Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 17
42
~
1
750
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.1
052
9
1
742
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Parasitic Strip Loaded Dual
Band Notch Circu
la
r Mo
no
po
le
Antenna with Defected Ground Structure
P Syam
Sundar,
Sar
a
t K Kotamr
aju, B T
P
Madhav,
M Sreehari, K
Raghavendr
a Rao,
L Prathy
usha
, Y
Prava
llika
Department o
f
ECE, K
L Univ
ers
i
ty
, AP, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 18, 2016
Rev
i
sed
Jun
29,
201
6
Accepte
d
J
u
l 13, 2016
In this article a parasitic strip
lo
aded monopole antennas ar
e
designed to
notch dual
and tr
iple bands
. The
designe
d models are constru
c
ted
on one sid
e
of the substrate material and on the ot
her end defected ground structures ar
e
implemented. The basic
antenna comp
rises a tun
i
ng stub and a g
r
ound plane
with taper
e
d shape slot as DGS.
Anothe
r model is constructed with circu
l
ar
monopole radiating element on front
side and similar kind of ground
s
t
ructure us
ed in
the bas
i
c rec
t
an
gular
tuning stub
antenna. To create notched
bands with tunin
g
stubs, two sy
mmetrical
pa
ra
sitic
slits a
r
e
pla
ced inside
the
slot of the ground plane. Th
e basic mode
l is of the rectangular stub notching
triple b
a
nd and
the cir
c
ular tuning
stub antenna notching dual
band. Dual
band notched
cir
c
ular tun
i
ng stub antenna
is prototy
p
ed on FR4 su
bstrate an
d
m
eas
ured res
u
lts
from
vector
ne
t
w
ork anal
yz
er
ar
e com
p
ared
with
s
i
m
u
lation
re
sults of HFSS for va
lida
tion.
Keyword:
Defect
e
d
gr
ou
nd
st
r
u
ct
u
r
e
D
u
al no
tch
b
a
nd
Parasitic slits
Parasitic strip
Tun
i
ng
stub
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
B T P Madh
av,
Pr
of
esso
r,
D
e
par
t
m
e
n
t
o
f
EC
E,
K L Un
iv
ersity,
AP,
I
ndi
a
.
Em
a
il: b
t
p
m
ad
h
a
v@k
l
un
iv
ersity.in
1.
INTRODUCTION
Microstrip Ant
e
nna
s are
used in a
n
e
x
tensi
v
e m
a
nner in curre
nt comm
unica
tion system
because
of
ad
v
a
n
t
ag
es such
as low profile an
d
can
b
e
u
s
ed
in
m
u
lti-b
a
n
d
and
wid
e
-b
and
app
licatio
n
s
[1
]-[4
]
. It
s
appl
i
cat
i
o
ns a
r
e m
a
i
n
l
y
used
by
t
h
e
ant
e
nna
engi
neers
i
n
ev
ery
pa
rt
of
t
h
e
wo
rl
d
.
I
n
t
h
e
e
n
t
i
r
e
wi
de
ban
d
som
e
b
a
nd
s are rej
e
cted
u
s
ing
no
tch
e
d an
tenn
as. Man
y
tec
h
n
i
q
u
e
s are av
ailab
l
e in literatu
re to no
tch certain
freq
u
e
n
c
y b
a
nd
s [5
]-[9
]. Th
e p
r
ev
ailin
g
m
e
th
od
s in
clud
ing
cu
tting
a slo
t
o
n
th
e
p
a
tch
,
in
serting
a slit
o
n
t
h
e
pat
c
h,
usi
n
g
co
nd
uct
o
r
back
e
d
pl
ane, a
n
d e
m
beddi
ng
a t
u
ni
n
g
st
u
b
wi
t
h
i
n
a sl
ot
o
n
t
h
e
pat
c
h a
r
e
use
d
by
t
h
e
researc
h
er
s i
n
so m
a
ny
cases. M
o
re
ove
r,
ba
nd
re
ject
i
on
c
h
aracteristics are gene
rated
by
using a re
sonator at
th
e cen
ter of
an
tenn
a an
d
w
ith
a
p
a
ir
o
f
in
v
e
r
t
ed
L shap
ed slo
t
s
o
n
th
e gr
oun
d
p
l
an
e.
D
e
f
ected
g
r
ound
stru
ctures will
p
r
ov
id
e
ad
d
itio
n
a
l reson
a
n
t
b
a
nd
s wh
en
co
m
b
in
ed
wit
h
th
e an
ten
n
a
m
o
d
e
ls
[10
]
.
Detected
Ground Structures
(DGS)
as
the na
m
e
im
plies to som
e
com
p
act geom
etr
i
es, comm
only known as
“
u
nit cell”
et
ched o
u
t
as a si
ngl
e de
fect
or i
n
peri
odi
c
con
f
i
g
urat
i
o
n
wi
t
h
sm
all
peri
od
num
ber o
n
t
h
e gr
o
u
n
d
pl
a
n
e o
f
a
m
i
crowa
v
e p
r
i
n
t
e
d ci
rc
ui
t
bo
ard (M
-PC
B
)
t
o
at
t
r
i
but
e a f
eat
ure o
f
st
o
p
p
i
n
g wa
ve p
r
o
p
agat
i
o
n t
h
ro
u
gh t
h
e
sub
s
t
r
at
e
ove
r
a fr
eq
ue
ncy
ra
nge
. T
h
us a
D
G
S ca
n
be
de
s
c
ri
be
d as
a
u
n
i
t
cel
l
EB
G
or
an EB
G
wi
t
h
l
i
m
i
t
e
d
sha
p
es a
n
d
si
zes wi
t
h
di
f
f
ere
n
t
f
r
eq
ue
ncy
re
spo
n
ses
an
d e
q
ui
val
e
nt
ci
rcui
t
param
e
t
e
rs. T
h
e
prese
n
ce
of
D
G
S
un
de
r a
p
r
i
n
t
e
d t
r
a
n
sm
i
ssi
on
l
i
n
e act
u
a
l
l
y
pert
ur
bs t
h
e c
u
r
r
ent
di
st
ri
bu
t
i
on i
n
t
h
e
gr
ou
n
d
pl
ane
an
d t
h
u
s
m
odi
fi
es t
h
e e
qui
val
e
nt
l
i
n
e
param
e
t
e
rs o
v
e
r
t
h
e
de
fect
ed
r
e
gi
o
n
[1
1]
.
M
a
ny
m
u
l
t
i
p
l
e
(d
ual
,
t
r
i
p
l
e
, q
u
ad
r
upl
e)
ba
n
d
-
n
o
t
c
he
d
U
W
B
ant
e
n
n
a t
o
p
o
l
ogi
es
ha
ve al
so
been
gi
ve
n
in recent literature. Ma
ny UW
B a
pp
licat
ions require
m
o
re than one notc
h
ba
nd
so that non interferi
ng
fre
que
nci
e
s a
ppl
i
cat
i
o
ns ca
n
be o
b
t
a
i
n
e
d
[
1
2]
-[
1
3
]
.
The
usa
g
e o
f
spl
i
t
-ri
n
g
re
son
a
t
o
r
s
(
S
R
R
s
) an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Pa
ra
sitic S
t
rip
Loa
d
e
d
Du
a
l
Ba
nd
N
o
tch Circu
l
a
r
Mono
po
l
e
An
ten
n
a
with .... (P
S
y
am
Sud
a
r
)
1
743
co
m
p
le
m
e
n
t
ary sp
lit-rin
g
reso
n
a
t
o
rs
(CSRRs) in
ord
e
r to
desig
n
recon
f
i
g
u
r
ab
le m
u
ltip
le
b
a
nd
-no
t
ch
ed
UW
B
antennas ha
ve also been
r
e
p
o
rted
in
[1
4
]-[
15].
In
th
is
p
a
p
e
r a co
m
p
act tu
n
i
ng
stub
and
p
a
rasitic strip
s
lo
ad
ed
no
tch
b
a
nd
an
ten
n
a
s are
d
e
sign
ed
to
n
o
t
ch
m
u
ltip
le
b
a
n
d
s
. To
n
o
t
ch
p
a
rticu
l
ar ban
d
s, an
an
g
l
e sh
ap
ed p
a
rasitic slit is asy
mmetricall
y
etch
ed
o
u
t
along wit
h
the
tuning st
ub.
Two symme
tri
cal parasitic slits are placed
inside the
slot
to create a
ddi
tional
not
c
h
ba
n
d
. T
h
e det
a
i
l
e
d
ge
om
et
ri
cal
const
r
uct
i
o
n o
f
t
h
e
ant
e
n
n
a m
odel
s
i
s
present
e
d i
n
t
h
e s
u
b
s
e
que
nt
sect
i
on.
2.
MATE
RIAL
S AND METHOD
Fi
gu
re 1 a
nd
2
sho
w
s t
h
e des
i
gne
d n
o
t
c
h ba
nd a
n
t
e
n
n
as wi
t
h
rect
an
gul
a
r
and ci
rc
ul
ar t
u
ni
n
g
st
u
b
s
.
Bo
th
th
ese m
o
d
e
ls are
h
a
v
i
ng
on
e an
g
l
e shap
ed
p
a
rasitic
slit etch
ed
ou
t alo
n
g
with
t
h
e tu
n
i
ng
stub
and
two
sy
mm
e
t
rical p
a
rasitic slits insid
e
th
e slo
t
of
g
r
ou
nd
p
l
an
e.
Th
e
propo
sed
m
o
d
e
ls are com
p
act in
size an
d
u
s
e a
si
m
p
le filter typ
e
stru
ctu
r
es to
create
no
tch
b
a
nd
s.
Th
e
d
e
sign
ed
m
o
d
e
ls d
i
m
e
n
s
io
n
a
l ch
aracteristics with
respect to
para
meters are pre
s
ented in ta
ble1. T
o
ach
ie
ve
50
ohm
s
characteristic im
pedance, the
widt
h and
l
e
ngt
h
of t
h
e f
eed l
i
n
e are ch
ose
n
as 3m
m
and
6m
m
resp
ect
i
v
el
y
.
To achi
e
ve
go
o
d
im
peda
nce m
a
t
c
hi
ng
a
t
a
pere
d s
h
a
p
e
sl
ot
i
n
t
h
e
gr
o
u
n
d
pl
a
n
e i
s
co
u
p
l
e
d t
o
t
uni
ng
st
ub
.
Dual
ba
n
d
not
c
h
e
d
a
n
t
e
nna
i
s
pr
ot
ot
y
p
e
d
on
FR
4
s
u
bst
r
at
e wi
t
h
di
el
ect
ri
c
con
s
t
a
nt
4.
4
a
n
d occu
pi
es
t
h
e t
o
t
a
l
di
m
e
nsi
on of
2
2
x 2
4
x 1.
6
m
m
.
Fi
gu
re
1.
R
ect
ang
u
l
a
r
Tu
ni
n
g
St
ub
N
o
t
c
h
A
n
t
e
nna
Th
e an
g
l
e sh
ap
ed
slit on
th
e fro
n
t
sid
e
o
f
t
h
e an
ten
n
a
h
a
s two
p
o
rtio
ns.
On
e cu
rv
ed
arm an
d
on
e
vertical arm placed asymmetr
ically to
get notch ba
nd cha
r
acteristics. Each
of the symmetrical parasitic slit
s
co
nsists o
f
a h
a
lf triang
le po
rtion
and
a v
e
rtical p
o
rtion
.
Desp
ite in
sertio
n
of p
a
rasitic sl
its, th
e
o
v
e
rall
antenna
dim
e
nsion rem
a
ins the sam
e
and
no
ex
tra space is requi
red for
the filter
struct
ure
.
Tabl
e 1. Desi
g
n
ed
A
n
t
e
n
n
as
Di
m
e
nsi
ons
L
s
ub
W
s
ub
L
f
W
f
Rp
CL
1 CT
1
dL
1
dt1
aL
1
aw1
at1 at2
bL
1
bt1
40
40
6
3
6
6.
05
0.
55
14.
5
0.
1
7.
45
4
0.
5
0.
5
8.
7
0.
2
Fi
gu
re 2.
C
i
rcu
l
ar
Tu
ni
n
g
St
u
b
Not
c
h Ant
e
n
n
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
42
–
1
750
1
744
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
The desi
gne
d
m
odel
s
on
FR
4 su
bst
r
at
e
are sim
u
l
a
t
e
d usi
n
g fi
ni
t
e
el
em
ent
met
h
o
d
base
d
electro
m
a
g
n
e
tic to
o
l
HFSS.
In
itially to
find
o
u
t
th
e p
a
ss b
a
n
d
s
and
n
o
tch
b
a
nd
s th
e
reflection
co
efficien
t
cur
v
e i
s
c
o
nst
r
uct
e
d a
n
d
p
r
e
s
ented
in Figure 3.
T
h
e S
11
cur
v
e s
h
ow
n i
n
fi
g
u
re
3
gi
ve
s t
h
e cl
ear
pi
c
t
ure
rega
rdi
ng
o
p
er
at
i
ng ba
n
d
s an
d t
h
e c
o
r
r
esp
o
ndi
ng
desi
g
n
e
d
n
o
t
c
h
ba
nds
.
Ant
e
nna m
o
d
e
l
1
i
s
reso
nat
i
ng a
t
t
r
i
p
l
e
ban
d
a
n
d
not
c
h
i
n
g t
h
e f
r
eq
ue
nci
e
s fr
o
m
3.6 t
o
4
.
6
G
H
z, 5 t
o
6.
8
G
H
z an
d 9
.
5 t
o
10
.5
GHz
. At
seco
nd
reso
na
nt
f
r
eq
u
e
ncy
ant
e
nna
m
odel
1 i
s
sh
o
w
i
n
g l
a
r
g
e
ba
n
d
wi
dt
h
of
3
G
H
z an
d a
n
i
m
pedance
ba
n
d
wi
dt
h
of
35
.2
%. A
n
t
e
n
n
a
m
odel
2 i
s
no
t
c
hi
ng t
h
e hi
g
h
e
r fre
q
u
ency
b
a
nd
fr
om
10.2
t
o
1
0
.
8
G
H
z an
d 1
2
t
o
1
5
GHz
. Th
e
seco
nd m
odel
i
s
sho
w
i
n
g a
n
im
pedance
ba
n
d
wi
dt
h
of
3
6
.
8
% at
fu
ndam
e
nt
al
reso
na
nt
f
r
eq
ue
ncy
an
d
13
% at
seco
nd
res
ona
nt
fre
q
u
ency
.
Fi
gu
re
4 sh
o
w
s t
h
e V
S
W
R
c
h
aracteristics of
th
e d
e
sign
ed
an
tenn
a
m
o
d
e
ls
with
r
e
sp
ect to
op
eratio
n
b
a
nd
of
fr
equ
e
n
c
ies. A
t
p
a
ss
b
a
nd
b
o
t
h th
e an
tenn
as ar
e show
ing
2
:
1 r
a
tio
of
V
S
WR an
d
at
not
ch ba
n
d
s
t
h
e reject
i
o
n rat
i
o
i
s
very
h
i
gh. Fi
gu
re 5
sho
w
s t
h
e i
m
pedance c
h
aract
eri
s
t
i
c
s of desi
gne
d
m
odel
s
wi
t
h
c
h
an
ge i
n
fre
q
u
e
ncy
.
At
pass
ban
d
s
ant
e
nna
s
are
sh
o
w
i
n
g a
v
era
g
e i
m
peda
nce
of
3
5
o
h
m
s
an
d at
not
c
h
ban
d
s
an
ave
r
age
i
m
pedance
of
2
0
o
h
m
s
.
Fi
gu
re
3.
R
e
fl
e
c
t
i
on C
o
ef
fi
ci
ent
o
f
desi
g
n
e
d
ant
e
n
n
a m
odel
s
Fi
gu
re
4.
V
S
WR
Vs
Fre
q
u
e
nc
y
Fi
gu
re
5.
Im
pedance
V
s
F
r
eq
uency
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Pa
ra
sitic S
t
rip
Loa
d
e
d
Du
a
l
Ba
nd
N
o
tch Circu
l
a
r
Mono
po
l
e
An
ten
n
a
with .... (P
S
y
am
Sud
a
r
)
1
745
The radiation
c
h
aracteristics of
any
an
tenn
a
can
b
e
d
e
scribed
co
m
p
letel
y
with
th
eir rad
i
atio
n
p
a
ttern
cur
v
es i
n
E
pl
ane an
d
H
pl
ane
.
Fi
g
u
re
6 s
h
o
w
s t
h
e
ra
di
at
i
on pat
t
e
r
n
of t
h
e
rect
an
gul
a
r
st
ub a
n
t
e
nna i
n
E pl
ane
and
H
pl
ane
at
4.
8
GHz
. Fi
g
u
re
7 s
h
ows
t
h
e radi
at
i
o
n c
h
a
r
acteristics of
antenna m
odel 1 at 8.5 GHz. It is
bei
n
g o
b
se
rve
d
t
h
at
at
hi
ghe
r
fre
que
ncy
o
f
o
p
erat
i
o
n a
qua
si
-om
n
i
d
i
r
ect
i
o
nal
ra
di
at
i
on
p
a
t
t
e
rn i
s
o
b
ser
v
ed i
n
H pl
a
n
e,
whe
r
e
a
s at
l
o
wer
o
p
e
r
at
i
ng
ba
nd t
h
e
radi
at
i
o
n pat
t
e
rn i
s
di
rect
i
v
e i
n
nat
u
re
. Fi
g
u
r
e
8 an
d
9 s
h
o
w
s t
h
e
radi
at
i
o
n chara
c
t
e
ri
st
i
c
s of an
t
e
nna m
odel
2 at
9.6
GHz a
nd
11
.4 G
H
z.
At
l
o
wer
ope
r
a
t
i
ng ba
nd a
n
t
e
nna i
s
sho
w
i
n
g
q
u
asi
om
ni
di
rect
i
o
n
a
l
radi
at
i
o
n w
h
ereas
at
hi
gher ope
r
ating band in t
h
e H
plane t
h
e
pattern i
s
om
ni
di
rect
i
ona
l
.
The E pl
an
e pat
t
e
rn at
l
o
we
r o
p
erat
i
n
g ba
nd i
s
so
m
e
how
di
st
ur
bed a
nd
not
gi
vi
n
g
a
co
m
p
lete d
i
rectiv
e rad
i
atio
n
pattern
.
Fi
gu
re
6.
R
a
di
at
i
on Pat
t
e
r
n
o
f
m
odel
1
at
4
.
8
GHz
Fi
gu
re 7.
R
a
di
at
i
on
Pat
t
e
r
n
o
f
M
o
del
1
at
8.
5 GHz
Fi
gu
re 8.
R
a
di
at
i
on
Pat
t
e
r
n
o
f
M
o
del
2
at
9.
6 GHz
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
42
–
1
750
1
746
Fi
gu
re 9.
R
a
di
at
i
on
Pat
t
e
r
n
o
f
M
o
del
2
at
1
1
.
4
GHz
Fi
gu
re 1
0
s
h
o
w
s t
h
e s
u
r
f
ac
e curr
ent
di
st
r
i
but
i
o
n o
f
t
h
e
ant
e
n
n
a m
odel
at
4.8G
Hz
and
8.
5G
Hz
respect
i
v
el
y
.
A
t
hi
ghe
r ba
n
d
t
h
e ra
di
at
i
ng
pa
t
c
h i
s
gi
vi
n
g
m
o
re i
n
t
e
nsi
t
y
wi
t
h
di
rect
i
v
e
radi
at
i
o
n w
h
e
r
eas at
lo
w
e
r
b
a
nd
mo
st of
th
e cu
rren
t
d
i
str
i
bu
tion
is b
ecau
s
e
of
f
e
ed
lin
e and
th
e sur
r
o
und
ed tap
e
r
e
d
gr
ound
p
l
an
e
neare
r
to t
h
e
patch. Fi
gure11
shows
t
h
e s
u
rface curre
n
t dis
t
ribution
of a
n
t
e
nna
m
odel 2.
It is clear from
these
figu
res th
at the cu
rren
ts are stron
g
l
y con
c
en
trated
ar
ound
th
e an
g
l
e shap
ed
p
a
rasitic slit an
d
th
e fl
o
w
o
f
cu
rren
t on
th
e
slit are o
p
p
o
s
ite wh
en
yo
u
com
p
are th
e
m
o
d
e
l2
at d
i
fferen
t
freq
u
e
n
c
ies. Th
erefore, th
e to
tal
effect
i
v
e
ra
di
at
i
on i
s
ve
ry
wea
k
a
n
d
t
h
us a
n
o
t
ched
ba
nd
i
s
c
r
eat
ed at
hi
g
h
e
r
f
r
e
que
ncy
ba
nd
.
Figure 10. Surface
curre
nt distribution
of
Ant
e
nna
Model
1
at 4.8 a
n
d 8.5
GHz
Figure 11. Surface
curre
nt distribution
of
Ant
e
nna
Model
2
at 9.6 a
n
d 11.4 GHz
Fi
gu
re 1
2
s
h
o
w
s t
h
e t
h
ree
d
i
m
e
nsi
onal
ra
d
i
at
i
on ch
aracteristics o
f
th
e an
tenn
a m
o
d
e
ls. It is b
e
ing
obs
er
ved
t
h
at
r
ect
ang
u
l
a
r
st
u
b
ant
e
nna
i
s
gi
vi
ng
a m
a
xim
u
m
gai
n
of
3
d
B
i
n
X
Y
pl
ane
w
h
e
r
eas a
n
t
e
n
n
a m
odel
2 o
f
ci
rc
ul
ar st
ub i
s
gi
vi
ng m
a
xi
m
u
m
gai
n
of
1.
3 dB
i
n
X
Z
pl
ane
.
Fi
g
u
r
e
13 s
h
ow
s t
h
e fre
que
ncy
V
s
Gai
n
pl
ot
o
f
t
h
e de
si
gne
d ant
e
nn
as at
t
h
ei
r corres
p
on
di
n
g
o
p
erat
i
n
g ba
n
d
s
.
Ant
e
nna
1 i
s
sho
w
i
n
g m
o
re gai
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Pa
ra
sitic S
t
rip
Loa
d
e
d
Du
a
l
Ba
nd
N
o
tch Circu
l
a
r
Mono
po
l
e
An
ten
n
a
with .... (P
S
y
am
Sud
a
r
)
1
747
co
m
p
ared
to
An
ten
n
a
m
o
d
e
l 2
.
Bu
t d
i
rect
iv
ity o
f
an
tenna
m
o
d
e
l 2
is m
o
re wh
en
com
p
ared
with
an
tenn
a
m
odel
1
fr
om
Fi
gu
re
14
.
Fi
gu
re
1
2
. T
h
r
ee di
m
e
nsi
onal
ra
di
at
i
on
pat
t
e
rn
vi
e
w
of m
o
d
e
l
1 a
n
d
2
Th
e p
a
ram
e
tri
c
an
alysis o
f
an
tenn
a m
o
d
e
l2
with
respect to
wid
t
h
of th
e feed
lin
e is
p
r
esen
ted
i
n
Fi
gu
re 1
5
by
k
eepi
n
g l
e
n
g
t
h
of t
h
e
fee
d
l
i
n
e
i
s
const
a
nt
. F
o
r t
h
e
o
p
t
i
m
i
zed di
m
e
nsi
on
of
wi
dt
h
2m
m
ant
e
nna
is showi
n
g exc
e
llent reflection c
o
efficient c
h
aracteristics.
Fi
gu
re 1
3
. Gai
n
Vs
F
r
e
que
nc
y
Fig
u
re 14
. Directiv
ity
Vs
Frequ
e
n
c
y
Fig
u
re 16
shows th
e p
a
ram
e
t
r
ic an
alysis wit
h
ch
an
g
e
in
leng
th
of th
e feed
lin
e for an
tenn
a
m
o
d
e
l2
b
y
keepi
n
g
wi
dt
h
con
s
t
a
nt
.
A
n
t
e
nna
i
s
s
h
o
w
i
n
g
bet
t
e
r
refl
ection c
o
efficient c
h
aracteris
tics
fo
r leng
th
L =
5 mm.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
42
–
1
750
1
748
Fig
u
re
15
.
Parametric An
alysis with ch
ang
e
i
n
feed lin
e
width
‘W’
Fig
u
re
16
.
Parametric An
alysis with ch
ang
e
i
n
feed lin
e leng
th
‘L’
Figure 17 shows the fabricated an
tenna on
FR4 substrate
material.
The top
vi
ew an
d b
o
t
t
o
m
vi
ew of
t
h
e p
r
ot
ot
y
p
e
d
ant
e
n
n
a ca
n
be
obse
r
ved
wi
t
h
SM
A c
o
nnect
or
. Fi
g
u
r
e 1
8
s
h
o
w
s t
h
e m
easured re
fl
ect
i
on
coefficient of
the antenn
a on ZNB 20
vector net
w
ork analyzer. The
measure
d
res
u
lts
are showing s
i
m
i
lar
k
i
nd
o
f
resu
lts
wh
en
co
m
p
ared
th
e sim
u
latio
n
resu
lts
o
f
HFSS.
Figure 17. Fabricated Ante
nn
a
F
r
on
t v
i
ew
an
d Ba
c
k
v
i
ew
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Pa
ra
sitic S
t
rip
Loa
d
e
d
Du
a
l
Ba
nd
N
o
tch Circu
l
a
r
Mono
po
l
e
An
ten
n
a
with .... (P
S
y
am
Sud
a
r
)
1
749
Figure
18. Mea
s
ure
d
Re
flection C
o
efficien
t of th
e An
tenn
a
Mo
d
e
l
2
on
ZNB 20
VNA
4.
CO
NCL
USI
O
N
Parasitic
strip lo
ad
ed
no
tch
b
a
nd
an
ten
n
a
s
are d
e
si
g
n
e
d an
d
an
alyzed
in
th
is
wo
rk
. Rectan
gu
lar
ele
m
en
t b
a
sed
an
tenn
a is no
tch
i
ng
trip
le
b
a
nd
and
circu
l
ar
ele
m
en
t b
a
sed
an
tenn
a is no
tch
i
ng
du
al b
a
nd in
th
e
desi
re
d ul
t
r
a
wi
de
ban
d
ra
n
g
e
. Ant
e
nna
s ar
e desi
g
n
ed
on
FR
4 su
bst
r
at
e
and si
m
u
l
a
t
i
on resul
t
s
are an
al
y
zed
with
HFSS too
l
. Th
e
p
r
o
t
o
t
yp
ed
an
ten
n
a
m
o
d
e
l o
f
circu
l
ar m
o
n
o
p
o
l
e with
p
a
rasitic strip
is p
r
ov
id
i
ng
excel
l
e
nt
refl
e
c
t
i
on coe
ffi
ci
ent
and gai
n
charact
eri
s
t
i
c
s i
n
t
h
e desi
re
d ban
d
.
At
not
c
h
ba
nds a
n
t
e
n
n
a i
s
sho
w
i
n
g de
g
r
adat
i
on i
n
t
h
e
gai
n
and
po
or ra
di
at
i
on c
h
aract
eri
s
t
i
c
s.
The de
fect
ed
gr
o
u
n
d
st
ruct
u
r
e i
s
pr
o
v
i
d
i
n
g a
ddi
t
i
onal
res
ona
nt
fre
que
nci
e
s a
l
on
g wi
t
h
f
u
n
d
am
ent
a
l
resonant
fre
que
nc
y
i
n
t
h
e desi
g
n
. T
h
e
p
r
op
o
s
ed
an
tenn
a m
easu
r
ed resu
lts are in
go
od
ag
reem
en
t with
th
e sim
u
lat
e
d
resu
lts.
ACKNOWLE
DGE
M
ENTS
Aut
h
o
r
s l
i
k
e t
o
ex
pre
ss t
h
ei
r g
r
at
i
t
ude t
o
war
d
s t
h
e
de
p
a
rt
m
e
nt
of EC
E and m
a
nage
m
e
nt
of K L
Un
i
v
ersity for
th
eir sup
p
o
r
t
an
d encou
r
ag
emen
t du
ring this wo
rk
. Fu
rther
we lik
e to ex
press ou
r
g
r
at
itu
d
e
t
o
D
S
T
t
h
rou
g
h
FI
ST gr
an
t SR/FST/ETI-
316
/201
2.
REFERE
NC
ES
[1]
N. Feiz, F. Moh
a
jer
i
, A. Gha
z
na
vi. Optim
iz
ed Microstrip
Ant
e
nn
as with Metam
a
t
e
ria
l
Superstrat
e
s
Using Particle
Swarm
Optim
ization,
”
Bu
ll
etin
of
El
ectr
i
cal
E
ngineering and
Info
rmatics
. 2013; 2
(
2): 123-131
.
[2]
B
.
T
.
P
.
M
a
d
h
a
v
,
et al.
, “Liquid cr
y
s
tal poly
m
er
substrate bas
e
d wideb
a
nd
tapered step an
tenna,”
Leonardo
Electronic Journ
a
l of Pr
actices a
nd Technolog
ies
, ISSN 1583-1078, issue 26, pp. 1
03-114, 2015
.
[3]
B. T. P. Madhav
,
et al.
, “CPW
Fed Antenna for Wideband Applica
tions based on Tapered Step
Ground and EB
G
St
ruc
t
ure,
”
Ind
i
an Journal o
f
S
c
ience and
Techn
o
logy
, ISSN: 0974-6846, vol/issue: 8(9)
, pp
. 119
-127, 2015
.
[4]
C. Deng,
et al.
, “CPW-fed planar printed monopole antenn
a
with
impedance band
width enhanced,”
IEEE Ant
e
nna
s
Wireless Propag
ation Letters
, vo
l. 8
,
pp
. 1394–13
97, 2009
.
[5]
S.
S.
M.
Re
ddy
,
et al.
, “As
y
mmetric Def
ected Ground
Struct
ured
Monopole Antenna for Wideband
Communication S
y
stems,”
International Journal
of Comm
unications Antenna and
Propagation
, IS
SN: 2039-5086,
vol/issue:
5(5), p
p
. 256-262
, 201
5.
[6]
B. T. P. Madhav,
et al.
, “Analy
sis of
Defected Ground St
ructure Notched Monopole Antenna,”
ARPN Journal of
Engineering and
Applied S
c
iences
, ISSN 1819-6608, vol/issue: 10
(2), pp
. 747-752
, 2015.
[7]
B
.
T
.
P
.
M
a
d
h
a
v
,
et al.
, “Novel
Printed Monopo
le Trapezoid
a
l N
o
tch Antenna with S-Band Rejection,”
Journal of
Theoretical and
Applied
Informa
tion Technology
, ISSN: 1992-8645, vol/issue: 76(
1), pp
. 42-49
, 20
15.
[8]
P. Lakshmikanth,
et al.
, “
P
rint
ed Log Periodi
c
dipole an
tenn
a
with
Notched f
ilter
at 2
.
45 GHz Frequenc
y f
o
r
wireles
s
com
m
unica
ti
on app
l
ications,”
Jo
urnal o
f
Engin
eering an
d Applied Sciences
, ISSN: 1816-949X, vol/issue:
10(3), pp
. 40-44
, 2015. DOI: 10.3
923/jeasci.2015
.40.44.
[9]
D
.
S
.
R. K
i
ran and B. T. P
.
M
a
dhav, “
N
ovel com
p
act as
y
m
m
e
tr
ic
al fra
ctal ap
ertur
e
Notch band antenna,”
Leonardo
Electronic Journ
a
l of Pr
actices a
nd Technolog
ies
, ISSN 1583-1078, vol/issue: 27(
2), pp
. 1-12
, 201
5.
[10]
M
.
L
.
S
.
N
.
S
.
L
a
k
s
h
m
i
,
et al.
, “Novel Sequential Rotated 2x2 Array
Notch
e
d Cir
c
ular Patch Antenna,”
Journal of
Engineering Science
and Techno
logy
Review
, ISSN: 1791-2377, v
o
l/issue: 8
(
4), pp
. 73-77
, 2015
.
[11]
K.
V.
L.
Bhavani,
et al.
, “Multib
and Slotted Aperture Antenna w
ith
Defected Gro
und Structure fo
r C and X-Band
Communication Applications,”
Journal of Theo
retical and
App
lied In
formation
Technolog
y
, IS
SN: 1992-8645,
vol/issue: 82(3), pp.
454-461
,
20
15.
[12]
D.
S.
Ramkiran,
et al.
, “Com
pact Microstrip Ban
d
pass Filter wit
h
Defect
ed Ground Structure,”
Far East Journa
l
of Electronics a
nd Communications
”, ISSN: 097
3-7006, vol/issue: 15(1)
, pp
. 75-
84, 2015
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
42
–
1
750
1
750
[13]
M.
J.
Almalkawi and V.
K.
De
vabhak
t
u
n
i, “Quad band-notched
UWB a
n
t
e
nna
c
o
mpa
t
i
b
le
wi
th
WiMAX/INSAT
/lower-upper
WLAN application
s
,”
Electron. Lett
., vol/issue: 47(
19), pp
. 1062-10
63, 2011
.
[14]
M.
Al-Husse
ini,
et al.
, “A reco
nfigurable fr
equ
e
ncy
-
notched U
W
B antenna
wit
h
split-ring
reso
nators,”
in
Proc
.
Asia-Pacific Microw. Conf
., pp
. 6
18-621, 2012
.
[15]
Y.
Zhang,
et al.
,
“
P
lanar ultr
a wi
deband an
tenn
as with m
u
ltipl
e
n
o
tched b
a
nds ba
sed on etch
ed sl
ots on the p
a
tch
and/or split r
i
ng
resonators on
th
e feed
line,”
IEEE Trans. Antenn
as Propag
., vol/issue: 56(9), pp.
3063-3068, 200
8.
Evaluation Warning : The document was created with Spire.PDF for Python.