Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
52
6
~
53
4
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
118
5
26
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Cooling on Phot
ovolt
a
i
c
P
a
nel
Using Forced Air Convection
Induced by DC Fan
A.
R. Amelia
*
, Y
.
M
.
Irwa
n
*
, M
.
Irwa
nt
o
*
,
W
.Z
. Leow
*
,
N. Gomesh
*
, I.
Sa
f
w
at
i
**
, M.
A.
M. An
uar
**
*
*
Centre
of
Exce
l
l
enc
e
for
Ren
e
wable
Ene
r
g
y
,
S
c
h
ool of
El
ectr
i
ca
l
S
y
s
t
em
Eng
i
neer
ing, Univ
ers
i
t
y
M
a
la
y
s
ia
P
e
rlis
(UniMAP),
Ma
lay
s
ia
**
Institute
of
En
gineer
ing Math
e
m
atics, Univ
er
si
t
y
Mal
a
y
s
ia
Perl
is, (UniMAP),
Mala
y
s
ia
***
Faculty
of
Electrical & Automoti
on Engineerin
g
Technolog
y
Tati
Univ
ersity
C
o
llag
e
(TATI), Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 2, 2015
Rev
i
sed
No
v
27
, 20
15
Accepted Dec 18, 2015
Photovoltaic (P
V) panel is
the hear
t
of sola
r
s
y
ste
m
ge
ne
ra
lly
ha
s a low
energ
y
conv
ers
i
on effici
enc
y
av
ail
a
ble in
the m
a
rket
. P
V
panel
tem
p
eratur
e
control is the m
a
in ke
y
to keep
ing the PV panel opera
te effi
ci
entl
y.
This
paper presen
ted
the great inf
l
uenced of
th
e coo
ling s
y
s
t
em
in r
e
duced P
V
panel temper
atu
r
e. A
cooling s
y
stem
h
a
s been
developed b
a
sed on forced
convection indu
ced b
y
fans as cooling
mechan
ism. DC fan was attached
at
the ba
ck side of
PV panel will
extra
c
t th
e he
at
energ
y
distr
i
but
ed and coo
l
down the PV panel. Th
e working opera
tion of
DC fan contro
lled b
y
the
PIC18F4550 mi
cro con
t
roller,
which is d
e
pend
ing on
the aver
age v
a
lu
e o
f
PV panel temperatur
e. Exp
e
riments
were performed with and withou
t
cooling m
echan
i
s
m
attached to t
h
e backs
i
de P
V
panel
.
The whol
e P
V
s
y
s
t
em
was subsequently
ev
aluated in o
u
tdoor
weather
conditions
. As a result, it is
conclud
e
d that there is an
optim
um num
ber of
DC fans required as coolin
g
mechanism in p
r
oducing
efficient electr
ical ou
tput from a PV
panel. Th
e
stud
y
clearly
sh
ows how cooling mech
anism improves the per
f
ormance of
PV panel
at
the
hot c
lim
at
ic w
eath
e
r.
In short, the r
e
duction o
f
PV panel
tem
p
eratur
e
is
v
e
r
y
im
portan
t
to
keep
its
p
e
rform
ance
oper
a
ted
ef
fici
entl
y.
Keyword:
Direct-c
ur
rent
(DC)
fa
n
Ph
ot
o
vol
t
a
i
c
(
P
V)
pa
nel
PV pa
nel
t
e
m
p
erat
ure
So
lar rad
i
atio
n
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A.R. Am
elia,
C
e
nt
er
of
Exc
e
l
l
e
nce f
o
r R
e
ne
wabl
e
Ene
r
gy
,
School of
Elec
trical
Sy
st
em
Engi
neeri
n
g
,
Un
i
v
ersity Malaysia Perlis (Un
i
MAP), Malaysia.
Em
a
il: a
m
elia_razak87@yahoo.c
om
1.
INTRODUCTION
A ren
e
wab
l
e en
erg
y
resou
r
ce is g
o
i
n
g
t
o
b
e
a
m
a
in
su
bstitu
te fo
r fo
ssil fu
els in
recen
t
years fo
r t
h
eir
cl
ean a
n
d
re
ne
wabl
e
nat
u
re.
Inc
r
easi
n
g
w
o
r
l
d-
wi
de e
n
e
r
gy
dem
a
nd
a
n
d f
o
ssi
l
-
f
u
el
de
pl
et
i
on has
bee
n
m
a
jo
r
dri
v
i
n
g f
o
rces
fo
r t
h
e
resea
r
c
h
ers
t
o
be
f
o
cu
sed
on
re
ne
wa
bl
e s
o
u
r
ces
of
ener
gy
[
1
]
.
Sol
a
r e
n
er
gy
i
s
t
h
e m
o
st
pr
om
i
s
i
ng rene
wabl
e e
n
er
gy
s
o
u
r
ces t
h
at
t
h
e
wo
rl
d
nee
d
s.
Su
n as t
h
e m
a
in re
so
urce
s f
o
r
t
h
i
s
exi
s
t
i
n
g e
n
er
gy
is
u
tilized
in
on
e way
b
y
PV p
a
n
e
ls.
Gene
rally, PV panels are cat
egorized as the
m
a
in
co
m
p
onent in
devel
o
ping sola
r syste
m
. MostPV
panel
s
ha
ve t
h
e
m
a
jor
pa
rt
o
f
i
nvest
m
e
nt
co
st
com
p
ared
t
o
anot
her c
o
m
pone
nt
. T
h
us,
re
t
u
r
n
o
f
i
n
vest
m
e
nt
f
o
r
devel
opm
ent
s
o
l
a
r sy
st
em
i
s
di
rect
l
y
de
pe
nde
nt
el
ect
ri
ca
l
ener
gy
ge
ne
r
a
t
e
d f
r
om
PV
panel
s
. H
o
wev
e
r, at
prese
n
t
,
t
h
e
bi
gge
st
p
r
o
b
l
e
m
s
enc
o
u
n
t
e
re
d
b
y
usi
n
g P
V
pa
n
e
ls lie in
th
e relativ
ely lo
wer electrical efficien
cy.
Lo
w effi
ci
e
n
c
y
of P
V
pa
ne
l
s
i
s
regar
d
i
n
g o
n
t
h
ei
r l
o
w ene
r
gy
c
o
n
v
ersi
on e
fficie
n
cy. The conversi
on
efficien
cy d
e
pen
d
s on
th
e typ
e
of PV
p
a
n
e
l u
s
ed
and
th
e en
v
i
ron
m
en
tal c
o
nd
itio
ns [2
]. PV p
a
n
e
ls tend
to
be
con
v
e
r
t
e
d a
pa
rt
of t
h
e i
n
ci
de
nt
sol
a
r l
i
ght into electrical energy
the
rest being
wasted as
heat. T
h
is heat
is lost
to the
surroundings
from
th
e front s
u
rface a
n
d in the
air
ga
p at the
bac
k
s
u
rface
by c
o
nve
c
tion a
n
d ra
dia
tion.
The
heat
ge
nerated induces a
n
inc
r
ease
in t
h
e PV ope
r
a
ting tem
p
erature.
Due
to el
ectron
tran
sp
ort
p
r
op
erties,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
52
6 – 5
3
4
52
7
i
n
creasi
n
g i
n
P
V
ope
rat
i
n
g t
e
m
p
erat
ure wi
l
l
re
duce
t
h
e
o
u
t
put
ge
nerat
e
d
by
t
h
e
PV
pa
n
e
l
s
dram
at
i
cal
ly
. Fo
r
ex
am
p
l
e, crystallin
e silico
n
so
lar cells h
a
v
e
a typ
i
cal p
o
w
er te
m
p
eratu
r
e co
efficien
t o
f
-0.5
%
for ev
ery 1
º
C
rise in
ope
rating tem
p
erature [3]. Besi
des, increm
ent
in cell te
m
p
erature leads t
o
sign
ifican
t
redu
ct
io
n
i
n
ope
n
-
ci
rcui
t
v
o
l
t
a
ge (
V
oc)
c
a
use
d
by
dec
r
eases i
n
t
h
e b
a
nd
ga
p
of
t
h
e sem
i
con
duct
o
r
.
T
h
ere
f
o
r
e,
t
h
e P
V
panel
m
u
st
be
abl
e
t
o
o
p
e
r
at
eat
l
o
w co
n
v
ers
i
on
ope
rat
i
n
g t
e
m
p
erat
ur
e i
n
or
der t
o
ge
ne
r
a
t
e
effi
ci
ent
o
u
t
p
ut
powe
r. T
o
m
i
nimize the tem
p
erature de
gradation
of th
e
output power, the
heat
en
erg
y
pr
odu
ced
m
u
st b
e
di
ssi
pat
e
d
.
T
h
us, t
h
e
o
p
erat
i
n
g
t
e
m
p
erat
ure
can
be
ke
pt
cl
ose t
o
the
am
bient tem
p
erature while dec
r
ea
sing in
te
m
p
erature
differe
n
ce.
In ord
e
r t
o
ob
tain
efficien
t
ou
tpu
t
p
o
wer fro
m
PV
p
a
n
e
l,
it is n
ecessary to
coo
l
th
e PV
p
a
n
e
ls b
y
ex
tracting
the ex
tra heat fro
m
th
e cell assem
b
ly in
some w
a
y. Th
is pr
esen
t
p
a
p
e
r fo
cu
sed on
co
o
ling
mechanism
that use
d
air as c
ooling m
e
dium
to re
duce
the tem
p
eratu
r
e
o
f
PV
p
a
n
e
l.
Air coo
lin
g tech
no
log
y
ei
t
h
er
fo
rce
o
r
nat
u
ral
c
o
nve
ct
i
on ca
n
be
u
s
ed t
o
c
o
ol
down the
tem
p
erature
of PV panel.
H.G.
Te
o
et
al.
carried
out a study on the c
o
m
p
arison
of the electrical efficiency of the
PV p
a
n
e
l with an
d
withou
t co
o
ling
.
In
creasing
th
e
efficien
cy of so
lar cells was
p
r
ov
ed
u
n
d
e
r co
o
ling
co
nd
ition
s
[4
]. Z.
Farhan
a et al. red
u
c
ed
th
e
t
e
m
p
erat
ure o
f
sol
a
r pa
nel
by
40% w
h
e
n
usi
ng a DC
b
r
u
s
h
l
ess fan as a cool
i
n
g de
vi
ce.
A DC
br
us
hl
es
s fan
with
i
n
let/o
u
tlet m
a
n
i
fo
ld
d
e
sig
n
fo
r
u
n
i
form airfl
o
w
d
i
stri
bu
tio
n
was attach
ed at th
e
b
ack of PV p
a
n
e
l
[5]. O.
Zo
go
u an
d H.
St
apo
u
n
t
z
i
s
i
nvest
i
g
at
ed
th
e
tran
sien
t ch
aracter o
f
real world
bu
ild
ing
in
teg
r
ated
ph
o
t
o
v
o
ltaic
(BIP
V)
o
p
erat
ed by
the t
h
re
e diffe
re
nt ope
r
ated m
odes.
The inc
r
easing fa
n ca
pacity increase
s
overa
ll heat
t
r
ans
f
er an
d P
V
pa
nel
cool
i
n
g per
f
o
rm
ance [6]. Y.M. Irwan et al. investig
ated the effe
ct of the air cooli
ng
m
echani
s
m
s
unde
r i
n
do
o
r
t
e
st
i
ng,
whi
c
h us
ed hal
oge
n l
a
m
p
s as a l
i
ght
sou
r
ce. T
h
e i
m
pact
o
f
t
h
e ai
r
cool
i
n
g
mechanism
wa
s analyzed under differe
n
t
l
e
vel
of sol
a
r ra
di
at
i
on an
d su
rr
o
u
n
d
i
n
g t
e
m
p
erat
ure. B
y
usi
n
g
a DC
fan t
o
c
o
ol
d
o
w
n
t
h
e P
V
p
a
nel
t
e
m
p
erat
u
r
e, t
h
e
po
wer
out
put
has be
en o
b
se
rve
d
wi
t
h
i
n
crea
si
n
g
sol
a
r
radi
at
i
o
n [
7
]
.
S
.
K.
Nat
a
raja
n
et
al
. de
vel
o
pe
d a
2D
n
u
m
e
rical
m
o
d
e
l to
p
r
ed
ict th
e tem
p
eratu
r
e (cell and len
s
)
u
n
d
e
r p
e
ak
so
l
a
r illu
min
a
tio
n. Th
e
p
e
rfo
r
m
a
n
ce of ce
ll tem
p
eratu
r
e was tested
b
y
com
p
arin
g
withou
t and
with
three
nu
mb
ers of
fin
s
[8
].
In t
h
i
s
st
u
d
y
,
a
cool
i
n
g m
echani
s
m
by
forced ai
r co
nvect
i
o
n i
s
devel
ope
d
and p
r
ese
n
t
e
d
.
The m
a
i
n
o
b
j
ectiv
e of this stu
d
y
is to
in
v
e
stig
ate th
e p
e
rfo
r
m
a
n
ce o
u
t
p
u
t
of th
e PV p
a
n
e
l with th
e ex
istin
g
of th
e
di
ffe
re
nt
n
u
m
b
er o
f
DC
fan
s
as co
ol
i
ng m
echani
s
m
.
B
e
si
des, t
h
e P
V
pa
nel
wi
t
h
out
c
o
ol
i
ng m
echani
s
m
has
been
pe
rf
orm
e
d i
n
or
der t
o
m
a
ke a com
p
ari
s
on
wi
t
h
t
h
e e
x
i
s
t
i
ng c
ool
i
n
g s
y
st
em
s. The p
u
r
p
o
se
of t
h
e st
udy
i
s
also to investigate the eff
ect of the
differe
n
t num
b
er of
DC fa
ns
whic
h act as cooling m
echanism for a PV
panel
.
2.
E
X
PERI
MEN
T
AL A
N
D
S
Y
STEM
CO
NF
IGU
RATI
O
N
The ex
pe
ri
m
e
n
t
al
set
up has b
een de
vel
o
pe
d
t
o
i
nve
stigate
the effect of th
e cooling syste
m
for PV
panel
i
n
t
h
e
o
u
t
do
or
o
p
erat
i
o
n.
Fu
rt
he
r
det
a
i
l
s
abo
u
t
ex
pe
r
i
m
e
nt
al
desi
gn
ha
ve
been
di
s
c
usse
d i
n
t
h
i
s
s
ect
i
o
n
.
Thi
s
sect
i
o
n c
onsi
s
t
s
t
h
ree
p
a
rt
s,
whi
c
h
des
c
ri
be
d t
h
e
w
h
o
l
e devel
opm
ent
and
t
e
st
i
ng
f
o
r P
V
sy
st
em
wi
t
hout
o
r
w
ith
coo
ling
exp
e
r
i
m
e
n
t
al. Th
e
f
i
r
s
t sectio
nh
as elab
or
ated
d
e
tails about th
e p
r
o
cess
of
PV
system
w
ith
th
e
exi
s
t
i
n
g
aut
o
m
a
t
i
c
cool
i
n
g m
echani
s
m
.
The
n
, t
h
e c
o
nst
r
uc
t
i
on
of
t
h
ec
ool
i
ng m
echani
s
m
has
bee
n
di
sc
usse
d.
The l
a
st
sect
i
o
n
was
desc
ri
bi
ng
h
o
w
al
l
dat
a
has
bee
n
c
o
l
l
ect
ed d
u
r
i
n
g t
h
e
ex
peri
m
e
nt
al
day
.
2.
1.
Over
al
l
P
V
S
y
s
t
em Se
t
u
p
Thi
s
e
xpe
ri
m
e
nt
al
set
u
p
was
desi
g
n
e
d
t
o
e
xpl
ore t
h
e a
ppl
i
cat
i
on o
f
t
h
e
c
ool
i
n
g sy
st
em
i
n
re
duci
n
g
PV
pa
nel
t
e
m
p
erat
ure
d
u
e t
o
i
m
prov
e t
h
e
per
f
o
rm
an
ce
out
put
of
t
h
e PV pa
nel
s
. T
o
analyze the
whole
p
e
rform
a
n
ce o
f
PV
p
a
n
e
ls, a PV system
wa
s d
e
sign
ed
as
illu
strated
in
Fi
g
u
re 1. Acco
rdin
g
to
th
e
figu
re, the
sy
st
em
was de
vel
o
ped
ba
sed
o
n
st
an
d
-
al
o
n
e
PV
sy
st
em
inst
al
l
a
t
i
on re
q
u
i
r
em
ent
whi
c
h i
n
de
pen
d
e
n
t
of t
h
e
electric u
tili
ty
g
r
i
d
o
p
e
ration
.
A PV p
a
n
e
l acts as a g
e
n
e
ra
to
r to
g
e
n
e
rate DC p
o
wer to
th
e d
i
rect curren
t
lo
ad
.
Each
PV
pa
nel
has
a
10
0
W
r
a
t
i
ng
of
m
a
xim
u
m
power
o
u
t
put
.
The
el
ect
r
i
ci
t
y
generat
e
d
by
t
h
e
P
V
pan
e
l
was
then
store
d
i
n
a dee
p
cycle re
chargea
b
le batt
ery. During
o
p
eratio
n, th
e con
t
ro
ller feat
ure
s
al
so
use
d
t
o
pr
ot
ect
the
battery use
d
from
ove
rc
hargi
ng or
dee
p
discha
rge
.
T
h
e
n
, two
units of
DC lam
p
with each
power rat
i
ng at
5
W
are
used
as a load demand. For cooling m
echanis
m
,
t
h
e req
u
i
r
e
d
DC
fan
wh
o
p
o
w
ers
up
by
a bat
t
e
ry
,
extracted air
from
the surroundi
ngs to
c
o
ol the
panels. T
h
is cooling m
echanism
is ve
ry attractive becaus
e
au
to
m
a
tical
ly
o
p
e
rated, wh
ich
lead
s to
t
h
e
energy sa
ving. The
operation
of
DC
fan
wi
l
l
be co
nt
r
o
l
l
e
d
by
a
PIC18
F
45
50
micro
con
t
ro
ller. Th
is micro
con
t
ro
ller acts as
a sig
n
a
l to
ask th
e DC fan
to
o
p
e
rate. In
ad
ditio
n,
th
e requ
ired
DC fan
will n
o
t
o
p
e
rate 2
4
h
o
u
r
s, bu
t o
n
l
y
ru
n
s
at certain
certified
PV
op
erating
tem
p
e
r
atu
r
e.
Fo
r th
is stud
y, all DC fan
s
u
s
ed
will run
wh
en
th
e
o
p
e
ratin
g
PV tem
p
eratu
r
e reach
e
s 35
°C an
d
ab
ove sin
c
e
the ave
r
a
g
e
daily a
m
bient te
mperat
ure
i
n
Malaysia is at 3
5
°C [9
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ool
i
n
g
o
n
P
h
ot
ov
ol
t
a
i
c
P
a
n
e
l
Usi
n
g F
o
rce
d
Ai
r C
o
nvect
i
o
n
I
n
duce
d
by
DC
F
a
n
(A.R.
Am
elia
)
52
8
Fi
gu
re
1.
O
v
era
l
l
PV sy
st
em
with
th
e co
o
l
i
n
g
syste
m
2.
2. I
n
st
al
l
a
ti
o
n
o
f
DC
F
a
n
Co
ol
i
n
g
Mec
h
ani
s
m
Fig
u
re
2
illu
strates th
e
DC
fan coo
ling
d
e
v
e
l
o
p
m
en
t.
Th
e coo
lin
g
mech
an
ism
with
PV
p
a
n
e
l
i
n
st
al
l
a
t
i
on i
s
sho
w
n as i
n
Fi
gure 2 (a
). Eac
h
desi
gn
of DC
fan co
ol
i
n
g m
e
chani
s
m
was at
t
ached at
t
h
e
bac
k
si
de o
f
P
V
pa
n
e
l
as t
o
e
x
t
r
act
heat
pr
od
uce
d
. The
DC
fa
n
was i
n
st
al
l
e
d
wi
t
h
zi
nc
shee
t
,
w
h
i
c
h ca
n
w
o
r
k
as
t
h
e heat
t
r
a
n
sf
er ap
pl
i
cat
i
o
n
i
s
sho
w
n i
n
gi
ve
n Fi
g
u
r
e
2 (
b
)
.
T
h
ere i
s
fo
u
r
m
ode ope
rat
i
o
n o
f
c
ool
i
n
g
m
echani
s
m
were devel
ope
d
.
Each m
ode op
erat
i
on wa
s i
n
s
t
al
l
e
d by
a di
fferent
u
n
i
t
of D
C
fan, w
h
i
c
h a
r
e one
to four units for each
PV
pa
nel. Th
e
position of
DC fa
n installed with “t
urn in circulation”
which m
eans air
fr
om
out
si
de e
n
t
e
rs t
o
t
h
e
ba
cksi
de
o
f
PV
p
a
nel
.
No
rm
al
ly, co
ol
ai
r
has
h
i
gh
de
nsi
t
y
co
m
p
ared t
o
t
h
e
hot
ai
r
.
Thu
s
, coo
l
air
fro
m
th
e o
u
t
sid
e
env
i
ro
n
m
en
t will co
o
l
d
o
wn
th
e
PV
p
a
nel b
y
rem
o
v
i
n
g
th
e ho
t air pro
d
u
c
ed
th
ro
ugh
th
e p
a
n
e
l. For th
is ex
p
e
rim
e
n
t
, all
DC fans will hav
e
th
e sam
e
s
p
ecificatio
n. Fi
g
u
re 2
(c) sh
ows th
e
phy
si
cal
aspec
t
of DC
fa
n us
ed as a cool
i
n
g de
vi
ce. Each
DC
fan ha
s 1
2
V o
f
n
o
m
i
nal
vol
t
a
ge wi
t
h
rat
i
n
g
cu
rr
en
t
of
0
.
07±
10
% A
.
Th
e
p
o
w
e
r
inpu
t r
e
q
u
i
r
e
d to ru
n i
s
0.84
W
fo
r each
f
a
n.
Fur
t
her
m
o
r
e, each
D
C
f
a
n
can rem
ove heat produced
with their m
a
xim
u
m
airflow
characte
r
istic of
44.7 c
ubi
c f
eet
per m
i
nut
e (C
FM
)
respectively.
Fi
gu
re
2.
The
devel
opm
ent
o
f
DC
fa
n c
o
ol
i
n
g
m
echani
s
m
2.
3. T
e
s
t
Pr
oc
edure
and
D
a
t
a
Actu
a
t
i
o
n
M
easurem
ent
s
fo
r P
V
pa
nel
p
e
rf
orm
a
nce ev
al
uat
i
on
wi
t
h
o
u
t
co
ol
i
n
g an
d
wi
t
h
co
ol
i
n
g
w
e
re rec
o
r
d
e
d
during clea
r
da
ys at the Ce
ntre of E
x
cellenc
e for Rene
wable En
erg
y
(CERE), i
n
Un
iv
ersity Malaysia
Perlis
(U
ni
M
A
P
)
, M
a
l
a
y
s
i
a
i
n
Ap
r
i
l
20
15
.
One
of t
h
e
reaso
n
s
fo
r e
x
peri
m
e
nt
al
co
nd
uct
e
d
i
n
Ap
ri
l
caus
e
d
b
y
expe
ri
ence
d i
n
suc
h
hi
g
h
t
e
m
p
erat
ure
by
m
eans t
h
e su
n i
s
ve
rt
i
cal
l
y
overhe
a
d t
h
e eq
uat
o
ri
al
regi
o
n
fr
om
m
i
d-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
52
6 – 5
3
4
52
9
Feb
r
ua
ry
t
o
m
i
d-
Ap
ri
l
.
T
h
e p
hot
og
ra
phi
c
vi
ew at
t
h
e p
r
es
ent
ex
peri
m
e
nt
al
PV pa
nel
s
i
s
sh
ow
n i
n
Fi
g
u
re
3
respectively.
Fi
gu
re
3.
The
out
do
o
r
e
xpe
ri
m
e
nt
al
of
PV
s
y
st
em
wi
t
h
an
d
wi
t
h
out
c
o
ol
i
n
g sy
st
em
An an
alysis of th
e
rep
eatab
ility o
f
th
e m
easu
r
em
en
ts was
p
e
rform
e
d
du
e to
en
su
re reliab
ility
resu
lts
p
r
od
u
c
ed
. Thus, th
e exp
e
r
i
m
e
n
t
w
a
s co
nducted
f
o
r
8
ho
urs f
r
o
m
9
.
0
0
am to
5
.
00
p
m
at 1
0
-
m
i
n
u
t
e in
terv
als.
Th
e surro
und
in
g env
i
ron
m
en
tal te
m
p
eratu
r
e (am
b
ien
t
te
m
p
erature
)
was
measure
d
usi
n
g a
digital
tem
p
erature
sens
or. Tem
p
erature
m
easurements are
m
o
st
th
e im
p
o
r
tan
t
measu
r
em
en
t i
n
th
is ex
p
e
rimen
t
du
e to
i
n
v
e
stig
ate
t
h
e im
pact
of c
ool
i
n
g sy
st
em
appl
i
cat
i
o
n. A
b
o
u
t
f
o
u
r
uni
t
s
of t
e
m
p
erat
ur
e sens
or
(LM
3
5) a
r
e i
n
st
al
l
e
d
on t
h
e
back side
of thepanel a
s
purpose t
o
determ
ine the
av
e
r
ag
e P
V
op
er
a
tin
g
te
mp
e
r
a
t
u
r
e d
i
s
t
r
i
b
u
t
ed
f
r
o
m
a
PV
panel
.
B
e
si
des
,
t
h
e t
h
e
r
m
a
l
im
agi
ng i
s
use
d
t
o
ca
pt
u
r
e t
h
e i
m
age of t
e
m
p
erat
ur
e di
s
t
ri
but
i
o
n t
h
r
o
u
gh
P
V
p
a
n
e
l.
Wh
ile en
suring
th
e electrical o
u
t
pu
t o
f
th
e
PV
p
a
nel,
cu
rr
en
t-
vo
ltag
e
(I
-V
) m
easurem
ents of t
h
e PV
panel
,
as wel
l
as p
o
we
r c
h
ar
g
i
ng
of
fr
om
bat
t
e
ry
were
rec
o
r
d
ed i
n
eac
h e
x
peri
m
e
nt
. The
per
f
o
r
m
a
nces of
PV
panel
a
r
e e
x
per
i
m
e
nt
ed wi
t
h
c
o
m
p
ared
wi
t
h
di
ffe
re
nt
co
ol
i
n
g
m
ode o
p
e
r
a
t
i
ons as
s
h
o
w
n
i
n
Ta
bl
e 1
.
Tabl
e1
.
Vari
at
i
o
n m
o
d
e
s o
p
erat
i
o
n
f
o
r e
xpe
ri
m
e
nt
al
t
e
st
i
ng.
M
odes Oper
ation
M
1
Refer
e
nce (
N
o coo
ling)
M
2
For
ced convection with one unit of DC fan
M3
M4
M5
For
ced convection with two units of DC fan
For
ced convection with thr
ee units of DC fan
For
ced convection with four
units of
DC fan
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Di
ffe
re
nt
m
o
d
e
s ope
rat
i
o
n o
f
co
ol
i
ng m
echani
s
m
wa
s carried
out to evaluate the i
n
fl
uence
of
num
ber
DC
fa
n as c
ool
i
ng m
echani
s
m
for
PV
panel
use
d
. The
det
a
i
l
a
n
al
y
s
i
s
of t
h
e
el
ect
ri
cal
and t
h
erm
a
l
aspect
s of PV panel
has bee
n
co
nd
uct
e
d he
nce
t
h
e neces
s
a
ry
n
u
m
b
er
o
f
DC
fa
n req
u
i
r
ed f
o
r o
n
e
u
n
i
t
PV
panel
ca
n
be
d
e
t
e
rm
i
n
ed.
3.1. Thermal
Perfor
ma
nce Charac
teristic
As t
h
e m
a
i
n
pu
r
pose t
o
p
r
ovi
de a rel
i
a
bl
e cool
i
ng sy
s
t
em
, det
e
r
m
i
n
at
i
on of t
h
e t
e
m
p
erat
ur
e
di
st
ri
b
u
t
i
on
o
f
t
h
e PV
pa
nel
i
s
a cruci
a
l
fact
or
.
Fi
g
u
r
e 4
d
e
scri
bes t
h
e pe
rf
orm
a
nce of a
m
bi
ent
t
e
m
p
er
at
ure
and t
h
e ave
r
age PV pa
nel tem
p
erature of the bac
k
side
P
V
pa
nel
f
o
r
di
f
f
ere
n
t
m
ode o
p
erat
i
o
n.
A P
V
sy
st
em
no
rm
al
ly
desi
g
n
ed
acc
or
di
n
g
t
o
t
h
e
ave
r
age
surrounding t
e
m
p
erature at
s
ite lo
catio
n
,
wh
ich
is
primarily a
product
of the
a
m
bient te
m
p
erature
.
T
h
e a
v
e
r
age am
bien
t t
e
m
p
erature through the
ex
per
i
m
e
nt
al
day
i
s
36
.5
0
°C wh
ile th
e
max
i
m
u
m
v
a
l
u
e reach
at 39.21
°C.Gen
er
al
ly, th
e PV p
a
n
e
l te
m
p
eratu
r
e will b
e
h
i
gher th
an
a
m
b
i
en
t tem
p
e
r
atu
r
e.
As ca
n
be see
n
i
n
t
h
i
s
fi
g
u
re
,
PV
pa
nel
s
wi
t
h
o
u
t
a c
o
ol
i
n
g
sy
st
em
are ex
p
l
ori
n
g e
x
peri
en
ced i
n
hi
gh
l
e
vel
of o
p
e
r
at
i
ng t
e
m
p
erat
ur
e. The m
a
xim
u
m
PV panel
t
e
m
p
erat
ur
e fo
un
d ab
o
u
t
59
.
88 °C
at
3
9
.
2
1
°C
of
am
bi
ent
t
e
m
p
erat
ure
f
o
r P
V
pa
nel
wi
t
h
no c
o
ol
i
ng a
ttached. T
h
e
high operatin
g te
m
p
erature
norm
ally
pr
o
duce
d
du
ri
ng
hi
gh
-i
nt
en
si
t
y
sol
a
r ra
di
at
i
on.
Wh
e
n
t
h
e
ener
gy
o
f
t
h
e
i
n
ci
de
nt
ra
di
at
i
on i
s
hi
g
h
e
r
t
h
an t
h
e
b
a
nd
g
a
p
en
erg
y
o
f
sem
i
co
nd
u
c
t
o
r, a po
rti
o
n
o
f
ph
o
t
o
n
en
erg
y
will transform
in
to
h
eat rath
er th
an
electrical
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ool
i
n
g
o
n
P
h
ot
ov
ol
t
a
i
c
P
a
n
e
l
Usi
n
g F
o
rce
d
Ai
r C
o
nvect
i
o
n
I
n
duce
d
by
DC
F
a
n
(A.R.
Am
elia
)
53
0
en
erg
y
. Th
u
s
,
th
e p
r
od
u
c
ti
o
n
o
f
h
eat en
ergy will lead
in
t
o
in
crem
en
ts of PV
p
a
n
e
l tem
p
eratu
r
e. Bu
t
wh
en
at
t
achi
ng t
h
e cool
i
n
g sy
st
em
, at
sam
e
condi
t
i
on, t
h
e
PV
p
a
nel
t
e
m
p
erat
u
r
e can
be re
d
u
ced t
o
53
.6
4 °
C
wi
t
h
one
u
n
i
t
DC
f
a
n act
as co
ol
i
ng m
echani
s
m
.
C
ool
i
n
g m
echani
s
m
s
obs
erve
d t
o
ha
ve
great
l
y
i
n
fl
u
e
n
ced o
n
te
m
p
er
atu
r
e red
u
c
tion
thr
ough
PV
p
a
n
e
ls.
Th
e ov
er
all r
e
su
lts i
m
p
lied
t
h
e op
er
ating
t
e
m
p
er
atu
r
e obv
iou
s
ly
dr
o
ppe
d
wi
t
h
t
h
e i
n
c
r
easi
n
g
n
u
m
b
er o
f
DC
f
a
n.
As i
t
ca
n
b
e
seen,
by
usi
n
g f
o
ur
u
n
i
t
s
o
f
DC
fa
n as
a c
o
ol
i
n
g
devi
ce,
t
h
e a
v
e
r
age
PV
pa
nel
t
e
m
p
erat
ure m
o
st
si
g
n
i
f
i
c
a
n
t
l
y
red
u
ce
d com
p
are
d
t
o
ot
her
m
ode ope
rat
i
o
ns. B
y
usi
n
g f
o
ur
uni
t
s
of
DC
fa
ns, t
h
e ave
r
a
g
e P
V
panel
t
e
m
p
erat
ure re
d
u
ced a
b
o
u
t
2
2
.
2
2% r
e
spect
i
v
el
y
.
T
h
e P
V
panel
t
e
m
p
era
t
ure
ob
ser
v
ed
t
o
b
e
nea
r
l
y
t
h
e
val
u
e
of the am
bient te
m
p
erature
of th
e
d
a
y. Ap
art, the
di
st
ri
b
u
t
i
on
ba
cksi
de t
e
m
p
era
t
ure f
o
r PV
pa
nel
wi
t
h
at
t
ach
ed t
w
o an
d t
h
r
ee uni
t
s
o
f
D
C
fan l
o
o
k
s n
o
t
t
o
o
m
u
ch di
ffere
nt
t
o
t
h
e fo
ur
u
n
i
t
DC
fans. T
h
e
di
ffe
rent
bet
w
een t
h
ese t
h
ree
m
odes o
p
erat
i
on
onl
y
ab
o
u
t
2-
3%
of
di
st
ri
but
i
o
n
t
e
m
p
erat
ure
.
Fi
gu
re
4.
C
o
m
p
arat
i
v
e
pe
rf
o
r
m
a
nce o
f
P
V
p
a
nel
t
e
m
p
erature for fi
ve m
o
des operation
wi
th am
bient
te
m
p
erature
Solar system
s
are outdoor ele
c
trical installations e
x
p
o
se
d t
o
va
ri
at
i
on t
e
m
p
erat
ure,
st
ress
es of
wi
n
d
,
rain,
m
e
lt, an
d
UV
ra
diation
i
n
weathe
rin
g
.
To e
n
s
u
re
relia
ble
ope
ration
duri
ng the
full lifetim
e cycle of a PV
panel, t
h
erm
a
l im
aging cam
e
r
a can
pl
ay an i
m
p
o
r
tan
t
ro
le. All th
erm
a
l
images capture
d duri
ng t
h
e highest
in
ten
s
ity o
f
so
lar rad
i
ation
.
Fig
u
re
5
ob
serv
ed
th
e tem
p
erature
va
riation over the s
u
rface of th
e so
lar
pan
e
l.
Th
erm
o
graph
y
tech
n
i
q
u
e
u
tilizes th
e co
o
l
er spo
t
s
o
f
t
h
e syste
m
b
y
lo
ok
in
g at th
e
b
l
u
e
co
lored areas
o
f
t
h
e
syste
m
as co
mpare
d
to t
h
e re
d zones
.
It clearly sh
ows t
h
at large tem
p
e
r
ature
differe
n
ces along the
pane
l
surface we
re
detected bet
w
e
e
n the sy
stem with and wit
h
out the cooli
ng
system
. The result re
port
ed that
m
easured t
e
m
p
erat
ure
ra
nges
di
st
ri
b
u
t
e
d
fr
o
m
31.
1°C
t
o
5
4
.
01
°C
res
p
ec
t
i
v
el
y
.
Hot
t
e
st
po
rt
i
o
n f
o
u
n
d
on
PV
panel
wi
t
h
out
cool
i
n
g m
echa
n
i
s
m
wi
t
h
t
h
e
m
a
xim
u
m
t
e
m
p
erat
ure at
54
.0
1°C
at
a
m
bi
ent
t
e
m
p
erat
ure
o
f
39
.2
1
°C
.
Hi
g
h
t
e
m
p
erat
ur
e
di
st
ri
but
e
d
ca
use
d
by
exi
s
t
i
n
g
d
i
ffere
nce t
e
m
p
erat
ure
am
ong
sur
r
o
u
ndi
n
g
a
n
d P
V
p
a
n
e
l tem
p
eratu
r
e. Th
e
d
i
fferen
ce in
tem
p
eratu
r
e
will l
ead
in
to
h
eat
g
e
nerated
an
d
i
n
creased
t
h
e op
erating
te
m
p
eratu
r
e
o
f
PV p
a
n
e
l. B
u
t b
y
attach
ing
fo
ur un
its
DC fan
,
it was
warm
to
3
9
.
86
°C.
In
ad
d
itio
n, th
e
avera
g
e PV
pa
nel
t
e
m
p
erat
ur
e by
usi
ng M
3
and M
4
al
m
o
st achi
e
ved t
h
e t
e
m
p
erat
ur
e di
s
t
ri
but
e
d
by
usi
ng M
5
ope
ration.
Whi
l
e, the a
v
era
g
e
te
m
p
erat
u
r
e of
M2 op
er
ation ob
serv
ed
in h
i
g
h
cond
itio
n
with
th
e rang
e ab
ove
40 °C
. Based on the res
u
lt produce
d
, the increase num
b
er
of DC fa
ns
de
creases the PV panel te
m
p
era
t
ure as
t
h
e heat
was
re
m
oved f
r
om
t
h
e PV
pa
nel
.
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
9.00
9.20
9.40
10.00
10.20
10.40
11.00
11.20
11.40
12.00
12.20
12.40
13.00
13.20
13.40
14.00
14.20
14.40
15.00
15.20
15.40
16.00
16.20
16.40
17.00
Temperature
(°C)
Time
Ambient
temperature
PV
without
cooling
system
PV
panel
with
one
unit
of
DC
fan
PV
panel
with
two
units
of
DC
fan
PV
panel
with
three
units
of
DC
fan
PV
panel
with
four
units
of
DC
fan
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
52
6 – 5
3
4
53
1
Fi
gu
re
5.
Tem
p
erat
ure
di
st
ri
b
u
t
i
o
n
t
h
ro
u
g
h
t
h
e
fr
ont
su
rfac
e
PV
pa
nels
fo
r
diffe
rent m
o
d
e
o
p
eratio
n
3.2.
Electric
a
l Perfor
mance Analysis
Di
ffe
re
nt
m
odes of c
o
ol
i
n
g
ope
rat
i
o
n an
d
wi
t
h
o
u
t
co
ol
i
n
g (
r
efe
r
enc
e
)
were ca
rri
e
d
o
u
t
t
o
ev
al
uat
e
t
h
e i
m
pact
of a num
ber
of
fa
ns i
n
i
m
pro
v
e
d
t
h
e
per
f
o
rm
a
n
ce of PV
panel. The
I-
V
characteristic
of the PV
panel
i
n
t
h
e e
x
peri
m
e
nt
was
m
easured
i
n
o
r
der
t
o
cal
cul
a
t
e
t
h
e
ge
nerat
e
d
po
we
r
out
pu
t
pr
o
duce
d
.
Fi
gu
re
6
sho
w
s
t
h
e
cu
rr
ent
o
u
t
put
p
r
o
duce
d
by
eac
h
PV
p
a
nel
t
h
r
o
u
g
h
t
h
e e
xpe
ri
m
e
nt
. The c
u
rre
nt
out
put
f
o
r eac
h
m
ode operat
i
o
n o
b
ser
v
e
d
st
art
e
d t
o
be i
n
c
r
eased val
u
e fr
om
11.0
0
a.m
.
t
o
2.0
0
p
.
m
.,
whi
c
h i
s
at
peak sol
a
r
rad
i
ation
an
d hig
h
am
b
i
en
t tem
p
eratu
r
e.
W
i
t
h
th
e ex
isting
o
f
coo
ling
m
e
c
h
an
ism
,
th
e curren
t
ou
tpu
t
o
b
tain
ed
sl
i
ght
l
y
i
n
creas
ed wi
t
h
t
h
e de
creasi
n
g P
V
pa
nel
t
e
m
p
erat
ur
e. The c
u
r
r
ent
out
put
of a P
V
panel
c
ool
e
d
by
DC
fan i
s
hi
g
h
er t
h
an t
h
at
gene
rat
e
d by
n
o
co
ol
i
ng at
t
ache
d
. Such as an e
x
a
m
ple,
the
hi
gh
est
curre
nt
o
b
s
e
rve
d
t
o
be p
r
o
d
u
ced
b
y
usi
ng M
5
m
ode
o
p
erat
i
o
n
by
4.
9
7
A at
1
.
4
0
p
.
m
.
duri
n
g t
h
e hi
gh
est
am
bi
ent
t
e
m
p
er
at
ure
.
Wh
ile, in
th
e
sam
e
co
n
d
ition
,
on
ly 3
.
4
9
A h
a
v
e
b
e
en
p
r
od
u
c
ed
wh
en
no
coo
lin
g
m
o
d
e
was atta
ch
ed. An
in
crem
en
t in
the cu
rren
t with
a redu
ction
in te
m
p
eratu
r
e is
d
u
e
to
a m
a
rg
i
n
al in
crease in
th
e pho
to
-g
en
eratio
n
rate,
wh
ich
in tu
rn
is
du
e to a
redu
ction
in b
a
n
d
g
a
p
en
erg
y
[10
]
.
Fi
gu
re
6.
C
u
rre
nt
o
u
t
p
ut
of
P
V
panel
ve
rsu
s
t
i
m
e
operat
i
o
n
f
o
r eac
h m
ode
o
p
erat
i
o
n
The ef
fect
on t
h
e di
f
f
ere
n
t
n
u
m
ber of DC
fa
ns o
n
v
o
l
t
a
ge o
u
t
p
ut
of t
h
e P
V
pa
nel
s
com
p
ared wi
t
h
no
co
o
ling
attach
ed
was illu
strated
as in
Fi
g
u
re
7
.
As can
b
e
seen
in
th
is
figu
re, th
e in
crem
e
n
t o
f
t
h
e nu
m
b
er DC
0
1
2
3
4
5
9.00
9.20
9.40
10.00
10.20
10.40
11.00
11.20
11.40
12.00
12.20
12.40
13.00
13.20
13.40
14.00
14.20
14.40
15.00
15.20
15.40
16.00
16.20
16.40
17.00
Current
(A)
Time
PV
panel
without
cooling
system
PV
panel
with
one
unit
of
DC
fan
PV
panel
with
two
units
of
DC
fan
PV
panel
with
three
units
of
DC
fan
PV
panel
with
four
units
of
DC
fan
Mo
de
M1
M2
M3
M4
M5
Therm
o
graphy
Min tem
p
erature (°C)
4
0
.49
3
6
.89
3
2
.67
3
1
.67
3
1
.10
Max tem
p
erature (°C)
5
4
.01
4
9
.89
4
1
.31
4
0
.06
3
9
.86
Avg tem
p
erature (°C)
5
1
.31
4
6
.50
3
7
.22
3
6
.61
3
5
.28
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ool
i
n
g
o
n
P
h
ot
ov
ol
t
a
i
c
P
a
n
e
l
Usi
n
g F
o
rce
d
Ai
r C
o
nvect
i
o
n
I
n
duce
d
by
DC
F
a
n
(A.R.
Am
elia
)
53
2
fan
will in
crease th
e
v
o
ltage o
u
t
pu
t of the PV
p
a
n
e
l.
Th
e m
a
in
fo
cu
sed
an
alysis is wh
en
t
h
e PV p
a
nel
expe
ri
ence
d i
n
hi
gh am
bi
ent
t
e
m
p
erat
ure
,
w
h
i
c
h i
s
fr
om
11.
00 a.m
.
t
o
2.
00
p.m
.
W
i
t
h
a
l
m
o
st
i
n
range
abo
v
e
15
V,
t
h
e i
n
cr
easi
ng
n
u
m
b
er of
DC
fan
o
b
s
erve
d t
o
gi
ve
a great
i
m
pact
on
v
o
l
t
a
ge
per
f
o
r
m
a
nce. In
st
ead, a
t
sam
e
co
n
d
ition
,
PV p
a
n
e
l
with
ou
t coo
ling
m
ech
an
ism
e
x
p
e
rien
ced
i
n
lo
w vo
ltag
e
at h
i
gh
lev
e
l
o
f
so
lar
rad
i
ation
.
Th
e lo
wer vo
ltag
e
foun
d
i
n
th
e
h
i
gh
est am
b
i
e
n
t tem
p
eratu
r
e wh
ich
at m
o
d
e
op
eratio
n
with
no
cool
i
n
g
m
echani
s
m
att
ached wi
t
h
13
.5
5 V o
f
v
o
l
t
a
ge o
u
t
p
u
t
.
As
ca
n be ob
serve
d
,
t
h
e vol
t
a
ge
o
u
t
p
ut
f
r
o
m
M
1
ope
ration m
a
intained
with a l
o
w val
u
e at a
high am
bien
t tem
p
eratu
r
e. Risin
g
with
th
e
tem
p
erature inc
r
ease the
dar
k
c
u
r
r
e
n
t
re
sul
t
e
d
dec
r
easi
n
g
i
n
t
h
e
ba
nd
ga
p
of
t
h
e
se
m
i
cond
uct
o
r,
has a
rem
a
rka
b
l
e
ef
fect
on
v
o
l
t
a
g
e
[1
1]
.
Ho
we
ver
,
wi
t
h
exi
s
t
i
n
g
cool
i
n
g m
echa
n
i
s
m
,
t
h
e v
o
l
t
a
ge
out
put
has i
m
prove
d t
h
ei
r
per
f
o
r
m
a
nce o
u
t
p
ut
at th
e sa
m
e
co
n
d
ition
.
W
i
t
h
ap
p
l
ying
coo
lin
g
m
ech
an
ism, abo
u
t
3
.
7
%
in
creasi
n
g
i
n
vo
ltag
e
ou
tpu
t
can
be
pr
o
duce
d
. T
h
e
perce
n
t
a
ge i
n
c
r
em
ent
s
obser
v
e
d can
be i
m
prove
d
by
i
n
crea
si
ng t
h
e
n
u
m
b
er o
f
DC
fa
n t
o
2
,
3
and
4
uni
t
s
re
spect
i
v
el
y
.
A
b
out
14
.5%
o
f
perce
n
t
a
ge i
n
c
r
em
ent
s
i
n
vo
l
t
a
ge out
put
c
a
n be
o
b
ser
v
e
d
by
at
t
achi
ng
fo
u
r
uni
t
s
,
DC
fa
n
at
t
h
e bac
k
si
de
PV
panel
.
Th
us, t
h
e de
vel
o
pm
ent
of co
ol
i
ng m
echani
s
m
has
a
great im
pact in te
m
p
erature re
ductio
n at t
h
e
hot clim
atic weather.
Fi
gu
re
7.
V
o
l
t
a
ge
out
put
o
f
P
V
panel
ve
rsu
s
t
i
m
e
operat
i
o
n
f
o
r eac
h m
ode
o
p
erat
i
o
n
Figure 8
desc
ribes the
ove
rall total of powe
r out
put
ge
ne
rated by each m
ode operation.
As shown
i
n
th
is f
i
g
u
r
e
, b
y
in
cr
easing th
e
n
u
m
b
e
r
of
D
C
f
a
n
,
a r
e
m
a
r
k
ab
le in
cr
ease i
n
p
o
w
e
r
o
u
t
p
u
t w
a
s
fo
und
.
W
i
t
hout
appl
y
i
n
g
c
ool
i
n
g
m
echani
s
m
t
o
t
h
e
PV
pa
nel
,
onl
y
42
.5
3
W
of
p
o
we
r
o
u
t
p
ut
can
be
pr
o
duce
d
at
a
hi
g
h
e
r
am
bi
ent
t
e
m
p
erat
ure
.
L
o
we
r
i
n
p
o
we
r
out
p
u
t
ge
nerat
e
d
due to inc
r
ease
in
operating te
m
p
erature PV
panels
whe
n
m
o
re he
at
ener
gy
i
s
pr
od
uce
d
rat
h
er
than electrical energy. Instea
d, at
sam
e
condi
t
i
on, i
t
s
h
o
u
l
d
b
e
n
o
ticed th
at t
h
e po
wer
ou
tput is in
creased
ab
ou
t
12
.9
3 % b
y
i
n
tro
d
u
c
ing
o
n
e
u
n
it
DC
fan
for coo
ling
PV
p
a
n
e
l. Th
e
f
i
gu
r
e
h
a
s also
r
e
v
ealed
, w
ithout co
o
ling
m
ech
an
ism
at
tach
ed to
PV p
a
n
e
l, t
h
e pow
er
ou
tpu
t
in
a
worst co
nd
ition
as
PV op
eratin
g
tem
p
erature resu
lted in
h
i
gh
co
nd
itio
n.
By fu
rth
e
r i
n
creasing
th
e DC fan
fr
om
2 t
o
3 and
4, t
h
e
po
w
e
r o
u
t
p
ut
i
n
cr
eased t
o
6
7
.
7
0
W
,
72
.4
3
W, an
d
76
.5
4
W
resp
ect
i
v
e
l
y
.
Thi
s
cor
r
es
po
n
d
s t
o
37
.1
7
%,
4
1
.
2
8
% a
n
d
4
4
.
3
4
% i
n
crea
se
po
wer
o
u
t
p
ut
of a
PV
pa
nel
.
0
5
10
15
20
9.00
9.20
9.40
10.00
10.20
10.40
11.00
11.20
11.40
12.00
12.20
12.40
13.00
13.20
13.40
14.00
14.20
14.40
15.00
15.20
15.40
16.00
16.20
16.40
17.00
Voltage
(V)
Time
PV
panel
without
cooling
system
PV
panel
with
one
unit
of
DC
fan
PV
panel
with
two
units
of
DC
fan
PV
panel
with
three
units
of
DC
fan
PV
panel
with
four
units
of
DC
fan
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
52
6 – 5
3
4
53
3
Figure 8.
Powe
r out
put of
PV
panel
ve
rsus time ope
ration for each m
ode operation
As e
xpecte
d
, t
h
ere is a
clear
trend of increa
sing i
n
th
e
pow
er
ou
tpu
t
of
t
h
e
P
V
panel
s
by
i
n
crea
si
n
g
t
h
e n
u
m
b
er of
fans
. T
h
i
s
has
hap
p
e
n
ed
si
nce
t
h
e PV t
r
a
n
s
f
orm
a
tion of
solar energy to el
ectricity increases on
account of PV ope
rating temperat
ure
d
ecre
a
ses. Increasi
n
g the DC fa
n
num
be
r im
proved the effect
of
heat
trans
f
er area
of PV
panel wit
h
m
o
re air circulation
produc
ed. Howeve
r, t
h
e increas
e in the num
ber of
fans
leads to m
o
re electrical powe
r
cons
um
ed, an
d m
o
re capi
t
a
l
i
nvest
m
e
nt
req
u
i
r
e
d
. T
hus
, i
t
i
s
concl
u
de
d t
h
at
an
increasing
number of
fans
are
not al
ways lea
d
in
g
to in
creasin
g
t
o
tal po
wer ou
tpu
t
g
e
n
e
rated
.
T
h
e
r
e h
a
v
e
th
e nu
mb
e
r
of
f
a
n
s
r
e
qu
ir
ed
as
c
o
o
ling
m
ech
an
ism
fo
r
PV pan
e
l to ach
ieve m
a
x
i
m
u
m
powe
r output. The qua
n
tity of DC fa
n for a
unit PV
pa
ne
l depe
nds m
a
inly on the total am
ount of heat
neede
d
t
o
be
rem
ove
d.
B
e
si
des, t
h
e si
ze of
P
V
panel
s
an
d at
m
o
sph
e
ri
c fact
o
r
s
o
f
si
t
e
l
o
cat
i
on
be
com
e
s t
h
e im
port
a
nt
fact
or
s i
n
det
e
r
m
i
n
i
ng t
h
e nec
e
ssary
n
u
m
b
er of DC
fa
n as cooling m
echanism
.
By
referring
th
e th
erm
a
l an
d
electrical resul
t
, the
necessa
ry num
ber
o
f
DC fan
s
fo
r th
e
typ
e
PV p
a
n
e
l
u
s
ed
is two
units resp
ectiv
ely
sin
ce
t
h
ere a
r
e
not
t
o
o
m
u
ch di
f
f
er
ed i
n
o
u
t
p
ut
p
e
rf
orm
a
nce bet
w
een
t
h
ree
an
d f
o
ur
u
n
i
t
s
D
C
fans
. F
u
rt
he
rm
ore,
t
h
e i
n
st
al
l
a
t
i
o
n
cost
o
f
co
ol
i
n
g m
echani
s
m
f
o
r P
V
panel
c
a
n be
red
u
ce
d
wi
t
h
m
i
nim
i
zed t
h
e
num
ber
of
DC
fan. T
h
us, t
h
e
effective
and e
c
onom
ical PV syste
m
can
d
e
velo
p
with
t
h
e ex
istin
g coo
ling m
ech
an
is
m
.
4.
CO
NCL
USI
O
N
As co
ncl
u
de, t
h
i
s
pape
r ex
pl
ore
d
t
h
e im
pact
of
co
o
ling
mech
an
ism
fo
r th
e overall perform
ance of
PV p
a
n
e
l. In
gen
e
ral,
t
h
e
in
creasin
g
in
op
eratin
g
tem
p
erature
of PV
panel caused
by heat energy generate
d
th
ro
ugh
PV p
a
n
e
l. Th
e in
creasin
g
in
tem
p
eratu
r
e will l
ead
to
th
e d
ecremen
t p
o
wer ou
tpu
t
o
f
th
e PV pan
e
ls.
Th
erefo
r
e, t
h
e
co
o
ling
m
ech
an
ism
h
a
s b
een
in
stalled
at th
e PV p
a
n
e
l in
ord
e
r to
so
lv
e t
h
is ex
isting
pro
b
l
em
.
By referring
fro
m
th
e resu
lt p
r
od
uced, the PV p
a
n
e
l
with
ou
t co
o
ling
m
ech
an
ism
ex
p
e
rien
ces in h
i
gh
o
p
e
rating
tem
p
eratu
r
e. Howev
e
r, th
e ex
isting
coo
ling
m
e
c
h
an
ism
will red
u
ce t
h
e PV pan
e
l tem
p
eratu
r
e th
en
increase
d
its
powe
r
out
put. The
inc
r
easing num
b
er
of
D
C
f
a
ns
le
ad
s
to
th
e d
e
cr
e
a
s
e
mo
r
e
PV
p
a
nel
te
m
p
eratu
r
e. Un
fo
rt
u
n
a
tely, in
creasi
n
g
i
n
a n
u
m
b
e
r of DC
fan
s
will co
n
s
u
m
e
m
o
re en
erg
y
fro
m
a PV p
a
n
e
l
.
There i
s
t
h
e o
p
t
i
m
u
m
num
ber of
DC
fan
r
e
qui
red f
o
r P
V
pa
nel
use
d
.
The sel
ect
i
on
of t
h
e
num
ber
DC
fan
main
ly d
e
p
e
n
d
s o
n
th
e sev
e
ral facto
r
s su
ch
as at
m
o
sp
h
e
ric co
nd
itio
n, sp
eed
and
airfl
ow
DC fan
u
s
ed
an
d
size
o
f
th
e PV
p
a
n
e
l. Fu
rth
e
rm
o
r
e, th
e ex
isting
coo
lin
g m
ech
an
ism
id
en
tified
to b
e
th
e en
erg
y
-sav
ing
syste
m
with
t
h
e PIC
1
8F
4
5
50 m
i
cro cont
rol
l
e
r act
s as cont
rol
l
e
r o
p
e
r
at
i
on of t
h
e s
e
l
ect
i
on DC
f
a
n. It
i
s
beca
use t
h
e
electrical energy use
d
from
PV pa
ne
l can
be
m
i
nimized with
only operate
d
duri
ng
hot clim
ate weather. Thus,
th
e
DC
fan
will
n
o
t
op
erate for 2
4
hou
rs p
e
r d
a
y.
ACKNOWLE
DGE
M
ENTS
The a
u
t
h
ors t
h
ank t
h
e C
e
nt
re
of E
x
cel
l
e
nce
fo
r R
e
ne
wabl
e Ener
gy
(C
E
R
E) i
n
Ka
n
g
ar
, Perl
i
s
f
o
r
p
r
ov
id
ing
all
data u
s
ed
in th
is stud
y.
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
9.00
9.20
9.40
10.00
10.20
10.40
11.00
11.20
11.40
12.00
12.20
12.40
13.00
13.20
13.40
14.00
14.20
14.40
15.00
15.20
15.40
16.00
16.20
16.40
17.00
Power
(W)
Time
PV
panel
without
cooling
system
PV
panel
with
one
unit
of
DC
fan
PV
panel
with
two
units
of
DC
fan
PV
panel
with
three
unist
of
DC
fan
PV
panel
with
four
units
of
DC
fan
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ool
i
n
g
o
n
P
h
ot
ov
ol
t
a
i
c
P
a
n
e
l
Usi
n
g F
o
rce
d
Ai
r C
o
nvect
i
o
n
I
n
duce
d
by
DC
F
a
n
(A.R.
Am
elia
)
53
4
REFERE
NC
ES
[1]
M. Tripath
y
, P.K. Sadhu. Building Integr
ated
Photovolta
ic is
a Cost Effective and Env
i
ron
m
ental Friend
ly
Solution.
TELKOMNIKA Indonesian Journal o
f
Electrical
Engin
e
ering
. 2015; 14 (1
): 49-54.
[2]
F. Dincer
, M.E
.
Meral.
Crit
ica
l
factors
th
at affe
cting effic
i
en
c
y
of
solar
c
e
lls.
Sm
art Grid and Renewable
Energy.
2010; 1 (1)
:
47-5
0
.
[3]
Hos
s
e
in S
h
ahinzadeh
, M
oham
m
ad M
o
ien Na
jaf Abad
i, M
o
ham
m
a
d Hajah
m
adi, Ali
P
a
kn
ejad
. Des
i
gn
a
n
d
Economic Stud
y
for Use the Ph
otovo
ltaic S
y
stems for Electricity
S
upply
in Isfahan Museum
Park.
Internationa
l
Journal of Power Electronics
an
d Dr
ive S
y
s
t
em (
I
JPEDS)
. 2013;
3 (1): 83-94
.
[4]
H.G. Teo
,
P.S.
Lee,
M.N.A. Hawlader. An activ
e cooli
ng s
y
stem
for photovoltaic modules.
Applied Energy
. 2012
;
90 (1): 309–315
.
[5]
Z. F
a
rhan
a, Y.M
.
Irwan, R.M
.
N.
Az
immi,
A.
R.
N.
Razliana,
N.
Gomesh.
Experimental investi
gatio
n of photovolta
ic
modules cooling
system
.I
EEE S
y
mposium on Computers & Infor
m
atics; 2012
.
[6]
O. Zogou, H. S
t
apountzis. Ex
p
e
rimental validation of an impr
oved c
oncept of
building in
tegr
ated photovo
ltaic
panels.
R
e
newab
l
e Ener
gy
. 2011; 36 (12): 3488–3
498.
[7]
Y.M. Irwan, W.Z.
Leow, M
.
Ir
wanto,
Fareq.
M,
A.
R.
Amelia,
N. Gomesh,
I.
Safwati.
An
al
ysis Air Coo
lin
g
Mechanism
for Photovoltai
c
Panel b
y
Solar
Sim
u
lator.
International Journal
of
Electrical and Computer
Engineering (
I
JECE)
. 2015; 5 (
4
): 636-643.
[8]
S.K. Natara
jan,
T.K. Mall
ic
k
,
M. Katz, S. W
e
ingaer
tner
. Numeric
a
l invest
igat
i
ons of solar cell tem
p
erature fo
r
photovoltaic
con
centr
ator s
y
s
t
em
with a
nd with
ou
t passive coo
ling
arrang
ements.
I
n
ternational Jou
r
nal of Thermal
Scien
ces
. 2011;
50 (12): 2514–2
521.
[9]
M.Z. Hussin,
A.M. Omar, Z. Md Zain
, S. Shaari,
H.
Zainuddin
.
Desig
n
Impact of 6.08 kWp Grid-
ConnectedPhotovoltaic S
y
stem at Mala
ysia Gre
e
n
Techno
log
y
Co
rporation
.
Intern
ational Journal
of Electrica
l
and
Electronic Systems Research
. 20
12; 5.
[10]
A. Sahay
,
V.K.Sethi, A.C.
Tiw
a
ri.
Fabrication scheme
, Instrumentation scheme a
nd Testing of Ground Coupled
Central Panel C
ooling S
y
stem (
G
C-CPCS).
International Journ
a
l of Curre
nt Engineering and Technolog
y
. 2014
; 4
(2): 631-638
.
[11]
P.
K.
Dash,
N.C.
Gupta.
Effect
of Temperature on Power
Output fro
m Differen
t
Commercially
av
ailable
Photovoltaic Mo
dules.
In
ternatio
nal Journal
of Engineering
Res
e
arch and App
l
ications
. 2015
; 5
(
1
): 148-15.
Evaluation Warning : The document was created with Spire.PDF for Python.