Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
3, No. 6, Decem
ber
2013, pp. 857~
862
I
S
SN
: 208
8-8
7
0
8
8
57
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Applicat
ion of
Pi
ezoelect
ric M
a
t
e
rials in S
m
art
Roads and
MEMS, PMPG Power Generation
with Tra
n
sver
se Mo
de
Thin
Film PZT
Aqs
a
Abb
a
si
Department o
f
Electronics
Engin
eering
,
Mehr
an
Univer
sity
of
En
gineer
ing and
Technolog
y
,
Jamshoro, Pakistan
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 3, 2013
Rev
i
sed
No
v 2, 201
3
Accepted Nov 12, 2013
Due to the
incre
a
s
e
in e
l
ec
tri
c
it
y energ
y
cons
um
ption and th
e fa
ct th
at abo
u
t
90 % of fuels b
e
ing used now
carbon dioxid
e
pollutan
t
and th
e crisis has
been caused b
y
greenhouse gases have
made moving to
war
d
renewable
energies unavoidable. At pr
esent,
consid
ering
ele
c
tri
c
it
y crisis
in
Pakist
an,
although on
ly
46% of the po
pulation
of Pak
i
stan hav
e
the
facility
of
ele
c
tri
c
it
y
and
t
h
e rem
a
in
ing
ar
e stil
l
living
in
darkness but st
il
l we f
a
c
e
a
major power crisis. Modern technolog
y
n
eeds
a huge amount
of electrical
power for its v
a
rious operation
s. In
this paper, we have presented an
d
reviewed a meth
od to produce pollution
fre
e ele
c
tri
c
it
y b
y
s
o
m
e
techniques
like Pie
z
oel
e
c
t
ri
c effe
ct in p
y
roe
l
ec
tric
cr
y
s
tal
an
d power generat
i
on b
y
th
in
film MEMS, PZT, PMPG and using th
em
in pie
z
oel
ect
ric
roads
,
a
s
congestion on
ro
ads is becoming
inevitab
le with
the fan
c
y
of masses towards
personal transpo
r
tation s
y
s
t
em
s for their
growing
m
obilit
y. Accor
d
ingl
y, i
t
is
an object of
the present inv
e
ntion to
provide a method of electrical power
generation
that d
o
es not n
e
ga
tive
l
y im
pact
th
e env
i
ronm
ent
.
Keyword:
Piezoelectric e
ffect
Piezoelectricity
Q
u
ar
z
cr
ys
ta
l
Sm
art Roads
Zico
n
a
te Titanate
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Aqsa
Abbasi
Depa
rtem
ent of Electr
oni
cs
E
ngi
neeri
n
g
,
M
e
hra
n
Uni
v
er
si
t
y
of E
n
gi
nee
r
i
n
g a
n
d
Tech
n
o
l
o
gy
,
Jam
s
h
o
r
o, Si
nd
h, Pak
i
stan.
1.
INTRODUCTION
Ener
gy
har
v
est
i
ng i
s
a
n
a
r
ea
of act
i
v
e
resea
r
ch
. M
a
ny
m
e
tho
d
s
ha
ve
bee
n
em
pl
oy
ed f
o
r ha
r
v
est
i
n
g
ener
gy
f
r
om
t
h
e e
nvi
r
o
nm
ent
.
T
h
e m
o
st
fam
i
l
i
a
r am
bi
ent
ene
r
gy
s
o
ur
ce i
s
sol
a
r
p
o
w
er
. Ot
her e
x
am
pl
es
i
n
cl
ude el
ect
r
o
m
a
gnet
i
c
fi
el
d
s
(use
d i
n
R
F
po
we
red
ID
ta
gs, inductively powered sm
art cards, etc.), t
h
erm
a
l
gra
d
i
e
nt
s,
fl
ui
d fl
o
w
, e
n
er
gy
pr
od
uce
d
by
t
h
e h
u
m
a
n bo
dy
, an
d t
h
e ac
t
i
on o
f
g
r
avi
t
a
t
i
onal
fi
el
ds. F
i
nal
l
y
,
vi
b
r
at
i
onal
e
n
e
r
gy
ca
n
be
use
d
as a
n
am
bi
ent
so
u
r
ce.
A
p
o
we
r
ge
nerat
o
r
base
d
on
t
r
a
n
sdu
c
i
n
g m
echani
cal
vi
b
r
at
i
ons
can
be encl
ose
d
t
o
pr
ot
ect
i
t
fr
om
a har
s
h e
n
vi
r
o
nm
ent
,
and i
t
f
unct
i
o
ns i
n
a c
onst
a
nt
t
e
m
p
erat
ure
fi
el
d. T
h
e m
o
st
im
m
e
di
at
e appl
i
cat
i
ons
fo
r s
u
ch a
de
vi
ce i
s
t
o
p
o
w
er m
i
cro se
ns
or
s an
d/
o
r
l
o
w p
o
w
e
r
ve
ry
larg
e scale in
teg
r
ation
(VLSI) circu
its
. Ag
g
r
essi
ve p
o
we
r s
cal
i
ng t
r
en
ds o
v
er t
h
e l
a
st
dec
a
de ha
ve res
u
l
t
e
d i
n
po
we
r co
ns
um
pt
i
on i
n
onl
y
t
h
e 1
0
’
s t
o
1
0
0
’
s of
μ
W f
o
r l
o
w t
o
m
e
di
um
thr
o
ug
h
put
Di
g
i
t
a
l
Si
gnal
Pr
o
cessi
ng
(DS
P
) ci
rcui
t
s
and
ot
her
di
g
i
t
a
l
VLSI ci
rc
ui
t
s
. As
t
h
ese
po
we
r t
r
e
nds i
m
prove, e
n
e
r
g
y
har
v
est
i
n
g d
e
vi
ce
s
becom
e
m
o
re
viable as porta
b
le power s
o
urces over
ordinary chem
ical
batteries
. Dig
i
t
a
l VLSI techno
log
y
req
u
i
r
es a
n
“
o
n” v
o
l
t
a
ge
o
f
app
r
oxi
m
a
t
e
ly 3V
o
r
m
o
re.
In
or
de
r t
o
ac
com
p
l
i
s
h suc
h
a hi
g
h
vol
t
a
g
e
, t
h
e
pi
ezoel
ect
ri
c e
n
er
gy
har
v
est
i
n
g
m
e
t
hod i
s
m
o
st
useful
,
es
peci
al
l
y
wi
t
h
t
h
e
d3
3
pi
ezoel
ect
ri
c m
ode.
From
hi
st
o
r
i
cal
poi
nt
of
vi
e
w
, t
h
e
fi
rst
dem
onst
r
at
i
o
n
of t
h
e
pi
ezoel
ect
ri
c effe
ct
was
gi
ven
i
n
1
8
8
0
by
t
h
e b
r
ot
he
r
s
Pi
erre C
u
ri
e
and
Jacq
ues C
u
ri
e
usi
n
g cry
s
t
a
l
s
of t
o
urm
a
li
ne, q
u
a
r
t
z
, t
o
paz, ca
ne s
uga
r, a
n
d
Ro
ch
elle salt (so
d
i
u
m
p
o
t
assi
u
m
tartrate tetra h
ydrate) [1
].
Wh
ile th
is
was a scien
tific cu
ri
o
s
ity for t
h
e n
e
x
t
th
ird
o
f
a cen
t
u
r
y,
with
th
e
work
of Lang
ev
in
it p
r
o
duc
e
d
o
n
e
of t
h
e
pr
i
n
ci
pal
el
ectromechanical transduce
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
App
lica
tio
n o
f
Piezo
e
lectric Ma
teria
l
s i
n
Sm
a
r
t
Road
s
and
MEMS, PMPG
Po
wer … (Aq
s
a Ab
ba
si)
85
8
effects. Quartz
,
first use
d
as a
tran
sducer, a
l
so recei
ved
wide use
in c
ont
rolling oscillat
o
rs a
n
d in selective
wave
filters.
Qua
r
tz wa
s soon re
placed
by Rochelle sal
t
for tra
n
sduce
r
s. This is a
rather unstable crystal,
whi
c
h,
h
o
we
v
e
r,
was t
h
e
f
i
rst
fer
r
oel
ect
r
i
c havi
ng
an in
trin
sic
po
larizatio
n
b
e
tween
its two
Cu
ri
e
t
e
m
p
erat
ures
. I
n
t
h
i
s
pa
pe
r, w
e
have
revi
e
w
ed t
ech
ni
que to ge
nerate electric powe
r
by
using special crystal
nam
e
d as pyroelectric crystal.
A
m
a
terial somewhat sim
ila
r to a ferroelectric is elec
trets. These ha
ve be
com
e
very use
f
ul in transm
itters and receive
rs. Fi
nally, thin
films of piez
oelectric crysta
ls are useful for produci
ng
hi
g
h
fre
que
nci
e
s i
n
s
u
c
h
devi
ces as t
h
e
aco
u
s
t
i
c
m
i
crosco
p
e
[
2
]
.
Howev
e
r t
h
e
basic p
i
ezo
elect
ricity d
eals with
th
e ab
ility o
f
so
m
e
m
a
terial
s - m
o
st no
tably crystals
and certai
n
ceram
ics,
including bone - to generate an
electric p
o
t
en
tial in
resp
on
se to
ap
p
lied
pressu
re.
Piezoelectric
materials m
a
y include
Qua
r
tz
cr
ystal, PZT (Lead
Zi
rcon
ate Titan
a
te).
The Pi
ez
oel
ect
ri
c M
i
cro P
o
w
e
r Ge
nerat
o
r
(
P
M
P
G
)
i
s
a M
E
M
S
base
d
devi
ce
desi
g
n
e
d
t
o
har
v
est
vi
b
r
at
i
onal
e
n
e
r
gy
f
r
o
m
t
h
e am
bi
ent
source
.
It
can
gene
rat
e
a hi
g
h
ope
n
ci
rcui
t
v
o
l
t
a
ge
sui
t
a
bl
e f
o
r
v
o
l
t
a
ge
rect
i
f
i
cat
i
on and f
o
r po
we
ri
ng l
o
w p
o
we
r
VLSI ci
rc
u
i
t
s
.
W
e
envi
si
on
t
h
at
several
PM
PG de
vi
ce
s coul
d
gene
rat
e
p
o
w
e
r
o
n
t
h
e
or
der
of
10
μ
W within
an
area of ap
pro
x
i
m
a
tel
y
1
mm aq
u
a
re.
PZT th
in
film
s
h
a
v
e
attracted attention for m
a
ny a
pplications suc
h
as accel
erometers, force se
nsors
,
actuat
o
rs, gyroscopes, m
i
cro
pum
ps, t
u
nabl
e opt
i
c
s, fe
rr
oe
l
ect
ri
c R
A
M
,
and
di
spl
a
y
sy
st
em
s. PZT M
E
M
S
devi
ces ha
ve m
a
ny
advant
ages
suc
h
as fine
resol
u
tion
,
lar
g
e fo
rce gene
ration
,
fa
st re
sponse
tim
e
, zero
m
a
gnet
i
c
fi
el
ds,
l
o
w
po
we
r
co
nsu
m
p
tio
n
,
v
acuu
m
an
d
clean
ro
o
m
co
mp
atib
ility an
d
o
p
e
ration
at cryo
g
e
n
i
c te
m
p
eratu
r
es. Howev
e
r, it is
m
o
re difficult to fabricate a PZT MEMS device vers
us
a similar bea
m
-structured el
ectrostatic device becaus
e
PZT film
is n
o
t a no
rm
al
m
a
t
e
rial for
g
e
n
e
ral silico
n
p
r
o
c
essin
g
,
o
f
ten
req
u
i
ring
m
a
n
y
m
o
re
m
a
sk
step
s
[8
].
Piezoelectric d31 type se
ns
ors and act
ua
tors ha
ve a
cantil
ever beam
struct
ure t
h
at cons
ists of a m
e
mbra
ne
fi
lm
, bot
t
o
m
elect
ro
de,
pi
ezoe
l
ect
ri
c fi
lm
, and t
o
p el
ect
ro
de
. The
d
31 t
y
pe
devi
ces
re
qui
r
e
m
a
ny
m
a
sk st
ep
s
(3~
5
m
a
sks) for patterning of each
layer
while ha
ve
very l
o
w induced voltage.
Th
e m
a
in
object is to
i
n
v
e
stig
ate th
e
ro
le of
PMPG, M
E
MS power generation i
n
piezoelectric
net
w
or
k f
o
r s
m
art
roads
.
T
h
e rem
a
i
nder of
t
h
e pa
per i
s
arrang
ed
as fo
llows. Section-2
p
r
ov
id
es th
e
o
r
ig
in
of
piezoelectric e
ffect in c
r
ystal. Th
e d
e
t
a
i
l
of t
h
e p
r
o
p
o
s
e
d t
ech
ni
q
u
e
has be
en
di
sc
usse
d i
n
sect
i
o
n
-
4.
Sim
u
l
a
t
i
on pa
ram
e
t
e
rs and resul
t
s
ha
ve
been
gi
ve
n i
n
sect
i
on-
5. B
a
sed u
p
on t
h
e sim
u
l
a
t
i
on resul
t
s
,
concl
u
si
o
n
s ha
ve been
d
r
a
w
n
and
s
o
m
e
recom
m
e
ndat
i
ons f
o
r
f
u
t
u
re wo
rk
have
bee
n
p
r
o
p
o
se
d
i
n
sect
i
o
n
-
6
.
2.
ORIGIN OF
PIEZ
OELECTRIC
EFFECT IN
CRYSTAL
The origi
n
of the piezoele
c
tric
effect
w
a
s, i
n
ge
ne
ral
,
cl
ear fr
om
t
h
e very
begi
nni
ng
. Th
e
displacem
ent of ions
from
their equ
ilibri
um positions caused
by a m
echani
cal stress i
n
crystals that lack a
cen
tre of symmetry
m
u
st res
u
lt in
th
e g
e
n
e
ratio
n
of an
el
ectric
m
o
m
e
n
t
, i
.
e., in
electric p
o
l
arizatio
n
.
Atte
m
p
ts
t
o
cal
cul
a
t
e
t
h
e
pi
ezo c
o
n
s
t
a
nt
s of a c
r
y
s
t
a
l
b
a
sed
on t
h
i
s
m
odel
were
fi
rst
un
de
rt
ake
n
by
t
h
e b
r
ot
hers C
u
ri
e as
sho
w
n i
n
f
o
l
l
o
wi
n
g
Fi
gu
re
1.
Fi
gu
re 1.
O
r
i
g
i
n
of
pi
ez
oel
ectric effect and
polarization
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 3, No. 6, D
ecem
ber 2013
:
857 – 862
85
9
We assu
m
e
t
h
at so
m
e
crys
tals h
a
v
e
spon
tan
e
o
u
s po
larizatio
n
.
Thu
s
, o
n
l
y so
m
e
c
r
ystals lik
e
p
y
ro
electric crystals th
at h
a
ve an
u
n
i
q
u
e
po
lar ax
is, along
wh
ich th
e sp
on
tan
e
ou
s
p
o
larizatio
n
ex
ists, are
considere
d
. T
h
ese are the crystals of
cl
asses 6m
m
,
4
m
m
,
m
m
2
, 6, 4, 3m
, 3, 2
,
m
,
and 1. F
o
r rea
s
o
n
s
t
h
at
are
obvious
,
crystals of class 1
will not be c
o
nside
r
ed
further. T
h
e specia
l
polar
a
x
is—
c
rystallophysic
a
l axis
X3
—coi
nci
d
es
wi
t
h
t
h
e a
x
es
L6,
L4
, L
3
,
an
d L
2
of
t
h
e c
r
y
s
t
a
l
s
or
l
i
e
s i
n
t
h
e
uni
que
pl
a
n
e P
(cl
a
ss “m
”).
Thu
s
, all co
nsid
ered
crystals h
a
v
e
sp
on
t
a
n
e
ou
s
pol
a
r
i
zat
i
on Ps =
P3.
We bel
i
e
ve t
h
at
t
h
e
piezoelectric e
ffect in
pyroelectric cr
ystals arises as a resu
lt o
f
ch
an
g
e
s in
th
eir spo
n
t
an
eou
s
po
larizatio
n
unde
r external effects (electric fiel
ds,
m
e
c
h
anical stresse
s). Moreover,
we believe thi
s
m
echanism
can be
rega
rde
d
as
t
h
e g
ove
rni
n
g
fa
ct
or.
Let
us
de
m
onst
r
at
e, i
n
general term
s, that the
piezoel
ectric effect in these
crystals is really a resu
lt of chan
g
e
s in Ps caused
by the
appl
ied electric fiel
d
or m
echanical stress
[3].
For exam
ple, i
f
one
starts to
defo
rm
suc
h
a
crystal, its constituent pa
rticles will be
slightly displaced
fro
m
th
eir equ
ilib
riu
m
p
o
s
ition
s
as shown in
fo
llowing
Figure
2
.
Fi
gu
re 2.
De
fo
rm
ati
on of
c
r
y
s
t
a
l
.
Accordingly, this results
in the displacem
e
n
t of t
h
e electric cen
tres of positive an
d ne
gative charges
o
f
an
elem
en
tary cell fro
m
eq
u
ilibriu
m
p
o
s
itio
n
s
, i.e., th
e spo
n
t
an
eou
s
p
o
l
arizatio
n
o
f
th
e crystal chan
g
e
s.
Gen
e
rally, th
is ch
ang
e
will h
a
v
e
th
e co
m
p
on
en
ts along
all th
ree ax
es of
Δ
Ps = (
Δ
P1,
Δ
P2,
Δ
P3
)
[4
].
Let u
s
su
ppo
se t
h
at a
f
i
r
s
t appr
ox
imatio
n
,
Δ
Ps
=
(
Δ
P1,
Δ
P2,
Δ
P3
) is
propo
rtion
a
l to
t
h
e m
e
c
h
an
ical stresses cau
si
n
g
it, i.e.,
Δ
Pi
= di
kl
Tkl
w
h
e
r
e Tkl
re
pre
s
e
n
ts the m
echanical stress and dikl
represe
n
ts the piez
oe
lectric
m
odules. If
one accepts their values i
n
the
abse
nce of m
e
chanical stres
s
e
s
or an electri
c field as a
referenc
e
poi
nt
f
o
r t
h
e p
o
l
a
ri
zat
i
on
st
at
e and
for t
h
e electric induction, the
n
Δ
Pi or
Δ
Di can
j
u
st
be sub
s
titu
ted
by Pi o
r
Di
, a
n
d
t
h
e
pi
e
z
oel
ect
ri
c ef
fec
t
equat
i
o
ns
kee
p
t
h
ei
r c
o
n
v
e
n
t
i
onal
fo
rm
.
3.
PIEZ
OELECTRICIT
Y AND POWE
R
GENERATI
ON USING TRANSVER
SE MODE THIN
FILM PZ
T AND ME
MS
, P
M
PG
As piezoelectric effect converts
m
echanical strain
i
n
t
o
el
ect
ri
c curre
n
t
or vol
t
a
ge a
nd
gene
rat
e
s
el
ect
ri
c ener
gy
fr
om
wei
g
ht
,
m
o
ti
on,
vi
brat
i
o
n
an
d
t
e
m
p
erat
ure c
h
a
nge
s.
C
onsi
d
eri
n
g pi
ezoelectric effect in
th
in
fil
m
lead
zircon
ate titanate, Pb
(Zr,Ti)O3 (PZT), ME
MS power g
e
neratin
g d
e
v
i
ce
is d
e
v
e
lop
e
d [5
]. It
is
d
e
sign
ed
to
reso
nate at sp
ecific
fre
que
nci
e
s fr
om
an ext
e
rnal
vi
brat
i
o
n en
erg
y
sour
ce, th
er
eb
y cr
eatin
g
electrical energy via the pie
z
oelect
ric effe
ct using electrom
echanical
da
m
p
ed m
a
ss a
s
shown in followi
ng
Fi
gu
re 3.
Fi
gu
re
3.
Sc
he
m
a
t
i
c
of ge
ne
r
a
t
i
ng
vi
b
r
at
i
o
n
con
v
e
r
t
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
App
lica
tio
n o
f
Piezo
e
lectric Ma
teria
l
s i
n
Sm
a
r
t
Road
s
and
MEMS, PMPG
Po
wer … (Aq
s
a Ab
ba
si)
86
0
PM
PG
de
vi
ces sh
oul
d
be
desi
g
n
e
d
s
o
t
h
at
t
h
ey
m
e
chani
cal
l
y
res
o
nat
e
at
a f
r
e
que
ncy
t
u
ne
d
t
o
t
h
e
a
m
b
i
en
tv
ibratio
n source in ord
e
r to
g
e
n
e
rate m
a
x
i
m
u
m
el
e
c
tr
ical p
o
w
e
r
as show
n in
t
h
e
f
o
llow
i
ng
Figur
e
4
.
Fi
gu
re
4.
Tw
o
m
odes of
pi
ez
o
e
l
ect
ri
c con
v
e
r
si
on
f
r
om
i
n
p
u
t
m
echani
cal
st
ress
4.
PIEZ
OELECTRIC SENSORS
NETWORK FOR
SMART ROAD
The p
r
esent
i
nve
nt
i
o
n rel
a
t
e
s gene
ral
l
y
to m
e
t
hods
of
el
ect
ri
cal po
wer ge
ne
rat
i
o
n, an
d m
o
re
part
i
c
ul
a
r
l
y
i
s
a
m
e
t
hod a
nd
devi
ce t
o
ge
ne
rat
e
el
ect
ri
ci
t
y
by
usi
n
g t
r
a
f
f
i
c on e
x
i
s
t
i
ng
roa
d
way
s
t
o
d
r
i
v
e an
el
ect
ri
cal
gene
rat
o
r
[
6
]
.
T
h
i
s
pape
r
pr
o
v
i
d
es
t
echni
cal
re
vi
ew f
o
r t
h
e
pr
o
duct
i
o
n
of
el
ect
ri
c po
we
r u
s
i
n
g PZ
T,
MEMS, PMPG in piez
oelectric roa
d
s-Harvest traffic e
n
ergy to ge
ne
ra
te electrici
t
y
a
s
sh
own
in
fo
llo
wing
Fi
gu
re 5.
Fi
gu
re
5.
Net
w
or
k
fo
r sm
art
r
o
ad
s a
n
d
ge
ner
a
t
i
on
of
el
ect
ri
c v
o
l
t
a
ge
Si
nce E
n
er
gy
d
e
m
a
nd an
d
hea
v
y
t
r
af
fic corre
l
ation m
o
tivate
to dream
about a device in the roa
d
that
wo
ul
d
har
v
est
t
h
e ener
gy
f
r
o
m
t
h
e vehi
cl
es dri
v
i
ng
o
v
er i
t
. For this
, embed
piezo
elect
ric
m
a
terial beneath a
roa
d
ca
n p
r
ovi
de t
h
e m
a
gi
c o
f
co
n
v
ert
i
n
g
pr
essur
e
exe
r
t
e
d
by
t
h
e m
ovi
n
g
vehi
cl
es
int
o
electric current
.
The
m
e
t
hod
uses a
n
el
ect
ri
cal
generat
i
o
n de
vi
c
e
i
n
st
al
l
e
d ben
eat
h t
h
e ro
ad
b
e
d. T
h
e el
ect
ri
cal
generat
i
o
n
devi
ce
i
n
cl
ude
s a pre
ssure
pl
at
e co
vere
d wi
t
h
on
e or m
o
re pr
ot
ect
i
on l
a
y
e
rs whi
c
h l
i
e
bene
at
h t
h
e su
rface
of t
h
e
roa
d
.
In t
h
is
process
,
piez
oelectric
material is e
m
bedd
e
d
beneat
h t
h
e
r
o
ad
wi
t
h
the
electrical ge
nerating
devi
ce. Fo
r
a r
o
ad wi
t
h
em
bedde
d pi
ezoel
ec
t
r
i
c
gene
rat
o
rs,
part
of
t
h
e
en
ergy
t
h
e ve
hi
cl
e
expa
n
d
s on r
o
ad
s
d
e
fo
rm
atio
n
is tran
sform
e
d
i
n
to
elect
ric energy (via di
rec
t
piezoelectric
effect) i
n
stea
d of
being wa
sted a
s
therm
a
l energy
(heat).
This electrical gene
rating de
vice in
cludes
pressure plates that are
c
ove
re
d wi
t
h
p
r
ot
ect
i
on l
a
y
e
r
o
r
asph
alt as sh
own in
fo
llo
wi
ng
Fi
g
u
re
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 3, No. 6, D
ecem
ber 2013
:
857 – 862
86
1
Figure
6.
Whe
e
ls pushi
n
g protected plates.
The
piezoelect
ric effect c
o
nverts m
echanical strain into
electrical cu
rr
ent
or v
o
l
t
a
ge
a
nd t
h
e
sy
st
em
is ex
p
ected
to
scale u
p
to
40
0 k
ilo
watts fro
m
a 1
-
k
ilo
m
e
tre
stretch of dual
carriage
w
ay. T
h
e m
echanical
force
is p
r
ov
id
ed
b
y
th
e wh
eel of au
to
m
o
b
ile v
e
h
i
cle, in
wh
ich
grav
itatio
nal fo
rces
(wei
g
h
t
) is n
o
rm
al
to
th
e
surface
of roa
d
that causes c
o
m
p
ression as
s
h
own in the
following
Figure
7.
Fi
gu
re
7.
De
fo
rm
ati
on (c
om
pressi
o
n
)
i
n
t
h
e
roa
d
d
u
e t
o
f
r
i
c
t
i
on a
n
d
wei
g
h
t
5.
R
E
SU
LTS AN
D ANA
LY
SIS
The p
r
esent
i
nve
nt
i
o
n rel
a
t
e
s gene
ral
l
y
to m
e
t
hods
of
el
ect
ri
cal po
wer ge
ne
rat
i
o
n, an
d m
o
re
part
i
c
ul
a
r
l
y
i
s
a
m
e
t
hod a
nd
devi
ce t
o
ge
ne
rat
e
el
ect
ri
ci
t
y
by
usi
n
g t
r
a
f
f
i
c on e
x
i
s
t
i
ng
roa
d
way
s
t
o
d
r
i
v
e an
el
ect
ri
cal
gene
rat
o
r
.
E
n
e
r
gy
dem
a
nd a
n
d
h
eavy
t
r
a
ffi
c correlatio
n m
o
tiv
ate to
d
r
eam
ab
ou
t a d
e
v
i
ce
in
the
roa
d
t
h
at
w
o
ul
d ha
rve
s
t
t
h
e e
n
er
gy
fr
om
t
h
e vehi
cl
es
driv
i
n
g
ov
er it. Fo
r th
is,
em
bed piezoelectric m
a
terial
beneat
h a road can provide t
h
e m
a
gi
c of con
v
e
r
t
i
ng
pres
sure e
x
ert
e
d b
y
t
h
e
m
ovi
ng
vehi
cl
es i
n
t
o
e
l
ect
ri
c
cur
r
ent
.
T
h
e
m
e
t
hod u
s
es an el
ect
ri
cal
gene
rat
i
o
n de
vi
ce i
n
st
al
l
e
d beneat
h t
h
e r
o
ad
be
d. T
h
e el
ect
ri
cal
gene
rat
i
o
n dev
i
ce
i
n
cl
u
d
es
a
press
u
re pl
at
e cove
re
d wi
t
h
o
n
e
or
m
o
re p
r
o
t
ect
i
on l
a
y
e
rs
whi
c
h l
i
e
bene
at
h t
h
e
surface of
the road.
The ge
nerat
o
rs
are em
bedde
d
bet
w
ee
n t
h
e su
perst
r
uct
u
re l
a
y
e
rs, an
d us
ual
l
y
covere
d wi
t
h
an asp
h
al
t
layer.
W
h
e
n
a car dri
v
es over the box, it takes the ve
rtical force and compress
es
the pie
z
oelectric
m
a
terial,
t
h
ere
b
y
gene
ra
t
i
ng el
ect
ri
ci
t
y
. The ene
r
gy
-
80
ki
l
o
wat
t
-
h
o
u
rs
per
kilometre of roa
d
for car tra
ffic
can be
sto
r
ed
in
a n
e
arb
y
b
a
ttery or
su
per cap
acitor, d
e
p
e
n
d
i
n
g
on
th
e
app
lication
,
o
r
sen
t
d
i
rectly
to
streetlig
hts
an
d
ot
he
r roa
d
si
de
devi
ces. T
h
e ener
gy
bei
n
g
con
v
e
r
t
e
d i
n
t
o
electricity through piezoel
ectric effect is co
m
i
n
g
fro
m
m
o
tio
n
of
v
e
h
i
cle
wh
ich
will o
t
h
e
rwise b
e
wasted
b
y
h
eat
wh
en th
e ro
ad d
e
fo
rm
s u
n
d
e
r th
e
weigh
t
of
the car. T
h
e la
yer of
piezoele
c
tric m
a
terial is stiffer th
a
n
t
h
e roa
d
m
a
terial it replaces,
s
o
it eve
n
sa
ves
a tiny
am
ount
of e
n
ergy
.
It
s di
s
p
l
acem
e
nt
t
o
vo
l
t
a
ge gra
p
h f
o
r aut
o
m
obi
l
e
can be a
n
al
y
zed by
t
h
e
f
o
l
l
o
wi
n
g
si
m
u
lated
graph
in Figure
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
App
lica
tio
n o
f
Piezo
e
lectric Ma
teria
l
s i
n
Sm
a
r
t
Road
s
and
MEMS, PMPG
Po
wer … (Aq
s
a Ab
ba
si)
86
2
Fi
gu
re
8.
Di
s
p
l
acem
e
nt
VS
A
ppl
i
e
d
v
o
l
t
a
ge
gra
p
h
6.
CO
NCL
USI
O
N
At th
e tim
e wh
en
gov
ern
m
e
n
ts are
find
ing it h
a
rd
to
m
a
k
e
land
av
ailab
l
e fo
r
n
e
w po
wer
p
l
an
ts,
ex
tracting
en
erg
y
wh
ile u
s
in
g
th
e v
a
st
sp
read
o
f
highways all over the world se
e
m
s no less l
u
crative
p
r
op
o
s
ition
.
Ho
w
e
v
e
r, th
is i
d
ea
h
a
s
n
o
t
yet g
a
in
ed
enoug
h
groun
d
am
o
n
g
t
h
e po
licy m
a
k
e
rs ev
en
th
ou
gh
research
ers h
a
v
e
sh
own
th
at
en
erg
y
cou
l
d b
e
ex
tracted
fro
m
h
i
g
h
w
ays b
y
fittin
g
t
h
e
m
with
p
i
ezoelectric
devi
ces
. T
h
e e
n
er
gy
ge
ne
rat
i
ng
r
o
ad
desi
gn
s co
ul
d
becom
e
a st
art
i
ng
p
o
i
nt
fo
r a sel
f
-s
ust
a
i
n
i
n
g
fut
u
r
e
.
W
e
th
u
s
con
c
lud
e
th
at th
is tho
ugh
t will b
e
a
rev
o
l
u
tio
n in
p
o
wer
p
r
od
uction
an
d
curb
down
t
h
e en
erg
y
co
sts
th
er
eb
y i
m
p
r
ov
ing
ou
r
countr
y
’
s
eco
no
m
y
. Th
is en
erg
y
is p
r
odu
ced
by co
n
s
u
m
er
s’
p
a
r
ticip
ation
w
ith
ou
t
requ
iring
an
y k
i
nd
of inp
u
t
en
erg
y
. In
fu
ture, we will
con
t
in
u
e
th
e
wo
rk
in
v
e
stig
ating
t
h
e En
erg
y
Harv
esting
MEMS Dev
i
ces th
at
wou
l
d resu
lts in
t
h
e
b
e
t
t
e
r
pr
od
uct
i
o
n
o
f
wi
t
h
o
u
t
a
n
y
u
s
eful
i
n
p
u
t
.
REFERE
NC
ES
[1]
Jacques and
Pierre Curie. “Développeme
nt par
compression de
l’électr
i
cité pol
aire d
a
ns les cr
istaux h
é
mièdres
à
faces
in
clin
ées
”
.
Developmen
t, v
i
a compr
e
s
s
i
on, of ele
c
tr
i
c
polar
iz
ation in hemih
e
dr
al cr
ys
tals
wi
th incl
ined fa
ces
,
Bulle
tin
de
la So
cié
t
é
min
é
rologique de France
. 1
880; 3.
[2]
Damjanovic, Dr
agan. “Ferroelec
tric, dielectr
i
c an
d piezoelect
ric p
r
operties of f
e
rr
oelectri
c
thin f
i
lms and cer
amics”.
Reports on
Progress in Physics
.
1998; 61(9): 126
7.
[3]
F Yi, SJ Dy
ke
,
JM Caicedo, JD
Carlson. “
E
xpe
rim
e
ntal ver
i
fi
ca
tion of m
u
lti-in
put seism
i
c cont
rol strateg
i
es for
s
m
art dam
p
ers
”
.
[4]
Serge
y
V. Bogd
anov. “
T
he origi
n
of Piezoelec
tri
c
effec
t
on Py
ro
ele
c
tri
c
cr
y
s
tal
”
. IEEE transa
ctio
ns on ultrasonics,
ferroelectrics, an
d frequen
c
y
control. 2002
; 49(11)
.
[5]
F
a
ng, Hua-Bin,
et al
. “
F
abricat
i
on and perform
ance of M
E
M
S
-bas
ed piezo
ele
c
t
r
ic power gener
a
tor for vibrat
io
n
energ
y
h
a
rves
t
i
n
g
”.
M
i
croelectronics Journal
. 20
06; 37(11): 1280
-1284.
[6]
AKAI Y. WIPO Patent No. 2004
077652. Gen
e
va, Switzer
land:
World Intellectual
Pr
operty
Organization, 2004.
[7]
Crawley
,
Edwar
d
F and Javier D
e
Luis
. “Embedd
e
d piezoelectric
structure
and
co
ntrol”. U.S. Patent No. 4,849
,668
.
18 Jul. 1989
.
[8]
Jeon, Yongbae,
et al. “Energ
y
h
a
rvesti
ng MEM
S
devices based
on d33 mode piezoel
ectric Pb (Zr, Ti) O3 thin f
ilm
cant
ilev
e
r”
.
CI
RP Seminar on
Micro and Nano
Technology
, Cop
e
n
h
agen, Denmark
.
2003
.
Evaluation Warning : The document was created with Spire.PDF for Python.