m
odul
es. O
p
er
at
i
on m
odes,
suc
h
as transm
itting and recei
ving, draw
different am
ount
of currents
, and therefor
e their powe
r consum
ption
is differe
n
t.
Howe
ve
r, t
h
ere
are fi
ve
powe
r levels at
wh
ich
th
e XBee mo
du
le can
transmit th
e in
formatio
n
,
and t
h
ey
cor
r
es
po
n
d
t
o
-
8
db
m
(t
he l
o
west
)
,
-4
dbm
, -2
db
m
,
0 dbm
and 2 d
b
m
(t
he hi
g
h
est
)
re
spect
i
v
el
y
,
an
d
b
y
in
creasi
n
g th
e po
wer lev
e
l th
e co
n
s
umed
cu
rren
t
will in
crease. Th
ere is
no p
r
ob
lem
wit
h
power
co
nsu
m
p
tio
n
i
n
th
e b
a
se statio
n
n
o
d
e
as it will b
e
p
o
wered
fro
m
PC in
th
e practical co
nd
itio
ns,
b
u
t
t
h
e
con
s
um
ed po
w
e
r i
n
sens
or
no
de nee
d
s t
o
be
opt
i
m
i
s
ed. Th
e poi
nt
he
re i
s
t
o
carry
out
a
t
e
st
t
o
m
easur
e t
h
e
RSSI con
s
iderin
g
th
e effect o
f
tran
sm
it
p
o
wer lev
e
ls
wit
h
ex
isting
o
f
RPSMA an
tenn
a on
bo
th
th
e sen
s
or
no
de a
n
d
base
st
at
i
on. T
h
i
s
e
xpe
ri
m
e
nt
was
carri
ed
o
u
t
i
n
a
n
indoor e
n
vironm
ent and t
h
e distance
bet
w
een the
two
m
o
du
les
starts at 5
m
an
d is th
en
increased
in
5
m
step
s
u
n
til th
e
wireless co
nn
ectiv
ity was lo
st.
Thr
o
ug
h
out
t
h
e ex
peri
m
e
nt
s, a 2
4
KB
dat
a
si
ze (t
y
p
i
cal size of the
m
eas
ure
d
vibration
signals
)
was c
r
eated
by
t
h
e
X-C
T
U
soft
ware a
n
d t
r
ansm
i
t
t
e
d by
t
h
e c
o
o
r
di
na
tor
to
th
e sen
s
o
r
no
d
e
ten
tim
es;
ev
ery tim
e th
e RSSI
w
a
s
me
a
s
u
r
ed
a
n
d th
en
th
e
av
e
r
ag
ed
RS
SI
v
a
lu
e c
o
mp
u
t
e
d
a
n
d
used for
com
p
arison. T
h
e
powe
r level
can be
set
t
h
r
o
u
g
h
t
h
e
co
nfi
g
u
r
at
i
o
n
m
odem
t
a
b of
t
h
e X
-
C
T
U
,
a
n
d t
h
e
n
ode
s ca
n
be co
n
f
i
g
ure
d
t
o
c
o
m
m
uni
cat
e at
d
i
fferen
t
b
a
ud
rates rang
ing
fro
m
th
e lo
west 1
2
0
0
bp
s to
th
e h
i
gh
est 2
3
0
400
bp
s. In
th
is test th
e
mo
du
les
were set to
commu
n
i
cate at
1
920
0
bp
s b
a
ud
rate, si
n
ce exp
e
rim
e
n
t
ally
it
was estab
lish
e
d
th
at it is th
e h
i
gh
est
one
that ca
n
be
use
d
with t
h
e
specified
d
a
ta
size witho
u
t
l
o
ss of info
rm
ati
o
n.
The res
u
l
t
s
ar
e prese
n
t
e
d i
n
Fi
gu
re 1
0
, a
nd i
t
can be
obs
er
ved t
h
at
t
h
e
m
easure
d
R
SSI val
u
es
decrease
d
as t
h
e distance is increase
d
,
du
e to
th
e dep
l
etion o
f
th
e
wav
e
energy as it propag
ates l
o
nger. The
flu
c
tu
ation
s
in th
e R
SSI values can
b
e
co
rrelated
w
ith th
e presen
ce
o
f
reflectio
n and
m
u
ltipath phe
n
om
ena
because of the
walls and interfere
n
ce
from
W
i
-Fi
routers l
o
cated i
n
the
build
ing [22]. Also, it is appare
nt tha
t
in
creasing
t
h
e
tran
sm
it
tin
g
po
wer
h
a
s im
p
r
o
v
e
d
t
h
e
tr
ansmit p
e
rform
an
ce, bu
t th
at
will in
crease th
e p
o
wer
consum
ption le
vel. Fort
unately, it was indica
ted that a
ll transmitted packet
s of data
we
re receive
d back by
the
co
ord
i
n
a
tor when
th
e sen
s
o
r
no
d
e
t
r
an
sm
it p
o
w
er
was
in
t
h
e
m
e
d
i
u
m
lev
e
l; an
d
co
n
s
equen
tly th
e d
e
v
i
ce will
b
e
set t
o
send
t
h
e
d
a
ta at t
h
is
p
o
wer lev
e
l. As stated
i
n
th
e
XBee s2
d
a
tash
eet an
d shown
p
r
ev
iou
s
ly in Tab
l
e
3 that the indoor ra
nge is approxim
a
tely
40m
, whic
h wasfound t
o
be
the case according to the
result
s
obtaine
d
from the ex
pe
rim
e
nt. The tra
n
smitted data pac
k
ets we
re
fully receive
d
up t
o
40m
with RSPMA
ant
e
n
n
a an
d m
e
di
um
powe
r
l
e
vel
,
w
h
erea
s t
h
e R
SSI a
n
d
data p
ack
ets dr
op
sign
if
i
cantly whe
n
the
distance is
in
creased
b
e
yon
d
th
islimit.
Evaluation Warning : The document was created with Spire.PDF for Python.