Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 1
,
Febr
u
a
r
y
201
6,
pp
. 53
~62
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
1.8
814
53
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Replacement of Analog Automa
tic Voltage Regulator using
Digital Technology
Ersalina Wer
d
a Mu
kti,
Suli
s
tyo Wijan
a
rk
o, Anw
a
r Mu
qor
o
bin
Research Cen
t
er
o
f
Electrical Pow
e
r an
d Mech
atro
n
i
c
(P
2
T
eli
m
ek
), In
donesian
In
stitu
te
o
f
Scien
ces (LIPI),
In
d
onesi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
l 12, 2015
Rev
i
sed
O
c
t 25
, 20
15
Accepted Nov 16, 2015
Before
the 90’s
,
man
y
pow
er plants in
Indon
esia were equipp
ed
with an
alog
controllers and now those power plan
ts ar
e still in operation
to produce
ele
c
tri
c
it
y.
One
of those controller par
t
s is Autom
a
tic Volt
ag
e Regula
t
or
(AVR). If a failu
re occurs in th
e
AVR, the econo
m
i
c solution is by rep
l
a
c
ing
the damag
e
d electron
i
c
component w
ith
new
component. However th
is
m
e
thod will not
solve the prob
l
e
m
if the com
p
onents are no
t avail
a
ble
in
loca
l m
a
rket or
becom
e
obs
olet
e
.
P
u
rchasing
the new AVR that
compatible
with other
con
t
roller parts
cannot
be don
e
again b
e
cause
the an
alog
controllers ar
e n
o
longer produ
ced b
y
the vendo
r. Furthermore, r
e
placement
of all th
e cont
rollers with th
e curre
nt
t
e
c
h
no
l
o
gy
be
c
o
me
e
x
p
e
n
s
i
v
e.
According to
this, an altern
ative so
lution is
proposed in this paper b
y
designing an
AVR that compatible
with
other controller parts and
considering the availabilit
y
o
f
the electronic co
mponents in local market.
ATmega 8 mi
crocontro
ller is
used
to impl
ement a digital AVR
and
em
plo
y
ing
op a
m
p based as its
signal cond
ition
i
ng. Th
e resul
t
shows that th
e
digita
l AVR can reduce hardwar
e
s
i
ze
and power consumption. The digital
AVR also m
eets
the
com
putation
rate
of
the
com
putation
signa
l.
Keyword:
Anal
og
A
V
R
Dig
ital AVR
Em
bedded
sy
st
em
Syn
c
hro
nou
s gen
e
r
a
t
o
r
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ersalin
a Werda
Muk
ti,
Research
Cent
er of Electrical
Powe
r a
n
d Mechatronic
(P2T
elim
ek),
In
d
onesi
a
n
Inst
i
t
u
t
e
of
Sci
e
nc
es (L
IP
I),
I
n
do
nesi
a
Em
a
il: ersa0
01@lip
i.go
.i
d
1.
INTRODUCTION
Power
p
l
an
t sho
u
l
d
prov
id
e electricity
th
at co
m
p
ly so
m
e
st
an
d
a
rd
sp
ecificatio
n
s
in
term
s o
f
p
o
wer,
v
o
ltag
e
, and
frequ
e
n
c
y to
meet
th
e p
o
wer syste
m
sta
b
ility. In
m
a
n
y
p
o
w
er p
l
an
ts, electrical p
o
w
er is
gene
rat
e
d by
s
y
nch
r
o
n
ous ge
nerat
o
r. Exci
t
a
t
i
on
sy
st
em
i
s
neede
d
by
sy
n
c
hr
o
n
o
u
s
gene
rat
o
r t
o
ge
ne
ra
t
e
t
h
e
out
put
v
o
l
t
a
ge.
Fi
g
u
re
1 s
h
ow
s t
h
e e
x
ci
t
a
t
i
o
n
sy
st
em
of sy
n
c
hr
o
n
o
u
s
ge
ne
rat
o
r
[
1
,
2]
t
h
a
t
consi
s
t
s
of
ex
ci
t
e
r,
r
e
gu
lato
r, vo
ltag
e
sensor
, lo
ad
co
m
p
en
sat
o
r, po
w
e
r
syst
em stabilizer, protection, a
n
d
li
miter. Th
e exciter i
s
use
d
as
DC
v
o
l
t
a
ge s
o
u
r
ces
fo
r
fi
el
d
wi
n
d
i
n
g
of sy
nc
hr
on
o
u
s
gene
rat
o
r a
n
d i
t
s
val
u
e i
s
co
nt
r
o
l
l
e
d
by
t
h
e
reg
u
lator
.
T
h
e
reg
u
lator
ope
ra
tes base
d
o
n
t
h
e re
fere
nce
vo
ltag
e
an
d th
e ou
tpu
t
f
e
edb
a
ck pr
ov
id
ed b
y
vo
ltag
e
sen
s
o
r
, lo
ad
com
p
en
sato
r,
protectio
n
an
d li
m
iter, and
powe
r syst
e
m
stabilizer (PSS).
There ar
e t
w
o
operat
i
o
n m
odes o
f
vol
t
a
g
e
regul
at
o
r
, i
.
e.
m
a
nual
and aut
o
m
a
t
i
c
. The aut
o
m
a
ti
c
v
o
ltag
e
con
t
ro
ller is co
mm
o
n
l
y k
n
o
w
n
as Auto
m
a
tic Vo
ltag
e
Reg
u
l
ator (AVR).
Un
til th
e en
d
o
f
90
’s, analog
com
pone
nt
s d
o
m
i
nat
e
t
h
e
manu
fact
u
r
i
n
g p
r
oces
s of
A
V
R
.
The fi
r
s
t
di
gi
t
a
l
AVR
was p
r
o
d
u
ced
by
B
a
sl
er i
n
1
991
[3
].
Howev
e
r, t
h
e an
alo
g
con
t
ro
llers are still wid
e
ly u
s
ed
un
til n
o
w. Du
ri
n
g
po
wer
p
l
an
t
o
p
eratio
n,
wh
en
failu
re occu
rs in
t
h
e analo
g
AVR, its
main
ten
a
nce proces
s becom
e
s
diffic
ult
beca
use t
h
e a
n
alog AVR
i
s
no l
o
nge
r p
r
o
d
u
ced
by
t
h
e
m
a
nufact
u
r
e
r
. F
u
rt
he
rm
ore
,
repl
aci
n
g
t
h
e
ove
ral
l
com
p
one
nt
s i
n
t
h
e
exi
s
t
i
n
g
syste
m
is unec
o
nom
i
cal solution.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 5
3
–
62
54
Fi
gu
re
1.
Exci
t
a
t
i
on c
ont
rol
s
y
st
em
of sy
nc
h
r
o
n
ous
ge
ne
rat
o
r
The a
n
alog
AVR s
h
ould
be
replace
d as t
h
e alte
rn
ativ
e way to
ov
erco
m
e
th
e d
i
ffi
cu
lty o
f
its
m
a
i
n
t
e
nance p
r
oces
s. S
o
m
e
dra
w
backs
of t
h
e anal
og sy
st
em
have d
r
i
v
e
n
resea
r
ch
o
n
t
h
e desi
g
n
of
di
gi
t
a
l
com
pone
nt
-
b
as
ed A
V
R
,
i
.
e.
hi
g
h
er
po
we
r co
ns
um
pt
i
on and
desi
g
n
com
p
l
e
xi
t
y
. Thi
s
resea
r
ch i
s
t
h
e
co
n
tinu
a
tion
of th
e p
r
ev
iou
s
research
es [4
,
5] th
at b
u
ilt su
b p
a
rt of AVR, i
.
e. vo
ltag
e
sett
er 1
(VS1), th
y
r
isto
r
trig
g
e
r pu
lse
mo
n
itor, an
d
sign
al co
nd
itio
n
i
ng
. Co
m
p
ared
t
o
th
e an
alog
AVR, th
e d
i
g
ital
AVR is easier in
th
e
tuning
proces
s
[6] s
o
t
h
at it accel
erates the i
n
stallation [7].
Seve
ral
co
nt
rol
t
echni
q
u
es a
r
e
appl
i
e
d i
n
p
r
a
c
t
i
cal
powe
r
sy
st
em
devi
ces such as t
h
e di
gi
t
a
l
AVR
i
n
or
der t
o
obt
ai
n
ro
bust
an
d hi
gh
per
f
o
r
m
a
nce vol
t
a
ge c
ont
r
o
l
l
e
r i
n
t
e
rm
o
f
res
p
o
n
se t
i
m
e [8]
.
PI
D co
nt
rol
l
e
rs
with fi
xed a
n
d va
riable
para
m
e
ters are us
ually used
i
n
voltage
control applica
tions
because
they do not
req
u
i
r
e e
x
act
or e
x
pl
i
c
i
t
sy
stem
m
odel
i
ng.
Fuzzy
l
o
gi
c an
d n
e
u
r
al
net
w
or
k c
ont
rol
l
e
rs
[9
, 1
0
]
ca
n a
c
hi
eve
good pe
rform
a
nce without re
qui
ring
accura
te
m
odel of t
h
e real syste
m
but the cl
ose
d
-loop sta
b
ility
is not
ens
u
re
d. F
u
rt
h
e
r st
u
d
i
e
s ha
s
been i
m
pl
em
ent
e
d
fo
r t
u
ni
n
g
PI
D co
nt
r
o
l
l
e
r
usi
n
g
pol
e
pl
a
c
em
ent
and
p
o
l
e zero
can
cellatio
n
m
e
th
od
[11
]
and
artificial
in
telli
g
e
n
t
[1
2
]
.
The im
pl
em
ent
a
t
i
on of di
gi
t
a
l
t
echnol
o
g
y
u
s
i
ng m
i
crocont
rol
l
e
r i
n
swi
t
c
hi
n
g
p
u
r
p
o
s
es has sh
ow
n
reliab
l
e an
d
h
i
g
h
p
r
ecision
of co
n
t
ro
llin
g
duties. Accu
ra
te sig
n
a
l acqu
i
sitio
n, h
i
gh
precisio
n
,
an
d
stron
g
an
ti-
in
terferen
c
e cap
a
b
ility o
f
t
h
e th
yristo
r trigger pu
lse an
d iso
l
atio
n
o
f
ou
tpu
t
can
b
e
ach
i
ev
ed b
y
co
m
b
in
ing
micro
c
on
tro
ller with
sp
ecific syn
t
h
e
tic trig
g
e
r circu
it
of m
a
i
n
ci
rcui
t
[13]
. M
i
croco
n
t
r
ol
l
e
r al
so pr
o
v
i
des a
hig
h
ly
flexi
b
le,
p
o
we
r e
ffici
en
cy
, an
d c
o
st
ef
f
ect
i
v
e sol
u
t
i
o
n
t
o
m
a
ny
em
bedde
d c
o
nt
r
o
l
a
ppl
i
cat
i
o
ns
[1
4
,
1
5
]
.
Thi
s
pa
per
pr
op
oses t
h
e
de
si
gn o
f
di
gi
t
a
l
AVR
t
o
be f
i
t
t
o
ot
her co
m
ponent
s i
n
t
h
e exci
t
a
t
i
o
n
syste
m
. Th
e
meth
od
in
d
e
sign
ing
d
i
g
ital AVR is d
i
scu
ssed
in
Section
2 wh
ile th
e com
p
ariso
n
b
e
t
w
een
the
d
i
g
ital AVR and
th
e an
al
o
g
AVR will
b
e
d
i
scu
ssed
in
Sectio
n 3. Th
en
,
Sectio
n
4
co
n
c
l
u
d
e
s t
h
e
p
a
p
e
r.
2.
R
E
SEARC
H M
ETHOD
In t
h
i
s
resea
r
c
h
, t
h
e anal
og
AVR
t
h
at
has
been i
m
pl
em
ent
e
d i
n
hy
dr
o po
we
r pl
ant
i
s
fi
rst
st
udi
ed
.
Th
en
, th
e d
i
g
ital AVR
will be d
e
sign
ed
b
a
sed
on
it. So
m
e
p
a
rts
o
f
t
h
e
d
i
gital AVR will b
e
retain
ed
an
alo
g
t
o
p
r
ov
id
e t
h
e sign
al cond
itio
n
i
ng
fun
c
tion
.
Testin
g
o
f
th
e
d
i
g
i
tal AVR
will be do
n
e
b
y
u
s
ing
th
e g
e
n
e
rato
r and
ex
citatio
n
m
o
delin
g
circu
it to
g
e
n
e
rate th
e g
e
n
e
rat
o
r
ou
tpu
t
v
o
ltag
e
.
2.
1. An
al
o
g
A
V
R
Fi
gu
re
2 s
h
ow
s t
h
e a
n
al
o
g
A
V
R
u
s
ed
i
n
hy
dr
o
po
we
r
pl
ant
W
a
das
Li
nt
ang
B
a
n
j
ar
ne
g
a
ra C
e
nt
ral
Java I
n
d
o
n
esi
a
. The p
o
si
t
i
on
of el
ect
ro
ni
c c
o
m
pone
nt
s i
n
exci
t
a
t
i
on sy
st
em
i
s
shown i
n
Fi
g
u
re
3 [1
6
]
. The
size of t
h
e analog
AVR in t
h
e
rack ca
bi
net
s
f
o
r eac
h ca
rd i
s
35
x
2
3
.
4
cm
2
.
Fi
gu
re
4 s
h
o
w
s
t
h
e bl
ock
di
a
g
ram
of
AVR
. T
h
e
anal
o
g
A
V
R
consi
s
t
s
of el
ev
en m
odul
es w
h
i
c
h are
Vol
t
a
ge Det
ect
o
r
(
V
D
)
,
Vol
t
a
ge
Set
t
e
r 1
(VS
1
), V
o
l
t
a
g
e
Set
t
e
r 2 (VS
2
)
,
Vol
t
a
ge R
e
gul
at
o
r
(
V
R
)
,
M
a
t
c
hi
ng
Am
pl
i
f
i
e
r (M
A)
, Fi
ri
n
g
A
ngl
e R
e
gul
at
o
r
(FAR
),
FAR
Pulse M
onito
r
(F
ARM
O
N)
,
VF
Com
p
ens
a
t
i
on (V
FC
),
Li
ne
C
h
ar
ge C
i
rcui
t
(LC
C
)
,
Fi
el
d
C
u
r
r
ent
Li
m
i
t
i
ng
C
i
rcui
t
(
F
C
L
C
)
, a
n
d Li
ne
Dr
o
p
C
o
m
p
ensat
i
on
(L
DC
).
Thy
r
i
s
t
o
r
dri
v
e
r
ci
rc
ui
t
an
d s
e
ns
or
are also nee
d
e
d
.
Th
e
PI con
t
ro
l
is cho
s
en in
ord
e
r to
g
e
t in
stan
tan
e
ou
s c
ont
r
o
l
act
i
o
n
.
T
h
e
equat
i
o
n
o
f
P
I
cont
rol
[1
7]
:
1
(1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Rep
l
a
c
emen
t of Ana
l
og
AVR
u
s
ing
Dig
ita
l
Tech
no
log
y
(E.
Werda
Mu
kti)
55
Whe
r
e
= PI
cont
rol
’
s o
u
t
p
ut
,
= err
o
r
o
f
re
fere
nce si
gnal
with f
e
e
dbac
k
,
= p
r
op
ortion
a
l
con
s
t
a
nt
, a
n
d
= in
tegral ti
m
e
(reset ti
m
e
). Th
e an
alog
AVR allo
ws t
h
e co
n
s
tan
t
tun
i
ng
Kp rang
ing
from
0
t
o
2
0
a
n
d Ti
0.
1 t
o
2
sec
o
n
d
s.
Fi
gu
re
2.
A
n
al
og
A
V
R
Figure
3. P
o
sition of el
ectroni
c com
pone
nts i
n
the
ex
citatio
n
syst
e
m
Fi
gu
re
4.
B
l
oc
k
di
ag
ram
of t
h
e anal
o
g
A
V
R
Figure
5 s
h
ows
the com
p
arison bet
w
ee
n current and
voltage
refe
rence
of the analog
AVR
at the tim
e
activated toget
h
er. T
h
e lowes
t
refe
rence
wil
l
take ove
r
con
t
ro
l actio
n that is g
i
v
e
n
t
o
t
h
yristor. Th
e
vo
ltag
e
referen
ce will b
e
add
e
d
to
the o
p
e
rat
o
r inpu
t. For cu
rren
t referen
ce, m
i
n
i
m
u
m v
a
lu
e is ab
ou
t 1
0
%
an
d
th
e
m
eet
i
ng poi
nt
wi
t
h
v
o
l
t
a
ge r
e
fere
nce at
p
o
i
nt
of
90
%. T
hus
, t
h
e am
pl
ifi
cat
i
on
of c
u
r
r
ent
re
fere
nce
t
o
t
h
e
o
p
e
rator in
pu
t is eig
h
t
ti
mes.
Fro
m
th
e g
r
aph
,
ram
p
refere
n
ce for vo
ltag
e
is n
o
t
u
s
ed
if th
e cu
rren
t referen
ce is
use
d
.
The a
n
al
o
g
si
gnal
i
n
p
u
t
s
ar
e sent
t
o
A
V
R
fr
om
vol
t
a
ge
sens
or
of
ge
ne
rat
o
r
t
e
rm
i
n
al
, i
n
fi
ni
t
e
bus
vol
t
a
ge
, an
d fi
el
d cur
r
ent
t
h
at
are rect
i
f
i
e
d b
y
t
h
e di
ode b
r
i
dge
. R
e
fere
nce
i
n
form
of ram
p
funct
i
on i
s
use
d
t
o
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 5
3
–
62
56
avoi
d t
h
e hi
gh
spi
k
e by
u
s
i
n
g V
o
l
t
a
ge Set
t
e
r 2 m
odul
e.
Fi
el
d cur
r
e
n
t
cont
rol
wi
t
h
m
a
xi
m
u
m
fi
el
d cur
r
en
t
refe
rence is us
ed to avoid control action tha
t
causes fi
eld current excee
di
ng its
m
a
xi
m
u
m v
a
lu
e. Th
e ou
tpu
t
is
six
v
o
ltag
e
pu
l
s
es sen
t
fro
m
AVR t
o
tri
g
g
e
r th
e th
y
r
isto
r in fo
rm
o
f
static
ex
citatio
n
.
Figu
re
5.
Com
p
aris
on
o
f
v
o
ltage a
n
d
cu
rre
n
t
refe
rence
2.
2
Di
gi
t
a
l
AV
R
In the
digital AVR
design, t
h
e cha
r
acterist
i
cs th
at
m
u
st
be com
p
l
i
e
d i
n
t
h
e em
bedde
d sy
st
em
are
con
s
i
d
ere
d
[
1
8]
. Ho
we
ver
,
si
ze, po
wer c
ons
um
pt
i
on, a
nd c
o
m
put
at
i
on rat
e
are t
h
e
l
i
m
i
t
a
t
i
on fo
r
t
hose
ch
aracteristics. In
ord
e
r to
com
p
l
y
th
o
s
e li
mitatio
n
s
, so
m
e
parts of anal
og AVR are c
o
ns
idere
d
to be c
h
ange
d
in
to
d
i
g
ital in
fo
rm
o
f
software wh
ilst so
m
e
p
a
rts are
retained
an
alog
.
The first selected com
pone
nt to im
plem
ent
digita
l AVR is
m
i
crocontroller because this com
ponent
has sm
al
l dim
e
nsi
o
n, l
o
w co
st
, l
o
w
po
wer c
o
nsum
pt
i
on
rat
e
, and easy
t
o
b
e
pr
og
ram
m
ed. The i
n
t
e
g
r
at
i
o
n o
f
sin
g
l
e
pu
rp
ose pr
o
cessor
lik
e AD
C an
d PWM m
a
kes the circuit
bec
o
me sim
p
ler. T
h
e
pre
v
ious
re
searche
s
sho
w
e
d
t
h
at
t
h
e use
of
ATm
e
ga8
m
i
crocon
t
r
ol
l
e
r i
s
t
o
m
oni
t
o
r t
h
e
p
u
l
s
e an
d t
h
e
vol
t
a
ge set
t
e
r
onl
y
nee
d
s
9.
3% m
e
m
o
ry
fl
ash an
d 0.
4%
R
A
M
.
There
f
ore
,
i
t
can be seen t
h
at
t
h
e
m
i
croc
o
n
t
r
ol
l
e
r c
a
paci
t
y
onl
y
be used
in sm
all capacity of its act
ual
capacity.
The an
al
o
g
i
n
put
i
n
t
e
rm
s of
gene
rat
o
r v
o
l
t
a
ge, i
n
fi
ni
t
e
v
o
l
t
a
ge b
u
s
,
fi
el
d cu
rre
nt
, f
r
e
q
uency
,
PSS
,
and m
a
nual
i
nput
, re
spect
i
v
e
l
y
,
use ADC
0
t
o
ADC
5 pi
ns
(2
3t
h t
o
2
8
t
h
p
i
n) as sh
ow
n i
n
Fi
g
u
re 6
.
Th
e l
ogi
c
i
n
p
u
t
use P
D
0
t
o
PD
6 pi
ns
,
whe
r
eas t
h
e l
ogi
c o
u
t
put
us
e PD7
,
PB
0
,
and PB
2 pi
ns.
PB
1 pi
n i
s
u
s
ed
t
o
g
e
n
e
rate PW
M
sig
n
a
l th
at su
its to
th
e PI co
n
t
ro
l o
u
t
pu
t. Th
e PI con
t
ro
l o
u
t
p
u
t
is co
mp
ared
to
th
e trian
g
l
e
wav
e
t
h
at h
a
s
b
een
sy
n
c
hro
n
ized
to
g
e
n
e
rat
e
th
e PW
M si
g
n
a
l for trigg
e
ring
th
yristor.
Th
e PWM sign
al is
gene
rat
e
d
by
t
h
e a
n
al
o
g
F
A
R
ci
rcui
t
.
Fi
gu
re
6.
Pi
n
c
o
n
f
i
g
urat
i
o
n
o
f
m
i
croco
n
t
r
ol
l
e
r (
A
Tm
ega 8
)
ATm
e
ga 8 m
i
croc
o
n
t
r
ol
l
e
r
[
1
9]
has t
h
ree t
i
m
e
rs, Ti
m
e
r 0, Tim
e
r 1, a
n
d
Tim
e
r 2. T
h
e
use
d
t
i
m
e
r i
s
Tim
e
r 1 t
o
gen
e
rat
e
P
W
M
si
g
n
al
and Ti
m
e
r
2 t
o
ge
nerat
e
i
n
t
e
rr
u
p
t
i
on
of
cont
rol
sam
p
l
i
ng t
i
m
e. Int
e
rr
upt
i
o
n
fr
om
Tim
e
r 2 has
hi
g
h
er
p
r
i
o
ri
t
i
zat
i
on t
h
a
n
Ti
m
e
r 1.
Ha
lf cycle of the
50
Hz
AC ge
nerat
o
r
fre
que
n
cy is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Rep
l
a
c
emen
t of Ana
l
og
AVR
u
s
ing
Dig
ita
l
Tech
no
log
y
(E.
Werda
Mu
kti)
57
selected
fo
r con
t
ro
l sam
p
lin
g
ti
m
e
th
at is 1
0
m
s
[2
0
]
.
Tim
e
r
2 uses clo
c
k
i
n
g
fr
equ
e
n
c
y 62
.5
00
kH
z.
I
t
n
e
eds
cal
cul
a
t
i
on
unt
i
l
62
5 t
o
ge
ner
a
t
e
t
h
e i
n
t
e
r
r
u
p
t
i
on eac
h
10
0
Hz.
If i
t
i
s
set
12
5 as
m
a
xim
u
m
,
t
h
e pr
o
g
ra
m
wi
ll
b
e
o
p
e
rated aft
e
r fi
v
e
tim
es in
terrup
tion
.
In
t
h
e
a
n
al
o
g
AVR
,
V
S
1
m
o
d
u
l
e
uses
t
w
o
c
o
u
n
t
e
rs 4 bi
t
t
h
at
co
u
n
t
s
u
p
o
r
do
w
n
base
d
o
n
t
h
e
p
r
essed
b
u
tton b
y
th
e o
p
e
rato
r. Th
e VS1
sig
n
a
l will b
e
u
p
d
a
ted
ev
ery 5
.
69
Hz b
e
cau
se th
e m
a
x
i
m
u
m
cal
cul
a
t
i
on i
s
8 bi
t
s
and t
h
e
i
n
creasi
n
g pe
ri
o
d
fr
om
zer
o t
o
30
% i
s
45 sec
o
n
d
s
.
The co
unt
er
ou
t
put
i
s
co
nv
er
ted
i
n
to th
e an
alog
si
gn
al b
y
u
s
i
n
g 8 b
its
d
i
g
ital to an
alog
con
v
erter (
DAC
). The
update
d fre
quency
g
i
v
e
s ch
ang
i
ng to
th
e reference less s
m
o
o
t
h. Thu
s
, th
e VS1
ou
tpu
t
n
e
ed
s to
b
e
filtered
b
e
fo
re
b
e
u
s
ed b
y
th
e
VR
m
odul
e.
In t
h
e
pre
v
i
o
u
s
resea
r
ches
,
VS
1 wa
s i
m
plem
ent
e
d wi
t
h
t
h
e seq
u
e
n
ci
al
pr
o
g
ram
desi
gne
d t
o
r
u
n
ev
ery 175
.7
81
m
s
. T
i
m
e
r 0
is
u
s
ed
to
g
e
n
e
rate th
e in
terrup
tio
n
so
th
at the p
r
o
g
ram
is
ru
n
in
t
h
e p
r
earrang
ed
tim
e
. Tim
e
r 0 is 8
bits tim
e
r and a
b
le to ge
nerate inte
rruption when
the
ca
lculation
reaches the hi
ghest
value.
W
i
t
h
th
e cr
yst
a
l f
r
e
qu
en
cy 12
MH
z and
th
e clo
c
k
i
ng
d
i
v
i
der
10
24
, th
e i
n
ter
r
u
p
tion
is g
e
n
e
r
a
ted
ev
er
y 2
1
.845
m
s
. The pr
og
r
a
m
i
s
run e
v
er
y
8 t
i
m
e
s i
n
t
e
rr
upt
i
o
n,
he
nc
e t
h
e sam
p
l
i
ng t
i
m
e
becom
e
17
4.
7
63 m
s
. At
t
h
e
ru
n
n
i
n
g c
o
n
d
i
t
i
on,
t
h
e
p
r
o
g
ra
m
count
s
up
a
n
d
d
o
w
n
ge
ne
r
a
t
i
ng t
h
e
o
u
t
p
u
t
i
n
f
o
rm
of
P
W
M
.
C
ont
rary
t
o
t
h
e
p
r
ev
iou
s
research, in
th
is
research, VS1
is
n
o
t
im
p
l
e
m
en
t
e
d
in
to
on
e
pro
cesso
r with
FARMON, but
it
i
s
com
b
i
n
ed wi
t
h
m
odul
es. T
h
u
s
, t
h
e VS
1 si
g
n
al
i
s
not
u
pda
t
e
d every
1
7
5
.
7
8
1
m
s
, but
ev
ery
10 m
s
. In ever
y
sam
p
l
i
ng pr
oce
ss, t
h
e
V
S
1
si
g
n
al
i
s
a
dde
d
or
subt
ract
ed
by
0
.
0
0
0
6
.
The
out
p
u
t
o
f
t
h
ree
v
o
l
t
a
ge se
nso
r
s a
r
e se
nt
t
o
t
h
e
di
ode
b
r
i
dge
t
o
ge
nerat
e
t
h
e
DC
v
o
l
t
a
ge.
V
o
l
t
a
ge
di
vi
de
r i
s
use
d
ran
g
i
n
g fr
om
0 V t
o
-
10
V
t
h
at
represe
n
t
s
t
h
e AC
gene
rat
o
r
vol
t
a
ge r
a
ngi
ng
fr
om
0
%
t
o
1
1
0
%
. Th
e u
s
ed
sig
n
a
l co
nd
itio
n
i
ng
is sho
w
n
b
y
Figu
re 7. Th
e sig
n
a
l con
d
ition
i
ng
wo
rk
s as lo
w
p
a
ss filter
with the cut off fre
que
ncy 159 Hz. The use
d
filtered is
the first orde
r filter becau
se it needs less compone
n
t
an
d
th
e ripp
le with
3
0
0
Hz
freq
u
e
n
c
y
fro
m
d
i
od
e b
r
idg
e
is
no
t
p
a
ssed
b
y
th
e
g
e
n
e
rato
r. Th
e filter
g
a
in is
1
so
t
h
at
t
h
e
di
vi
der
o
f
se
nso
r
v
o
l
t
a
ge i
s
t
une
d t
o
g
i
ve t
h
e
o
u
t
p
ut
r
a
ngi
ng
f
r
om
0
V t
o
-
5
V.
Fi
gu
re
7.
The
s
i
gnal
c
o
n
d
i
t
i
o
n
i
ng
f
o
r t
e
rm
i
n
al
vol
t
a
ge
, i
n
fi
ni
t
e
b
u
s
v
o
l
t
a
ge,
and
fi
el
d
cu
rre
nt
Fi
gu
re
8.
The
s
i
gnal
c
o
n
d
i
t
i
o
n
i
ng
f
o
r
sens
o
r
fre
que
ncy
The
out
put
of f
r
eq
ue
ncy
sens
o
r
i
s
ran
g
i
n
g
fr
o
m
0 V t
o
10
V.
In
or
der t
o
fi
t
t
h
e A
D
C
m
i
croco
n
t
r
ol
l
e
r,
it n
eed
s to
b
e
atten
u
a
ted
h
a
lf t
i
m
e
b
y
u
s
in
g
t
h
e sign
al cond
itio
n
i
ng
in
Fi
gure 8. Low
p
a
ss filter is n
o
t
u
s
ed
in
t
h
e si
g
n
al
c
o
n
d
i
t
i
oni
ng
f
o
r
se
n
s
or
f
r
eq
ue
ncy
.
Si
gnal
c
o
ndi
t
i
oni
ng
f
o
r
PSS
and
m
a
nual
i
n
p
u
t
are
sh
o
w
n by
Fi
g
u
re
9
.
Thi
s
si
gn
al
con
d
i
t
i
oni
n
g
ch
ang
e
s t
h
e inp
u
t
rang
ing
from -1
0
V to
+10
V i
n
to
0
V to
5
V. Th
e low
p
a
ss
filter is n
o
t u
s
ed
i
n
ord
e
r
to
no
t
affect t
h
e signal processi
ng result that is
done
by PS
S and m
a
n
u
a
l card
.
Th
e
PW
M
sign
al is tran
sformed
in
to
th
e an
alog
sign
al b
y
u
s
ing
lo
w
p
a
ss filter. Th
e secon
d
-ord
er filter is u
s
ed
to
eli
m
in
at
e th
e h
i
g
h
freq
u
e
n
c
y
com
pone
nt
s f
r
o
m
PW
M
.
The co
nt
r
o
l
si
gnal
i
s
se
nt
t
o
m
i
croco
n
t
r
ol
l
e
r i
n
f
o
rm
of P
W
M
.
B
y
usi
n
g
t
h
e cl
ocki
ng
f
r
eq
ue
ncy
1
6
M
H
z an
d fast
P
W
M
wi
t
h
pe
ak 3
FF i
n
fo
r
m
of he
xa
deci
m
a
l
num
ber or
10
2
3
i
n
f
o
rm
of
deci
m
a
l
num
ber, t
h
e
PW
M frequ
ency b
eco
m
e
s 1
5
.
62
5
k
H
z. Th
e
o
u
t
p
u
t
of PWM is filtered
b
y
lo
w p
a
ss filter sho
w
n
b
y
Fi
g
u
re 10
wi
t
h
c
u
t
o
f
f
f
r
e
que
ncy
15
9
2
H
z
t
o
get
t
h
e
ana
l
og
v
o
l
t
a
ge
ran
g
i
n
g
fr
om
-10
V t
o
+1
0
V.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 5
3
–
62
58
Fi
gu
re
9.
Si
g
n
a
l
con
d
i
t
i
oni
n
g
fo
r P
SS a
n
d m
a
nual
in
pu
t
Fig
u
re 10
. Filter
for DAC
3.
R
E
SU
LTS AN
D ANA
LY
SIS
In
o
r
de
r t
o
ve
r
i
fy
t
h
e p
r
o
p
o
s
e
d
desi
g
n
, si
m
u
l
a
t
i
on
has
be
en
pr
op
ose
d
t
o
c
o
m
p
l
y
t
h
e AVR
desi
gn
cri
t
e
ri
a. The e
xpe
ri
m
e
nt
i
s
done
by
si
m
u
l
a
ti
ng t
h
e
ge
nerat
o
r t
e
rm
i
n
al
vol
t
a
ge ge
nerat
e
d
by
t
h
e sy
nc
hr
on
o
u
s
g
e
n
e
rator an
d
m
o
d
e
lin
g
th
e ex
citer circu
it that are
g
i
v
e
n
as
th
e fo
llowing
t
r
an
sfer fun
c
tion
:
(2
)
,
, a
nd
, resp
ectiv
ely, syste
m
g
a
in
, tim
e
co
nstan
t
of exciter, and
tim
e
co
nstan
t
of
gen
e
rat
o
r. Th
e
u
s
ed
g
e
n
e
rato
r p
a
ram
e
ters in th
is sim
u
lat
i
o
n
are
= 10,
= 0.
3,
= 3
.
S
y
nch
r
o
n
ous
ge
nerat
o
r a
n
d
exciter using opam
p-base
d analog circ
uit are used to test
the PI controller. The e
x
citer tran
sfer fun
c
tio
n
is
b
u
ilt fro
m
capacito
r
1
u
F
and
resisto
r
300 kO
h
m
.
Wh
er
eas th
e
g
e
n
e
rato
r tran
sfer fun
c
tio
n is
b
u
ilt fro
m
capacitor 1 uF
and resist
or
3
MOhm
.
In
t
h
e sim
u
la
tio
n
,
si
n
e
sign
al in
terferen
ces
ar
e use
d
t
o
re
p
r
esent
t
h
e ri
ppl
es ge
nerat
e
d b
y
t
h
e di
o
d
e
bri
dge
o
f
v
o
l
t
a
ge se
ns
or
. T
h
e
i
n
t
e
rfe
rence
a
m
pli
t
ude i
s
0.
0
7
t
i
m
es of t
h
e
out
put
si
g
n
al
g
e
nerat
o
r.
T
h
e
3
0
0
Hz
interfe
rence
freque
ncy is sel
ected as the la
rgest
fre
qu
en
cy in
th
e sim
u
l
a
tio
n
.
Th
erefore, th
e
sim
u
lat
i
o
n
is
i
t
e
rat
e
d wi
t
h
sa
m
p
li
ng
fre
qu
en
cy
10
0
k
H
z
wh
i
c
h hi
ghe
r t
h
an
1
0
0
t
i
m
e
s of i
n
t
e
rfe
re
nce
fre
que
ncy
.
The si
m
u
l
a
t
i
on resul
t
o
f
an
al
o
g
A
V
R
u
s
i
n
g
Kp =
1 a
nd Ti
= 2 seco
n
d
s i
s
sho
w
n i
n
Fi
gu
r
e
11
. It
ca
n
be seen t
h
at
t
h
e use of ram
p
fu
nct
i
o
n refe
re
nce can re
duce
t
h
e hi
gh s
p
i
k
e
.
The cha
ngi
n
g
of re
fere
nce
fr
o
m
8
0
% to
10
0% is show
n in
Fig
u
r
e
12
. Ther
e is
n
o
in
terferen
ce
freq
u
e
n
c
y 300
Hz in th
e
g
e
n
e
rator ou
tpu
t
because the signal is filtered by the ex
citer transfe
r
function with cut off
freque
ncy 0.53
Hz and the
ge
nerator
wi
t
h
c
u
t
o
f
f
f
r
e
que
ncy
0.
05
3
Hz.
Figu
re 1
1
. PI
c
ont
rol res
p
o
n
se
Figure 12. Step
res
p
onse
with PI
c
o
ntrol
The desi
gne
d
of
di
gi
t
a
l
AV
R
i
s
show
n b
y
Fi
gure
13
. The PC
B
’
s si
ze i
s
11.
3 x
7.
3 cm
2
. The
avai
l
a
bl
e
s
p
ace
f
o
r di
gi
t
a
l
c
o
m
ponent
s
i
s
2
1
.
8 x 1
6
.
1
cm
2
.
The placem
ent
of digital
AVR into a
n
alog
AVR is
sh
own
i
n
Fi
g
u
re 14
. It is
shown th
at t
h
e
d
i
gital AVR
h
a
s
smaller d
i
m
e
n
s
io
n th
an
t
h
e analo
g
co
m
p
on
en
ts th
at
its function
has been
repla
ced. Com
p
aris
on
of t
h
e re
placed analog
AVR
’s com
pone
nts with
digital
com
pone
nt
s i
s
sho
w
n i
n
Tabl
e 1. It
i
s
show
n
t
h
at
t
h
e co
m
pone
nt
s t
h
at
i
s
used i
n
t
h
e di
gi
t
a
l
AVR
are l
e
ss t
h
an
th
e an
alog
.
From th
is co
m
p
o
n
en
t list, th
e p
o
wer co
nsu
m
p
tio
n
is ab
le to
be esti
m
a
ted
b
y
co
n
s
i
d
eri
n
g
op
am
p
and m
i
croco
n
t
r
ol
l
e
r. T
h
e o
p
am
p usual
l
y
requi
res m
a
xi
m
u
m
current
6
.
6
m
A
and sup
p
l
y
vol
t
a
ge 5 V
so t
h
at
10
12
14
16
18
20
0
2
4
6
8
10
T
i
m
e
(
s
ec
ond)
G
ener
ator
Vo
lta
g
e
0
2
4
6
8
10
0
2
4
6
8
10
T
i
m
e
(
s
ec
ond)
Ram
p
Ref
e
renc
e
Step
Ref
e
r
enc
e
G
ener
ator
Vo
lta
g
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Rep
l
a
c
emen
t of Ana
l
og
AVR
u
s
ing
Dig
ita
l
Tech
no
log
y
(E.
Werda
Mu
kti)
59
33 m
W
p
o
w
er
i
s
consum
ed. M
i
croco
n
t
r
ol
l
e
r req
u
i
r
es m
a
xi
m
u
m
curre
nt
12 m
A
and s
u
p
p
l
y
vol
t
a
g
e
5 V so
t
h
at
60 m
W
p
o
we
r i
s
co
ns
u
m
ed. The a
n
al
og
A
V
R
co
ns
um
es about
4
5
0
m
W
f
r
om
14 o
p
am
ps wh
i
l
e
t
h
e
di
gi
t
a
l
AVR
c
ons
um
es about
26
0 m
W
fr
o
m
6 op am
ps and si
ngl
e m
i
croc
o
n
t
r
ol
l
e
r
.
T
h
ere
f
o
r
e, t
h
e
d
e
si
gne
d
d
i
g
ital AVR need
s less
p
o
wer th
an
th
e an
al
o
g
AVR. FAR circu
it rem
a
i
n
s an
alog
du
e
to
th
e limited
p
i
n
s
o
f
ATm
e
ga 8 m
i
croc
o
n
t
r
ol
l
e
r
.
Th
e
ou
tpu
t
of
D
A
C
cir
c
u
it is show
n in
Figu
r
e
15
.
T
h
e
gr
aph
i
s
not
l
i
ne
ar
bet
w
ee
n i
d
e
a
l
an
d real
val
u
e
o
f
t
h
e
DAC
o
u
t
p
ut
v
o
l
t
a
ge.
The
i
d
eal
val
u
e
o
f
t
h
e
DAC
o
u
t
p
ut
v
o
l
t
a
ge
has
de
vi
at
i
on
val
u
e
1.
25
.
Testin
g
is d
one b
y
m
easu
r
ing
real v
a
lu
e of th
e DAC outp
u
t
vo
ltag
e
. Its id
eal v
a
lu
e is calcu
lated
u
s
ing
equat
i
o
n:
20
1
0
(3
)
Thi
s
o
u
t
p
ut
vo
l
t
a
ge i
s
rangi
n
g
fr
om
-10 V t
o
+1
0 V an
d set
i
n
t
o
0 t
o
5 V
by
t
h
e si
gnal
con
d
i
t
i
oni
n
g
as po
we
r
i
n
p
u
t
o
f
ATm
e
ga8
m
i
crocont
rol
l
e
r.
F
r
om
Tabl
e
2, i
t
ca
n
be see
n
t
h
e e
r
r
o
r
pe
rce
n
t
a
ge i
s
ab
o
u
t
1
%
of
si
gnal
cove
ra
ge
need
ed
by
the t
h
y
r
i
s
tor
dri
v
er
ra
n
g
in
g
fr
om
-6.
6
7
V to
6
.
6
7
V.
In
a
n
g
u
lar
size, the
firin
g
a
n
gle o
f
th
e th
yristor is
set rang
ing
from
3
0
°
to 150
°
th
at is
sh
o
w
n
b
y
t
h
e dat
a
wi
t
h
g
r
ey
bac
k
gr
ou
nd
o
f
Ta
bl
e
2.
There
are
thre
e action
steps
in eve
r
y cycle of co
n
t
ro
l sam
p
l
i
n
g
tim
e: a
n
alog
to d
i
g
ital co
nv
ersi
on
process
,
arithmetical calculation
for co
nt
r
o
l
,
and P
W
M
f
o
r
m
at
i
on. Anal
o
g
t
o
di
gi
t
a
l
co
n
v
ersi
on
pr
oces
s t
a
kes
12
2 u
s
.
W
i
t
h
i
t
s
advance
d
R
e
duce
d
I
n
st
r
u
ct
i
on Set
C
o
m
put
i
ng (R
IS
C
)
archi
t
ect
u
r
e feat
ure
,
AT
m
e
ga 8
micro
c
on
tro
ller is ab
le to
ex
ecu
te m
o
st o
f
13
1
p
o
we
r in
stru
ctio
ns wi
th
sin
g
l
e
cloc
k cycle. Henc
e, the
com
put
at
i
on ra
t
e
for ari
t
h
m
e
ti
cal
process ca
n be i
g
no
re
d if com
p
ared to the pro
ces
s of
ADC
i
n
put
rea
d
i
n
g
.
Fu
rt
h
e
rm
o
r
e,
ATm
e
g
a
8
m
i
cro
c
on
tro
ller is
eq
u
i
p
p
e
d
with
o
n
-ch
i
p
2-cycle m
u
ltip
lier. PWM form
at
io
n tak
e
s
ti
m
e
less sig
n
i
fican
t if co
m
p
ared
t
o
co
nv
er
sio
n
pro
cess of
A
D
C
.
Th
er
efor
e,
t
h
e
overall
process
tim
e
in eve
r
y
cy
cl
e of co
nt
r
o
l
sam
p
l
i
ng t
i
m
e
i
s
about
1
50
us i
f
ass
u
m
e
d t
h
at
ari
t
h
m
e
t
i
cal cal
cul
a
t
i
on t
i
m
e
and
P
W
M
fo
rm
ati
on are e
s
t
i
m
a
t
e
d 28 us
.
The am
ount
o
f
t
i
m
e
i
s
l
e
ss t
h
an 1
0
m
s
of t
h
e cy
cl
e of co
nt
rol
sam
p
l
i
ng t
i
m
e so
th
at th
e co
m
p
utatio
n
rate
of
ATm
e
g
a
8
is ad
eq
u
a
te.
Figu
re 1
3
. Digi
tal
AVR
Fi
gu
re 1
4
.
C
o
m
p
ari
s
on bet
w
een di
gi
t
a
l
an
d anal
o
g
AVR
Fig
u
r
e
15
. Th
e ou
tpu
t
of
DAC
S
e
ns
o
r
, Ge
ne
r
a
tor
P
u
ls
e
,
and T
h
y
r
istor
Driv
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 5
3
–
62
60
Tabl
e
1.
A
n
al
o
g
a
n
d
Di
gi
t
a
l
AVR
C
o
m
pon
ent
s
Co
m
ponents Analog
Digital
Counter
2
-
DAC 8 bit
1
-
Dioda
I
nver
t
er
Capacitor
Nand 2 input
Nand 4 input
Nor
2 input
Nor
4 input
Op a
m
p
Relay
Resistor
Transistor
VR
Zen
e
r
M
i
cr
ocontr
o
ller
Cry
s
tal
76
8
31
4
2
1
1
14
5
202
2
38
11
-
-
-
-
8
-
-
-
-
6
-
41
-
4
-
1
1
Tabl
e 2. D
A
C
Out
put
V
o
l
t
a
g
e
Duty C
y
cle
Ideal
Real
Error
(%)
0 -
10.
00
-
9
.
39
-
3
.
05
63
-
8
.
75
-
8
.
71
-
0
.
20
127
191
255
319
383
447
511
575
639
703
767
831
895
959
1023
-
7
.
50
-
6
.
25
-
5
.
00
-
3
.
75
-
2
.
50
-
1
.
25
0.
00
1.
25
2.
50
3.
75
5.
00
6.
25
7.
50
8.
75
10.
00
-
7
.
67
-
6
.
35
-
4
.
70
-
3
.
49
-
2
.
33
-
1
.
17
0.
00
1.
15
2.
23
3.
49
4.
77
6.
33
7.
56
8.
54
9.
21
0.
85
0.
50
-
1
.
50
-
1
.
30
-
0
.
87
-
0
.
42
0.
00
0.
52
1.
37
1.
33
1.
15
-
0
.
40
-
0
.
30
1.
05
3.
95
Fig
u
re
1
6
to
Fig
u
re
1
7
show th
e ex
p
e
ri
men
t
al resu
lt o
f
d
i
g
ital AVR th
at ap
propriate to
th
e
sim
u
l
a
t
i
on res
u
l
t
sh
ow
n i
n
F
i
gu
re 1
1
a
nd
F
i
gu
re 1
2
.
H
o
w
e
ver
,
t
h
e
r
e are
som
e
di
st
ort
i
o
n ri
ppl
es e
x
i
s
t
i
n
t
h
e
wav
e
fo
rm
. Therefo
r
e it is n
e
ed
ed
t
o
b
e
investig
ated
th
e
used
filter
for fu
ture research
d
u
e
t
o
th
e
remain
in
g
PW
M
r
i
pp
les. I
t
is also
n
e
ed
ed to
b
e
co
m
p
ar
ed
b
y
u
s
ing
ex
tern
al non PW
M
DA
C,
e.g
.
DA
C
08
08
.
Th
e
fo
rm
ati
on
of
a
n
al
o
g
si
gnal
w
a
ve i
n
D
A
C
0
8
0
8
i
s
n
o
t
deri
ved
f
r
om
t
h
e s
qua
re
wa
ve as
i
n
P
W
M
-
t
y
p
e
D
A
C
h
e
n
ce
ripp
les are no
t g
e
n
e
rated
in
t
h
e an
al
o
g
sig
n
a
l
o
u
t
p
u
t
.
W
i
t
h
no
DAC ripp
les, th
e
ripp
les in
th
e termin
al
v
o
ltag
e
is esti
mated
sig
n
i
fican
tly redu
ced
.
Ano
t
h
e
r ap
proach
is
b
y
u
s
i
n
g Dig
ital Sign
al
Processing
to bu
ild
an
adju
stab
le ex
citatio
n
d
e
v
i
ce
[21
]
.
C
a
rri
er
fre
q
u
e
n
cy
gi
ves i
m
pact
t
o
t
h
e
out
p
u
t
wa
vef
o
rm
t
h
at th
e
h
i
gh
er
th
e PW
M carrier frequ
e
n
c
y resu
lts in
th
e sm
o
o
t
h
e
r
o
u
t
p
u
t
waveform
wh
ile g
r
eat
er error
o
f
act
u
a
l stato
r
ph
ase v
o
ltag
e
will b
e
occured.
Th
is is
because the
hi
ghe
r the
PW
M
carrier
freque
ncy, the sm
alle
r the am
ount exciter curre
nt
pulse
. T
hus t
h
e stator
vol
t
a
ge
harm
oni
c c
ont
e
n
t
w
o
ul
d
be
sm
al
l
e
r. The
C
pr
o
g
ra
m
m
i
ng l
a
ng
ua
ge i
s
al
s
o
use
d
t
o
i
m
pl
em
ent
severa
l
task
s i
n
term
s o
f
estim
a
tio
n
,
fau
lt
recogn
itio
n, and
m
easu
r
em
en
t o
f
p
l
ant ou
tpu
t
s [22
]
.
Th
is m
e
th
o
d
allo
ws
a
sm
o
o
t
h
startu
p o
f
th
e ad
ap
ti
v
e
con
t
ro
ller an
d
elim
in
ates
in
du
ced
tran
si
en
t o
s
cillatio
ns. It allo
ws an in
itial
p
e
ri
o
d
fo
r th
e p
a
ram
e
ters to
ob
tain
reasonab
l
e lev
e
ls
,
an
d t
h
e
n
t
o
ram
p
up
t
h
e
o
u
t
p
ut
o
f
t
h
e sel
f
-
t
uni
n
g
regu
lato
r gradu
a
lly. Thu
s
, it
allo
ws th
e
p
a
ra
m
e
ters to
conv
erg
e
sm
o
o
t
h
l
y, wh
ilst pro
v
i
d
i
ng
a stab
le
ou
tpu
t
.
Areas
o
f
co
n
c
ern
in
cl
u
d
e
o
s
cillatio
n
s
in
term
in
al v
o
ltag
e
, ex
cessi
v
e
freq
u
e
n
c
y or vo
ltag
e
flu
c
t
u
ations, or
si
gni
fi
ca
nt
de
v
i
at
i
ons fr
om
t
h
e set
poi
nt
. E
x
t
e
rnal
fa
ul
t
s
o
n
t
h
e sy
st
em
m
a
y
gi
ve ri
se t
o
t
h
e be
ha
vi
o
u
r
.
The
p
r
esen
ce of such
ph
eno
m
en
a can
lead
to
in
v
a
lid
m
o
d
e
ls b
e
in
g
g
e
n
e
rated u
n
d
e
r h
i
g
h
l
y n
o
n
lin
ear co
nd
itio
ns.
The
c
o
m
put
at
i
onal
pe
rf
orm
a
nce req
u
i
r
em
ents to carry
out the m
easure
m
en
t
an
d c
ont
r
o
l
w
o
ul
d
be
ex
cessi
ve
an
d infeasib
le i
n
realti
m
e
if th
e pr
og
ram
s
were en
tirely sequ
en
tial.
The
propose
d
digital AVR
replaces t
h
e
analog
AVR by usi
ng
e
m
bedde
d sys
t
e
m
that is
im
pl
em
ent
e
d in ATm
e
ga 8 m
i
croco
n
t
r
ol
l
e
r. The
use o
f
di
gi
t
a
l
com
ponent
m
a
kes
m
a
i
n
t
e
nan
ce easi
e
r. Thi
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Repl
ace
m
e
n
t
o
f
An
al
o
g
AV
R
usi
n
g
Di
gi
t
a
l
T
echn
o
l
o
gy (
E
.
Werd
a M
u
kt
i
)
61
hap
p
e
n
s si
nce
di
gi
t
a
l
com
p
o
n
e
nt
i
s
c
o
m
p
at
ibl
e
wi
t
h
ot
her
com
pone
nt
s
of
t
h
e c
o
nt
rol
l
e
r
,
n
o
t
t
o
m
e
nt
i
on i
t
s
availability
in local m
a
rket
. The space that
is needed
by the digital AVR is a
l
so dimi
nishe
d
and its
powe
r
co
nsu
m
p
tio
n
is less th
an
th
e an
alog
AVR
.
Fig
u
re
16
. Resp
on
se with ram
p
referen
ce
usin
g filter
Fig
u
r
e
17
.
Step r
e
sp
on
se testin
g u
s
i
n
g
seco
nd
- or
d
e
r
filter
4.
CO
NCL
USI
O
N
In t
h
i
s
resea
r
c
h
, t
h
e di
gi
t
a
l
AVR
ha
s been
desi
gne
d acc
or
di
n
g
t
o
t
h
e anal
o
g
A
V
R
t
h
at
has bee
n
ap
p
lied in indu
stry.
Th
e resu
lt shows th
at th
e
d
e
sign
ed
d
i
g
ital AVR can
red
u
c
e th
e size and po
wer
consum
ption
of the a
n
alog AVR. M
o
re
over, the pe
rfor
m
a
n
ce o
f
d
i
gital AVR also
m
eets th
e li
mit o
f
com
putation tim
e. The com
p
atibility of digital co
m
pone
nt
with
other
controller pa
rts a
nd its a
v
ailability in
local m
a
rket make the m
a
intena
nce
of AVR easier. In
the ne
xt
resear
ch
, i
n
tegratio
n with
t
h
e
o
t
h
e
r
AVR
m
odul
e, i
.
e. FAR
M
O
N
, t
h
y
r
i
s
t
o
r dri
v
er
, an
d sens
or s
h
o
u
l
d
be d
one
bef
o
re t
h
e A
V
R
be t
e
st
ed i
n
t
h
e hy
dr
o
po
we
r pl
ant
.
REFERE
NC
ES
[1]
Kundur P.
Pow
e
r System Stab
ility and Con
t
rol
.
McGraw Hill. N
e
w York. 1994
.
[2]
Ma
c
howski J,
Bia
l
e
k
J W,
Bumby
J R.
Power System Dynamics: Stabilit
y and Control
.
2
nd
Edition.
John Wile
y
&
Sons
. New Delh
i. 2008
.
[3]
T
h
e His
t
or
y of Bas
l
er
El
ectr
i
c
[Intern
e
t
]
.
2012 [cit
ed 2012 Decem
ber 13]
.
Availab
l
e fro
m
:
http://www.
basler.
c
om/html/comhis.
h
tm
.
[4]
Muqorobin A.
Peningka
t
an Kem
a
mpuan Adopsi
Teknologi Dig
i
tal
untuk
Ran
c
an
g
Bangun AVR Digital Berbasis
AVR Analog
Mitra Industri untuk Pe
mbangkit
Listrik Tenaga
Air Ska
l
a 6 M
W
. Laporan
Kemajuan Tahap
I
I
Program Insentif
Peningkatan
Kapasita
s Ip
tek
Sistem Produksi. Bandung. 2010
.
[5]
Rijanto E, Muqorobin A. Rancan
g
Bangun Modu
l Pengkondisi Sin
y
al dan An
tar Muka untuk Ko
ntroler Tegangan
Digital Pada Pembangkit Li
str
i
k Tenag
a
Air (
P
LTA).
Jurnal Ketenagalistrika
n
dan Energi T
e
rbarukan
. 201
1;
10(1): 61-74
.
[6]
S
c
haefer
RC, Ki
m
K.
Digital Excitation
System Provides
Enhan
ced Tuning Over Analog Systems.
IEEE Pulp
an
d
Paper Industr
y
Technical
Confer
ence. 2000: 84-91
.
[7]
Brimsek M, Kim K, Rao P, S
c
haef
er RC
.
Feature Enhan
cem
ents in
New
Dig
ital
Excitiation
System Sp
eeds
Performance Testing
[Internet]
.
2006. Availab
l
e
from: http:
//www.basler
.com/do
w
nloads/ EPRI_
T
uning.pdf
.
[8]
Barakat A,
Tnani S, Champeno
is G, Mouni E.
A New Approach for S
y
nchron
ous
Generator
Terminal Voltag
e
Control – Comparison with a St
andard Industrial Controller.
Elec
tric
P
o
we
r Sy
ste
m
s Re
se
arc
h
. 2
011; 81: 1592-
1601.
[9]
Su CT, Hwung HR, Lii GR. Fu
zzy
Log
i
c Based Voltage Con
t
r
o
l for a S
y
n
c
hr
onous Generator
.
El
ectr
i
c Pow
e
r
Sy
ste
m
s Re
se
ar
ch
. 1997; 41: 225
-231.
[10]
Sisworahardjo N
S
, El-Sharkh
MY, Al
am MS. Neural Network C
ontroller
for Microturbin
e
Power Plants.
El
ectr
i
c
Powe
r Sy
ste
m
s
Re
se
arc
h
. 2008;
78: 1378-1384.
[11]
Kim K,
Schaefer RC. Tuning a PID Controlle
r for a Digital E
x
cit
a
tion Contro
l S
y
stem
.
IEEE Transactions o
n
Industry Applica
tion.
2005; 41(2)
: 485-492.
[12]
Bhatt VK, Bho
ngade S. Desig
n
of
PID Controller
in Autom
a
tic Volt
age R
e
g
u
lator (AVR) System
Using PSO
Techn
i
que.
International
Journal of Engin
eering
Research and
App
lications (
I
JERA)
. 2013; 3(4):
1480-1485.
[13]
Zhou G, Ya T, Zhao S. A Three-Ph
ase AC-Voltag
e
Regulato
r
Sy
stem.
TELKOMNIKA Indonesian Journal of
Ele
c
trica
l
Eng
i
n
eering
. 2014; 12
(5): 3501-3508
.
[14]
Ahmed T S, Sao S, Anjan
e
y
u
lu
KSR. Microcon
troller Ba
sed
Stator Resistan
ce Dete
rmination of
Induction Motor
on Temper
ature
Variations.
In
ter
national Journal
of Powe
r
Electr
onics and Drive
System
. 201
4; 4(
3): 356-362.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 5
3
–
62
62
[15]
Ha
que
MM,
Hossa
in MK,
Ali
MM,
She
i
kh MRI.
Mic
r
oc
ont
ro
ller B
a
s
e
d S
i
ng
l
e
P
h
as
e Dig
ita
l
P
r
epaid
Energ
y
Meter for Im
proved Meter
i
ng an
d Billing S
y
s
t
e
m
.
International Journal of Pow
e
r
Electronics a
nd Drive System
(
I
JPEDS)
. 2011; 1(2): 139-1
47.
[16]
Automatic Vo
lta
ge R
e
gulator
fo
r Synchronous Generator (
T
hyristor Direct
Exciting
S
y
stem)
Instruction Manua
l.
Fuji
El
ectr
i
c co l
t
d
. 1987
.
[17]
Ogata K
.
Mod
e
rn Control
Engin
eering
. 4
th
Editio
n. Prentice Hall.
New Jersey
. 200
2.
[18]
Vahid F, Giv
a
r
g
is T.
Embedded
System Design:
a Unified
Hard
ware / Software
Introduction
. John Wiley
& Son
s
.
New Jersey
. 200
2.
[19]
Atmel.
ATmega8: 8-bit Atmel w
ith 8 Kbyt
es in-s
ystem Programmable Flash
[Int
e
rnet]
.
2012 [cit
ed 2012 Decem
ber
13]
. Availab
l
e fr
om: http://www.atme
l.com/imag
es/a
tmel-2486-8
-
bit-avr-micro
co
nt
roller-atmega8
_l_datasheet.pdf
.
[20]
Kim K,
Rao P,
Burnworth J.
Self-Tuning of
the PID Controller
for
a Digit
a
l
E
x
cit
a
tion Con
t
ro
l S
y
stem
.
I
EEE
Transactions on
Industry Applica
tion
. 2010; 46(4)
: 1518-1524.
[21]
Xiang-y
u
G,
Yu-lin Z,
Yan F,
Yu-j
uan Z, Shuai S. Resear
ch on DSP-Base
d
Autom
a
tic Exc
i
t
a
tion Regu
lator
in
Small Rural H
y
d
r
opower Station.
Journal o
f
Nort
heast Agri
cultur
a
l Univ
ersity
. 20
13; 20: 65-69.
[22]
Fly
nn D, Hogg
BW, Swide
nbank E, Zach
ariah
KJ.
Expert Control of a Self
-Tu
n
i
ng Automatic
Voltage R
e
gulator.
Control Engin
e
ering Practice
. 19
95; 3: 1571-157
9.
Evaluation Warning : The document was created with Spire.PDF for Python.