Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 14
12
~
1
420
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.1
016
7
1
412
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Evalu
a
ti
on of P
o
wer Quality
Issues in Grid Connected
PV Systems
Gunjan Vars
hney
1
, D
.
S
.
Cha
u
ha
n
2
, M.
P.
D
a
v
e
3
1
Depart
em
ent o
f
El
ectr
i
c
a
l
Engi
neering
,
UTU,
I
ndia
2
Depart
em
ent o
f
El
ectr
i
c
a
l
Engi
neering
,
GLA U
n
ivers
i
t
y
,
Indi
a
3
Departement of Electrical
Engineering,
AKGEC,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 14, 2016
Rev
i
sed
May 23
, 20
16
Accepted
Jun 15, 2016
This paper pres
ents complete s
i
mulation
,
modeling and contro
l of three-
phase grid
conn
ected solar
Photo Volta
ic (PV)
module includin
g
evaluation
of various power quality
iss
u
es. A
ll the steps involved in complete
simulation of three-phase gr
id
conn
ected PV module are pr
esented
and
discussed in detail. Perturb and Ob
serve (P&O)
method has been used for
Maximum Powe
r Point Tr
ackin
g (MPPT). In the proposed model DC bus
voltag
e
control
,
harm
onic m
itiga
tion and power
factor con
t
rol ar
e discussed
as
power quali
t
y
is
s
u
es
. T
h
e s
i
m
u
lati
on results
are shown in the graphical
waveforms and
are p
e
rformed in
MATLAB using SIMULINK
environment
and PSB toolbox
es.
Keyword:
Ir
radiatio
n
MPPT
Pho
t
ov
o
ltaic
THD
UPF
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Gunjan Va
rs
hney,
Depa
rtem
ent of Elect
ri
cal
E
n
gi
nee
r
i
n
g,
Uttarakh
an
d Tech
n
i
cal
Un
i
v
ersity (UTU),
U
ttar
a
kh
an
d 24
800
7,
I
n
d
i
a
Em
a
il: v
a
rshn
ey.g
auri@g
m
a
il
.co
m
1.
INTRODUCTION
Due t
o
i
n
c
r
ea
sed aut
o
m
a
ti
on, n
o
w
we al
l
have bec
o
m
e
heavi
l
y
depe
nde
nt
o
n
el
ect
ri
cal
energy
.
Su
rely, we all
h
a
v
e
to
look
for th
e altern
ate
so
urces
o
f
ene
r
gy as the
fossil fuels a
r
e di
m
i
ni
shi
ng wi
t
h
t
h
e
t
i
m
e
and som
e
tim
e
s-conventional
en
ergy s
o
urc
e
s are
not ca
pable to m
eet
the
peak l
o
ad
requirem
ent. Due t
o
li
mitatio
n
s
o
f
fo
ssil fu
els and
en
v
i
ron
m
en
tal
issu
es, it is n
e
cessary to
p
a
y atten
tio
n
towards n
on-conv
en
ti
o
n
a
l
en
erg
y
so
urces. Man
y
research
effo
rts h
a
v
e
b
e
en
m
a
d
e
and
still go
ing
on
in th
e field
o
f
non
-co
n
v
e
ntio
n
a
l
energy sources
. Renewa
ble ener
g
y
sou
r
ce i
n
so
lar form
is
th
e
m
o
st i
m
p
e
rative sustainable energy sourc
e
as it
is the e
ndless
s
o
urce
of ene
r
gy.
In t
h
i
s
pa
pe
r sol
a
r PV m
o
d
u
l
e
has bee
n
m
o
del
l
e
d usi
ng M
A
TL
AB
wi
t
h
M
PPT co
nt
r
o
l
l
e
r an
d VSC
co
n
t
ro
ller wit
h
con
s
tan
t
an
d variab
le irrad
i
atio
n
level and
refrence cited therein [1]-[10].
Seve
ral
i
nvest
i
g
at
i
o
ns
on
M
PPT m
e
t
h
o
d
s a
nd t
h
ei
r
com
p
ari
s
o
n
hav
e
b
een
carried
ou
t
with
grid in
teg
r
ation
also
[7
]-
[1
8]
. In t
h
i
s
pa
per
,
an at
t
e
m
p
t has been m
a
de t
o
ach
i
e
ve M
PPT usi
ng P&
O al
go
ri
t
h
m
,
DC
bus v
o
l
t
a
ge cont
ro
l
and Unity Power Fact
or
(UPF) at
th
e gr
id
side u
s
i
n
g Syn
c
h
r
o
nou
s Ref
e
r
e
nce Fr
am
e th
eory (
S
RF).
Apa
r
t from
above iss
u
es,
power
quality
also plays a ve
ry im
portant ro
le
in gri
d
connected PV
base
d
energy system
s
beca
use
powe
r el
ect
ro
ni
c
bas
e
d c
o
n
v
ert
e
rs a
r
e t
o
be
use
d
f
o
r M
PPT a
n
d
g
r
i
d
c
o
n
n
ect
i
o
n
[1
9]
-
[23]. Due to t
h
e nat
u
re
of t
h
ese co
nv
erters, th
ey in
j
ect h
a
rm
o
n
i
cs to
th
e syste
m
an
d
d
i
min
i
sh
th
e com
p
le
te
p
e
rform
a
n
ce [2
1
]-[2
3
]
. Majorly th
e
p
o
wer
q
u
a
lity is rela
t
e
d
to th
e wave sh
ap
e
d
e
formatio
n
or
d
i
sto
r
tion
.
Differen
t
issu
es are inv
o
l
v
e
d
in
po
we
r qu
ality su
ch
as
h
a
rm
o
n
i
c an
alysis
, DC lin
k
vo
ltag
e
reg
u
l
ation
,
p
o
wer
facto
r
correcti
o
n etc.
[21
]
-[25
]. Th
e
workab
ility o
f
th
e propo
sed m
o
d
e
l to
ev
alu
a
te an
d con
t
ro
l th
e po
wer
q
u
a
lity issu
es
h
a
v
e
b
e
en
con
f
irm
e
d
b
y
th
e
basic m
o
d
e
ls availab
l
e in
Sim
u
lin
k
an
d SPS t
o
o
l
b
o
x
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eva
l
ua
tion
o
f
Po
wer Qu
a
lity Issu
es
in
Gri
d
Co
nn
ected
PV S
y
stems
(Gu
n
j
a
n
Va
rshn
ey)
1
413
2.
SCHE
MATIC REPRESE
N
TATION
Fi
gu
re 1 s
h
o
w
s t
h
e ba
si
c ci
rcui
t
arra
ng
e
m
ent
fo
r the
gri
d
connecte
d
solar P
V
syste
m
s. Powe
r
el
ect
roni
c
base
d DC
-DC
bo
os
t
con
v
ert
e
r i
s
u
s
ed t
o
st
e
p
u
p
and
re
gul
at
e t
h
e out
put
DC
v
o
l
t
a
ge o
f
P
V
m
o
d
u
l
e
.
Du
ty cycle (D) of
b
o
o
s
t co
nv
erter is con
t
ro
lled
with
th
e h
e
lp
o
f
MPPT con
t
ro
l alg
o
rith
m
to
p
u
ll o
u
t
t
h
e
m
a
xim
u
m
pow
er f
r
om
sol
a
r P
V
m
odul
e. T
h
e
t
h
ree
-
p
h
ase i
n
vert
er
i
s
use
d
t
o
co
n
v
ert
t
h
e o
u
t
p
ut
DC
vol
t
a
ge o
f
bo
ost
c
o
n
v
e
r
t
e
r i
n
t
o
ac
vol
t
a
g
e
an
d t
h
e
n
i
t
i
s
co
nnect
e
d
t
o
t
h
ree
-
p
h
ase
g
r
i
d
.
P
u
l
s
e wi
dt
h
m
odul
at
i
on
(P
WM
)
cont
rol
l
e
r c
o
nt
rol
l
e
d
by
Sy
n
c
hr
o
n
o
u
s
refe
re
nce f
r
am
e t
h
eory
has
bee
n
u
s
ed f
o
r
t
h
e s
w
i
t
c
hi
n
g
of
IGB
T
base
d
i
nve
rt
er [1
7]
-[
18]
.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
repres
nt
at
i
o
n
3.
MODELLING OF SOL
A
R PV CELL
AND ARRAY
The el
ect
ri
cal
equi
val
e
nt
m
odel
of s
o
l
a
r cel
l
i
s
show
n i
n
t
h
e Fi
g
u
re
2 [
2
]
-
[
3
]
.
It
s eq
uat
i
ons
rel
a
t
e
d t
o
the I-V cha
r
act
eristics are e
xpre
ssed
in th
e
follo
wing
[2
],[3
]
:
(1
)
whe
r
e
I = So
lar cell
o
u
t
p
u
t
curren
t
; V =
So
lar cell ou
tpu
t
vo
ltag
e
; I
0
=
Diod
e satu
ration
cu
rrent,
q = C
h
ar
ge
o
f
an
electro
n (1
.6
02x
10
-19
C); A
= Diod
e qu
ality
facto
r
,
k
= B
o
ltzm
a
n
co
nstan
t
(1
.381
x10
-23
J/K); T = Ab
so
lu
te tem
p
eratu
r
e (K)
R
s
= Series
resi
stan
ces
o
f
th
e so
lar cell; R
SH
= Shun
t resistances of th
e so
lar cell
Si
nce i
n
t
h
e P
V
m
odul
e, s
o
m
e
sol
a
r cel
l
s
are co
n
n
ect
ed
i
n
seri
es a
n
d s
o
m
e
are i
n
pa
r
a
l
l
e
l
t
o
m
a
t
c
h
th
e requ
irem
en
ts o
f
th
e
grid
.
Th
e
ou
tpu
t
I-V
cha
r
acteristics of a
PV m
o
dul
e
are
give
n
by:
(2
)
whe
r
e n
p
an
d n
s
are th
e nu
m
b
er
o
f
so
lar cells in
p
a
rallel and series
resp
ectiv
ely [4
]-[6
].
Eq
uat
i
ons
(1
)
and
(2
) ha
ve
been m
odel
l
e
d
i
n
M
A
TL
AB
fo
r 1
0
0
K
W P
V
ar
ray
.
The
P-V a
n
d I
-
V
charact
e
r
st
i
c
s sho
w
n i
n
Fi
g
u
r
e 3 ha
ve bee
n
obt
ai
ne
d usi
n
g t
h
e si
m
u
l
i
nk-base
d m
odel
s
.
C
h
aract
eri
s
t
i
c
s have
been
p
r
ese
n
t
e
d
f
o
r
di
f
f
ere
n
t
l
e
vel
s
of i
rra
di
at
i
ons
.
Al
l
ot
her
r
e
l
a
t
e
d pa
ram
e
ters a
r
e
gi
ve
n i
n
ap
pen
d
i
x
-
1
.
Fi
gu
re
2.
Eq
ui
val
e
nt
ci
rc
ui
t
o
f
P
V
a
rray
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
12
–
1
420
1
414
Figu
re
3.
I
-
V
a
n
d
P-
V C
h
a
r
ac
teristics of
1
0
0
K
W sola
r a
rra
y
4.
M
A
X
I
M
U
M
POWER POIN
T TRAC
KIN
G
To
obt
ai
n t
h
e
m
a
xim
u
m
pow
er f
r
om
a sol
a
r
m
odul
e M
P
P
T
i
s
nece
ssary
as i
t
va
ri
es wi
t
h
ra
di
at
i
o
n
level and tem
p
erature
.
T
h
e
r
e
are m
a
ny
m
e
thods
a
v
ailabl
e a
n
d re
porte
d
in
the litera
ture
to
find the
MP
P [7]-
[1
0]
. Di
ffe
rent
fact
o
r
s are
t
a
ken
i
n
t
o
c
o
nsi
d
erat
i
o
n
whi
l
e
ap
pl
y
i
ng M
P
P suc
h
as
ove
r
all efficiency, cost,
req
u
i
r
e
d
se
nso
r
s et
c. I
n
t
h
i
s
pape
r Pe
rt
u
r
b
and
O
b
ser
v
e a
l
go
ri
t
h
m
i
s
used t
o
t
r
ac
k t
h
e
m
a
xim
u
m
pow
er. O
n
t
h
e basi
s o
f
t
h
e
fl
ow c
h
art
o
f
P & O m
e
t
hod
M
PPT cont
rol
l
er i
s
m
odel
l
e
d i
n
Sim
u
l
i
nk m
odel
an
d D
u
t
y
cy
cl
e
o
f
bo
ost conv
erter is co
n
t
ro
ll
ed
with
th
e h
e
lp
of th
is m
e
th
od
[7
]. Th
e co
m
p
lete Si
m
u
l
i
n
k
m
o
d
e
l
o
f
MPPT
cont
rol
l
e
r i
s
sh
ow
n i
n
Fi
gu
re
4.
5.
DESIG
N
I
N
G OF DC
-D
C
B
OOST CO
N
V
E
RTER
DC-DC boo
st co
nv
erter is used
to
bo
o
s
t and
regu
late th
e
o
u
t
p
u
t
v
o
ltag
e
o
f
PV m
o
du
le. Fo
llowing
equations
are used for designi
n
g
th
e bo
ost
con
v
e
r
t
er
[1
7
]-[
18
]:
(3
)
(4
)
(5
)
w
h
er
e
V
i
= I
n
put
v
o
l
t
a
ge;
V
o
=
Ou
tpu
t
vo
ltag
e
;
D = Du
ty cycle
M
v
= Gai
n
of
t
h
e
bo
ost
c
o
nve
rt
er;
C
mi
n
= Minim
u
m
capacitance
require
d
;
L
b
= Min
i
m
u
m in
du
ctan
ce requ
ired
; Vr =
Voltag
e
ripp
le
R = Loa
d
resis
t
ance; f =
S
w
itchin
g
fre
que
nc
y
Peak t
o
pea
k
r
i
ppl
es i
n
o
u
t
p
ut
vol
t
a
ge i
s
consi
d
ere
d
as 1
%
. Param
e
t
e
r
s
of t
h
e p
o
we
r
el
ect
roni
c
base
d
bo
ost
c
o
nve
rt
er
has
bee
n
cal
cul
a
t
e
d
on
t
h
e
basi
s
of
de
si
gni
ng
an
d a
r
e
use
d
fo
r t
h
e si
m
u
l
a
t
i
on.
6.
CONTROLLER DE
SIGN
Fi
gu
re 5 s
h
o
w
s t
h
e sche
m
a
t
i
c
di
agram
for
gri
d
-c
on
nect
ed s
o
l
a
r
sy
st
em
. For desi
g
n
i
n
g t
h
e
cont
rollers
, Sy
nch
r
on
o
u
s refe
rence f
r
am
e
t
h
eory
has
been
use
d
[1
7]
-[
1
8
]
.
It
i
s
al
so cal
l
e
d d
q
co
nt
rol
,
u
s
ed t
o
co
nv
ert con
t
ro
l
v
a
riab
les in
to
DC v
a
lues to
ach
i
ev
e easy
filtering
and
con
t
ro
llin
g
.
In
th
is stru
cture, a stand
a
rd
p
r
op
ortio
n
a
l
-
integ
r
al co
n
t
ro
ller is
u
s
ed
to regu
late th
e
DC
bu
s
vo
ltag
e
.
The reactiv
e power is set t
o
b
e
zero to
achi
e
ve t
h
e
uni
t
y
powe
r
fact
o
r
. I
n
t
h
i
s
pa
per
,
Phase l
o
c
k
e
d
lo
op
is u
s
ed
to
d
e
tect th
e p
h
a
se an
g
l
e of grid. Th
e
d-
q c
o
m
pone
nt
s o
f
t
h
e
cu
rre
nt
s are c
o
m
put
ed
fr
om
t
h
e f
o
l
l
o
wi
n
g
e
quat
i
o
ns
[
17]
:
0
50
100
150
200
250
300
350
0
100
200
300
400
1 kW
/
m
2
Vol
t
ag
e (
V
)
I
-
V
a
n
d
P
-
V
c
h
a
r
a
c
te
rs
t
i
cs of
10
0K
W
So
la
r
a
rra
y
0.75 kW
/
m
2
0.5 kW
/
m
2
0.25 kW
/
m
2
0
50
100
150
200
250
300
350
0
5
10
x 1
0
4
1 kW
/
m
2
Po
w
e
r
(W
)
Vol
t
ag
e (
V
)
0.75 kW
/
m
2
0.5 kW
/
m
2
0.25 kW
/
m
2
Cu
rre
n
t
(A
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eva
l
ua
tion
o
f
Po
wer Qu
a
lity Issu
es
in
Gri
d
Co
nn
ected
PV S
y
stems
(Gu
n
j
a
n
Va
rshn
ey)
1
415
(6
)
The real practi
c
le
DC voltage
and refe
re
nce
DC
voltage
are
com
p
ared a
n
d
I
d
* is
g
e
n
e
r
a
t
e
d
t
h
ro
ugh
a li
m
iter u
s
in
g
PI con
t
ro
ller.
(7
)
whe
r
e I
*
d(t)
an
d I
*
d(t-1)
are t
h
e
out
put
s
of
PI c
ont
rol
l
e
r a
nd
V
dc(n)
and V
dc(n-1)
are the errors i
n
DC link at t
th
and
(t-1
)
th
in
stan
ts.
The
d-q
refe
re
nce c
u
rrents a
r
e conve
rted i
n
to re
fere
nce
3-
c
o
nv
er
te
r
cu
rr
en
ts
which are
com
p
ared
with
th
e actu
a
l cu
rren
ts fo
r
g
e
n
e
rating
th
e con
t
ro
l sign
al
s for grid
side
conve
rter. He
re
hysteresis
based
cu
rren
t con
t
ro
ller is used to
produ
ce th
e g
a
ti
n
g
sign
als
o
f
co
nv
erter.
Fi
gu
re
4.
M
a
t
l
a
b
base
d m
ode
l
of
Pert
ur
b a
n
d
Obse
r
v
e M
e
t
h
o
d
6.
1.
Hys
t
eresis Current Contr
o
ller
A
pos
si
bl
e i
m
pl
em
ent
a
t
i
on o
f
abc
co
nt
r
o
l
wi
t
h
hy
st
eresi
s
cur
r
e
n
t
co
nt
r
o
l
i
s
depi
ct
e
d
i
n
Fi
gu
re
6.
PLL i
s
use
d
t
o
det
e
m
i
ne t
h
e pha
se an
gl
e of
gri
d
v
o
l
t
a
ge.
The p
h
ase
refe
rence c
u
r
r
ent
s
are ge
nerat
e
d a
nd a
r
e
com
p
ared
with the corres
p
o
n
d
i
n
g act
ual
se
n
s
ed cu
rre
nt
. T
h
e resul
t
a
na
nt
e
r
ror
goe
s into t
h
e hysteresis c
u
rrent
cont
rol
l
e
r
an
d
gene
rat
e
s t
h
e s
w
i
t
c
hi
n
g
si
gnal
f
o
r
g
r
i
d
si
de c
o
n
v
e
r
t
e
r.
6.
2.
Power Quality Iss
ues
Power qu
ality
issu
es are related
to
th
e
m
a
in
ly wav
e
form
d
i
sto
r
tio
n. Du
e to
th
e n
o
n
lin
ear n
a
ture of
aut
o
m
a
t
e
d and
p
o
we
r el
ect
r
o
ni
cs,
base
d e
q
ui
pm
ent
harm
oni
cs a
r
e i
n
jec
t
ed into the line and ca
use
of powe
r
q
u
a
lity prob
lem
s
su
ch
as
h
a
rm
o
n
i
cs, f
lick
e
r, sag, swell,
po
or
p
o
wer fact
o
r
etc. Po
wer
Qu
ality stand
a
rd
s are
p
r
escrib
ed
in
t
h
e literatu
res t
h
at talk
abo
u
t
l
i
m
i
ts o
f
h
a
rm
o
n
i
cs in
grid
v
o
l
tag
e
s and
grid
cu
rren
ts
[24
]
. In
th
is
pape
r, t
h
e ana
l
y
s
i
s
of harm
oni
cs fo
r gri
d
vol
t
a
ge
, g
r
i
d
cur
r
ent
s
, DC
v
o
l
t
a
ge, an
d i
n
vert
er
out
put
vol
t
a
g
e
b
e
fo
re filtering
an
d after
filterin
g
are presen
ted as
po
wer
q
u
a
lity issues
in
grid
conn
ected PV syste
m
s.
Harm
oni
cs i
n
t
e
rm
s of T
o
t
a
l
Harm
oni
c
Di
st
ort
i
o
ns
(T
HD
)
i
n
a
gi
ven
si
g
n
al
can
be cal
cul
a
t
e
d
by
f
o
l
l
o
wi
ng
fo
rm
ula [2
5]
:
(8
)
Whe
r
e
h i
s
t
h
e
harm
oni
c
or
de
r,
N i
s
t
h
e am
ount
of
sam
p
l
e
s per
pe
ri
o
d
a
n
d
N/
2 i
s
m
a
xi
m
u
m
harm
oni
c o
r
de
r.
In
t
h
e
pre
s
ent
e
d
wo
rk
,
fo
r cal
cul
a
t
i
ng t
h
e T
H
D
o
f
vari
ou
s
si
gnal
s
FFT
an
al
y
s
i
s
t
ool
o
f
M
A
TLAB
i
s
u
s
ed.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
12
–
1
420
1
416
7.
RESULTS
A
N
D
DI
SC
US
S
I
ONS
Fi
gu
re 9 s
h
o
w
s t
h
e com
p
l
e
t
e
M
A
TLAB
ba
sed Si
m
u
l
i
nk m
odel
of t
h
e present
e
d g
r
i
d
c
o
n
n
ect
ed P
V
base
d sy
st
em
. R
e
sul
t
s
are
sh
o
w
n
i
n
t
h
e
fo
rm
o
f
di
ffe
rent
o
u
t
put
wave
f
o
rm
s.
7.
1.
Out
p
ut
s of
DC
-D
C
boost c
o
nverters
Fi
gu
re
7(a
)
a
nd
(
b
) s
h
ows
t
h
e o
u
t
p
ut
s
of s
o
l
a
r a
rray
bef
o
re
b
o
o
s
t
con
v
e
r
t
e
r a
n
d aft
e
r
b
o
o
s
t
con
v
e
r
ter.
It is
very
clear
fr
o
m
the wave
f
o
r
m
s, before
bo
ost co
nv
erter the DC ou
tpu
t
vo
ltag
e
o
f
so
lar
array is
with
in
the rang
e of
2
5
0
-
30
0
v
o
lts an
d
after
b
o
o
s
t co
nv
er
ter th
e
DC vo
ltag
e
is boo
sted
up
to
5
0
0
vo
lts. Du
ty
cycle of t
h
e
IGBT base
d
DC-DC boost c
o
nverter
is con
t
ro
ll
ed
thro
ugh
MPPT algo
rith
m
.
7.
2.
Output of
MP
PT contr
o
ller
Fig
u
re
8
sh
ows th
e ou
tpu
t
of MPPT con
t
ro
ller in
term
s o
f
Du
ty cycle. Du
ty cycle is sho
w
n
for
co
nstan
t
an
d variab
le irrad
i
atio
n bo
th.
Fi
gu
re 5.
V
S
C
C
ont
r
o
l
l
e
r
Fi
gu
re
6.
B
l
oc
k
di
ag
ram
for
Hy
st
eresi
s
C
u
r
r
ent
C
ont
rol
l
e
r
7.
3.
E
val
u
a
ti
on o
f
Pow
er
Q
u
al
i
t
y
Iss
ues
Fi
gu
re 1
0
s
h
o
w
s t
h
e p
e
r
f
o
r
m
a
nce of
gri
d
-co
n
n
ect
ed s
o
l
a
r sy
st
em
for
const
a
nt
i
rra
di
at
i
on. T
h
e
wav
e
fo
rm
sh
o
w
s th
e grid
vo
ltag
e
s,
g
r
id
cu
rren
ts, so
lar
irrad
i
ation
s
, an
d
DC b
u
s
vo
ltag
e
, activ
e p
o
wer
resp
ectiv
ely.
In
th
is figure,
resu
lts are
s
h
ow
n f
o
r c
o
nst
a
nt
i
rra
di
at
i
o
n
s
(1
00
0
W
/
m
2
). DC b
u
s vo
ltag
e
is
main
tain
ed
co
nstan
t
at 500
V.
Power
factor is ach
iev
e
d
u
n
i
t
y
as
gri
d
v
o
l
t
a
ge
s an
d
gri
d
c
u
r
r
e
nt
s are
i
n
p
h
a
s
e.
Fig
u
r
e
1
1
sh
ow
s th
e p
e
r
f
orman
ce of
th
e
gr
id
-
c
on
n
ect
ed
so
lar system
with
v
a
riab
le irrad
i
atio
n
lev
e
l.
Und
e
r th
e
v
a
ri
ab
le irrad
i
atio
n lev
e
l VSC con
t
ro
ller is ab
le
to
con
t
ro
l th
e
DC bu
s
v
o
lta
ge and power
fa
ctor at
all so
lar
rad
i
atio
n
s
.
Fi
gu
re
12 s
h
o
w
s t
h
e
harm
o
n
i
c
anal
y
s
i
s
o
f
gri
d
si
de
v
o
l
t
a
ge t
h
at
i
s
t
h
e
m
a
jor
pa
rt
of
t
h
e p
o
w
e
r
q
u
a
lity. To
tal h
a
rm
o
n
i
c
d
i
stortio
n (THD) is calcu
lated
u
s
i
n
g FFT an
alysis to
o
l
o
f
MATLAB
[24
]-[25
]. The
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eva
l
ua
tion
o
f
Po
wer Qu
a
lity Issu
es
in
Gri
d
Co
nn
ected
PV S
y
stems
(Gu
n
j
a
n
Va
rshn
ey)
1
417
%THD is calcu
lated
for grid
v
o
ltag
e
,
g
r
id
cu
rren
ts, inv
e
rter vo
ltag
e
b
e
fo
re filterin
g
and
after filtering
an
d
DC
l
i
nk
vol
t
a
g
e
a
n
d s
h
o
w
n i
n
t
h
e
Tabl
e-
1.
Ha
rm
oni
cs
i
n
a
ll th
e
sig
n
a
ls are sati
sfyin
g
th
e
IEEE li
m
its [2
4
]
.
Tabl
e 1.
Signals of the gri
d
connect
ed P
V
s
y
ste
m
for w
h
ich THD
has been calculat
ed
P
o
w
er Q
u
alit
y ev
aluat
i
on
in ter
m
s
of T
H
D
Gr
id voltage
0.
04%
Gr
id cur
r
ent
0.
32%
Inverter voltage be
fore filter
36.3%
Inverter voltage aft
e
r filter
2%
DC bus voltage(
w.
r
.
t to
DC fundam
e
ntal value)
0.
04%
(a)
(
b
)
Fi
gu
re
7.
(a
) a
n
d
(
b
)
I
n
put
a
n
d
out
put
v
o
l
t
a
g
e
o
f
B
o
ost
c
o
n
v
ert
e
r
Fi
gu
re 8.
D
u
t
y
cy
cl
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
12
–
1
420
1
418
Fi
gu
re
9.
C
o
m
p
l
e
t
e
si
m
u
l
i
nk m
odel
of
gri
d
c
o
n
n
ect
ed
P
V
a
rray
Figure
10.
Perform
ance analy
s
is with c
o
nsta
nt irra
diation
Figure 11. Perform
ance
analy
s
is
with
v
a
riab
l
e
irrad
i
atio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Eva
l
ua
tion
o
f
Po
wer Qu
a
lity Issu
es
in
Gri
d
Co
nn
ected
PV S
y
stems
(Gu
n
j
a
n
Va
rshn
ey)
1
419
Fi
gu
re
1
2
.
Wa
vef
o
rm
and
ha
r
m
oni
c spect
r
u
m
of gri
d
vol
t
a
ge
8.
CO
NCL
USI
O
N
Th
is
p
a
p
e
r
p
r
ov
id
es a co
m
p
lete o
v
e
rv
iew
for th
e an
alysis of
p
o
wer qu
ality related
issues alo
n
g
wit
h
t
h
e m
odel
l
i
ng
and
co
nt
r
o
l
o
f
gri
d
co
n
n
ect
ed
p
hot
ov
ol
t
a
i
c
s
y
st
em
. Sy
nch
r
on
o
u
s
refe
renc
e fram
e
t
h
eory
base
d
cont
rol
l
e
r
has been
use
d
t
o
cont
rol
t
h
e g
r
i
d
si
de Po
wer F
act
or. T
h
e res
u
l
t
s
are obt
ai
n
e
d usi
ng M
A
T
L
AB
soft
ware
an
d i
n
Si
m
u
l
i
nk e
n
vi
r
onm
ent
f
o
r
con
s
t
a
nt
a
n
d
v
a
ri
abl
e
i
r
radi
at
i
on a
n
d al
s
o
i
n
t
e
rm
s of
D
C
l
i
n
k
vol
t
a
ge
re
g
u
l
a
t
i
on,
P
o
we
r fac
t
or
a
n
d harm
oni
c
anal
y
s
i
s
. %TH
D
has be
en
cal
cul
a
t
e
d
f
o
r g
r
i
d
si
de v
o
l
t
a
ge,
cur
r
ent
,
i
n
vert
e
r
vol
t
a
ge
an
d
DC
l
i
n
k
vol
t
a
g
e
an
d
prese
n
t
e
d i
n
ba
r
fo
rm
s.
Ap
pe
ndi
x-
1.
S
y
st
em
Param
e
ters
Solar
PV M
odule
Sun Power
SPR
-
305-
W
H
T
Solar
PV specifications
100kW
No.
of cells per
m
odule
96
No.
of ser
i
es connected
m
odules per
str
i
ng
5
No.
of par
a
llel con
n
ected str
i
ngs
66
V
OC
of the PV
m
o
dule
64.
2 Volt
I
SC
of the PV
m
o
d
u
le
5.
96 Am
p
.
V
m
p
of the PV
m
o
d
u
le
54.
7
I
m
p
of the PV
m
odu
le
5.
58
Switching Fr
equency
of VSI
10kHz
DC bus voltage
500 Volt
REFERE
NC
ES
[1]
M. Arunbhaskar,
et
al
.,
“
A
Sim
p
le PV Arra
y m
o
d
e
lling
using MA
TLAB,”
Proc
. I
C
ET
ECT
, 2011.
[2]
J. S. Kumari an
d C. S. Babu, “Mat
hematical modeling
and simulation
of
photo
voltaic
cell usin
g Matlab
-
Simulin
k
environment,”
I
n
ternational Jou
r
nal of
Electr
ica
l
and Computer
Engineering,
vol/issue: 2(1)
, pp
.
26, 2012
.
[3]
T. Salm
i,
et
al
., “MATLAB/Simulink Based Modelli
ng of Solar Photovoltaic Cell,”
International Journal
of
Renewab
l
e Ener
gy
Research
, vol/issue: 2(2)
, 201
2.
[4]
S. R. Nandurkar
,
et al
., “Modeling Simulation & Design
of Photovoltaic Array
with
MPPT Con
t
rol Techniqu
es,”
International jou
r
nal of app
lied
p
o
wer engin
eerin
g
, vol/issue: 3(1)
, pp
. 41-50
, 201
4.
[5]
R. Krishan, “The simulation a
nd design for analy
s
is of photovo
ltaic s
y
stem
based on MATLAB,”
ICEETS
,
Nagarcoil, 2013.
[6]
F. M. González-
L
ongatt, “Model of phot
ovoltaic
module in Matlab. In 2do congr
eso iberoamericano de estudian
tes
de ing
e
nier
ı
acute,” aeléctr
i
ca,
electró
n
i
ca y
computación,
ii
cib
e
lec, pp. 1–5, 200
5.
[7]
T. Esram and P. L. Chapman, “Com
parison of Ph
otovoltaic Array Maximu
m Power Point Track
in
g Technolog
ies,”
IEEE Trans. on
Energy Con
v
., v
o
l/issue: 2
2
(2), p
p
. 439-449
, 200
7.
[8]
N.
T.
Abraham,
et
al
.,
“
L
iter
a
tu
re Surve
y
of S
A
R Algorithm
i
n
Photovolta
ic
S
y
stem
,”
International Journal of
Electrica
l
and
C
o
mputer Engin
e
ering,
vo
l/issue:
4(2), pp
. 155
, 20
14.
[9]
F. Liu and
Y.
Kang, “Com
parison of
P&O and hill
clim
bing
MPPT m
e
thods
for grid-conn
ect
ed PV convert
er
,”
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
12
–
1
420
1
420
Industrial Electronics and
Applications
, 2008
.
[10]
V.
Salas,
et al.
,
“Review of th
e
maximum powe
r
point
tracking
al
gorithms for stand-alon
e photo
voltaic s
y
s
t
ems,”
in
Sol.
Energy M
a
ter. So
l. Cells
,
vol/issue:
90(11)
, pp
. 1555–1578
, 2006.
[11]
Z. Dejia and E. Tal, “Design and Control of Three pha
se grid
connected Photovoltaic S
y
stem
with developed
Maximum Powe
r point tr
acking
,
”
A
PEC
,
Austin, TX, 2008.
[12]
B. A. Abdallah
and L. Djamel,
“Control of
power and voltag
e
o
f
solar grid
con
n
ected,”
Interna
tional Journal
o
f
Electrica
l
and
C
o
mputer Engin
e
ering (
I
JECE)
,
v
o
l/issue: 6
(
1), 20
15.
[13]
S. N. Nikolovski,
et al.
, “Integration of Solar
Power Pl
ant in Distribution Network,”
In
tern
ational Journal of
Electrica
l
and
C
o
mputer Engin
e
ering,
vo
l/issue:
5(4), pp
. 656
, 20
15.
[14]
E. Twining and
D. G. Holmes, “Grid cu
rrent reg
u
lation of a thr
e
e-phase voltage
source invert
er with an LCL inp
u
t
filte
r,”
IE
EE
T
r
ans. Power
El
ectr
o
n
, vol/issue: 18
(3), pp
. 888
.895, 2002.
[15]
M. Liang and
T. Q. Zheng
,
“S
y
n
chronous PI Control fo
r three-phase grid
connected Photovoltaic Inverter,”
Chinese Con
t
rol and Design
Con
f
.
, 2010.
[16]
D. M. Brod and D. W. Novotn
y
,
“Curre
nt control of VSI-PWM in
verters,”
IEEE Trans. Ind. Appl.
, vol/issue:
21(4)
,
pp. 562-570
, 19
95.
[17]
B. Singh,
et al
., “
A
new cont
rol approach to
three phase a
c
tiv
e filte
r for harm
onics and reac
tive power
com
p
ens
a
tion,
”
IEEE trans.
Powe
r sy
ste
m
, vol/issue: 13(1), pp
. 1
33-138, 1998
.
[18]
M.
M.
Amin,
et
al
.
,
“
D
C bus v
o
ltag
e
con
t
rol fo
r PV sources in
a DC Distribu
tion S
y
stem Infr
astructure,”
Powe
r
and Energy society gen
e
ral Meeting
, Minn
eapolis, MN, 25-29
ju
ly-2010.
[19]
R. N.
Tripathi
and A. Singh
,
“SRF theor
y
based grid
in
ter
c
o
nnect
ed Solar
Photovolta
ic
(SPV) s
y
stem
with
improved power quality
,
”
International IEEE Co
nference on Emerging
Trends in
Communication, Control, Signal
Processing
&
C
o
mputing App
lications (
C
2SPCA)
,
Banglore, Ind
i
a, 2013
.
[20]
R. Garg,
et a
l
., “Direct Curr
ent Control of
Grid connected
Photovoltaic
Distributed
Gen
e
ration s
y
stem,”
AIJRST
EM
, pp
.
123-127, Sep-N
ov 2013.
[21]
Ghosh and G. Ledwich, “Power Qu
ali
t
y
E
nhancem
ent
Us
ing Cus
t
om
P
o
wer Devic
e
s
,
”
Kluwar ac
adem
ic
publishers, Lond
on,
2002
.
[22]
D.C. Dugan
,
“El
ectr
i
cal Power S
y
stem
s Qual
it
y
,
2edition
,
” McGr
aw Hills, New Y
o
rk, 2006
.
[23]
K.
K.
Weng,
et al
.
,
“
P
ower Qualit
y Anal
ys
is
for P
V
Gri
d
Connected S
y
s
t
em
Us
ing P
S
C
AD/EM
TDC,”
International Jo
urnal of
Ren
e
wable Energy
Research
, vol/issue:
5(1), 2015
.
[24]
IEEE, “Guide for harmonic control and reactive
compensatio
n of static power converters
,
”
I
EEE standard 519,
1992.
[25]
G. E. Mog and
E. P. Ribeiro
,
“Total
harmonic distortion calculation b
y
f
ilterin
g for power qua
lit
y m
onitoring
,
”
Transmi
ssion and Distribution
C
onferenc
e
and
E
x
position:
Latin
America, 2004 I
EEE/
PES
, I
EEE, 2004.
BIOGRAP
HI
ES OF
AUTH
ORS
Gunjan Varshney
received her B
.
E. d
e
gree fro
m RTU, India in 2
004 and M.Tech
.degree from
UPTU,India in
2012. Currently
she is resear
ch sc
holar
in UTU,
India. H
e
r research areas ar
e
Power Quality
a
n
d
its Improvement, R
e
newa
ble ene
r
gy
source
s a
n
d Powe
r s
y
ste
m
s.
Prof. D S Chauhan has obtained
hi
s B.Sc. Engg. (
E
lectrical) from
IIT Banaras Hin
du University
(BHU), M.Engg. (Power Sy
stem) from
Madras Univ
ersity
,
TN and Ph. D. fro
m II
T Delhi, New
Delhi. He h
a
s do
ne his Postdocto
ral R
e
sear
ch fro
m NASA,
USA.
He had
been th
e Professor in
IIT–BHU Varan
a
s
i
.
His
res
ear
ch ar
eas
ar
e po
wer s
y
s
t
em
,
ren
e
wable
ene
r
g
y
r
e
s
ources
an
d
power quality
.
Prof.
M P Dave is currently
working as Prof
essor Emeritus in
AKGEC,
Ghaziabad; India.
He
has obtained h
i
s M.Tech
from
IIS
C banglore in1965, Ph.d
. fr
om University
of Roorkee in
1969 and Dr-ING in 1972 fro
m
west german
y
.
His
research areas are Power Sy
stem, On line
Control, Control S
y
stem
and R
e
n
e
wable En
erg
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.