Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 16
95
~
1
701
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.1
021
3
1
695
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Criti
c
al
Analysis
of
Dat
a
Forw
ard
i
ng Rout
ing Prot
ocols Based
on Single Path for UWSN
Muk
h
ti
ar Ah
med
1,2
, Maz
l
eena
Salleh
1
,
M. Ibr
a
him
Ch
anna
2
1
Departem
ent
of
Com
puter S
c
i
e
n
ce,
F
acu
lty
of
C
o
mputing,
UTM, Ma
lay
s
ia
2
Departement of
Information
Tec
hnolog
y
,
Faculty of Science, QUE
ST, Naw
a
bshah, Sindh, Pakistan
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 17, 2016
Rev
i
sed
May 26
, 20
16
Accepted
Jun 10, 2016
In Underwater Wireless Sensor Ne
twork (UWSN); the sen
s
or node is
responsible to extract the
valuable
applicatio
n based
information
from
underwater
env
i
ronment. The applicat
ion bas
e
d information
covers
the
appli
cat
ions
li
ke: t
act
ic
al s
u
rveill
a
n
ce
,
a
ssiste
d
na
vi
g
a
tion, disaster
prevention, offshore exploratio
n,
pollution monitoring and oceanograph
i
c
data co
llection.
The design of ro
uting
protoco
l
in
underwater env
i
ronment is
one of the ch
all
e
nging is
s
u
es
for res
earch
ers
.
Th
is
res
earch
arti
cle
focus
e
s
the
designing issues
of th
e data for
w
ar
ding routing
protoco
l
s based on single
path. In
this ar
ticle the designing of
2D and
3D architecture of routing
protocols ar
e discussed with their differ
e
nt is
s
u
e
s
. This
art
i
cl
e al
s
o
focus
e
s
the analy
t
ical approach of p
r
oposed
routing
protocols with different
param
e
ters
, the s
i
m
u
lation sc
enar
ios of
the single
path routing pro
t
ocols with
criti
ca
l anal
ysis;
and the open research
issues; will help the re
searchers t
o
further r
e
sear
ch
in th
e field
of ro
uting pro
t
ocols f
o
r UWSN.
Keyword:
Co
ur
ier
no
d
e
Depl
oy
m
e
nt
Location-a
w
are
Pro
p
a
g
at
i
o
n de
l
a
y
R
out
e di
sco
v
e
r
y
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Mu
kh
tiar Ah
m
e
d
,
Depa
rt
m
e
nt
of C
o
m
put
er
Sci
e
nce, Facul
t
y
of
C
o
m
put
i
n
g
,
Un
i
v
ersity Tech
no
log
y
Malaysia (UTM),
Sku
d
a
i Joh
a
r Malaysia,
Em
ail: m
ukhtiar.a@gm
ail.com
1.
INTRODUCTION
Maj
o
rity o
f
the research
ers
are well in
terested
in the
fi
eld of the
Underwater
Wire
less Sens
or
Net
w
or
k (
U
WSN)
d
u
e t
o
i
t
s
wel
l
pr
om
i
n
ent
ap
pl
i
cat
i
ons l
i
k
e di
sast
er pre
v
e
n
t
i
o
n
t
act
i
cal unde
rwat
e
r
su
rv
eillan
ce, assisted
n
a
v
i
g
a
tio
n
,
po
llu
tion
track
ing
,
m
a
ri
n
e
clim
ate o
b
s
erv
a
tion
,
ex
t
r
actio
n
o
f
und
erwater
m
i
neral
s
, i
n
f
o
r
m
at
i
on abo
u
t
un
de
rwat
er m
ount
ai
n
s
an
d u
n
d
er
wat
e
r wi
l
d
l
i
f
e [1]
.
To ext
r
act
t
h
e i
n
fo
rm
at
i
o
n
fr
om
t
h
e unde
r
w
at
er e
nvi
r
o
n
m
ent
t
h
e wi
rel
e
ss sens
or
n
o
d
e
s are t
h
e s
o
u
r
ce. M
a
j
o
ri
t
y
of
t
h
e resea
r
che
r
s have
u
s
ed
th
e
terrestrial
n
e
twork
ap
pro
ach
fo
r d
e
sign
ing
o
f
ro
u
ting
st
rateg
i
es in
und
erwater env
i
ro
n
m
en
t lik
e:
som
e
research
ers ha
ve use
d
t
h
e su
pp
ort
i
n
g
QoS i
s
an i
m
po
rt
ant
t
a
sk i
n
ro
ut
i
ng
pr
ot
oc
ol
s [2]
.
T
h
i
s
i
n
cl
udes
real-tim
e
co
mm
u
n
i
catio
n
,
reliab
l
e tran
sm
is
sio
n
, and
reso
u
r
ce
reserv
ation
.
Pack
ets shou
ld
b
e
tran
sm
itted
as
soo
n
as
pos
si
b
l
e ove
r t
h
e m
o
st
rel
i
a
bl
e l
i
n
k
w
h
i
l
e
co
nsi
d
e
r
i
n
g
ban
d
w
i
d
t
h
c
o
n
s
t
r
ai
nt
s
[
2
]
.
Ot
her
s
re
se
arche
r
s
have
u
s
ed
t
h
e
M
A
NET
ro
ut
i
ng
p
r
ot
ocol
a
p
p
r
oach
f
o
r
t
h
e m
ovem
e
nt
of t
h
e
n
o
d
e, t
h
e n
ode
i
n
M
ANE
T
m
oves arbi
t
r
ar
y
whi
c
h m
a
y expe
ri
ence ra
pi
d an
d u
n
p
r
edi
c
t
a
bl
e chan
ges i
n
t
h
e net
w
o
r
k
t
o
p
o
l
o
gy
[3]
.
Ot
he
rs
researc
h
er
s ha
ve use
d
t
h
e ap
pr
oac
h
of t
h
e
LEAC
H
, DS
D
V
an
d OLSR
r
out
i
n
g p
r
ot
oc
o
l
for dat
a
f
o
r
w
ardi
n
g
[4]
-
[
6]
.
The
de
pl
oy
m
e
nt
of
w
i
rel
e
ss sen
s
o
r
no
des i
n
u
nde
r
w
at
er e
n
vi
ro
n
m
ent
i
s
o
n
e
of
t
h
e chal
l
e
ngi
n
g
i
s
s
u
es
because the
pressure of the
unde
rwater
is the m
a
jor hurdle
for
depl
oym
e
n
t
and a
fixe
d
or static architecture
i
s
n
o
t
app
r
op
r
i
ate in
u
n
d
e
r
w
ater
en
v
i
ron
m
en
t d
u
e
to
th
e
co
n
tinuo
us mo
v
e
m
e
n
t
of
th
e
w
a
ter
[
7
]-[9
].
In
unde
rwater environm
ent the
dy
nam
i
c archi
t
ect
ure i
s
t
h
e
be
st
sol
u
t
i
o
n
bec
a
use
no
de m
o
v
e
s wi
t
h
respect
t
o
t
h
e
water
pre
ssu
re
[1
0]
,[
1
1
]
.
M
a
jo
rity
of
the
re
searche
s
h
a
v
e
d
e
sign
ed
th
e lo
catio
n b
a
sed
an
d lo
calization
free
n
e
two
r
k
arch
itectu
r
e
b
u
t
still th
e research is n
eed
ed
fo
r so
m
e
serio
u
s
issu
es lik
e: (i) in
un
d
e
rwater the
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
16
95
–
1
701
1
696
aco
ustic ch
an
nel h
a
s a lim
ite
d
b
a
ndwid
th, (ii) acou
s
tic ch
an
n
e
l is im
p
a
ired
with
m
u
ltip
ath
and
fad
i
ng
,
(iii)
p
r
op
ag
ation
d
e
lay d
u
e
to
t
h
e
aco
ustic ch
annel, (iv
)
th
er
e is h
i
gh
b
it erro
r
rate an
d
tem
p
o
r
ary lo
ss co
nn
ectiv
ity
d
u
e
t
o
v
o
i
d
r
e
g
i
on
s,
(
v
)
b
a
tter
i
es of
th
e sen
s
o
r
no
d
e
s cannot b
e
r
e
ch
arg
e
d
easily an
d
(v
i)
sen
s
o
r
no
d
e
s
may
dead
d
u
e t
o
f
o
ul
i
ng a
n
d co
rr
o
s
i
o
n
.
Th
e resea
r
che
r
s are als
o
involve
d
to
s
o
l
v
e t
h
e l
o
cal
i
zat
i
on a
nd
depl
oy
m
e
nt
p
r
ob
lem
s
[1
2
]
. Th
is research article fo
cu
ses th
e criti
cal
anal
y
s
i
s
of t
h
e ro
ut
i
ng
pr
ot
ocol
s
fo
r u
n
d
e
rwat
e
r
wi
rel
e
ss se
nso
r
net
w
o
r
k
whi
c
h are
based
o
n
si
n
g
l
e
pat
h
dat
a
fo
r
w
ar
di
n
g
. T
h
i
s
re
s
e
ar
ch
a
r
tic
le
f
o
cu
se
s
th
e
net
w
or
k arc
h
i
t
ect
ure,
de
pl
oy
m
e
nt
of se
nso
r
no
des,
r
out
e
di
sco
v
ery
m
e
chani
s
m
,
dat
a
f
o
r
w
ar
di
n
g
, a
n
d r
out
e
main
ten
a
n
ce mech
an
ism
.
Th
e maj
o
r
p
a
rt of th
is article
foc
u
ses t
h
e i
ssues
wi
t
h
t
h
e p
r
op
o
s
ed r
out
i
ng
pr
o
t
ocol
s
and the c
o
m
p
arative a
n
d critical anal
ysis
on
an
alytical
and
sim
u
lati
o
n
resu
lts of
th
e pro
p
o
s
ed
rou
ting
p
r
o
t
o
c
o
l
s.
Th
is article will h
e
l
p
th
e research
ers to fu
rt
h
e
r research on
p
r
op
osed
rou
ting
p
r
oto
c
o
l
s.
2.
BACK
G
R
O
U
ND
A
N
D
LIT
E
RAT
URE
R
E
VIEW
Si
m
ilar
to t
errestrial networks, unde
rwater
wireless sens
or
netwo
r
k
(U
W
S
N) als
o
refe
rs
the variable
num
ber o
f
sen
s
or
no
des wi
t
h
di
ffe
re
nt
nam
e
s l
i
k
e aut
o
n
o
m
ous
u
nde
rwat
e
r
ve
hi
cl
es, m
o
ore
d
sen
s
o
r
s, a
c
ou
st
i
c
sens
ors
,
rel
a
y
no
des;
su
pe
r n
ode
s cabl
e
d se
a fl
oo
r sens
o
r
s and c
o
u
r
i
e
r n
o
d
es. M
a
j
o
ri
t
y
of t
h
e researc
h
e
r
s ha
ve
wo
rk
ed o
n
t
h
e
rout
i
n
g p
r
ot
oc
ol
s fo
r u
nde
rw
at
er wi
rel
e
ss sens
or net
w
o
r
k
s
. Som
e
researchers
have
des
i
gn
e
d
cl
ust
e
r bas
e
d
r
out
i
n
g
pr
ot
oc
ol
s, som
e
have d
e
si
gne
d ge
o
g
ra
phi
cal
ba
sed
ro
ut
i
ng
pr
ot
o
c
ol
s
,
som
e
have w
o
r
k
e
d
o
n
en
erg
y
effi
cien
t rou
ting
,
so
m
e
h
a
v
e
d
e
sig
n
e
d
m
u
lti-p
a
th
d
a
ta fo
rward
i
n
g
, so
m
e
h
a
v
e
d
e
sign
ed
v
ector
base
d a
n
d
s
o
m
e
have
de
si
g
n
ed
t
h
e
si
n
g
l
e
pat
h
dat
a
f
o
r
w
ar
di
n
g
ro
ut
i
n
g
pr
ot
oc
ol
s
fo
r
un
der
w
at
er
wi
rel
e
ss
sens
or
net
w
o
r
k
s
. T
h
i
s
a
r
t
i
c
l
e
f
o
cu
ses t
h
e r
o
ut
i
ng
p
r
ot
oc
ol
s
b
a
sed o
n
si
ngl
e pat
h
;
t
h
e fam
ous ro
ut
i
n
g pr
ot
ocol
s
are:
i.
In
fo
rm
at
i
on-C
a
rry
i
n
g R
out
i
n
g P
r
ot
oc
ol
(
I
C
R
P
)
ii.
Resilien
t
Ro
u
tin
g Al
g
o
rith
m
iii.
Un
de
rwat
er
Wi
rel
e
ss
Hy
bri
d
Sens
or
Net
w
o
r
ks (U
W-
HS
N
)
iv
.
Lo
cation
-
Aware Source Rou
tin
g (LASR
)
v.
Delay-to
leran
t
Data Do
lph
i
n (DDD)
2.
1.
Inf
o
rma
ti
o
n
-
C
arr
y
i
n
g Ro
u
t
i
n
g
Pro
t
ocol
(
I
CR
P)
In
[1
3]
t
h
e
In
fo
rm
ati
on-C
a
rr
y
i
ng R
o
ut
i
n
g
Prot
oc
ol
(IC
R
P
) i
s
p
r
op
ose
d
f
o
r
u
nde
r
w
a
t
er wi
rel
e
ss
sens
or
net
w
or
k. IC
R
P
i
s
dat
a
fo
rwa
r
di
n
g
r
out
i
n
g
pr
ot
oc
o
l
whi
c
h i
s
base
d o
n
si
n
g
l
e
p
a
t
h
;
IC
R
P
i
s
an
ener
gy
efficient, scala
b
le and real time loca
l
i
zati
on fre
e ro
ut
i
n
g
pr
ot
oc
ol
. I
n
I
C
R
P
t
h
e sou
r
c
e
no
de i
s
res
p
o
n
si
bl
e f
o
r
ro
ut
e di
sco
v
e
r
y
t
h
ro
ug
h r
out
e di
sco
v
ery
m
e
ssage. O
n
ar
ri
val
of r
o
ut
e di
s
c
ove
ry
m
e
ssage t
h
e i
n
t
e
rm
ediat
e
or
n
e
igh
bor nod
es will estab
lish th
e rev
e
rse
rou
t
e for ac
k
nowled
g
e
m
e
n
t
.
W
h
en
ro
u
t
e estab
lish
e
d
t
h
e sou
r
ce will
forward
th
e
p
a
ck
ets and
will wait for ack
nowledg
m
e
n
t
th
ro
ugh
rev
e
rse ro
u
t
e. Th
e
estab
lish
e
d
rou
t
es
refer
the TIMEOUT
functi
on, if the thre
shold time exceeds the TIMEOUT than
route bec
o
me invalid.
When the
data pac
k
ets received through the establis
hed
route to
t
h
e destinati
o
n the delivery
refe
rs the s
u
c
cessful
packets
delive
r
y.
Issu
es with
IC
RP: (i) ICRP n
o
d
e
m
o
b
ility
m
o
d
e
l is
in
v
a
lid
du
e to
water p
r
essu
re. (ii) ICRP Ro
u
t
e
in
fo
rm
atio
n
and
TIMEOUT
fu
n
c
tion
m
ech
an
ism
s
m
a
y d
r
op
th
e p
a
ck
ets du
e
to
vo
id
reg
i
o
n
s
. (iii)
ICRP
refers
th
e ro
u
t
e
v
a
lidity fo
r lon
g
or sh
ort ti
m
e
wh
ich
will affect th
e d
a
ta d
e
li
v
e
ry ratio
b
e
cau
s
e in
un
d
e
rwater
envi
ro
nm
ent
t
h
e n
ode
m
ovem
e
nt
i
s
onl
y
f
o
r
2 t
o
3
m
/
sec.
2.
2.
Resilient Routing
Algo
rithm
Th
e Resilien
t
alg
o
rith
m
fo
r lo
ng
-term
app
licatio
n
s
is t
h
e sing
le p
a
t
h
d
a
ta fo
rwardin
g
rou
ting
al
go
ri
t
h
m
[14]
. The aut
h
o
r
s h
a
ve co
ns
id
ered th
e th
ree m
a
j
o
r issu
es lik
e: limited
b
a
n
d
width
,
tem
p
o
r
ary lo
ss of
co
nn
ectiv
ity an
d
no
d
e
failure for th
e
d
e
si
gn
ing
of
resilien
t
algo
rith
m
.
Th
e rou
ting
alg
o
rith
m
co
m
p
letes its
t
a
sk i
n
t
o
t
w
o
p
h
ases.
In
fi
rst
pha
se aut
h
o
r
s
have
di
sco
v
e
r
e
d
t
h
e b
ack
u
p
m
u
lt
i
-
ho
p an
d
pri
m
ary
opt
im
al
no
de
di
sj
oi
nt
m
e
t
hods t
o
m
i
nim
i
ze t
h
e energy
co
nsum
pt
i
on o
f
t
h
e sens
or
no
de
s. In t
h
e sec
o
n
d
p
h
ase t
h
e au
t
h
o
r
s
have i
n
t
r
o
d
u
c
e
d
t
h
e onl
i
n
e di
st
ri
but
e
d
sche
m
e
whi
c
h spec
i
a
l
l
y
obser
ves
t
h
e net
w
or
k;
i
f
t
h
ere i
s
any
probl
em
in
n
e
two
r
k
o
r
may b
e
th
e failu
re of an
y sing
le o
r
m
u
ltip
le d
e
v
i
ces th
an
t
h
e sch
e
m
e
allo
ws switch
i
ng
to
th
e
back
u
p
pat
h
be
cause i
n
un
der
w
at
er e
n
vi
ro
n
m
ent
t
h
e m
oni
t
o
ri
ng
m
i
ssi
on i
s
hi
ghl
y
e
xpe
n
s
i
v
e.
Th
e Resilien
t
arch
itecture refers th
e
win
c
h
-
based
se
n
s
o
r
d
e
v
i
ces; wh
ich
are fix
e
d
at th
e sea bo
tto
m
.
Each se
ns
or
de
vi
ce i
s
eq
ui
p
p
e
d
wi
t
h
a
fl
oat
i
ng
b
uoy
t
h
at
c
a
n be a
d
ju
st
ed
by
a p
u
m
p
. Th
e bu
oy
i
s
a so
u
r
ce t
o
pus
h the se
ns
or de
vice towa
rds the s
u
rface level of
water.
The electronic
controlled e
n
gine is fixed i
n
to the
sens
or
de
vi
ce.
El
ect
roni
c
co
nt
rol
l
e
d
en
gi
ne
i
s
use
d
t
o
c
o
nt
r
o
l
t
h
e
de
pt
h
o
f
t
h
e
de
vi
ce t
h
r
o
u
g
h
t
h
e a
d
j
u
s
t
i
ng
of
th
e len
g
t
h
of
wire.
Issu
es with
Resilien
t: (i) Resilien
t
sch
e
m
e
is o
n
l
y
for th
e long
-term
ap
p
licatio
n
s
. (ii)
Resilien
t
o
v
e
rall n
e
twork
co
st is h
i
g
h
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Critica
l
An
a
l
ysis o
f
Da
t
a
Fo
rwa
r
d
i
n
g
Ro
u
t
i
n
g Pro
t
o
c
o
l
s Ba
sed
o
n
S
i
n
g
l
e
Pa
th fo
r
UWSN (Mu
k
h
tia
r Ah
med
)
1
697
2.
3.
Underw
ater
Wireless Hybrid Sens
or
Ne
tworks
(UW
-
HSN)
Th
e au
t
h
o
r
s
h
a
v
e
con
s
id
ered
th
e issu
es in
sh
allo
w
water lik
e: larg
e
p
r
op
ag
atio
n
d
e
lays,
h
i
gh
sign
al
at
t
e
nuat
i
o
n, l
o
w ba
nd
wi
dt
h and e
n
er
gy
con
s
um
pt
i
on fo
r t
h
e desi
gni
ng
of
Un
de
rwat
er
W
i
rel
e
ss Hy
bri
d
Sens
or
Net
w
or
ks
(U
W-
HS
N)
[
15]
.
Fo
r l
a
r
g
e an
d
cont
i
n
u
o
u
s co
m
m
uni
cat
i
ons
t
h
e aut
h
o
r
s
ha
ve u
s
ed t
h
e ra
di
o a
n
d
acou
s
t
i
c
si
gnal
i
ng sy
st
em
. The sens
or
n
ode
s
are eq
ui
p
p
e
d
wi
t
h
t
h
e ac
o
u
st
i
c
and
radi
o m
odem
;
i
n
un
der
w
at
e
r
the sensor node uses the acoustic si
gnaling
whereas on surface level the se
nsor node uses the radio signaling
t
o
c
o
m
m
uni
cate wi
t
h
base
st
a
t
i
on.
The
se
ns
or
n
o
d
e i
s
als
o
equippe
d
with m
echan
ical
module whic
h forces
the sensor
node swim
on s
u
rface and
di
ve
back to the
di
ffere
n
t levels
of
wate
r. T
h
e a
u
thors
ha
ve
us
ed the
Tu
rtleNet h
y
b
r
id
co
n
c
ep
t fo
r
n
e
g
a
tiv
e and
po
sitiv
e v
e
rtical
m
o
v
e
m
e
n
t
s o
f
th
e n
o
d
e
th
roug
h
p
i
ston
to
reach
on
surface a
n
d
di
ve
bac
k
to the
bottom
depth levels
of
water.
The
Trutle
Distance
Vec
t
or (T
DV)
al
gorithm
d
e
term
in
es th
e co
mm
u
n
i
catio
n
ch
an
n
e
l in
ord
e
r to
mi
nim
i
ze avera
g
e eve
n
t delay.
Term event delay means
success
f
ul
rece
ption tim
e
dura
tion
betwee
n s
o
urce
nodes
and
base station.
Issu
es with
UW-HSN:
(i
) UW-H
S
N
e
n
er
g
y
con
s
um
pt
i
o
n
m
odel
an
d
pa
ram
e
t
e
rs are n
o
t
p
r
ope
rl
y
defi
ned
.
(i
i
)
T
h
e
har
d
ware
us
ed
by
U
W
-
H
S
N
i
n
c
r
eases
t
h
e
o
v
eral
l
c
o
st
of
t
h
e
net
w
or
k.
2.
4.
Location-Aware Source
Routing (LASR)
Locat
i
o
n-
Awa
r
e
So
urce R
o
ut
i
ng (
L
A
S
R
)
i
s
t
h
e
m
odi
fi
ed
versi
on
of t
h
e Dy
nam
i
c Sour
ce R
out
i
n
g
(DSR
) p
r
o
p
o
se
d by
[
16]
. T
h
e
aut
h
o
r
s ha
ve
con
s
i
d
ere
d
t
h
e
hi
gh l
a
t
e
ncy
p
r
o
b
l
e
m
i
n
un
d
e
rwat
er e
nvi
ro
nm
ent
and
desi
gn
ed t
h
e L
A
SR
pr
ot
ocol
t
o
re
sol
v
e
t
h
e
pr
obl
em
. LASR
i
s
base
d
on t
w
o
t
ech
ni
q
u
es t
o
res
o
l
v
e t
h
e
h
i
gh
laten
c
y prob
lem
;
th
e first is lin
k
qu
ality an
d
th
e seco
nd
is lo
cation
awaren
ess. DSR p
r
o
t
o
c
o
l
is
for
sho
r
t
e
st
pat
h
b
u
t
LASR
rel
y
on
bet
t
e
r ro
ut
e
s
t
h
ro
u
g
h
o
u
t
t
h
e net
w
o
r
k
by
usi
ng t
h
e Ex
p
ect
ed Tran
sm
issi
on
Co
un
t (ETX);
wh
ich
is
b
e
tter
for th
e lin
k qu
ality. Th
e ETX
can
b
e
calcu
lated
as g
i
v
e
n in
Equ
a
tio
n (1
).
ETX
(1
)
In
Equ
a
tion
(1) FER
d
e
no
tes th
e Fram
e Erro
r Rate.
Th
e lin
k qu
ality p
r
o
t
o
c
o
l
h
e
ad
er is
co
nsists on
oct
a
l
12
-
b
i
t
.
The t
i
m
e
st
am
p
fact
or i
s
use
d
fo
r ne
w dat
a
l
i
n
k
.
LA
SR
al
so
gua
rant
ees
fo
r
st
at
e l
e
ss l
i
nk t
y
pe
d
a
ta wh
ich correctly b
e
d
i
scar
d
e
d thr
oug
h some
m
ech
an
ism.
The route can be replace
d when
the im
plicit
inform
ation appears
to build the link cache
.
LASR ha
s
u
s
ed
th
e Di
j
k
stra’s algorithm fo
r
u
p
d
a
ting
th
e
n
e
two
r
k g
r
ap
h. Rou
t
e h
a
nd
ling
m
e
c
h
an
ism
will u
s
e th
e
pr
ot
oc
ol
opt
i
o
ns
t
o
devel
o
p
t
h
e ro
ut
e
l
i
n
k, pr
ot
oc
ol
opt
i
o
ns
a
r
e
ackn
ow
l
e
dge
me
nt
,
r
o
ut
e sel
ect
i
on,
and
ro
ute
reply
. L
A
SR
has used t
h
e three features
when tra
n
sm
its the num
b
er of p
ackets on route,
these
features
are
ackn
ow
l
e
d
g
m
e
n
t
del
a
y g
u
a
r
ant
ee
,
hel
l
o
mess
age
a
nd
opt
i
o
n p
a
cki
n
g
. The a
u
thors claimed that LASR
increases
the packets delive
r
y
ratio
and r
e
duce
s
t
h
e en
d t
o
en
d del
a
y
.
The LASR
Tracki
n
g Sy
s
t
em
i
s
recursiv
e an
d state-esti
m
a
ti
o
n
filter th
at
u
s
es th
e
ran
g
e
estim
ates
to
p
r
ed
ict network
top
o
l
og
y. Its
per
f
o
r
m
a
nce i
s
m
odel
e
d.
Issu
es with
LASR: (i) LASR h
a
v
e
inh
e
rit
e
d
th
e ro
u
ting
mech
an
ism
fro
m th
e DSR an
d
if th
e ho
p
counts
betwee
n s
o
urce and
destination inc
r
eases the size
of
t
h
e pac
k
ets’ heade
r
als
o
increases a
nd i
n
resultant
the overhea
d
s
increases
with na
rrow
ba
n
d
f
o
r c
o
m
m
uni
cat
i
on i
n
un
d
e
rwat
er
. (i
i
)
L
A
SR
uses E
x
pect
e
d
Transm
issio
n
Co
un
t (ETX) as a lin
k
qu
ality
m
e
tric, fo
r
which
it assu
m
e
s
th
at lin
k
s
are sy
mmetrical an
d
are
with
th
e same lin
k
q
u
a
lity in
b
o
t
h
d
i
rectio
n
s
, wh
ic
h is n
o
t
easily
p
o
ssib
l
e fo
r u
n
d
e
rwater aco
ustic
com
m
uni
cat
i
on [1
7]
.
2.
5.
D
e
lay
-
t
o
lera
nt
Dat
a
Do
lphin (D
DD)
Del
a
y
-
t
o
l
e
ra
nt
Dat
a
D
o
l
p
hi
n
(
D
D
D
)
i
s
an e
n
ergy
e
ffi
ci
ent
r
out
i
n
g sc
hem
e
pr
o
pose
d
by
[
1
8]
. D
D
D
i
s
fo
r t
h
e
del
a
y
t
o
l
e
ra
nt
ap
pl
i
cat
i
ons.
The
D
D
D
r
o
ut
i
ng
sche
m
e
i
s
based
on
col
l
ect
or
n
ode
s cal
l
e
d d
o
l
p
hi
n a
n
d
st
at
i
onary
n
o
d
e
s;
t
h
e dol
p
h
i
n
n
odes
har
v
e
s
t
t
h
e i
n
form
at
i
on sense
d
by
t
h
e st
at
i
onary
no
des. The
r
out
i
n
g
sch
e
m
e
eli
m
in
ates th
e en
ergy ex
p
e
n
s
iv
e mu
lti-ho
p
co
mm
u
n
i
cation
.
Th
e
statio
n
a
ry n
odes
are respon
si
b
l
e
to
t
r
ansm
i
t
i
t
s
col
l
ect
ed dat
a
t
o
t
h
e
neare
s
t
i
n
ra
nge
d
o
l
p
hi
ns.
The st
at
i
o
nary
no
des
are
de
pl
oy
ed
o
n
sea
be
d a
r
ea
of i
n
t
e
rest
.
Th
e aco
ust
i
c
m
o
dem
t
h
rou
g
h
i
t
s
com
m
uni
cat
ion
com
p
o
n
ent
com
m
uni
cat
e t
o
t
h
e
dol
phi
n
no
de
s
and
l
o
w p
o
w
er t
r
an
scei
ve
rs
com
pone
nt
o
f
acou
s
t
i
c
m
ode
m
anal
y
zes t
h
e prese
n
ce
of i
n
ran
g
e
dol
phi
n
no
des
t
h
r
o
u
g
h
t
h
e
be
acon
si
g
n
al
ge
nerat
e
d
by
d
o
l
phi
n
no
des
.
T
h
e
dol
phi
n
no
d
e
s t
r
ans
f
e
r
s t
h
e
col
l
ect
ed
pac
k
et
s t
o
the
ba
se
station depl
oyed on water
s
u
rface.
Issu
es
with
DDD:
(i
)
In DDD the rando
m
m
o
v
e
m
e
n
t
o
f
do
lph
i
n nod
es
will n
o
t
ab
le to co
llect all th
e
d
a
ta p
a
ck
ets fro
m
th
e sen
s
or
n
o
d
e
s and
in
resu
ltan
t
th
e
d
a
ta d
e
liv
ery rati
o
will b
e
d
e
g
r
ad
ed. (ii)
In
DDD; if
we in
crease t
h
e nu
m
b
er of
d
o
lp
h
i
n nod
es t
h
e ov
er
all co
st
o
f
th
e
n
e
two
r
k
will also
b
e
i
n
creased
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
16
95
–
1
701
1
698
3.
AN
ALY
S
IS
A
N
D
DI
SC
US
S
I
ON
I
n
th
is section
w
e
h
a
v
e
ev
al
uated
th
e
sing
le
p
a
th
ro
u
ting
p
r
o
t
o
c
o
l
s thr
ough
an
alytical
m
e
th
od
an
d
sim
u
l
a
t
i
on n
u
m
eri
cal
m
e
t
hod.
3.
1.
An
al
yti
c
al
Me
tho
d
Thr
o
ug
h t
h
i
s
m
e
t
hod we
ha
ve anal
y
zed t
h
e pro
p
o
se
d ro
u
t
i
ng pr
ot
ocol
s
t
h
r
o
u
g
h
per
f
o
r
m
ance
m
e
t
r
i
c
and
net
w
o
r
k
param
e
t
e
rs. T
h
e
per
f
o
r
m
a
nce m
e
t
r
i
c
s par
a
m
e
ters are: perform
ance,
cost efficiency, data
d
e
liv
ery, en
ergy efficien
cy, ban
d
wid
t
h
,
an
d
reliab
ility.
Th
e co
m
p
ariso
n
t
h
roug
h
p
e
rforman
ce m
e
tric is
sh
own
i
n
Tabl
e 1. T
a
bl
e 2 foc
u
ses
t
h
e co
m
p
ari
s
on
of p
r
o
p
o
se
d ro
ut
i
n
g pr
ot
ocol
s t
h
ro
u
gh
net
w
or
k arc
h
i
t
ect
ure
param
e
ters.
Tabl
e
1. C
o
m
p
ari
s
o
n
of
R
o
ut
i
n
g
Pr
ot
ocol
s t
h
ro
u
g
h
Per
f
o
rm
ance M
e
t
r
i
c
s
P
r
ot
ocol
Perfor
m
a
nce
Cost
Efficiency
Data
Delivery
Delay
Efficiency
Energy
Efficiency
Band
w
i
dth
Efficiency
Reliability
ICRP Low
High
Low
Low
Mediu
m
Mediu
m
Low
Resilient RA
Mediu
m
Low
High
Low
Mediu
m
Mediu
m
High
UW-HSN
Low
Low
Mediu
m
High
Low
Mediu
m
Mediu
m
L
A
SR
M
e
diu
m
High
M
e
diu
m
L
o
w
M
e
diu
m
M
e
diu
m
M
e
diu
m
DDD
Low
Low
Low
Low
High
Mediu
m
Mediu
m
Tabl
e
2. C
o
m
p
ari
s
o
n
of
r
out
i
n
g
p
r
ot
oc
ol
s t
h
ro
u
g
h
Net
w
o
r
k
Ar
chi
t
ect
ur
e P
a
ram
e
t
e
rs.
P
r
ot
ocol
Single/
Multiple
Copies
Hop-by-
Ho
p/ E
n
d
-
to
-End
Routing
Approach
Single/
Multi-sin
k
Hello
Msg
Localiz
ation
Needed
ICRP Multiple
End-to-End
Pa
th-Based Single
No
No
Resilient RA
Single
End-to-End
Path-Based
Single
No
Yes
UW-
H
SN Single
Hop-
by
-
H
op
Vector
-
B
ased
Single
Yes
No
L
A
SR
Single
E
nd-
to-
E
nd
Path-
B
ased
Single
Yes
No
DDD
Single
Single
Hop
Path-Based
N/A
Yes
No
3.
2.
Simulati
on Numerical Method
Thi
s
m
e
t
hod
f
o
cuses t
h
e si
m
u
l
a
t
i
on sce
n
ari
o
s
o
f
t
h
e
p
r
o
p
o
se
d
ro
ut
i
n
g
pr
ot
o
c
ol
s. Ta
bl
e
3
r
e
fers
t
h
e
gene
ral
i
zed si
m
u
l
a
t
i
on
p
a
ra
m
e
t
e
rs
use
d
by
NS
2.
3
0
wi
t
h
Aq
uaSi
m
feat
u
r
es.
Tabl
e 3. Si
m
u
lat
i
on param
e
t
e
rs used
by
NS
2
.
3
0
Pa
ra
m
e
ter
Ra
ting
Pa
ra
m
e
ter
Ra
ting
Networ
k Size
500x
500
x50
m
3
Acoustic and Radio Data
Rate
30Kb/s and 1M
b/s
No.
of Nodes
100
Nakagam
i
-
m
(
B
est-
condition)
2.
0
Bandwidth
50Kbps
PSD (
B
est-
condition)
55.
0 dB/
√
Hz
Co
m
m
unication Rate
600b
ps
Nakagam
i
-
m
(W
orst-
c
ondition)
1.
5
T
r
ans
m
ission power
1W
PSD (W
or
st-
c
ondition)
65.
0 dB/
√
Hz
Packets Size
256
Channel Fr
equency
50 KHz
Packets inter
v
al arr
i
val tim
e
600s
Dolphin constant s
p
eed
5
m
/
sec
Contention W
i
ndo
w
8 – 64
Buf
f
er
Size
1-
500
Fig
u
re 1
refers th
e si
m
u
latio
n
scen
ario
o
f
ICRP in
wh
ich
the ti
m
e
in
h
o
u
rs v
e
rsu
s
d
e
lay in
second
s is
fo
cu
sed
.
In
th
e scen
ario
t
h
e
distan
ce b
e
t
w
een
n
o
d
e
s is settled
1
600
m
,
co
mmu
n
i
catio
n
rate is 60
0bp
s,
m
o
d
e
m
fre
que
ncy is 9-14KHz,
Data
packet size is 112 Bytes,
control pac
k
et size is 16 Bytes, avera
g
e tra
n
s
m
ission
ener
gy
i
s
40
W
and
rel
a
t
i
v
e
m
ovi
ng s
p
ee
d be
t
w
een n
o
d
es i
s
from
0 t
o
1.
5 m
/
sec. The gra
ph s
h
ows e
n
d
-
t
o
-e
n
d
del
a
y
.
Critical Analysis on ICRP:
When
we i
n
creas
e t
h
e num
ber o
f
no
des f
r
om
100 t
o
20
0 o
r
3
00 t
h
e e
n
d
-
to
-en
d
d
e
lay will b
e
in
creases. ICRP respon
se in
u
n
d
e
rw
ater en
v
i
ron
m
en
t
is n
o
t
reason
able. Fig
u
re 2
focu
ses
th
e si
m
u
latio
n
scen
ari
o
of Resilien
t
ro
u
ting
p
r
o
t
o
c
o
l
wh
ich sh
ows Tim
e
i
n
second
s v
e
rsu
s
Pack
ets Del
a
y in
seconds
.
In gra
p
h the tim
e increases t
h
e
delay in pac
k
ets als
o
is i
n
creases
.
Critical An
alysis o
n
Resilien
t
:
Th
e resu
lt o
f
Resilien
t
ro
u
t
i
n
g
al
g
o
rith
m
is
tested
o
n
l
y on 5
0
n
u
m
b
e
r
of n
o
d
es de
pl
o
y
e
d i
n
un
der
w
at
er envi
r
o
nm
ent
;
i
f
we i
n
crease t
h
e num
ber of n
o
d
es fr
o
m
100 t
o
3
00 t
h
an t
h
e
si
m
u
latio
n
resu
lts sho
w
s th
e
larg
er av
erag
e
d
e
lay. Th
e
rou
tin
g
al
g
o
rithm is o
n
l
y for lo
ng
term
ap
p
licatio
n
s
.
Fig
u
re 3
fo
cu
ses th
e si
m
u
lati
o
n
scen
ario
of
UW-HSN; th
e
Ti
m
e
in
seco
nd
s v
e
rsu
s
Good
pu
t in
Kilob
i
ts. Th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Critica
l
An
a
l
ysis o
f
Da
t
a
Fo
rwa
r
d
i
n
g
Ro
u
t
i
n
g Pro
t
o
c
o
l
s Ba
sed
o
n
S
i
n
g
l
e
Pa
th fo
r
UWSN (Mu
k
h
tia
r Ah
med
)
1
699
si
m
u
latio
n
resu
lt is fo
r th
e Tu
rtleNet and in
article
th
e
resu
lt is co
m
p
ared
with
all-aco
ustic sch
e
mes an
d
au
tho
r
s shows
th
at th
e Tu
rtleNet th
rou
ghp
u
t
is b
e
tter t
h
an
o
t
h
e
r sch
e
m
e
s;
ev
en
all o
t
h
e
r
sch
e
m
e
s co
m
p
arison
i
s
q
u
est
i
ona
bl
e
.
Critical Analysis of UW-HSN:
The authors of the UW-HSN focuse
s t
h
e 2
D
de
pl
oy
m
e
nt
and al
m
o
st
t
h
e m
e
t
hodol
o
g
y
f
o
cu
ses t
h
e
t
e
rrest
ri
al
net
w
o
r
k
s
;
eve
n
t
h
e re
sp
o
n
se
of
t
h
e re
sul
t
s
i
s
not
g
o
o
d
e
n
ou
gh
i
n
com
p
ari
s
on
ot
her
U
W
ro
ut
i
n
g
sc
hem
e
s. The si
m
u
l
a
t
i
on sce
n
ari
o
i
s
al
so f
o
c
u
ses t
h
e
fewe
r t
h
r
o
ug
h
put
s
according t
o
t
h
e num
b
er of
nodes
de
pl
oyed in the
depl
oyment area
. Meth
odology a
n
d si
m
u
la
tion re
sult
s nee
d
t
o
be
i
m
prove
m
e
nt
.
Figure
1.
IC
R
P
Ti
m
e
vers
us
del
a
y
Fi
g
u
r
e
2. R
e
si
l
i
e
nt
Packet
s
D
e
l
a
y
vers
us Ti
m
e
Fi
gu
re
4 i
s
f
o
r
LA
SR
r
o
ut
i
n
g
pr
ot
oc
ol
s
w
h
i
c
h
f
o
cuse
s t
h
e si
m
u
l
a
t
i
on
resul
t
base
d
o
n
t
i
m
e i
n
sec
vers
us a
v
e
r
age
net
w
or
k ca
pa
ci
t
y
i
n
bi
t
s
/
s
ec. The
net
w
o
r
k
capaci
t
y
has
b
een m
easured
on
2
0
si
m
u
l
a
t
i
on
r
u
n
s
and ave
r
a
g
e ca
lculation is
300 sec
.
Critical Analysis of L
A
SR:
Th
e au
tho
r
s
h
a
v
e
con
s
i
d
ered
th
e m
o
st o
f
the p
a
ram
e
ters related
to
th
e
terrestrial n
e
t
w
o
r
k
;
in
th
e
research
article th
e au
tho
r
s
h
a
v
e
co
m
p
ared
th
e
resu
lts with
th
e DSR pro
t
o
c
o
l; th
is
i
s
t
e
rrest
ri
al
ne
t
w
o
r
k
pr
ot
oc
ol
. The si
m
u
l
a
t
i
on scen
ari
o
o
n
l
y
focu
ses t
h
e
f
i
xed
net
w
or
k c
a
paci
t
y
wi
t
h
re
spect
t
o
t
i
m
e
;
but
i
n
un
de
rwat
er
en
vi
r
onm
ent
t
h
e
dy
nam
i
c net
w
o
r
k
capaci
t
y
pa
r
a
m
e
t
e
rs sh
oul
d
be c
o
nsi
d
e
r
ed
.
Figure
3.
U
W
-
H
S
N
Ti
m
e
vers
us
G
o
o
d
put
F
i
gu
re
4.
LA
SR
A
v
g
.
N/
W
ca
p
aci
t
y
versu
s
Ti
m
e
Fi
gu
re 5
(
a) an
d Fi
g
u
re 5
(
b
)
f
o
cu
ses t
h
e sim
u
l
a
t
i
on sce
n
ari
o
of D
D
D
ro
ut
i
ng p
r
ot
ocol
an
d sim
u
l
a
t
i
o
n
scenari
o
i
s
ba
sed
o
n
num
ber
of
d
o
l
p
hi
ns
vers
us
n
o
rm
al
ized
del
a
y
acc
or
di
n
g
t
o
bu
ff
er si
ze.
T
h
e s
cenar
i
o
foc
u
ses
as t
h
e
num
ber
of
d
o
l
phi
n i
n
c
r
eases
t
h
e n
o
r
m
a
li
zed del
a
y
dec
r
ease
s
.
Critical Analy
s
is on
DD
D:
The si
m
u
l
a
t
i
o
n i
s
base
d o
n
t
h
e i
n
crease
d
num
ber o
f
d
o
l
p
hi
ns a
n
d
u
lti
m
a
tel
y
th
e co
st of ov
erall n
e
two
r
k
will al
so
be in
cr
eases. Do
lph
i
n
co
nstan
t
sp
eed
is 5
m/sec an
d
th
e
sen
s
o
r
n
o
d
e
s m
o
v
e
m
e
n
t
is
2
t
o
3
m
/
sec it m
ean
s th
at if do
lph
i
n
rem
a
in
s away
fro
m
th
e no
d
e
s th
an
u
lti
m
a
te
ly th
e
d
e
lay will b
e
in
creases an
d
th
e o
v
e
rall th
ro
ugh
pu
t also
b
e
affected
. Th
e au
thors h
a
v
e
no
t d
i
scu
ssed
th
e
rem
oval
of
vo
i
d
re
gi
o
n
s i
n
t
h
e a
r
t
i
c
l
e
;
t
h
ere are
m
a
ny
m
o
re voi
d
reg
i
ons
are
p
r
ese
n
t
i
n
t
h
e
u
nde
rwat
e
r
en
v
i
ron
m
en
t; s
o
u
lti
m
a
tel
y
if
we can
no
t con
s
id
er rem
o
v
a
l o
f
vo
id
reg
i
on
s th
e ov
erall p
ack
ets
d
e
liv
ery ratio
will also
b
e
affected
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
16
95
–
1
701
1
700
Fi
gu
re 6 s
h
ow
s t
h
e sim
u
l
a
t
i
on sce
n
ari
o
o
f
pr
op
ose
d
r
o
u
t
i
ng p
r
ot
ocol
s;
t
h
e scenari
o
foc
u
ses t
h
e
n
u
m
b
e
r
of
nodes v
e
r
s
u
s
d
a
ta d
e
liv
er
y r
a
tio.
Fig
u
r
e
7
show
s th
e si
m
u
latio
n
scen
ar
i
o
of
the p
r
o
p
o
s
ed
routin
g
pr
ot
oc
ol
s;
t
h
e
scenari
o
f
o
c
u
s
e
s t
h
e
num
ber
of
n
ode
s v
e
rs
u
s
ene
r
gy
c
o
nsu
m
pti
ons i
n
j
o
ul
es.
W
e
ha
ve se
l
ect
ed
ran
d
o
m
num
ber o
f
no
des l
i
k
e
:
15
,2
0,
2
5
,
3
0
,
3
5
,
4
0
,
4
5
a
n
d 5
0
an
d t
e
st
ed t
h
e
avera
g
e
res
u
l
t
s
fo
r
dat
a
del
i
ver
y
rat
i
o
an
d i
n
en
ergy
co
ns
um
pti
on. I
n
Fi
g
u
r
e 6 fo
r exam
pl
e if we co
nsi
d
e
r
t
h
e n
u
m
b
ers of
no
des are
20 t
h
an t
h
e
d
a
ta d
e
liv
ery
ratio
for Resilien
t
is 9
8
%
; wh
ereas th
e data d
e
liv
ery ratio
fo
r
DDD is 8
7
%
. For
en
erg
y
co
nsu
m
p
tio
n
i
f
w
e
co
n
s
i
d
er
th
e nu
m
b
er o
f
n
o
d
e
s
2
0
the av
erag
e en
ergy co
n
s
u
m
p
tio
n
for Resilien
t
i
s
850
j
o
u
l
es and
for
DDD is 700
jou
l
es. Fro
m
th
e si
m
u
latio
n
scen
ari
o
s it is cle
a
r th
at Resilien
t
Ro
u
tin
g
Algorith
m
is b
e
tter in
p
e
rform
a
n
ce th
an
o
t
h
e
r rou
ting
pro
t
o
c
o
l
s ba
sed
o
n
si
n
g
l
e p
a
t
h
. Th
e on
ly d
r
awb
a
ck
in
Resilien
t
is
th
at it is on
ly fo
r lon
g
-term
ap
p
lication
s
an
d its ov
erall
n
e
twork co
st is
h
i
g
h
.
Fi
g
u
re
5a
.
DD
D
N
o
.
of
D
o
l
p
hi
ns
ve
rs
us
B
u
f
f
er
Figu
r
e
5b
.
D
D
D
N
o
.
o
f
Do
lph
i
ns v
e
r
s
us Buf
f
er size
s
i
z
e
1
0
Fi
g
u
r
e
6.
N
o
.
of
N
o
d
e
s
vers
u
s
Dat
a
Del
i
v
er
y
R
a
t
i
o
Fi
gu
re
7.
N
o
.
o
f
N
o
des
ve
rs
us E
n
e
r
gy
C
o
n
s
um
pt
i
o
n
4.
OPEN RESE
AR
CH
ISS
U
E
S
Ope
n
resea
r
ch
issues fo
r
t
h
e d
e
signi
ng
o
f
relia
bl
e com
m
uni
cat
i
on i
n
u
n
d
er
water e
n
vironment are:
a.
In
un
de
rwat
e
r
envi
ro
nm
ent
the avai
l
a
bl
e
b
a
nd
wi
dt
h i
s
l
i
m
i
t
e
d;
so t
h
e desi
g
n
o
f
rel
i
a
bl
e com
m
uni
cat
i
o
n
ro
ut
i
n
g p
r
ot
oc
ol
m
u
st
be desi
gne
d i
n
suc
h
a way
;
whi
c
h
can sh
o
w
t
h
e b
e
t
t
e
r resul
t
s
o
n
avai
l
a
bl
e acou
s
t
i
c
ch
ann
e
l b
a
ndwid
th
[19
]
.
b.
Acou
stic ch
ann
e
l sev
e
rely im
p
a
ired
with
m
u
l
tip
ath
an
d fadi
ng pr
o
b
l
e
m
,
so
desi
gn of ro
ut
i
n
g
p
r
ot
oco
l
m
u
st
consi
d
e
r
suc
h
ki
n
d
of
ac
oust
i
c
c
h
a
nnel
pr
o
b
l
e
m
s
[20]
.
c.
Propa
g
ation delay is also a
m
a
jor iss
u
e in unde
rw
ate
r
environm
ent
because the a
c
oustic channel’s
mag
n
itu
d
e
is fiv
e
o
r
d
e
rs h
i
gher
th
an
rad
i
o
si
g
n
a
lling
[11
]
.
d.
In unde
rwater envi
ronm
ent
the
desi
gn of routing protoc
ol
also
face
th
e
high bit error rate and l
o
ss
of
connectivity due to ext
r
em
e c
h
aract
eristics
of aco
u
s
tic ch
ann
e
l [21
]
.
e.
No
rm
al
t
e
rrestri
al
net
w
or
k s
e
ns
or
bat
t
e
ri
es are n
o
t
feasi
b
l
e
f
o
r
un
de
r
w
at
er e
nvi
r
o
n
m
ent
and
bat
t
e
ri
es
cann
o
t
easi
l
y
b
e
recha
r
ged i
n
un
de
rwat
er
en
vi
r
onm
ent
;
so
desi
g
n
of
hi
g
h
po
we
r bat
t
e
ri
e
s
an
d rec
h
ar
ge
of
b
a
tteries in und
erwater env
i
ro
n
m
en
t is also
a m
a
j
o
r issu
e [2
2
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Critica
l
An
a
l
ysis o
f
Da
t
a
Fo
rwa
r
d
i
n
g
Ro
u
t
i
n
g Pro
t
o
c
o
l
s Ba
sed
o
n
S
i
n
g
l
e
Pa
th fo
r
UWSN (Mu
k
h
tia
r Ah
med
)
1
701
f.
Due
t
o
t
h
e
fo
ul
i
ng a
n
d c
o
r
r
o
s
i
ons
i
n
u
n
d
er
wa
t
e
r en
vi
r
onm
en
t
t
h
e se
nso
r
n
o
d
es ca
n
be
pr
o
n
e
[2
3]
.
5.
CO
NCL
USI
O
N
In t
h
i
s
pa
per
,
we ha
ve descr
i
bed t
h
e o
v
er
v
i
ew
of t
h
e dat
a
for
w
ar
di
n
g
r
out
i
n
g p
r
ot
oco
l
s based
o
n
si
ngl
e pat
h
.
W
e
have
foc
u
se
d
t
h
e desi
g
n
i
n
g
i
ssues o
f
t
h
e r
o
ut
i
ng
pr
ot
oc
ol
s
l
i
k
e depl
oy
m
e
nt
, l
o
cal
i
zat
i
o
n
,
dat
a
fo
rwa
r
di
n
g
,
a
n
d
r
out
e
m
a
i
n
t
e
nance.
W
e
di
scuss
e
d
t
h
e sim
u
l
a
t
i
on
sce
n
ari
o
s of
t
h
e si
ngl
e pat
h
ro
ut
i
n
g
protoc
ols
with
their critical analysis
and pr
o
b
l
em
s. W
e
al
so
prese
n
t
e
d
t
h
e o
p
en resea
r
c
h
is
sues i
n
underwater
en
v
i
ron
m
en
t. Th
e
d
e
fin
itiv
e
o
b
j
ectiv
e
o
f
t
h
is research
ar
ti
cle is to
in
sp
ire th
e research
ers fo
r m
o
re research
eff
o
rt
s i
n
t
h
e
fi
el
d o
f
t
h
e
un
de
rwat
er
r
o
ut
i
n
g
pr
ot
oc
ol
s.
REFERE
NC
ES
[1]
J.
She
n
,
et al.
, “A novel routing protocol provid
i
ng good transmi
ssi
on reliability
in underwater sensor networks,”
Journal of Internet Technology,
vol. 16
, pp
. 171-
178, 2015
.
[2]
B. Nam
azi an
d K. F
aez, “
E
nerg
y-Effi
ci
ent
m
u
lti-speed
rou
ting protoco
l
f
o
r wireless sensor networks,”
International Jo
urnal of
Electr
ical and Computer Engin
eering
,
vo
l. 3
,
pp
. 246
, 201
3.
[3]
A.
P.
Gopi,
et al.
, “Designing an Adversarial M
odel Against Reactiv
e an
d Proactive Ro
uting Protocols
in
M
ANETS
: A Com
p
arative P
e
rf
orm
a
nce S
t
ud
y,
”
International Journal
of Electrical and Comp
uter Engin
eerin
g,
vol. 5
,
2015
.
[4]
S.
Uma
r
,
et al.
, “
T
ree B
a
sed En
er
g
y
Balan
c
ing Ro
uting Protocol b
y
Self Org
a
nizin
g
in Wireless Sensor Networks,”
International Jo
urnal of
Electr
ical and Computer Engin
eering
,
vo
l. 5
,
2015
.
[5]
S.
M.
Ja
ni,
et al.
, “Designing and
Simulation of S
u
rrounding
Supporting Multicast
Routing Protoco
l
,”
In
ternationa
l
Journal of Electrical and
Co
mputer
Eng
i
neer
ing
(
I
JECE)
,
vol. 6,
2015.
[6]
K.
N.
Qureshi,
et al.
, “Geograph
i
cal Forwarding
Methods
in Vehicular
Ad hoc Networks,”
International Journal o
f
Electrica
l
and
C
o
mputer Engin
e
ering,
vo
l. 5, 20
15.
[7]
G.
Han,
et al.
,
“Routing protocols for underwater
wireless sensor networks,”
C
o
mmunications Magazine, IEEE,
vol. 53
, pp
. 72-7
8
, 2015
.
[8]
J.
S.
Kira
n,
et al.
, “Review o
n
Underwater
Sensor Networks:
Applica
tions
,
Res
ear
ch Chal
lenges
and
Tim
e
S
y
nchronization,” in
Internationa
l Journal of Engi
neering
Research and Techno
log
y
, 2015
.
[9]
P. R. Jadhao and M. M. Gh
o
nge, “Energ
y
Efficient Routing
Protocol
s For
Underwater Sen
s
or Networks-A
Survey
,
”
Energy
,
vol. 1
,
2015
.
[10]
S.
M.
Ghorey
shi,
et al.
, “A Nov
e
l Cooperative
Opportunistic R
outing
Scheme for Underwater Sensor Networks,”
Sensors,
vol. 16, pp. 297, 2016.
[11]
A. Wahid,
et a
l
.
, “
M
RP: A Lo
cal
iza
tion-Fre
e
Multi-La
ye
red
Routi
ng Protoco
l
for Underw
at
e
r
W
i
reless Sensor
Networks,”
W
i
reless Personal Co
mmunications,
v
o
l. 77
, pp
. 2997-
3012, 2014
.
[12]
M. Ahmed and
M. Salleh, “Localiz
ation schemes in Unde
rwater Sens
or Network (UWSN): A Survey
,”
TELKOMNIKA Indonesian Journ
a
l of
Electrical
Engineering,
vol. 17
, 2015
.
[13]
W. Liang,
et al.
, “Information
-
carr
y
ing based
routing protocol
for underwater acoustic
sensor network,” in
Mechatronics an
d Automation, 2
007. IC
MA 2007
. International C
onference on
, pp
. 729-734
, 2007
.
[14]
D. Pom
p
ili,
et
a
l
.
, “A resilient
r
outing algo
rith
m for long-term a
pplications in
underwater
s
e
nsor networks,”
in
Proc. o
f
M
e
diterranean Ad Ho
c
Networking
Workshop (
M
ed-Hoc-Net)
, 2006.
[15]
K. Ali
and H. H
a
ssanein, “Underwater wi
r
e
less
h
y
brid
sensor networks,” in
Computers and Communications, 20
08.
ISCC 2008.
IEEE Symposium on
, pp
. 1166-1171
, 2008.
[16]
E. A. Carlson,
et al.
, “Location-
aware routing pro
t
ocol fo
r
underw
ater
acoustic n
e
tworks,” in
OCEANS 2006
, pp
. 1
-
6, 2006
.
[17]
M.
A
y
a
z
,
et al.
,
“A survey
on ro
uting techn
i
ques
in
und
erwater wireless
sensor networks,”
Jour
nal of N
e
twork a
n
d
Computer Applications,
vol. 34
,
pp. 1908-1927
,
2011.
[18]
E.
Ma
gistretti,
et al.
, “A
mo
bile delay
-
to
ler
a
nt approach to
long-term energ
y
-effici
ent underwater sens
or
networking,”
W
i
reless Communications and
Networ
king Conference, WCNC 200
7. IEEE
, pp
. 286
6-2871, 2007
.
[19]
I. F
.
A
k
yildi
z
,
et al.
, “Underwater acoustic sensor ne
tworks
: res
e
a
r
ch chal
lenges
,
”
Ad hoc networks,
vol. 3, pp. 257-
279, 2005
.
[20]
R. Headr
i
ck
and
L. Freitag, “Gro
wth of underwat
er communicatio
n techn
o
log
y
in
the US Nav
y
,”
C
ommunications
Magazine, I
E
EE,
vol. 47
, pp
. 80-
82, 2009
.
[21]
N.
Javaid,
et al.
,
“
i
AMCTD: Im
proved Adaptiv
e
Mobilit
y of Cou
r
ie
r Nodes in Th
reshold-Optim
iz
ed DBR Protocol
for Underwater
Wirele
ss Sensor
Networks,”
In
ter
national
Journal of Di
stribu
ted
S
e
nsor Networks,
2014.
[22]
T. Ali
,
et al.
,
“End-to-End Delay
and En
erg
y
Ef
ficient Rou
ti
ng Protocol
f
o
r Underw
ater Wireless
Sensor
Networks,”
W
i
reless Personal Co
mmunications,
v
o
l. 79
, pp
. 339-3
61, 2014
.
[23]
S. Clim
ent,
et
a
l
.
, “Underwater
acoustic wireles
s
se
nsor networks: advances an
d fu
ture
trends in ph
y
s
ical, MAC
and routing lay
e
rs,”
S
e
nsors,
vol. 14, pp. 795-833
, 2014
.
Evaluation Warning : The document was created with Spire.PDF for Python.