Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 14
70
~
1
480
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.1
100
4
1
470
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
A Fuzzy Logic Control Strategy
for
Buc
k
PFC Co
nv
er
te
r Ba
se
d
4- Switch VSI Fed BLDC Motor Drive
V. Ramesh, Y.
Kusuma
Latha
Department o
f
Electrical and
Electronics Engin
e
ering, K
L Un
iv
er
sity
, Vadd
eswar
a
m, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 24, 2016
Rev
i
sed
Jun
27,
201
6
Accepte
d
J
u
l 10, 2016
In this paper
,
a
new Buck PFC dc–dc
conv
erter
topolog
y
along
with fuzzy
logic
control for
a permanen
t magnet
(PM) brushless dc motor (P
MBLDCM)
has been proposed. The proposed buck-PFC con
v
erter topo
log
y
is on single
s
t
age power fact
or correct
ion co
nverter
.
A concept of dc link voltage con
t
rol
which is proportional to speed of the PMBLDCM is used in this paper. Th
e
s
t
ator curren
t
s
of the P
M
BLDCM
during s
t
ep change in the r
e
f
e
renc
e s
p
eed
are contro
lled w
ithin the spe
c
ifi
e
d lim
its b
y
an
addition of a ra
t
e
lim
iter in
the ref
e
ren
ce d
c
link voltage. Th
e effect
ives of the proposed con
t
rol strateg
y
of PMBLDCM drive
is validated through simulation r
e
sults.
Keyword:
Buck PFC
Four Switc
h VSI
FuzzyController
PI C
ont
rol
l
e
r
PMBLDCM
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
V. Ram
e
sh,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
K L Un
iv
ersity,
Vad
d
es
waram
,
G
unt
ur
Dt
,
A
n
dh
ra Pra
d
es
h, I
ndi
a - 5
2
2
5
0
2
.
Em
a
il: ra
m
e
sh
v
a
dd
i601
3@k
l
u
n
i
v
e
rsity.in
1.
INTRODUCTION
Efficiency
and cost
are
the m
a
jor c
o
ncerns
in t
h
e
d
e
v
e
l
o
pmen
t o
f
low-po
wer m
o
to
r dri
v
es targ
eting
ho
use
h
ol
d ap
p
l
i
cat
i
ons suc
h
as fans
, wat
e
r
pum
ps, bl
ow
ers, m
i
xers, etc [1],[2]. T
h
e use of the
brushles
s
di
rect
cu
rre
nt
(B
LDC
)
m
o
t
o
r i
n
t
h
ese a
p
p
l
i
cat
i
ons i
s
be
com
i
ng very
com
m
on due
t
o
feat
u
r
es
of
hi
g
h
effi
ci
ency
, hi
g
h
fl
u
x
de
nsi
t
y
per u
n
i
t
vol
u
m
e, l
o
w
m
a
in
ten
a
n
ce requ
ire
m
en
ts, an
d
lo
w electro
m
a
g
n
e
tic-
in
terferen
c
e pro
b
l
em
s. Th
ese
BLDC m
o
to
rs
are no
t limite
d
to
hou
se
h
o
l
d
ap
p
lication
s
,
bu
t th
ese are su
itab
l
e
fo
r
ot
her
ap
pl
i
cat
i
ons s
u
c
h
as
m
e
di
cal
equi
p
m
ent
,
t
r
ans
p
ort
a
t
i
on,
H
VAC
,
m
o
ti
on c
ont
rol
,
an
d m
a
ny
i
n
d
u
st
ri
al
tools [3],[4]. T
h
e BLDC m
o
tor is al
so
known as a
n
elect
ronically comm
uta
t
ed
m
o
tor because an el
ectronic
co
mm
u
t
at
io
n
based
on
ro
tor
po
sitio
n is u
s
ed
rath
er th
an
a m
ech
an
ical co
mm
u
t
a
tio
n
wh
ich
h
a
s
d
i
sadv
antag
e
s
lik
e sp
ark
i
n
g
an
d wear and
tear
o
f
bru
s
h
e
s an
d co
mm
u
t
ato
r
assem
b
ly [5
],[6
].
Power
q
u
a
lity p
r
ob
lem
s
h
a
v
e
becom
e
im
port
a
nt
i
ssues t
o
b
e
consi
d
ere
d
d
u
e t
o
t
h
e reco
m
m
e
nded l
i
m
i
ts of ha
rm
oni
cs i
n
sup
p
l
y
curr
ent
by
v
a
ri
o
u
s
i
n
ternatio
n
a
l po
wer q
u
a
lity stan
dard
s su
ch
as
th
e In
tern
ation
a
l Electro
tech
n
i
cal Co
m
m
issio
n
(
I
E
C
)
610
00
-3-2
[7
],[8
]. H
e
n
c
e, a d
i
od
e br
idg
e
r
ectif
ier
f
o
ll
o
w
ed
b
y
a p
o
wer
f
actor
cor
r
e
cted
(
PFC
)
conver
t
er
is u
tilized
fo
r im
p
r
o
v
i
ng
th
e
p
o
wer qu
ality
at ac
m
a
in
s. Man
y
to
po
log
i
es o
f
th
e sing
le-stag
e
PFC conv
erter
are
repo
rted
i
n
th
e literatu
re an
d gain
ed
im
p
o
r
tan
ce
b
eca
u
s
e of
h
i
gh
effici
en
cy as
co
m
p
ared to two
-
stage PFC
co
nv
erters du
e to
lo
w co
m
p
on
en
t coun
t an
d a sin
g
l
e switch
for d
c
link
vo
ltag
e
con
t
ro
l an
d
PFC o
p
e
ratio
n
[9]
,
[1
0]
.
In sim
ilar sta
g
e power c
onversi
on, the si
ngle
ph
ase A
C
sup
p
l
y
t
h
r
o
ug
h
di
o
d
e
bri
dge
rect
i
f
i
e
r
followe
d by DC link capacit
o
r is used t
o
dri
v
e th
e B
L
D
C
m
o
t
o
r [
11]
.
The capaci
t
o
r
dra
w
s hi
gh
p
u
l
s
e
d
current
with a
pea
k
greate
r
t
h
an fu
n
d
a
m
e
n
t
al in
pu
t
AC main
s cu
rren
t
du
e to th
e un
con
t
ro
lled
ch
arg
i
n
g
of
capacitor
[12],[13]. The Bac
k
EMF wave
fo
rm o
f
BLDC mo
tor is trap
ezo
i
d
a
l
in sha
p
e.
And t
h
e stator c
u
rrent
wave
form
s are rectangula
r
in sha
p
e.
Hysteresis cu
rren
t con
t
ro
l is e
m
p
l
oyed
to
m
a
in
tai
n
th
e act
u
a
l m
o
to
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r B
u
ck P
F
C
C
onve
r
t
e
r B
a
se
d
4-
Sw
i
t
c
h
VSI
Fe
d .
...
(
V
.
Ra
mes
h
)
1
471
currents close
to rectangular
refe
re
nce
val
u
e [1
4]
,[
15]
.
In
t
h
e spee
d co
nt
rol
l
o
op
PI c
o
n
t
rol
l
e
r n
o
rm
al
ly
used
to m
a
ke the motor to
run at
desire
d s
p
eed. For effective
cont
rol
of
spe
e
d,
PI c
o
ntroll
er re
placed by
fuzzy
co
n
t
ro
ller
.Th
e
Fu
zzy con
t
ro
l
co
n
t
ro
ller
ov
er co
m
e
s th
e li
m
i
tatio
n
of
PI con
t
ro
ller.
In t
h
i
s
pape
r,
a fuzzy
co
nt
r
o
l
schem
e
for B
u
ck
PFC
C
o
nv
ert
e
r base
d F
o
ur s
w
i
t
c
h V
S
I
Fed B
L
DC
M
o
t
o
r
D
r
i
v
e
h
a
s bee
n
pr
op
o
s
ed a
n
d
det
a
i
l
are
di
scusse
d in
section
2
.
PI an
d Fu
zzy co
n
t
ro
ller
d
e
tails are
p
r
esen
ted
i
n
sectio
n
2
.
1
an
d
sectio
n
2.2, sectio
n
4
elab
or
ates th
e si
m
u
latio
n
of
th
e pr
oposed
con
t
ro
l strateg
y
o
f
d
r
iv
e system an
d
resu
lts are illu
strated
with
th
e help
o
f
g
r
ap
h
i
cal rep
r
esen
tatio
n
of p
e
rfo
r
man
c
e
characte
r
istics fo
r
diffe
re
nt o
p
e
rating
co
n
d
itions
.
2.
BUCK
PF
C
C
O
N
V
ERTER
FOR
FO
UR
S
W
ITCH
V
S
I
FED P
M
BLD
CM
D
R
I
V
E
The Fig
u
re
1 s
h
o
w
s the Buc
k
PFC con
v
erte
r
for
fo
ur s
w
itch VS
I fe
d BLDC m
o
tor driv
e sy
stem
. The
cont
rol
schem
e
em
pl
oy
s hy
st
eresi
s
cur
r
e
n
t
cont
rol
t
ech
ni
q
u
e
s t
o
pr
od
uce
gat
i
ng
pul
ses
f
o
r V
S
I s
w
i
t
c
he
s. The
pr
o
pose
d
co
nt
r
o
l
schem
e
i
s
l
o
w cost
an
d s
w
i
t
c
hi
ng l
o
sses a
r
e al
so l
e
ss an
d
al
so red
u
ce
d t
o
r
q
ue ri
p
p
l
e
, v
o
l
t
a
ge
st
ress an
d fast
dy
nam
i
c respo
n
se. T
h
e va
ri
abl
e
DC
o
u
t
p
ut
of
bri
d
ge rect
i
f
i
e
r i
s
fed t
o
B
u
ck
–PFC
c
o
n
v
ert
e
r
.
The
out
put
of
t
h
e B
u
c
k
-
P
F
C
con
v
e
r
t
e
r i
s
gi
ve
n t
o
t
w
o
l
e
g V
S
I i
nve
rt
er w
h
i
c
h
d
r
i
v
e
s
B
L
DC
m
o
t
o
r. T
h
e
p
o
wer factor co
rrectio
n
co
n
t
ro
l sch
e
m
e
is
b
a
sed
on
th
e
prin
cip
l
e of cu
rren
t
m
u
ltip
lier a
p
pro
ach. Th
is in
vo
lv
es
th
e pr
esen
ce
o
f
cur
r
e
n
t
loo
p
in
sid
e
sp
eed
con
t
ro
l loo
p
, in case of
co
n
tinuou
s con
d
u
c
tion
o
f
th
e con
v
e
r
t
er
. Th
e
cont
rol
l
o
op s
t
art
s
wi
t
h
pr
o
cessi
ng
of s
p
e
e
d o
b
t
a
i
n
ed
by co
m
p
aring
th
e actu
a
l, sp
eed
with
th
e
desired
refe
rence s
p
ee
d. T
h
e error is fed to the PI / Fuzzy cont
ro
ller to
ob
tain
th
e referen
ce torqu
e
and
co
m
p
ared
with
actu
a
l to
rq
u
e
of BLDC m
o
to
r, to
p
r
o
d
u
ces
resu
ltan
t
t
o
rq
ue erro
r
wh
ich
i
s
m
u
lt
ip
lied
wi
th
su
itab
l
e constan
t
and am
pl
i
f
i
e
d i
n
or
der t
o
pr
o
v
i
d
e i
n
put
t
o
r
e
fere
nce cu
rre
nt
bl
oc
k. T
h
e refe
rence c
u
r
r
e
n
t
i
s
com
p
ared
wi
t
h
pha
se a current which in hys
t
eresis
current cont
roller
a
nd the
hysteresis
current control
l
er gene
rates pluses
for
o
p
e
ration
of two
leg
inv
e
rt
er, a rate lim
i
t
e
r
is in
t
r
odu
ced, wh
ich
lim
its t
h
e cu
rren
t
within
sp
ecified
li
mits.
e
Figure
1.
Buc
k
PFC C
o
nve
r
ter for VSI Fe
d
PMBLDCM Drive
2.
1.
Prop
orti
on
al
- Inte
gral
(PI
)
Co
ntr
o
l
PI i
s
a com
b
i
n
at
i
on o
f
i
n
t
e
gr
al
and
pr
op
o
r
t
i
onal
term
s whi
c
h re
duces the
steady state and i
n
crease
s
t
h
e res
p
on
se t
i
m
e of
spee
d c
ont
rol
.
PID co
ntro
ller is m
o
d
i
fied
b
y
elim
in
atin
g
t
h
e
d
e
ri
vativ
e term
s an
d
t
h
e
resu
lting
co
n
t
ro
ller is PI con
t
ro
ller
shown in Figu
re 2.
)
(
t
sp
Fi
gu
re 2.
B
l
oc
k di
ag
ram
of
P
r
o
p
o
rt
i
o
nal
-
Int
e
gral
(P
I)
C
o
nt
rol
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
70
–
1
480
1
472
C
o
m
i
ng t
o
t
h
e
wo
rki
n
g
of
t
h
e
PI
co
nt
r
o
l
l
e
r t
h
e
K
p
an
d K
i
valu
es are th
e resp
ectiv
e
propo
rtion
a
l and
in
teg
r
al
v
a
lu
es o
f
th
e con
t
ro
ller are firstly g
i
v
e
n assu
m
e
d
valu
es of
K
p
and
K
i
res
p
ective
l
y. These
values are
been t
une
d t
o
t
h
e desi
re val
u
es suc
h
t
h
at
t
h
e err
o
r i
s
m
i
nim
u
m
and t
h
i
s
est
i
m
a
t
i
on i
s
done
by
t
h
e err
o
r
bet
w
ee
n t
h
e
o
u
t
put
a
n
d
t
h
e
se
t v
a
lu
e (d
esired
v
a
lu
e).
2.
2.
Fuz
z
y
Control
l
er
Fig
u
re
3
fu
zzy lo
g
i
cal con
t
ro
ller is an
ad
v
a
nced
co
n
t
ro
lled
u
s
ing
m
u
lti v
a
lu
ed log
i
cal. It
is wo
rk
s
on
t
h
e p
r
i
n
ci
pl
e
of
r
u
l
e
based
sy
st
em
. It
i
n
vol
ves t
w
o
p
r
ocesses
nam
e
ly
fuzzi
fi
cat
i
o
n
an
d
def
u
zzi
c
a
t
i
o
n
.
Fuzzi
cat
i
o
n i
nvol
ves t
h
e p
r
o
cess of t
r
a
n
sf
o
r
m
i
ng a const
a
nt
val
u
e i
n
t
o
l
i
n
g
u
i
s
t
i
c
vari
ab
l
e
whi
l
e
def
u
z
z
i
cat
i
o
n
deal
s
wi
t
h
hi
en
st
i
c
vari
a
b
l
e
co
nve
rsi
o
n t
o
c
o
nst
a
nt
val
u
e
.
I
n
ot
he
r
wo
r
d
s
def
u
zzi
cat
i
o
n
i
s
t
h
e i
nve
rse
p
r
oces
s
of f
u
zzi
cat
i
o
n of eac
h i
n
p
u
t
i
n
gra
p
hi
cal
fo
rm
. B
e
l
l
sh
aped fuzzy
m
e
m
b
er ship fu
n
c
tion
s
are u
s
ed
in th
e
p
r
op
o
s
ed
work. Th
e inpu
ts to
th
e fu
zzy log
i
c co
n
t
ro
ller
are
spee
d error and rule of c
h
a
n
ge of s
p
eed e
r
ror a
nd
out
put
i
s
re
fere
nce t
o
r
que
.
Fi
gu
re 4 s
h
o
w
sim
u
l
i
nk di
ag
ram
im
pl
em
ent
a
t
i
on of F
u
zz
y
l
ogi
c cont
r
o
l
l
e
r (FLC
). T
h
e rul
e
bas
e
sy
st
em
i
s
i
n
cor
p
o
r
at
ed i
s
si
m
u
l
i
nk
bl
oc
k o
f
fuzzy
l
o
gi
c co
nt
r
o
l
l
e
r. The m
e
m
b
er shi
p
fu
n
c
t
i
on co
nsi
d
e
r
e
d
he
re
are triangu
lar
sh
ap
e. Th
e
fo
ll
owing
are
v
a
riou
s lingu
istic term
s fo
r t
h
e FLC:
Negat
i
v
e
B
i
g
(
N
B
)
Negat
i
v
e
M
e
di
um
(NS)
Zero
(Z
)
Po
sitiv
e Med
i
um
(PM)
Po
sitiv
e Big
(PB)
1
Ou
t
1
1
Ga
i
n
1
1
Ga
i
n
F
u
z
z
y
Logi
c
C
ont
r
o
l
l
er
wi
t
h
Ru
l
e
v
i
e
w
e
r
du/
dt
De
r
i
v
a
t
i
v
e
2
In
2
1
In
1
Fi
gu
re
3.
B
l
oc
k
di
ag
ram
of f
u
zzy
l
o
gi
c c
ont
rol
l
e
r
F
i
gu
re
4.
Si
m
u
l
i
nk
di
a
g
ram
of
fuzzy
l
ogi
cal
c
ont
rol
After a
ssigning the i
n
put,
output ra
nges to
defi
ne fuzzy s
e
ts, m
a
pping
of each
of the
possible se
ve
n
i
n
p
u
t
f
u
zzy
va
l
u
es o
f
sp
eed
devi
at
i
o
n, act
i
v
e p
o
w
er
de
vi
at
i
on t
o
t
h
e
s
e
ven
o
u
t
p
ut
f
u
zzy
val
u
e
s
i
s
do
ne
t
h
r
o
u
g
h
a r
u
l
e
base.
The i
n
put
a
n
d
o
u
t
p
u
t
m
e
m
b
ershi
p
fu
nct
i
o
ns are
sh
ow
n i
n
Fi
gu
re
5 an
d Fi
gu
re
6
respectively.
-1
-0
.
8
-0
.
6
-0
.
4
-0
.
2
0
0.
2
0.
4
0.
6
0.
8
1
0
0.
2
0.
4
0.
6
0.
8
1
e
rro
r
D
egr
e
e
of
m
e
m
ber
s
h
i
p
NB
NM
Z
P
M
P
B
-1
-0
.
8
-0
.
6
-0
.
4
-0
.
2
0
0.
2
0.
4
0.
6
0.
8
1
0
0.
2
0.
4
0.
6
0.
8
1
Cerro
r
D
egr
e
e
of
m
e
m
bers
h
i
p
NB
NM
Z
P
M
P
B
Figure
5.
Mem
b
ershi
p
f
u
nctions f
o
r input er
ror
Figure
6. M
e
m
b
ershi
p
functions
for c
h
a
n
ge in
‘
c
e
r
r
o
r
’
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r B
u
ck P
F
C
C
onve
r
t
e
r B
a
se
d
4-
Sw
i
t
c
h
VSI
Fe
d .
...
(
V
.
Ra
mes
h
)
1
473
-1
-0
.
8
-0
.
6
-0
.
4
-0
.
2
0
0.
2
0.
4
0.
6
0.
8
1
0
0.
2
0.
4
0.
6
0.
8
1
out
p
u
t
D
e
gr
ee
o
f
m
e
m
b
er
s
h
i
p
NB
NM
Z
P
M
P
B
Fi
gu
re
7.
sh
o
w
s t
h
e m
e
m
b
ershi
p
f
unct
i
o
n
of
o
u
t
p
ut
va
ri
abl
e
Tabl
e 1.
R
u
l
e
base fo
r Fuzzy
C
ont
r
o
l
l
e
r fo
r 4-
sw
itch three
phase
VSI
fed Fuzzy
spee
d c
ont
rol
dri
v
e
PMBLDC m
o
tor
Erro
r/
cer
ro
r
NB
NM
ZO
PM
PB
NB
NB NB NB
NM
Z
NM
NB NB
NM
Z
PM
ZO
NB NM
Z
PM
PB
PM
NM
Z
PM
PB
PB
PB
Z
PM
PB PB PB
Rules base:
1.
If e
r
r
o
r in
NB
and
cer
ro
r is
N
B
, o
u
tp
ut is
N
B
2.
If error is
NB an
d c erro
r is NM, ou
tpu
t
is
NB
3.
If e
r
r
o
r is
NB a
n
d
cer
ro
r is
Z ,
out
put is
NB
4.
If e
r
r
o
r is
NB a
n
d
cer
ro
r is
P
M
,o
utp
u
t
NM
5.
If error is NB
an
d
cerro
r
is
PB, o
u
t
p
u
t
Z.Similarly
th
e remain
in
g
o
t
h
e
r
ru
les are
written
in
Sim
i
lar fashi
o
n
whic
h a
r
e tabulated in Ta
ble
1.
2.
3.
Mo
des
of
o
p
er
ati
o
ns
of
pr
op
osed B
U
CK
P
F
C c
o
n
v
erter
In
t
h
is section
,
th
e pro
p
o
s
ed
co
nv
erter
o
p
e
rates in
CRM will b
e
analyzed
in
d
e
tail. To
sim
p
lify th
e
an
alysis, th
e tran
sitio
n
s
b
e
tween
th
e switches an
d
t
h
e ou
tpu
t
d
i
od
e
D
o
are o
m
i
tted
.
After th
at, th
ere still ex
ist
ei
ght
ope
rat
i
o
n
st
ages i
n
a l
i
n
e
pe
ri
o
d
.
Fi
g
u
r
e
8.
sh
ow
t
h
e
e
qui
val
e
nt
ci
rc
u
i
t
s
of t
h
e st
a
g
e
s
.
2.
3.
1.
Posi
ti
ve
B
u
ck
-
B
oos
t Oper
ati
o
n M
o
de
At
th
e po
in
t wh
en
th
e
in
formatio
n
v
o
ltag
e
Vac
is
i
n
p
o
sitiv
e h
a
l
f
cycle
an
d th
e greatness of
Vac is
litt
ler th
an
Vo
, th
e p
r
o
p
o
s
ed
co
nv
erter wo
rks in
b
u
c
k-h
e
l
p
m
o
d
e
. Am
id
th
is
m
o
d
e
, switch
Q
1
k
e
ep
s
O
F
F and
switch
Q
2
c
ont
i
nues
exc
h
a
ngi
ng
. T
h
ere
are
t
w
o
st
ages
w
h
e
n
t
h
e
p
r
op
ose
d
con
v
e
r
t
e
r
wo
r
k
s u
n
d
e
r t
h
ese
m
odes
Mo
de 1:
Wh
en
switch Q
2
is
ON th
e
p
r
op
o
s
ed
con
v
erter
work
s i
n
m
o
d
e
-1
. Th
e eq
u
a
l ci
rcu
it
o
f
th
is stag
e is
i
ndi
cat
ed
i
n
Fi
gu
re
8(a
)
.
The
i
n
d
u
ct
o
r
L i
s
c
h
ar
ge
d
by
V
ac
t
h
r
o
ug
h
D
1
an
d
D
6
, and
ill bu
ild
s am
id
th
is st
ag
e.
Mo
de 2:
Wh
en
switch
Q
2
is OFF th
e p
r
o
p
o
s
ed
conv
erter
work
s in
m
o
d
e
-2. Th
e co
m
p
arab
le circu
it o
f
t
h
is
stage is dem
o
nstrated in
Figur
e 8
(
b
)
.
The i
n
duct
o
r
L i
s
rel
eased
by
V
o
t
h
ro
u
gh
D
o
, a
nd
i
d
eclin
es am
id
th
is
stage.
2.
3.
2.
Positi
ve
Buck
Opera
tio
n
Mo
de
At
th
e po
in
t wh
en
th
e
i
n
fo
rm
atio
n
v
o
ltag
e
V
ac
is in po
sitiv
e
h
a
lf cycle an
d th
e
greatn
e
ss is b
i
g
g
er
th
an
V
o
, t
h
e
pr
op
ose
d
co
nve
rt
er wo
r
k
s i
n
b
u
c
k m
ode. Am
id t
h
i
s
m
ode, s
w
i
t
c
h Q
2
kee
p
s OFF an
d swi
t
ch Q
1
cont
i
n
ues
exc
h
angi
ng
. T
h
ere
are t
w
o st
a
g
es
whe
n
t
h
e
pr
o
p
o
se
d c
o
n
v
ert
e
r
wo
rk
s
un
de
r t
h
i
s
m
odes.
Mo
de 3:
Wh
en
switch
Q
1
i
s
O
N
, t
h
e
pr
o
pose
d
c
o
n
v
e
rt
er w
o
rks i
n
m
ode- 3.
The
pr
o
p
o
r
t
i
onal
ci
rcui
t
o
f
t
h
i
s
stage is dem
onstrated in Figure 8(
c
)
. T
h
e i
n
duct
o
r L i
s
ch
arge
d by
V
ac
−
V
o
t
h
ro
u
gh D
1
and D
4
, and
il
b
u
ilds
a
m
id
th
is stag
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
70
–
1
480
1
474
Mo
de 4:
Wh
en switch
Q
1
is
O
F
F, t
h
e pr
opo
sed co
nv
er
ter
w
o
r
k
s in m
ode-
3.
T
h
e
equal
ci
rcui
t
o
f
t
h
i
s
st
a
g
e i
s
sam
e
as t
h
at
of m
ode- 2, as
i
ndi
cat
ed i
n
Fi
gu
re 8
(
b
)
. T
h
e
i
nduct
o
r L i
s
rel
eased
by
V
o
t
h
ro
u
gh
D
o
, a
nd i
l
declines am
id this stage.
At th
e poi
nt
whe
n
t
h
e dat
a
v
o
l
t
a
ge
V
ac
is in
n
e
g
a
t
i
v
e
h
a
lf cycle,
th
ere lik
ewise ex
ist
t
w
o o
p
erat
i
o
n
m
odes of ne
gat
i
v
e b
u
ck
-
h
el
p ope
rat
i
o
n m
ode and ne
g
a
t
i
v
e buc
k o
p
e
rat
i
on m
ode of t
h
e
p
r
op
o
s
ed
conver
t
er
. Th
e n
e
gativ
e o
p
e
r
a
tion
m
e
th
o
d
s can
lik
ew
ise b
e
d
i
v
i
d
e
d
in
to
f
o
u
r
o
p
e
r
a
tion stag
es
characte
r
ized a
s
stages
, a
n
d the pr
opo
rtion
a
te circu
its incorpo
r
ate.
Fi
gu
re 8(
b
)
, (
d
),
a
n
d (e).
T
h
e negat
i
v
e
hal
f
c
y
cl
e
ope
rat
i
o
n
m
e
t
hod
ol
o
g
i
e
s
o
f
t
h
e
pr
op
ose
d
c
o
n
v
e
r
t
e
r
are lik
e tho
s
e o
f
the po
sitiv
e h
a
l
f
cycle. Fo
r effo
rt lessees, th
e
n
e
gativ
e o
p
e
ration
procedu
r
es
are no
t
po
rt
ray
e
d i
n
p
o
i
n
t
o
f
i
n
t
e
rest
here.
A
n
en
ha
nced C
O
T c
o
n
t
rol
i
s
req
u
est
e
d t
h
e p
r
op
ose
d
buc
k PFC
c
o
n
v
ert
e
r
to
co
m
p
el it that work
s in CRM
, as indicated in Fi
gure
9.
(a)
(
b
)
(c)
(
d
)
(e)
Fi
gu
re
8.
O
p
er
at
i
on
of
t
h
e
p
r
o
pos
ed
co
n
v
ert
e
r i
n
di
f
f
ere
n
t
m
ode
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r B
u
ck P
F
C
C
onve
r
t
e
r B
a
se
d
4-
Sw
i
t
c
h
VSI
Fe
d .
...
(
V
.
Ra
mes
h
)
1
475
2
'
in
V
'
co
m
p
V
Fi
gu
re
9.
Key
wave
f
o
rm
s i
n
t
h
e i
m
pro
v
ed
C
O
T c
o
nt
rol
di
a
g
ram
The y
i
el
d
vol
t
a
ge i
s
ca
ug
ht
wi
t
h
a l
e
v
e
l
-
m
ovem
e
nt
ci
rcui
t
fram
e
d by
a
hi
g
h
-
v
ol
t
a
ge t
r
ansi
st
o
r
Q
2
and the
resistors Ra
1
∼
Ra
3
.
Som
e
key wa
ve
form
s are indicated in Figu
re
9.
A
s
dem
ons
t
r
at
ed i
n
Fi
g
u
r
e 9,
t
h
e
cont
rol
i
n
di
cat
or
V
ph
u
s
ed
to co
n
t
ro
l th
e co
nv
erter eith
er in
bu
ck
m
o
d
e
o
r
b
u
c
k-h
e
l
p
m
o
d
e
is attain
ed
by
cont
rast
i
ng t
h
e
di
st
i
n
g
u
i
s
he
d
V
in
si
gn
V
in
and a v
o
l
t
a
ge r
e
fere
nce V
boundr
y
. Typically,
V
boundr
y
is si
tu
ated
to
reflect the yield voltage V
o
with
th
e sam
e
p
r
o
portio
n
as th
at V
in
reflects V
in
. V
ph
i
s
hi
gh
r
a
t
i
onal
e
w
h
en
V
in
is
hi
g
h
er
t
h
a
n
V
boundr
y
and i
s
l
o
w r
a
t
i
onal
e
w
h
en
V
in
is lower th
an V
boundr
y
.
The l
o
cated yi
eld sign
VFB i
s
sent t
o
t
h
e ne
gat
i
v
e
da
t
a
of
t
h
e l
a
pse
spea
ker
U
f
. The slip
in th
e m
i
d
d
l
e
of
VFB an
d th
e
set referen
ce
V
ref
is in
creased
by
t
h
e
rec
o
m
p
ense
or
ga
ni
zes
C
f
a
n
d
a
n
ope
ned
u
p
m
i
st
ake si
g
n
V
com
p
is
accom
p
lished. The
dc
voltage sign
V
com
p
connect
e
d
t
o
c
o
nt
r
o
l
t
h
e
co
nd
uct
i
o
n
pe
ri
o
d
T
ON
is attain
ed
fro
m
V
comp
through a c
o
ntrol system
s fra
m
e
d
by resistors R
1
and R
2
an
d s
w
i
t
c
h S
1
. Switch
S
1
is con
t
ro
lled
b
y
th
e co
n
t
ro
l ind
i
cator V
ph
. T
h
e propos
ed
co
nv
erter wo
rk
s in
bu
ck
m
o
d
e
wh
en
S
1
i
s
OFF a
nd
wo
r
k
s i
n
buc
k s
u
p
p
o
rt
m
ode whe
n
S
1
is ON. V
c
omp
is a
step ca
pacity cont
rolled by
V
ph
,.
The ze
ro
-i
nt
er
s
ect
i
on
pu
r
pose
of t
h
e i
n
d
u
ct
o
r
cur
r
e
n
t
i
l
i
s
di
sco
v
ere
d
by
t
h
e hel
p
e
r
sl
owi
n
g
do
w
n
t
h
e
in
du
ctor
L. This in
du
ctor
cu
rr
en
t
ze
r
o
-c
ros
s
i
ng l
o
cat
i
o
n i
n
di
cat
or
V
Z
C
D
m
i
ght
be c
o
n
n
ect
ed
i
n
b
o
t
h
b
u
c
k
an
d
bu
ck-su
ppo
rt m
o
d
e
s. At t
h
e po
in
t wh
en
th
e in
du
ctor curren
t
il tu
m
b
les to
zero, th
e yield
vo
ltag
e
assistan
t
sl
owi
ng
d
o
w
n
begi
ns t
o
fal
l
.
Whe
n
VZC
D
t
u
m
b
l
e
s t
o
zer
o
,
t
h
e y
i
el
d
o
f
c
o
m
p
arat
or
UC
2
ho
ps
fr
om
l
o
w
l
e
vel
to
ab
norm
a
l
st
ate. Th
is lev
e
l m
o
v
e
sets th
e
d
r
i
v
ing
sig
n
fro
m
lo
w lev
e
l to
abn
o
rm
al s
t
a
t
e. As in
d
i
cated
b
y
th
e
pre
v
i
o
usl
y
st
at
ed di
ssect
i
o
n, t
h
e cl
im
bi
ng i
n
cl
i
n
e of V
saw
is steady becaus
e
of the co
nsistent current s
o
urce I1
ch
arg
i
ng
am
id
th
e en
tire lin
e p
e
riod
. Acco
rd
ing
l
y, th
e ON-tim
e
(T
ON
) of the switche
s is dictated by V
co
m
p
relativ
ely. Mo
re d
i
m
i
n
u
tiv
e esti
m
a
t
i
o
n
of k
p
r
o
m
p
t
s lit
tler
T
ON
and m
o
re m
odest
crest
est
i
m
a
ti
ons o
f
i
l
whe
n
t
h
e p
r
op
ose
d
c
o
n
v
e
r
t
e
r i
s
w
o
r
k
i
n
g i
n
b
u
c
k
-
h
el
p m
ode.
As i
ndi
cat
ed
i
n
Fi
g
u
re
.9
t
h
e
dri
v
i
n
g
si
g
n
s
V
g1
an
d V
g2
are controlled
by V
ph
f
o
r
t
h
e
di
st
i
n
ct
i
v
e o
p
e
r
at
i
on m
odes
o
n
t
h
e
ot
he
r
han
d
.
Di
ve
rse c
o
ef
fi
ci
ent
k
bri
n
g
s
abo
u
t
th
e d
i
stin
ctiv
e
PF am
en
d
m
en
t
ex
ecu
tio
n an
d
th
e g
e
n
e
ral prod
u
c
tiv
ity.
2.
4. Har
m
o
n
i
c
s
An
al
y
s
i
s
As
per the c
o
ntrol
plan dem
o
nstrated in, t
h
e
norm
al
d
a
ta curren
t
iac in th
e
hal
f
l
i
n
e
cy
cl
e coul
d
be
comm
unicated in
(1
)
Whe
r
e
θ
0
i
s
t
h
e
l
i
m
i
t
edge
bet
w
een
b
u
c
k
-s
u
p
p
o
r
t
m
ode a
n
d
buc
k m
ode
θ
0
= arcsin
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
70
–
1
480
1
476
Also i
p1
(
θ
)
and i
p2
(
θ
) a
r
e t
h
e
c
r
est
est
i
m
at
i
ons o
f
i
l
u
n
d
er
b
u
c
k m
ode a
n
d
b
u
ck
-
buc
k m
o
d
e
, i
n
di
vi
d
u
al
l
y
(
=
(
=
(2
)
2.
5.
PMBLDC Moto
r
The wi
n
d
i
n
gs
of a B
L
DC
M
o
t
o
r
m
odel
l
e
d as a seri
es co
m
b
i
n
at
i
o
n o
f
R
L and spe
e
d de
pen
d
s o
n
t
h
e
v
o
ltag
e
so
ur
ce, wh
ich is
k
nown
as th
e b
a
ck
EMF Th
e BLDCM h
a
s t
h
r
e
e
p
h
a
ses an
d those ph
ase vo
ltag
e
s ar
e
gi
ve
n
by
t
h
e e
quat
i
o
ns
. A
P
M
B
L
DC
M
o
t
o
r ha
s t
h
ree st
a
t
or
pha
se wi
nd
i
ngs c
o
nnect
e
d
i
n
a st
at
o
r
m
a
nne
r
.
Fi
gu
re
1
0
s
h
o
w
s t
h
e e
qui
val
e
nt
ci
rc
ui
t
o
f
a
PM
B
L
DC
M
o
t
o
r.
Fi
gu
re
1
0
. E
q
u
i
val
e
nt
ci
rc
ui
t
of
a
VSI
-fe
d
P
M
B
L
DC
M
o
t
o
r
no
a
a
ao
V
e
d
t
di
L
V
a
Ri
=
(3)
no
b
b
bo
V
e
dt
di
L
V
b
Ri
=
(4)
no
c
c
co
V
e
dt
di
L
V
c
Ri
=
(5)
Tabl
e 2. VS
I
s
w
i
t
c
hi
n
g
se
q
u
e
n
ce base
d on
t
h
e Hal
l
Ef
fect
sens
or si
g
n
al
Eq
uation
(
1
)
&
(
2
)
&
(3
)
Whe
r
e
Vol
t
a
ge of
pha
se
=
A
,
V
B
V
o
ltag
e
of
ph
ase=
B,
V
c
Vol
t
a
ge
o
f
pha
se
=C
, I
A
C
u
r
r
ent
o
f
phase
=A,
I
B
C
u
rre
nt
of
p
h
ase =B
,
I
C
Curre
nt of
phase =C,=
Stator resistance
,
e
a
= Phase
“A”
stator
flux linkages, e
b
= Phas
e “B” stator fl
ux linkage
s ,e
c
=
Phase
“C” stator flux linka
ge
s
e
a
= Phase
“A”
back EMF e
b
=
P
hase“B”
b
ack
EMF , e
c
= Pha
s
e “C” bac
k
E
M
F
The s
h
a
p
e
of
t
h
e cu
rre
nt
s
sh
oul
d i
n
R
ect
an
gul
a
r
wave
fo
r
m
and m
u
st
be i
n
ph
ase
wi
t
h
t
h
e
c
o
r
r
esp
o
ndi
n
g
pha
se bac
k
EM
F i
n
Tabl
e-2
.
If t
h
e sel
f
an
d
m
u
t
u
al
i
nduct
a
nce ar
ou
n
d
t
h
e ai
r gap are c
onsi
d
er t
o
be const
a
nt
,
th
en
th
ere will b
e
a d
i
rect relatio
n
b
e
tween th
e ap
p
lied
so
urce vo
ltag
e
to
th
e p
h
a
se term
in
als (V) and
th
e
H
a
H
b
H
c
E
a
E
b
E
c
S
1
S
2
S
3
S
4
S
5
S
6
0
0
0
0
0
0
0
0
0 0
0 0
0
0
1
0
-
1
+1
0
0
0 1
1 0
0
1
0
-
1
+1
0
0
1
1 0
0 0
0
1
1
-
1
0
+1
0
1
0 0
1 0
1
0
0
+1
0
-
1
1
0
0 0
0 1
1
0
1
+1
-
1
0
1
0
0 1
0 0
1
1
0
0
+1
-
1
0
0
1 0
0 1
1
1
1
0
0
0
0
0
0 0
0 0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r B
u
ck P
F
C
C
onve
r
t
e
r B
a
se
d
4-
Sw
i
t
c
h
VSI
Fe
d .
...
(
V
.
Ra
mes
h
)
1
477
i
n
d
u
ced
bac
k
EM
F (E
) i
s
gi
ven
by
e
q
uat
i
o
n
(
3) a
n
d t
h
e
el
ect
rom
a
gnet
i
c
t
o
r
q
ue (
T
e )
i
n
N.M
i
s
gi
ven
by
equat
i
o
n (
4
).
(6
)
The ne
w val
u
e of
t
o
r
q
ue refe
r
e
nce
i
s
gi
ve
n b
y
(
7
)
whe
r
e
We=Rot
or m
echanical spee
d.
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
3.
1.
Buck PF
C c
o
nver
ter with
4-switch
thre
e phas
e
VSI
fe
d speed c
o
ntr
o
l of P
I
and F
u
zz
y logic
a
l
control P
M
B
L
DC
motor drive
Tr
e
f
Speed
r
egul
at
or
-
K-
r
ad2r
pm
D
i
s
c
r
et
e,
T
s
=
5e-
007 s
.
PI
i
+
-
ic
i
+
-
ib
i
+
-
ia
1
i
+
-
ia
c2
c1
v
+
-
Vs
w
v
+
-
v
+
-
Vb
c
v
+
-
Va
o
1
v
+
-
Va
b
A
B
+
-
U
n
i
v
e
r
s
a
l B
r
id
g
e
re
fn
T
o
W
o
r
k
s
pac
e8
re
f
t
e
T
o
W
o
r
k
s
pac
e7
Ti
me
r
Subs
y
s
tem
St
ep1
St
ep
S
c
ope
3
Sc
ope2
Sc
ope1
g
m
C
E
S4
g
m
C
E
S3
g
m
C
E
S2
g
m
C
E
S1
Tm
m
A
B
C
P
e
r
m
ane
nt
M
agnet
S
y
nc
hr
onous
M
a
c
h
i
n
e
gm
DS
g
D
S
L2
L1
-K
-
Kt
Ire
f
m
a
g
Got
o
5
[i
s
]
Go
t
o
4
I
s
hape
Go
t
o
3
IC
Go
t
o
2
IB
Got
o
1
IA
Go
t
o
[S
D
]
Fr
o
m
5
[S
]
From
4
gp
ul
s
e
Fr
o
m
1
Di
o
d
e
4
Ha
l
l
em
f
_abc
D
e
c
oder
i
+
-
i
+
-
i
+
-
C1
C
c
1
2
<
S
t
a
t
o
r
c
u
r
r
ent
i
s
_a (
A
)
>
<
S
t
a
t
o
r
b
a
c
k
E
M
F
e_a (
V
)
>
<
R
ot
or
s
peed w
m
(
r
ad/
s
)
>
<
E
l
e
c
t
r
o
m
a
g
net
i
c
t
o
r
que T
e
(
N
*
m
)
>
<
M
O
S
FET c
u
r
r
e
n
t
>
<
M
O
S
FET c
u
r
r
e
n
t
>
Tr
e
f
S
peed
r
egulat
or
K-
ra
d
2
rp
m
Di
s
c
r
e
t
e
,
T
s
=
5e-
0
0
7 s
.
i
+
-
ic
i
+
-
ib
i
+
-
ia
1
i
+
-
ia
c2
c1
v
+
-
Vs
w
v
+
-
v
+
-
Vb
c
v
+
-
Va
o
1
v
+
-
Va
b
A
B
+
-
Un
i
v
e
r
s
a
l
B
r
i
d
g
e
re
f
n
T
o
W
o
r
k
s
pac
e8
r
e
fte
T
o
W
o
r
k
s
pac
e
7
Ti
m
e
r
In
1
In
2
Ou
t
1
S
ubs
y
s
t
e
m
1
S
ubs
y
s
t
e
m
S
t
ep1
St
e
p
S
c
op
e3
S
c
ope2
S
c
o
pe1
g
m
C
E
S4
g
m
C
E
S3
g
m
C
E
S2
g
m
C
E
S1
Tm
m
A
B
C
P
e
r
m
anent
M
a
gnet
S
y
nc
hr
ono
us
M
a
c
h
i
n
e
gm
DS
g
D
S
L2
L1
-K
-
Kt
Ir
e
f
m
a
g
Go
t
o
5
[i
s
]
Go
t
o
4
I
s
hape
Go
t
o
3
IC
Go
t
o
2
IB
Go
t
o
1
IA
Go
t
o
[S
D
]
Fr
o
m
5
[S
]
Fr
o
m
4
gpuls
e
Fr
o
m
1
Di
o
d
e
4
Ha
l
l
em
f
_
a
b
c
D
e
c
oder
i
+
-
i
+
-
i
+
-
C1
C
c
1
2
<
S
t
a
t
o
r c
u
rr
ent
i
s
_a (A
)
>
<
S
t
a
t
o
r ba
c
k
E
M
F
e_a
(
V
)>
<
R
ot
or s
p
eed
w
m
(ra
d
/
s
)
>
<
E
l
e
c
t
ro
m
agn
et
i
c
t
o
r
q
u
e
T
e
(N
*
m
)
>
<M
O
S
F
E
T
c
u
r
r
e
n
t
>
<M
O
S
F
E
T
c
u
r
r
e
n
t
>
(a)
Spee
d c
ont
rol
of
PI
(b) S
p
ee
d c
ont
rol
of
F
u
zzy
l
o
gi
cal
co
nt
r
o
l
Fi
gu
re
1
1
.
Si
m
u
l
i
n
k
di
a
g
ram
fo
r s
p
ee
d c
ont
r
o
l
o
f
B
u
ck
PFC conve
rter si
x switch 4- s
w
itch three
phase
VSI
f
e
d PMBLD
C
Mo
to
r em
p
l
o
y
i
n
g PI an
d Fu
zzy co
n
t
r
o
l
3.
2.
No loa
d
co
nditio
n
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
0
10
00
20
00
Nr
(
R
P
M
)
P
e
rf
orm
anc
e A
nal
y
s
i
s
of
4-
s
w
i
t
c
h
V
S
I
f
ed
P
M
B
L
D
C
m
o
t
o
r under
N
o
l
oad (
T
L=
0N
-m
)
w
i
t
h
1000
R
P
M
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-20
0
0
20
0
Eb
(
V
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-4
0
-2
0
0
20
Is
(
A
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-4
0
-2
0
0
20
40
60
Ti
m
e
(
S
)
TL
(
N
-
m
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
0
10
00
20
00
N
r(R
P
M
)
P
e
rf
orm
a
n
c
e
A
n
a
l
y
s
i
s
4
-
s
w
i
t
c
h
V
S
I
f
e
d f
u
z
z
y
s
p
ee
d c
o
nt
ro
l
P
M
B
L
D dri
v
e
un
de
r N
o
l
o
ad
(T
L
=
0N-m
) at
1
0
0
0
RP
M
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
-10
0
0
10
0
EMF
(
V)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
-2
0
0
20
Is
(
A
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
-2
0
0
20
Ti
m
e
(
S
)
T
s
(N
-m
)
Ref
e
re
nc
e S
p
e
e
d
Actu
a
l
S
p
e
e
d
(a
) M
o
tor
perf
orm
a
nce wa
ves
res
p
onse
w
ith PI
(b) Mo
tor
p
e
rf
orman
ce w
a
v
e
s
respo
n
s
e w
ith Fu
zzy
C
ontr
o
ller
C
o
ntroller
Figure
12. Pe
rform
a
nce characteristic
s o
f
Bu
ck PFC
conv
erter
with
4-
swit
ch
VS
I
fe
d
PM
BLDC M
o
t
o
r
are
sh
own
f
o
r
a speed
o
f
100
0 RPM at No
l
o
ad
(
TL = 0 N-
m
)
)
(
)
(
W
=
(n)
r
n
W
n
W
r
e
(n)
1)
-
(n
W
-
(n)
T
=
(n)
1
e
1)
-
(n
e
e
p
W
K
W
K
T
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
14
70
–
1
480
1
478
Fig
u
re
12
sh
ows t
h
e
b
ack EMF stato
r
curren
t and to
rqu
e
s in
itially ex
h
i
b
it so
m
e
flu
c
t
u
atio
ns
b
u
t
slo
w
ly settle d
o
w
n
to
stead
y
state v
a
lu
e. W
i
t
h
fuzzy lo
g
i
c co
n
t
ro
ller,
th
e wav
e
sh
apes o
f
th
e p
e
rform
a
n
c
e
m
easures a
r
e s
m
oot
hened
wi
t
h
no
ne
gat
i
v
e
peak
s o
r
vari
at
i
ons
.I
n t
h
e
w
hol
e i
n
case
of
N
o
l
o
a
d
c
o
n
d
i
t
i
on,
fuzzy logical cont
rol of 4-swi
t
ch VS
I fed P
M
B
L
DC
m
o
t
o
r dri
v
e ex
hi
bi
t
s
supe
ri
o
r
pe
rf
orm
a
nce com
p
ared t
o
its co
un
terp
arts.
3.
3.
Application o
f
Loa
d
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
0
10
00
20
00
Nr
(
R
P
M
)
P
e
r
f
or
m
a
nc
e ana
l
y
s
i
s
o
f
4
-
s
w
i
t
c
h
V
S
I
f
e
d
P
M
B
L
DC
M
o
t
o
r
u
nde
r
Lo
ad
ed c
o
nd
i
t
i
o
n
T
L
=
2 N
-
m
whe
n
s
p
ee
d
1
0
0
0
R
P
M
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-2
0
0
0
20
0
Eb
(
V
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-4
0
-2
0
0
20
Is
(
A
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-5
0
0
50
Ti
m
e
(
S
)
T
(N
-m
)
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
4
5
0.
5
0
10
00
20
00
N
r(R
P
M
)
P
e
r
f
or
m
a
n
c
e A
nal
y
s
i
s
4-
s
w
i
t
c
h
V
S
I
f
e
d
f
u
z
z
y
s
p
e
e
d
c
o
nt
r
o
l
P
M
B
L
D
dr
i
v
e un
der
T
L
=
0
.
5
N
-
m
at
10
00R
P
M
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
4
5
0.
5
-1
0
0
0
10
0
EM
F
(
V)
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
4
5
0.
5
-2
0
0
20
Is
(
A
)
0
0.
05
0.
1
0.
15
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
-5
0
0
50
Ti
m
e
(
S
)
Ts
(
N
-
m
)
R
e
f
e
r
enc
e S
pee
d
A
c
t
u
al
S
pee
d
(a
) M
o
tor
pe
r
f
orm
a
nce wave
s res
p
onse
wit
h
P
I
(
b
)
Motor
pe
rf
orm
a
nce
wave
s re
s
p
onse
with F
u
z
z
y
C
o
ntroller
Contr
o
ller
Figure 13. Perform
ance
cha
r
a
c
teristic
s o
f
B
u
ck
PFC co
nv
erter
with
4-
sw
i
t
ch
VS
I fe
d
P
M
BLDC M
o
t
o
r are
sh
own
for a speed
o
f
100
0 RPM un
d
e
r l
o
ad con
d
ition
at
0
.
3
s
ecs
(TL =
0
.
5
N-m
)
Fi
gu
re
13
wi
t
h
P
I
c
ont
rol
i
n
case
o
f
4-
wi
t
c
h cases t
h
e
f
l
uct
u
at
i
o
ns ar
e
m
a
xim
u
m
at
st
art
i
ng a
n
d
g
r
adu
a
lly red
u
ced
with
PI con
t
ro
l.
W
ith
th
e fu
zzy con
t
rol
,
t
h
e sm
oot
h co
nt
r
o
l
i
s
obser
v
e
d wi
t
h
l
e
s de
v
i
at
i
ons
on
ne
gat
i
v
e si
d
e
. Sum
m
ari
z
i
ng t
h
e a
b
ove
,
we ha
ve
fo
r l
a
ded
co
n
d
i
t
i
on,
4-s
w
i
t
c
h
VS
I
fed
PM
B
L
DC
m
o
t
o
r
em
pl
oy
i
ng
Fuz
z
y
cont
rol
e
x
hi
bi
t
s
bet
t
e
r
pe
rf
orm
a
nce com
p
ared
t
o
reset
of
t
h
e
co
n
f
i
g
ura
t
i
on.
3.
4.
Dynamic
response
at
No load conditi
on
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
0
1000
2000
Nr
(
R
P
M
)
P
e
r
f
or
m
anc
e
A
nal
y
s
i
s
of
4-s
w
i
t
c
h
V
S
I
f
ed P
M
B
L
D
C
M
o
t
o
r dri
v
e under s
peed v
a
ri
at
i
o
n(
100
0
t
o
500 RP
M
)
at
N
o
l
oad
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-200
0
200
Eb
(
V
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-50
0
50
Is
(
A
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-50
0
50
Ti
m
e
(
S
)
T (
N
-
m
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
0
1000
2000
N
r(R
P
M
)
P
e
r
f
o
r
m
a
n
c
e
An
a
l
ysi
s 4
-
sw
i
t
ch
V
S
I
f
e
d
f
u
zzy sp
e
e
d
co
n
t
r
o
l
P
M
BL
D
C
d
r
i
v
e
T
L
=
0
N
-
m
under
s
p
e
ed v
a
r
i
at
i
ons
unde
r
N
o
l
oad
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-2
0
0
20
Is
(
A
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-5
0
0
50
Ti
m
e
(
S
)
T
s
(N
-m
)
Re
f
e
r
enc
e S
peed
Ac
t
u
a
l
Sp
e
e
d
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-1
0
0
0
10
0
EM
F
(
V)
(a
) M
o
tor
p
e
rf
orm
a
nce wa
ves
res
p
o
n
se
w
ith PI
(
b
)
M
o
tor
pe
rf
o
r
m
a
nce
wave
s re
s
p
o
n
se
with
F
u
z
z
y
Contr
o
ller
Contr
o
ller
Figure 14. Perform
ance
cha
r
a
c
teristic
s o
f
B
u
ck
PFC co
nv
erter
with
4-
sw
i
t
ch
VS
I fe
d
P
M
BLDC M
o
t
o
r are
sh
own
f
o
r
a speed
ch
ang
e
of
1
000
RPM t
o
50
0 RPM at
0
.
25
secs at
N
o
load
(
TL = 0 N-m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A Fu
zzy L
o
gi
c
C
ont
r
o
l
St
r
a
t
e
gy f
o
r B
u
ck P
F
C
C
onve
r
t
e
r B
a
se
d
4-
Sw
i
t
c
h
VSI
Fe
d .
...
(
V
.
Ra
mes
h
)
1
479
Fi
gu
re
1
4
s
h
o
w
s
wi
t
h
P
I
c
o
nt
r
o
l
,
i
n
case
of
4
-
swi
t
c
h c
o
nfi
g
u
r
at
i
o
n
,
du
ri
n
g
dy
nam
i
c resp
onse
,t
h
e
fluctuation in c
u
rrent a
nd t
o
rque are m
o
re, where as
us
ing Fuzzy
control, the
fluc
t
u
ations are minim
i
ze
d and
the wa
ve
sha
p
es are im
proved.
W
ith PI
cont
rol i
n
case
of 4
-
switch
co
nfigu
r
ation
th
e flu
c
tu
ation
d
u
ri
ng
dy
nam
i
c resp
ons
e a
r
e r
e
d
u
ced
.
Fu
rt
he
r
usi
n
g
f
u
zzy
l
o
gi
cal
co
nt
r
o
l
,
4-s
w
i
t
c
h
con
f
i
g
urat
i
o
n
exhi
bi
t
s
si
gni
fi
ca
nt
l
y
b
e
t
t
e
r pe
rf
orm
a
nce
wh
en
com
p
are
d
PI
co
nt
r
o
l
a
n
d
al
so
4
-
s
w
i
t
c
h
base
d c
o
nfi
g
u
r
at
i
o
n
wi
t
h
F
u
zzy
and
P
I
c
ont
r
o
l
l
e
rs.
3.
5.
Dynamic
response
App
l
i
c
ati
o
n of
L
o
ad
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
0
10
00
20
00
P
e
r
f
or
m
anc
e anal
y
s
i
s
of
4-
s
w
i
t
c
h
V
S
I
f
ed P
M
B
L
D
C
m
o
t
o
r
under
s
p
e
ed v
a
r
i
at
i
ons
(
1000 RP
M
t
o
500 RP
M
)
when
l
oaded c
ondi
t
i
on
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-2
0
0
0
20
0
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-4
0
-2
0
0
20
I s
(
A
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-1
0
0
0
10
0
Ti
m
e
(
S
)
T
(N
-m
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0.
5
0
1
000
2
000
Nr
(
R
P
M
)
P
e
r
f
or
m
a
n
c
e
A
n
a
l
y
s
i
s
4
-
s
w
i
t
c
h
s
w
i
t
c
h
V
S
I
f
e
d f
u
z
z
y
s
pee
d c
ont
r
o
l
P
M
B
L
D
C
dr
i
v
e T
L
=
0
.
5
N
-
m
at
und
er
l
oad
v
a
r
i
at
i
o
n
s
a
nd
s
pee
d v
a
r
i
at
i
ons
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0.
5
-
100
0
100
EM
F
(
V)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0.
5
-2
0
0
20
Is
(
A
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0.
5
-5
0
0
50
Ti
m
e
(
S
)
T
s
(N
-m
)
R
e
f
e
r
e
nc
e
S
p
ee
d
A
c
t
u
a
l
S
p
eed
(a) M
o
to
r
per
f
o
r
m
a
nce wave
s res
p
o
n
se
wit
h
P
I
(
b
)
M
o
tor
pe
rf
o
r
m
a
nce
wave
s re
s
p
o
n
se
with
F
u
z
z
y
C
ontr
o
ller
C
o
ntroller
Figure 15.Pe
r
form
ance
cha
r
a
c
teristic
s o
f
B
u
ck
PFC co
nv
erter
with
4- sw
i
t
ch
VS
I fe
d
P
M
BLDC M
o
t
o
r are
sh
own
for a speed
ch
ang
e
of
1
000
RPM t
o
50
0 RPM at
0
.
3secs
u
n
d
e
r lo
ad
ed cond
itio
n (TL =
0
.
5
N-m
)
Fi
gu
re
15
sh
o
w
s, i
n
case
o
f
wi
t
h
4-s
w
i
t
c
h
co
nfi
g
u
r
at
i
o
n
PI c
o
nt
rol
d
u
r
i
n
g dy
nam
i
c
per
f
o
r
m
a
nce
u
n
d
e
r lo
ad
ed co
nd
itio
n, th
e fl
u
c
tu
ation
in stato
r
cu
rr
en
t and
torq
u
e
are
max
i
m
u
m
a
m
o
n
g all con
f
iguratio
n
wi
t
h
Fu
zzy
cont
rol
,
t
h
e
de
vi
at
i
on are
re
duce
d
.
In
cas
e of 4-s
w
itch configura
tion with
PI co
n
t
ro
l th
e
fluctuation in
the pe
rform
a
nce
m
easures a
r
e lesses.
W
h
en
c
o
mp
a
r
ed
4-s
w
itc
h
co
nf
iguratio
n. Fu
rth
e
r with
d
e
p
l
o
y
m
e
n
t
o
f
Fu
zzy log
i
cal,
th
e d
e
v
i
atio
n is fu
rth
e
r m
itig
ated
and
fin
e
co
n
t
ro
l
o
f
sp
eed is ach
iev
e
d. In o
t
her
wo
rd
s,
4-
swi
t
c
h c
o
n
f
i
g
urat
i
o
n
wi
t
h
Fuzzy
c
o
nt
r
o
l
i
d
eal
fo
r
effi
ci
ent
a
n
d s
m
oot
h spee
d c
ont
rol
.
4.
CO
NCL
USI
O
N
In t
h
i
s
pape
r, a
n
i
m
prove
d b
u
c
k p
o
w
er fact
o
r
of
PM
B
L
DC
m
o
t
o
r wi
t
h
4
swi
t
c
h V
S
I f
e
d
PM
B
L
DC
m
o
t
o
r was p
r
o
pos
ed
. The
pe
r
f
o
r
m
a
nce eval
uat
i
on
o
f
t
h
e
p
r
o
p
o
sed c
o
nt
r
o
l
st
rat
e
gy
has
been a
n
al
y
zed
un
de
r
d
i
fferen
t
o
p
e
ratin
g
con
d
ition
s
.
Th
e effectiv
en
ess of th
e p
r
op
o
s
ed
con
t
ro
l sch
e
m
e
is th
at t
h
ere is min
i
m
i
zatio
n
of
fl
uct
u
at
i
o
n i
n
st
at
o
r
c
u
r
r
ent
an
d
out
put
t
o
r
que
.
REFERE
NC
ES
[1]
Y.
C.
Hsieh,
et al.
, “An interleaved boost converter
with zero-v
o
ltag
e
transition
,”
IEEE Trans.
Power Electron
,
vol/issue: 24(4), pp.
973–978
,
20
09.
[2]
H.
E.
A.
Ibrahim ,
et al.
, “Optimal PID control of
a brushless
DC motor
using PSO
and BF techniques,”
Ain Sham
s
Engineering Jou
r
nal
, vol. 5
,
pp
.
391–398, 2014
.
[3]
X.
Xie,
et a
l
.
,
“An Improved
Buck PFC Converter with Hig
h
Powe
r Fa
c
t
or,
”
I
EEE T
r
ansactions on Pow
e
r
Electronics
, vol/issue: 28(5), 201
3.
[4]
V.
Ramesh and Y.
K.
Latha,
“An Interleaved B
oost Converter
Based PFC
Con
t
rol Strateg
y
for
BLDC motor,”
International Jo
urnal
ofElectr
ical and Computer Engineering
,
vol/issue: 5(5)
,
pp. 957-966, 20
15. ISSN: 2088
-
8708.
[5]
V. Bist and B.
Singh,
“An
Adjustable-Speed PFC Bridgeless
Buc
k–BoostConverter-Fed BLD
C
Motor Drive,”
IEEE Transactio
ns ON
Industrial Electronics
, vo
l/issue: 61(6)
, 20
14.
[6]
V.
Ramesh and
Y.
K.
Latha,
“A
Soft Switching
Control Strateg
y
Based on Interleaved Boost Co
nverter
for BLD
C
Motor Drive,
”
I
n
ternational Jou
r
nal of Pow
e
r Electronics and
Drive Systems
,
vol/issue: 6(3
)
,
pp. 516-523, 20
15
.
ISSN: 2088-8694.
Evaluation Warning : The document was created with Spire.PDF for Python.