Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 3
,
Ju
n
e
201
6, p
p
. 1
112
~ 11
21
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
3.9
684
1
112
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Dithering An
alys
is in an Orth
ogonal Freq
uency Di
vision
Multiplexing-Radio over Fiber Link
Fakhriy Hari
o
P
1
,
Adhi S
u
s
a
nto
2
, I W
a
yan Mustik
a
3
, S
e
vi
a M Idrus
4
,
Sh
oleh H
a
di
P
5
1,2,3
Department o
f
Electr
i
cal
Engineering
and
Info
rmation Techno
log
y
, Gadjah Ma
da University
, Yog
y
ak
arta, Indon
esia
4
Department of Communica
tion
Engineering, Un
iversiti Teknolo
g
i Malay
s
ia, Joh
o
r, Malay
s
ia
1,5
Department of
Electr
i
cal
Engin
eering
,
Br
awijaya University
, Malang, Indonesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 30, 2015
Rev
i
sed
Feb
25
, 20
16
Accepted
Mar 15, 2016
Nonlinear
it
y is
one m
a
jor problem
broadban
d
com
m
unicatio
n faced on
utili
zing
the hi
gh capa
c
i
t
y
of
optic
al f
i
bers.
That
is due t
o
scatt
e
rin
g
phenomenon, w
h
ich results in the devia
tions of
waveleng
ths an
d energies.
The d
ither
ing m
e
thod
is applied
in th
e
attempt to
reduce
those scatterings.
In
this pap
e
r, we p
r
opose the perfo
rmance
of
a
dithering techn
i
que based new
s
y
stem OFDM-
R
oF using two
modulator
scheme and coheren
t
detection to
alleviate th
e ch
aracteristics nonlinearity
applied o
n
the s
y
s
t
em. Th
e dith
erin
g
techn
i
que inpu
ts signal extern
ally
to
the
signa
l
proce
ssing s
y
ste
m
s to
elim
inat
e the
ef
fects
of nonlin
e
a
rit
y
. H
e
re, we
report the p
e
rfo
rm
ance of a
dithering
technique based
on
the OFDM
-RoF, the results ou
r
exper
i
ment
showed that th
e applied dith
ering
with 16 QAM modulation can make th
e
s
y
s
t
em
m
o
re reliabl
e and
in
creases th
e p
o
w
er lev
e
l 1
.
55
% with
19
3.1
THz,
2% wi
t
h
10
0 T
H
z an
d
1.
99
% ~
20
0
THz
,
the b
e
st condition ar
e
with f
d
< f
c
. Ho
wever,
all
condition clos
e pr
oximity
in
the p
a
rameters OLP
(optic
al
launch
p
o
wer), BER
and
S
E
R m
eas
urem
ent.
The r
e
s
u
lt d
e
m
ons
trated
a high efficien
cy
and good p
o
wer in which
the OLP oper
a
ted 6
.
396
dBm/4.361 E-3
W~fd 200 THz, 3.578 dBm/2.27
9 E-3 W~fd 193.1 THz and
6.420 dBm/4.33
84 E-3 W~100 THz. Th
e be
st B
E
R value
is ach
ieved at 0.33
and SER 0.78
at 5 km~f
d
100 THz, 0.33
and 0.7
68 for 10 km~fd 193.1 THz,
0.478 and
0.92
f
o
r 50 km~fd 193
.1 THz.
Keyword:
BER
Dith
eri
n
g
OF
DM
OLP
Ro
F
SER
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Fakh
r
i
y H
a
r
i
o P,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Fac
u
l
t
y
of
E
ngi
neeri
n
g
,
Gad
j
a
h
M
a
da
Uni
v
ersity
,
Jln
Gr
af
ik
a
No 2
,
Yog
y
ak
ar
ta, 552
81
, Ind
onesia.
Em
a
il: fak
h
r
iy.s3
t
e13
@
m
a
il.u
g
m
.ac.id
1.
INTRODUCTION
R
a
di
o o
v
er Fi
ber i
s
a pr
oce
ss of sen
d
i
n
g
radi
o si
gnal
s
ove
r o
p
t
i
cal
cabl
es t
o
su
pp
o
r
t
fast
er dat
a
delivery. The principle of
t
h
is
tech
no
log
y
com
b
in
es two
sign
als; th
ey
are a
n
alog signals a
s
a ra
dio a
nd
digital
signal as a
optical source
. In this case t
h
e
signal
of
optical used C
W
l
a
ser and a si
gnal ra
dio is
OFDM;
OF
DM
i
s
one
of
sy
st
em
com
m
uni
cat
i
on
br
oa
dba
n
d
usi
n
g
hi
gh
f
r
eq
u
e
ncy
.
In
t
h
i
s
sy
st
em
, be re
qui
re
d
m
odul
at
or t
o
c
o
m
b
i
n
e bot
h o
f
t
h
e si
g
n
al
. R
a
di
o
ove
r Fi
be
r m
odul
at
es ra
di
o si
g
n
al
s o
r
s
upe
ri
m
posed
wi
t
h
t
h
e
light, RF signa
ls were m
odulated by
optical signals, and these signals
were transm
itted
through the optical
fi
ber
.
T
h
o
s
e si
gnal
s
use
d
e
x
t
e
rnal
m
odul
at
i
o
n
t
o
c
o
m
b
i
n
e and
t
h
e t
y
pe
us
ed i
s
a
n
ext
e
rn
al
m
odul
at
o
r
, t
h
e
on
e
of e
x
t
e
r
n
al
m
odul
at
i
o
n i
s
M
Z
M
(M
ach
-Zeh
nde
r M
o
d
u
l
a
t
o
r),
i
t
i
s
use
d
i
n
m
a
ny
anal
og
opt
i
cal
l
i
n
k
s
c
a
use
s
charact
e
r
i
s
t
i
c
a hi
g
h
det
e
rm
i
n
i
s
t
i
c
nonl
i
n
eari
t
y
.
Opt
i
cal
m
odul
at
o
r
s
(ext
e
r
nal
an
d
di
rect
m
odul
at
or)
us
e
d
are
the
m
a
in sourc
e
s of nonlinear distortio
n in fiber link. Nonl
inear effects o
ccur
because t
h
e fre
quency s
h
ift of
the scattered light
has a
hi
gh electric
field
in
th
e
op
tical fib
e
r, th
at
rais
es the s
h
are
of energy a
b
s
o
rbed
or
losses. Response t
o
light
any dielectric
m
a
terial w
ill
b
e
no
n
linear to
stron
g
el
ectro
m
a
g
n
e
tic field
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dith
ering
Ana
l
ysis in
a
n
Ortho
gon
a
l
Frequ
e
n
cy
Divi
sio
n
Mu
ltip
lexin
g
Radio
o
v
er…. (Fa
k
h
r
iy
Ha
ri
o
P)
1
113
Non
lin
earity prop
erties
of the fib
e
r
b
e
co
me v
e
ry im
p
o
r
tan
t
to b
e
p
a
rt
of scien
tific stud
ies,
no
n
lin
earity on
gi
vi
n
g
e
v
i
d
e
n
c
e
of
t
h
e t
h
res
h
ol
d m
echani
s
m
s
t
o
t
h
e
am
oun
t
of
dat
a
t
h
at
c
a
n
be t
r
a
n
sm
i
tted
on a
si
n
g
l
e
opt
i
cal
f
i
b
e
r [1
]-
[2
].
In
p
r
ev
i
o
u
s
research,
o
p
tim
i
z
in
g
o
f
m
o
du
l
a
to
r R
o
F-LTE in
non
lin
ear
co
nd
itio
n u
s
i
n
g
nu
m
e
rical
sim
u
l
a
t
i
on, m
o
d
u
l
a
t
o
r u
s
ed
are i
n
t
e
r
n
al
m
o
d
u
l
a
t
o
r, e
x
t
e
r
n
al
m
odul
at
o
r
and
d
u
al
el
ect
ro
de m
odul
at
o
r
. T
h
e
ot
he
r pa
per
o
b
s
erve
d i
m
pact
of e
x
t
e
r
n
al
an
d
i
n
t
e
rnal
m
odu
l
a
t
o
r i
n
R
o
F sy
st
em
based o
n
fre
que
ncy
di
t
h
eri
n
g
to
p
r
ov
id
ing
h
i
g
h
po
w
e
r
budg
et. Co
m
p
en
sated
no
n
lin
ear
o
n
R
o
F also
ob
serv
es in
anoth
e
r
p
a
p
e
r
to
ach
i
ev
e
hi
g
h
p
o
we
r b
u
d
g
et
usi
ng
po
we
r gai
n
. The ot
her
pr
oject
pr
op
ose
s
t
o
i
nvest
i
g
a
t
e perf
orm
a
nce a
n
d
charact
e
r
i
s
t
i
c
OF
DM
base
d
on m
odul
at
i
on
fo
r R
o
l
f
[
1
]
,
[
3
]
,
[
4
]
.
A
m
odel
i
ng sy
st
em
t
o
achi
e
v
e
hi
g
h
per
f
o
r
m
a
nce b
a
sed
on
O
F
D
M
opt
i
cal
net
w
or
k a
n
d
i
n
t
r
od
uce a
no
vel
IC
I
(I
nt
er C
a
rri
er
I
n
t
e
rfe
re
nce)
re
duct
i
o
n
alg
o
rith
m
s
can
cellatio
n
un
d
e
r th
e v
a
riou
s chan
n
e
l env
i
ronm
en
ts h
a
s alread
y b
e
en
co
nsid
ered
in th
e literatu
re
[5]
,
[6]
.
This res
earc
h
focuses on
ditherin
g technique in ne
w m
ode
l syste
m
to improve optical
receiver
powe
r
an
d to
o
b
serv
e th
e im
p
act o
f
d
ith
er
fre
que
n
cy changing i
n
the nonlinear
ch
aracteristic o
f
op
tical fib
e
r. Th
is
characte
r
istic can
degra
d
e t
h
e
perf
orm
a
nce and
decreas
e syste
m
power.
T
h
ere
f
ore, the system
needs a
tech
n
i
qu
e to
so
lv
e th
e
prob
l
e
m
,
and
th
e tech
n
i
q
u
e
is
call
e
d ditheri
n
g. Ditheri
n
g
can
b
e
a so
l
u
tion
t
o
so
lv
e
nonlinea
r
proble
m
s
, becaus
e
one
of t
h
e c
h
a
r
acteristics
of ditheri
n
g
can be use
d
for affecting the
dy
nam
i
c
beha
vi
o
r
o
f
a s
y
st
em
, i
n
di
t
h
eri
n
g t
echni
qu
e,
t
h
e i
n
p
u
t
ext
e
r
n
al
l
y
noi
se o
r
s
i
gnal
wi
t
h
hi
g
h
and l
o
w f
r
e
q
u
e
ncy
in signal proce
ssing system
s to elim
in
ate the
effects of
nonlinearity, addi
ng am
plitude increase the line
a
rity
of the system
.
In
th
is p
a
p
e
r, we p
r
op
ose a n
o
v
e
l u
s
i
n
g
d
i
th
ering
techn
i
q
u
e
sine g
e
n
e
rato
r sou
r
ce, wh
ich
will be
ap
p
lied in th
e
n
e
w sch
e
m
e
sy
ste
m
. In th
is a
n
o
v
e
l
d
ith
eri
ng techn
i
qu
e is
ap
p
lied
with
two
m
o
du
lato
rs on
h
i
gh
so
urce frequ
e
ncy o
f
laser, coh
e
ren
t
d
e
tection
.
Th
is re
search
will o
b
s
erv
e
th
e i
m
p
act o
f
t
h
e p
r
op
ose tech
n
i
q
u
e
by
ap
pl
y
i
ng s
o
m
e
im
prove
di
t
h
eri
n
g
fre
que
ncy
t
ech
ni
q
u
e
i
n
fi
be
r, c
o
nsi
d
eri
n
g n
o
n
l
i
n
ear
i
t
y
charact
eri
s
t
i
c
s i
n
QAM
m
o
d
u
l
a
t
i
on sc
hem
e
. The resea
r
c
h
wi
l
l
use som
e
con
d
i
t
i
ons
f
d
> f
c,
f
d
= f
c,
f
d
< f
c,
f
d
(f
req
dithe
r)~f
c
(f
re
q
carrier)
ap
pl
i
e
d on OF
DM
-
R
oF
l
i
n
ks
t
o
sho
w
o
p
t
i
cal
pe
rform
a
n
ce in
terco
n
n
ected
with
m
o
b
ile cellu
lar
syste
m
. Si
m
u
la
tio
n
an
d m
easu
r
em
en
t will u
s
e b
a
sed
on
licen
se so
ft
ware Op
tisyste
m
1
3
.
0
an
d Matlab
2
0
1
0
a
.
2.
DITHERING SCHE
ME METHOD
Nonlinea
r cha
r
acteristic in one system
,
descri
b
e
d
no
nlin
ear
op
er
at
or
w
ith
inpu
t o
u
t
p
u
t
as
, Fi
gu
re 1 i
s
descri
be o
f
di
t
h
eri
n
g,
whe
r
e
i
n t
h
e sig
n
a
l
d
(
t) is th
e con
tin
uou
s ti
m
e
d
ith
ering
,
x(t
)
~
y
(t
) i
s
t
h
e i
nput
an
d out
put
si
g
n
al
of t
h
e n
onl
i
n
ea
r s
y
st
em
. The
m
a
t
h
em
at
i
cal for
m
ul
a of out
put
sy
st
e
m
is:
(1
)
whe
r
e
is th
e
i
m
p
u
l
se respon
se of th
e filter
, i
f
al
ready
get
t
i
ng a fo
r
m
ul
a of t
h
e si
ngl
e
-
i
n
put
si
ngl
e-
o
u
t
p
ut
, out
put
res
p
o
n
s
e
can
be
fi
ne
t
o
any
desi
re
d i
n
put
.
[
7
]
-
[
9
]
.
Fi
gu
re
1.
The
No
nl
i
n
ea
r Si
ng
l
e
Fre
que
ncy
f
d
C
o
m
pone
nt
af
t
e
r Pass
a
Hi
g
h
Fre
q
uency
Di
t
h
eri
n
g
The di
t
h
er
si
g
n
al
i
n
hi
g
h
fre
que
ncy
,
de
not
e
d
as
i
s
ex
pect
ed t
o
ha
ve a
fr
eque
ncy
hi
g
h
e
r
t
h
a
n
th
e
m
a
x
i
m
u
m
freq
u
e
n
c
y co
mp
on
en
t o
f
th
e
in
pu
t
, usual
l
y
t
h
e fun
d
am
ent
a
l
freque
ncy
of
or t
h
e
minim
u
m
frequency c
o
m
ponen
t
of Fou
r
ier tran
sform
is
hig
h
e
r th
an
t
h
e
in
pu
t sign
al
freq
u
e
n
c
y.
The
d
ith
er
i
n
g sign
al
can
be e
x
pre
ssed as
[
9
]
:
(
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
11
1
2
– 11
21
1
114
S
p
uri
o
us
Fi
gu
re
2.
N
o
nl
i
n
ear
C
o
m
pone
nt
aft
e
r
a
Hi
g
h
Fre
que
ncy
Di
t
h
eri
n
g
i
n
Si
n
g
l
e
Fre
q
uency
f
d
In
t
h
e
pa
rt
of
radi
o t
r
a
n
sm
i
t
t
er, si
g
n
al
ba
se
ban
d
o
n
si
ngl
e
car
ri
er m
o
d
u
l
a
t
i
ons a
r
e c
o
m
pos
ed
o
f
4-
QAM
can
be d
e
not
e
d
as
1
,......,
1
,
0
:
N
m
m
X
, where
m
is the sub-ca
rrier inde
x and
N
i
s
t
h
e num
ber of
sub-ca
rrier,
X(m)
are
t
h
en m
o
dul
at
ed
ont
o or
t
h
o
g
o
n
al
fre
q
u
e
ncy
di
vi
si
o
n
m
u
lt
i
p
l
e
xi
ng (
O
F
D
M
)
S
(
n
)
g
i
ven b
y
[1
0]
:
1
0
/
2
1
)
(
N
m
N
mn
j
e
m
X
N
n
S
(3
)
Whe
r
e
n
=
0,
1,
…
., N
-
1
i
s
a t
i
m
e dom
ai
n i
ndex. T
h
i
s
sy
st
em
used a com
p
o
n
e
n
t
of
OF
DM
OS
1
2
, t
h
e
val
u
e
o
f
roll of
f facto
r
r
can be arra
nged from
0 until 1. OFDM m
o
du
lation
resul
t
s 512 s
u
b-ca
rriers at M-QAM/PSK
p
o
s
ition
(QAM
/PSK
Ma
r
y
p
o
s
i
t
i
on)
a
n
d 10
2
4
poi
nt
s of FF
T.
T
h
e
M
Z
M
b
a
sed o
n
EM
ca
n be fo
rm
ul
at
ed
as:
(4)
whe
r
e
and
are t
h
e o
u
t
p
ut
an
d i
n
put
opt
i
cal
fi
el
ds m
odul
at
or
, res
p
ect
i
v
el
y
i
s
bi
asi
ng v
o
l
t
a
ge,
is h
a
lf-wav
e
vo
ltag
e
an
d th
e
po
wer is
2
dB
m
lev
e
l fo
r co
n
s
isten
c
y. The equ
a
tio
ns that d
e
scri
b
e
th
e
beha
vi
o
r
of
t
h
e
M
Z
m
odul
at
o
r
are:
(5
)
Whe
r
e
is the
phase
differe
n
ce
betwee
n t
w
o
branc
h
es a
n
d
re
prese
n
ted as
follows:
(
6
)
with
and
i
s
t
h
e si
g
n
a
l
pha
se c
h
an
g
e
de
fi
ne
d as:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dith
ering
Ana
l
ysis in
a
n
Ortho
gon
a
l
Frequ
e
n
cy
Divi
sio
n
Mu
ltip
lexin
g
Radio
o
v
er…. (Fa
k
h
r
iy
Ha
ri
o
P)
1
115
)
(7
)
Achi
e
v
i
n
g
par
a
m
e
t
e
r of
SC
i
s
-
1
i
f
ne
gat
i
v
e
si
gnal
c
h
i
r
p i
s
t
r
ue a
n
d
1 i
s
f
a
l
s
e,
extrat
is t
h
e ex
tin
ction
rat
i
o
, SF i
s
sy
m
m
e
t
r
y
fact
or,
and m
odul
at
i
on
(t
) i
s
t
h
e el
ect
ri
cal
i
nput
s
i
gnal
n
o
rm
al
i
z
ed bet
w
een
0
and
1.
SM
F 2
8
use
d
i
n
t
h
e o
p
t
i
cal
fi
ber
.
The c
h
a
r
act
eri
s
t
i
c
s of
SM
F base
d o
n
com
pone
nt
fo
r effect
i
v
e are
a
and
wavel
e
ngt
h
ha
ve i
m
port
e
d
f
r
o
m
Opt
i
F
i
b
er
2 S
o
ft
ware
as s
h
o
w
n i
n
t
h
e
Fi
gu
re
3.
Fi
gu
re
3.
O
u
t
p
ut
o
f
N
onl
i
n
ea
r
C
o
m
pone
nt
f
o
r E
ffect
i
v
e
A
r
e
a
an
d
Wavel
e
n
g
t
h
3.
SIM
U
LATI
O
N
RESULTS
AN
D A
NAL
Y
S
IS
Anal
y
s
i
s
o
f
pe
rf
orm
a
nce sy
st
em
i
s
vi
ewed
fr
om
t
h
e powe
r
o
u
t
p
ut
eve
r
y
bl
oc
k o
f
t
h
e
OF
DM
-R
o
F
syste
m
and in the
receive
r..
The c
o
nfiguration system
and
out
put
powe
r of eac
h
step
and bl
ock dia
g
ra
m
syste
m
OFDM
-RoF injected
d
itheri
n
g conc
ept can be
see
n
in Ta
ble
1 a
n
d Figure
4.
Fi
gu
re 4.
B
l
oc
k Di
ag
ram
of OF
DM
-R
o
F
us
i
ng Di
t
h
e
r
Sc
h
e
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
11
1
2
– 11
21
1
116
Tab
e
l 1
.
Data Si
m
u
latio
n
F(
T
h
z
)
Pow
e
r
(dB
m
)
AF
T
E
R
DI
THE
R
BE
F
O
RE
DI
T
H
E
R
6.4
2
0
6
.
406
3.5
7
8
6.3
9
6
‐
6.4
2
6
50
10
0
19
3
.
1
20
0
Figure
5. Optical Launch Powe
r
bef
o
re
an
d a
f
ter
Ditheri
n
g
Figure
6. Subs
yste
m
Receiver
Optical Loop
and Fibe
r Le
ngth
Para
m
e
ter Value
Bit Rate
10 Gbps
M
odulation Form
at
16-
QAM
Sequence L
e
ngth
1638
4
Sam
p
le per Bit
8
Sa
m
p
le rate
80
GHz
Fr
equency
C
W
L
a
ser
193.
1 T
H
z
CW
L
a
se
r P
o
w
e
r
9 dBm
Extinction Ratio
60 dB
Switching Bias and RF Voltage
4 dB
SM
F 5,
10,
50
k
m
Attenuation
0.
2 dB/k
m
Local Oscilla
tor P
o
wer
Sine Pulse Generator
and Pulse M
odulator
Fr
eq
-2
d
B
m
50,
100,
193.
1 (
T
Hz)
&
100 GHz
L
i
newidth 10
M
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dith
ering
Ana
l
ysis in
a
n
Ortho
gon
a
l
Frequ
e
n
cy
Divi
sio
n
Mu
ltip
lexin
g
Radio
o
v
er…. (Fa
k
h
r
iy
Ha
ri
o
P)
1
117
Fi
gu
re 5 a
nd F
i
gu
re 6 ex
pl
ai
ns res
u
l
t
m
easurem
ent
of O
p
t
i
cal
Power M
e
t
e
r (OPM
) aft
e
r o
u
t
p
ut
o
f
t
h
e m
odul
at
o
r
M
Z
M
wi
t
h
c
o
nst
a
nt
val
u
e
-
6
.4
26
dB
m
.
Hi
g
h
fre
que
ncy
ha
s bee
n
a
p
pl
i
e
d
i
n
t
h
i
s
sy
st
em
, t
h
e
out
put c
o
m
b
ines of two
m
odulators
will be injecte
d
by signal si
ne ge
ne
rator
using ~use
r
defi
ne
d
pse
u
dora
ndom
~ as a source signal, after tha
t
signal
will com
b
ine in the
m
odulat
or MZ
M. The
m
easurem
ent
use
d
di
t
h
e
r
i
n
g
resul
t
s
as
fol
l
ows
6.
4
2
0
dB
m
at
frequ
enc
y
of
10
0 T
H
z,
3.
57
8
dB
m
~19
3
.
1
T
H
z a
n
d 6
.
3
9
6
dB
m
~
200
T
H
z.
Whi
l
e
use
d
t
h
e
sam
e
fre
que
ncy
19
3.
1
THz
f
d
=
f
c
fo
r
di
t
h
e
r
i
n
g, t
h
e
po
we
r i
s
not
si
gni
fi
cant
to
in
crease t
h
en
co
nd
ition
f
d
>
f
c,
f
d
< f
c
, th
is con
d
ition
cau
s
ed
b
y
th
e in
terferen
ce b
e
tween
freq
u
e
n
c
ies wh
ich
resul
t
e
d i
n
t
h
e
red
u
ct
i
o
n an
d
m
u
t
u
al
i
n
t
e
r- fr
eque
ncy
at
t
e
nu
at
i
on, t
h
e
r
e are
som
e
channel
s
are m
i
ssi
ng. B
e
si
de
of
t
h
at
,
d
u
e al
so
di
t
h
e
r
si
g
n
a
l
i
s
ser
v
i
n
g as
t
h
e acc
um
ul
ator
p
h
ase
val
u
e
s
be
fo
re
f
u
rt
he
r
qua
nt
i
zat
i
o
n
of
t
h
e
accum
u
lated result. T
h
is dit
h
eri
ng
of the
recurre
nce
a
r
ound t
h
e
unm
odulated quality results in a
m
o
re
ext
e
nsi
v
e sc
op
e o
f
opt
i
cal
f
r
e
que
nci
e
s
bei
n
g
avai
l
a
bl
e al
on
g t
h
e
fi
ber l
e
n
g
t
h.
(a)
(b)
(c)
(d)
Figu
re 7.
a) Sp
ectrum
befo
re Dith
eri
n
g b) Spectrum
after Dith
eri
n
g F
d
100 T
H
z c) Spe
c
trum
after Dit
h
eri
n
g
F
d
193.1 T
H
z
d) Spectrum
after Dithe
r
ing F
d
20
0 TH
z
Fig
u
re 7
sho
w
s th
e co
nd
ition sp
ectru
m
after an
d
b
e
fo
re
d
ith
eri
n
g
for cond
itio
n
co
nd
ition
f
d
> f
c,
f
d
=
f
c,
f
d
< f
c
, th
at is sh
owing
constan
t
o
f
am
p
lit
u
d
e
d
ith
er sh
ou
ld
b
e
un
co
rrelated
in
ti
me,
u
n
c
orrelated
with
th
e
an
alog
si
g
n
a
l
an
d co
n
s
tan
t
i
n
am
p
litu
d
e
.
Wh
ile t
h
e cond
itio
n is an
f
d
=
f
c
, th
er
e
is
ha
v
i
ng
a r
e
cu
rre
n
c
e
and
ove
rl
ap
, i
n
t
h
i
s
way
di
t
h
e
r
i
n
g
fram
e
wor
k
ca
n
'
t
run su
pe
rbl
y
whe
n
t
h
e
r
e i
s
n
o
d
o
m
i
nant
fre
que
ncy
.
If
f
d
>
f
c
, it
will n
o
t
in
du
ce th
e effect o
f
f
d
because si
nce the laser is as
m
odulated and chirpe
d by S
RF
(t). Th
e best
ach
iev
e
m
e
n
t
s for
b
a
seb
a
nd
co
nd
itio
n is f
d
< f
c
,
fo
r t
h
e
b
a
seba
nd
sy
st
em
[11]
, co
n
d
i
t
i
on {
f
d
>
f
m
} i
s
b
e
i
ng
requ
ired
as the b
a
seband
sign
al, it will b
e
fo
cu
sed
to
th
e d
i
rect curren
t
. Detail ach
ieve
m
e
n
t
s o
f
d
ithering
spect
r
u
m
aft
e
r
pass on fi
ber
l
e
ngt
h
5 km
, 10 km
and 50 k
m
wi
t
h
f
d
100
THz, 1
9
3
.
1 T
H
z an
d 20
0 T
H
z i
s
sh
own
Fi
g
u
re 8
u
n
til
Figure 1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
11
1
2
– 11
21
1
118
(a)
(
b
)
(c)
Figure
8. RF Spectrum
in Receiver
Fiber 5 km
after Ditheri
n
g a) F
d
10
0 T
H
z b)
F
d
19
3.
1
THz a
n
d c)
F
d
20
0
THz
(a
)
(
b
)
(c)
Figure
9. RF Spectrum
in Receiver
Fiber 10
km
after Dithe
r
ing a) F
d
10
0 TH
z b
)
F
d
19
3.1
TH
z and
c) F
d
20
0
THz
(a)
(b)
(c
)
Figure
10. RF
Spectrum
in Receiver
Fibe
r
50
km
after Dithering a) F
d
10
0 TH
z b)
F
d
193.1
TH
z and
c)
F
d
20
0 THz
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dith
ering
Ana
l
ysis in
a
n
Ortho
gon
a
l
Frequ
e
n
cy
Divi
sio
n
Mu
ltip
lexin
g
Radio
o
v
er…. (Fa
k
h
r
iy
Ha
ri
o
P)
1
119
(a)
(
b
)
(c)
Fi
gu
re 1
1
. N
o
n
l
i
n
ear
Im
pact
a
f
t
e
r usi
n
g Fre
q
uency
Di
t
h
e
r
i
n
g
Based
on
ou
t
p
u
t
o
f
op
tical sp
ectru
m
an
aly
zer
th
at w
a
s
gen
e
r
a
ted
b
e
f
o
re th
e op
tical si
g
n
a
l thr
ough
si
ngl
e m
ode
f
i
ber, at
t
h
e ca
rri
er
o
f
19
3.
1
G
H
z an
d
fre
que
ncy
di
t
h
eri
n
g
1
0
0
G
H
z
sho
w
s
t
h
e
po
wer i
s
app
r
oxi
m
a
t
e
ly
17
.3
7
1
dB
m
at 5 km
, 16.
3
71
dB
m
~ 10 km
and
8.
3
71
dB
m
~
50 km
, used 1
9
3
.
1
THz
sho
w
s
po
we
r 1
3
.
3
9
9
dB
m
~
5 k
m
,
12
.3
5
6
dB
m
~ 10
km
, 4.3
3
dB
m
~
50 km
, t
h
e l
a
st
po
w
e
r o
f
ap
pr
o
x
i
m
at
ely
13
.3
2
0
dB
m
~
5
km
, 16.
3
7
1
d
B
m
~
10
km
and
8
.
3
7
1
dB
m
~
50
km
fo
r f
d
20
0 T
H
z
B
E
R
an
d SER
res
u
l
t
0.
33
and 0.
78
f
d
1
0
0
THz an
d fi
b
e
r l
e
ngt
h 5 km
, 0.
36 a
nd 0
.
8
4
fi
ber l
e
n
g
t
h
1
0
km
and 0.5
4
and 0
.
9
4
fi
be
r
l
e
ngt
h
50 km
.
The ot
h
e
r
fi
b
e
r
l
e
ngt
h and f
d
19
3.
1 T
H
z we
get
B
E
R
and
SER
0.
3
5
an
d
0.
8
2
~
5
km
, 0.3
3
a
nd
0
.
7
68 ~
10 km
,
0.
47
8
a
nd 0.
9
2
~
50 k
m
.
f
d
200 T
H
z
B
E
R
an
d SE
R
get
val
u
e 0
.
3
5
a
nd
0.
8
2
~
5
km
, 0.4
3
a
nd
0
.
8
84
~
10
km
, 0.
5
2
a
n
d
0.
93
~
50
km
.
Fi
gu
re 1
1
sh
o
w
s t
h
e im
pact
of n
onl
i
n
ea
r fi
ber
pr
opa
gat
i
on aft
e
r usi
n
g
a di
t
h
er t
echni
q
u
e t
h
at
t
o
calculate of
nonlinea
rity im
pact using
num
erical
m
e
thod
Split-St
ep Fourier M
e
thod (SSFM
) wit
h
n
o
n
lin
ear
ity f
acto
r
(g
amm
a
)
i
s
0
.
0
0
3
W
/
m
,
d
ith
er
f
r
e
qu
ency u
s
ed
ar
e (
a
)
10
0
TH
z, (b
) 1
9
3
.
1
TH
z, (
c
)
200
TH
z, each
th
e p
o
w
e
r
o
f
v
a
lu
e is 4
.
38
4
E-
3
W
,
2.279
E-3
W
,
4.361
E-3
W
.
Th
e b
e
st po
w
e
r
in
5
k
m
i
s
1
7
.371
dB
m
,
16.
37
1
d
B
m
~
10 km
and 8
.
3
7
1
dB
m
~
50
km
, ope
rat
e
d o
n
f
d
= 1
0
0
THz.
In t
h
e
ot
her sc
hem
e
wi
t
h
o
u
t
di
t
h
eri
ng t
e
c
h
n
i
que, i
n
19
3.
1
THz t
h
e
p
o
we
r
app
r
oxi
m
a
t
e
ly 5
km
~
1.43
E
-
3
W,
1
0
km
~
1.
12
E-
3
W a
nd
5
0
km
191
.1
2
7
E
-
6
W.
Ho
we
ver
,
f
r
eq
uency
di
t
h
eri
n
g co
ul
d i
n
c
r
ea
se t
h
e
pe
rformance of t
h
e
syste
m
, the re
sults of the
sim
u
l
a
t
i
on aft
e
r ap
pl
i
e
d di
t
h
e
r
t
echni
que s
h
owe
d
a co
nsi
s
t
e
ncy
of c
o
n
d
i
t
i
on f
d
< f
c
is th
e b
e
st cond
itio
n
t
o
pr
o
duce
bet
t
e
r
po
we
r, t
h
e am
ou
nt
of
val
u
e f
d
i
s
i
n
fl
u
e
nce
d
t
o
t
h
e val
u
e of out
put
p
o
we
r.
4.
CO
NCL
USI
O
N
In t
h
i
s
pa
per
,
d
i
t
h
er m
e
t
hods
were
has s
h
o
w
n m
i
t
i
g
at
i
on re
sul
t
of t
h
e n
o
n
l
i
n
ear ef
fect
i
n
t
h
e sy
st
em
.
We
discovere
d
this m
e
thod ca
n inc
r
ease
OL
P if c
o
ndition is achie
ved
f
d
< f
c
.
Ho
wev
e
r, all co
nd
itio
n
s
reach
a
h
i
gh
ef
f
i
cien
cy
and
go
od
pow
er, in wh
ich
th
e OLP
op
er
ated
6.396
d
B
m/4
.
361
E-
3
W
~ f
d
20
0 THz
,
3.
57
8
dB
m
/
2.27
9 E
-
3
W ~
f
d
19
3.
1
THz
an
d
6.
4
2
0
dB
m
/
4.33
84
E-3
W ~
1
0
0
T
H
z.
The
be
st
B
E
R
achi
e
ved
i
n
0.
3
3
and
SER
0.
7
8
at
5
km
~
f
d
1
0
0
T
H
z,
0
.
3
3
a
n
d
0.
76
8
f
o
r
1
0
km
~
f
d
19
3.1
TH
z, 0.478
and
0
.
9
2
fo
r 50
km
~ f
d
19
3.
1 THz
,
t
h
i
s
resul
t
i
ng t
h
at
t
h
e sy
st
em
i
n
creased
1.
55%
~
1
9
3
.
1
THz
,
2
%
~
100 T
H
z, 1.
99
% ~
200 T
H
z o
f
i
t
’
s perf
o
r
m
a
nce. The si
g
n
al
pro
d
u
ces an
opt
i
cal
si
gnal
wi
t
h
fe
wer ha
r
m
oni
c i
n
t
h
e si
deba
nd
s, w
h
i
c
h t
h
e
co
nd
itio
n o
c
curs b
ecau
s
e t
h
ere are sim
ilarit
i
es o
f
freq
u
ency d
ith
ering
an
d
frequ
en
cy
carrier o
f
th
e sig
n
a
l.
Ap
pl
y
i
ng
o
f
di
t
h
eri
n
g m
e
t
hod
i
n
t
h
e sy
st
em
can re
d
u
ce nonlinear cha
r
acte
r
istics, thus t
h
e
OFDM-RoF s
y
ste
m
at 1
6
-QAM m
o
du
latio
n wit
h
d
ith
eri
n
g is better th
an
with
out d
ith
eri
n
g syste
m
.
REFERE
NC
ES
[1]
T. Kan
e
san,
et al.,
“
O
ptim
izati
on of Optic
al
Modulator for
LTE RoF in
Nonline
a
r Fiber
Propagation
,
”
IEEE
Photonics
Techn
o
logy Letters
, vo
l/issue: 24
(7), 20
12.
[2]
D. S. P. Karthikey
a
n,
“OFDM
Signal Improvement Using Radi
o over Fiber for Wi
re
le
ss Sy
ste
m
,
”
IJCNWC
, vol. 3
,
pp. 287-291
, 20
13.
[3]
T. Kanesan
,
et a
l
.,
“
I
nvestig
ation
of Optical Mod
u
lators in Optim
ized Nonlin
ear
Com
p
ens
a
ted L
TE RoF
S
y
s
t
em
,
”
IEEE Journal of
Lightwave Tech
nology
, vol/issue: 32(10), 2014.
[4]
T. Kan
e
san,
et al.,
“
O
ptim
izati
on of Optic
al
Modulator for
LTE RoF in
Nonline
a
r Fiber
Propagation
,
”
IEEE
Journal of Lightwave Technolog
y
, vol/issue: 24(
7), pp
. 617-619
,
2012.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
11
1
2
– 11
21
1
120
[5]
B. U. Rindhe,
et al
., “Implementation of
Optical OFDM Ba
sed S
y
stem
for Optical Networks”,
IJ
E
C
E
(
International Jo
urnal of
Electr
ical and Computer Engin
eering
)
,
v
o
l/issue: 4
(
5), 20
14.
[6]
A.
H.
Sharief,
et al
.,
”An Improved ICI Self Can
cellation Scheme for OFDM Sy
st
ems Under V
a
rious Chann
e
ls,”
IJECE
(
International Journal of
Electr
ica
l
and
C
o
mputer Engin
e
ering
), vo
l/issue: 6(2), 2016.
[7]
Y. Wong,
et al
., “
P
erform
ance Anal
y
s
is
of the OF
DM S
c
hem
e
for Wireless o
v
er Fiber Communication Link
,”
IJCTE
, vo
l/issue: 4(5), pp. 807-8
11, 2012
.
[8]
S
.
M
a
hajan and
N. Kum
a
r, “P
erform
ance Anal
y
s
is
of
Coded OFDM
Signal for Radi
o over Fiber Transmission,”
IOSRJEEE
, vol/issue: 1(1), pp. 4
9
-52, 2012
.
[9]
R. Karthik
e
y
a
n
and S. Prakasam, “A
Review – OFDM-Ro
F
(
R
adio over Fi
b
e
r) S
y
stem for
Wireless Network,”
IJRCCT
, vo
l/iss
u
e: 3(3)
, pp
. 344
-349, 2014
.
[10]
A. A. Gurphh Sin, “
O
FDM
Mod
u
lation Stud
y
fo
r a Radio-ov
er-Fiber
S
y
st
em
for W
i
reless LAN (IEEE 802
.11a)
,
”
ICICS-PCM IEEE
, pp
. 1460-146
4, 2003
.
[11]
C. Koebel
e,
et
al
., “
N
onlinea
r Eff
ects in Mode-Di
v
ision-Multipl
e
x
e
d Transm
ission Over Few-Mode Optica
l
Fiber
,
”
IEEE Photon
ics
Technology
Letter,” vol/issue: 23
(18), pp
. 1316-1
318, 2011
.
BIOGRAP
HI
ES OF
AUTH
ORS
Fakhriy
Har
i
o P was born in 198
4. He received
the Bachelor deg
r
ee in 2008 and
M.Eng degree
in 2010 from Br
awijay
a
Univ
ersity
, Indonesia. C
u
rrent
ly
, He is Ph.D candidate at Gadjah Mada
Universit
y
. He
was a student
m
e
m
b
er of th
e
IEEE
Indonesia
Section
in 201
4. His curr
ent
research
is focu
sed and dev
e
lo
ps in Nonlin
ear
i
ty
Fiber
,
Rad
i
o ove
r Fiber,
OFDM,
Rama
n
Scattering, and
Mobile
Communication Model
usi
ng Monte C
a
r
l
o method.
Prof (Emeritus)
Adhi Susanto. He receiv
e
d B
.
Sc Ph
y
s
ic in
1
964 Gadjah Mada University
,
Indonesia,
and the M.Sc degree
in
electrical engineering in 1966
from University
of California,
Davis
,
US
A and the P
h
.D. degre
e
als
o
el
ectr
i
ca
l
e
ngineering at University
of California, Dav
i
s,
USA in 1986. He is Prof (Emeretus) in Gad
j
ah
Mada Univers
i
ty
. R
e
search
ar
eas Electron
i
cs
Engineering, Im
age Processing,
Signal Processin
g
, Adaptiv
e S
y
st
em
, Classific
a
tio
n and Pattern
Recognition Techniques.
I Way
a
n
Must
i
k
a
.
,
Ph.
D
.
He
re
ce
i
v
e
d
t
h
e
B.E
n
g.
de
gree
i
n
el
ec
tri
c
al
e
ngi
ne
e
r
i
n
g from Ga
dj
a
h
Mada University, Indonesia, in 2
005, and the M.
Eng. degr
ee in computer engineering from King
Mongkut’s Institute of
T
echnol
og
y
Ladkr
abang
(KMITL),
Thailand
, in
2008,
and th
e Ph.D
.
degree in infor
m
atics from Ky
oto University
,
Japa
n, in 2011. He is currently
a Lectur
er at
Gadjah Mada Universit
y
. He w
a
s a Student Ac
tivit
ies Advisor of IEEE Indone
sia Section in
2014 and he
is
currently
a Secr
etar
y
of
IEEE I
ndonesia Sectio
n. His rese
arch interests in
clud
e
smart sy
stems, machine-to-m
achine communications,
and reso
urce management in cognitive
radio
and heter
ogeneous networks with a par
ticular
emphasis
on spect
rum sh
aring
and game
theor
y
. He re
cei
ved the Young Research
er’s Encouragem
ent A
w
ard from
IEEE VTS Japan in
2010 and Stud
en
t Paper
Award fr
om IEEE Kansai S
ection in
2011. He is
a member
of the IEEE.
Dr. S
holeh H
a
d
i
P
is
th
e Depu
t
y
Dean
of
the
facul
t
y
eng
i
ne
er
ing Brawi
j
a
y
a
Univers
i
t
y
.
He
received the B.Eng. degree in
electr
i
cal engineer
ing from Brawija
y
a
University
,
Indonesia, and
the M.Sc d
e
gree in electrical
en
gineer
ing from
University
of In
donesia,
and th
e Ph.D. degr
ee
als
o
ele
c
tri
c
a
l
e
ngineer
ing in Univers
i
t
y
of Ind
ones
i
a. He is
cu
rrentl
y
a L
e
c
t
ur
er at Brawij
a
y
a
University
and
colloborotion pr
oject with the
I
ndonesian Institute of Science
on fiber optic
m
a
jor. Res
e
a
r
ch
areas
E
l
ec
troni
cs
Engine
ering,
Optical Fiber, S
i
gnal
Processing, Antenna
and
Telecommunication.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dith
ering
Ana
l
ysis in
a
n
Ortho
gon
a
l
Frequ
e
n
cy
Divi
sio
n
Mu
ltip
lexin
g
Radio
o
v
er…. (Fa
k
h
r
iy
Ha
ri
o
P)
1
121
Dr Sevia M.
Idrus is the
Deputy
Dire
cto
r
Innovation of the UTM I
nnovation and
Comme
rc
i
a
l
i
s
a
tion Ce
nt
re
a
nd
fa
c
u
lty
me
mbe
r
of
the Faculty of Electr
ical Engineer
ing and
Infocom
m
Res
earch Al
lian
c
e
,
UTM
.
S
h
e re
ce
i
v
ed her
Bach
el
or in
Ele
c
tri
c
a
l
Engine
ering
in
1998 and Master in Engin
eer
ing
Management
in
1999, both f
r
o
m
UTM. She obtain
e
d her Ph.D
in 2004 from
the University
o
f
Warwick
,
United
Kingd
om in opt
ical communicatio
n
engineering. She has served UTM since 1998 as
an
academic an
d
administra
tive
staff. Her mai
n
res
earch
inter
e
s
t
s
are optic
al co
m
m
unication s
y
stem and network, optoe
lectronic design, and
engineering man
a
gement. H
e
r research outpu
t has
been trans
l
at
ed
into
a number o
f
publications
and IPR inclu
d
ing a h
i
gh-en
d refer
e
nce bo
oks, ‘Optical
Wireless Communication: IR
Connectiv
ity
’
p
ublished b
y
Taylor and
Fr
ancis
,
49 book
chapters and monogr
aphs, over
150
techn
i
cal p
a
pers, 2 paten
t
s granted, 35
pa
tent filin
g
s and holds
28
UTM cop
y
rights
.
Evaluation Warning : The document was created with Spire.PDF for Python.