Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 17
32
~
1
741
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.1
057
1
1
732
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Coplan
ar W
a
ve Guide F
e
d Dual
Band Notched MIMO Antenna
D
S Ra
mkiran, B T
P
M
a
dhav
,
Kanka
r
a
N
a
ra
simh
a
Re
ddy, S
h
aik
Sh
abbeer
, Pri
y
anshi Jain,
Saggurthi
Sowmya
Department o
f
ECE, K
L Univ
ers
i
ty
, AP, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 22, 2016
Rev
i
sed
Jun
29,
201
6
Accepte
d
J
u
l 13, 2016
A coplanar wav
e
guide fed of s
e
mici
rcle monopole antenna is
designed in
t
h
i
s
work t
o
ove
rc
ome
pol
a
r
i
z
a
t
ion di
ve
rsi
t
y
mimo t
e
c
hni
que
i
s
i
m
pl
e
m
e
n
t
e
d
in this p
a
per
.
Th
e proposed an
tenna is de
sign
ed to notch
a par
ticu
l
ar band
o
f
frequencies in
UWB range. The designed
model is notching the first band
from 2 to 5 GHz
& the second band from 7 to 11
GHz. The propo
sed antenn
a
has been fabr
icated on FR4 substrate w
ith d
i
el
ectr
i
c cons
t
a
nt 4
.
4 & t
e
s
t
ed
for its reliability on ZNB20 vector ne
twork analy
zer
. The op
er
ating bands
will com
e
under
WLAN, KU ba
nd, satel
lit
e com
m
unication app
l
ications. A
peak r
eal
iz
ed ga
in of 4
.
3 dB wi
t
h
radi
ation
effi
ci
enc
y
90%
is
a
tta
ined
at
th
e
operating bands
of th
e d
e
signed antenna. At
notch b
a
nd sign
ificant g
a
in
reduction is ob
served from th
e curr
ent desig
n
. The antenna is showing
omnidirectional radiation pattern in
the pass
band & disturbed radiatio
n
pattern in the
notch band
. Antenna is
fabr
icated with dimensions of
40x68x1.6 mm
& simulation w
o
rks are carried
with finite
element method
ba
se
d HFSS tool.
Keyword:
C
opl
a
n
ar wa
ve
g
u
i
d
e fe
d
Dual
ba
nd
n
o
t
c
h
Finite elem
ent
method
H
i
gh
f
r
e
q
u
e
n
c
y
str
u
ctur
al
si
m
u
lato
r
Satellite co
mmu
n
i
cation
W
i
reless
l
o
cal area network
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
B T P Madh
av,
Pr
of
esso
r,
D
e
par
t
m
e
n
t
o
f
EC
E,
K L Un
iv
ersity,
AP,
I
ndi
a
.
Em
a
il: b
t
p
m
ad
h
a
v@k
l
un
iv
ersity.in
1.
INTRODUCTION
In t
h
e
recent
years, satellite comm
unicati
o
n has gai
n
ed prom
inence in e
v
ery
field
of life
.
It i
s
leading in t
h
e
scope
of communica
tion because of hi
gh
spee
d data
transm
ission, wide
ba
ndwi
dth a
n
d
extrem
ely low power spect
ra
l density fo
r
var
i
ou
s app
licatio
n
s
[1
]-
[2
].
Fo
r eve
n
efficient transm
ission, the
ex
istin
g
i
n
terferen
ce is t
o
b
e
rem
o
v
e
d
.
In
mo
st cases,
an
ten
n
a
s u
s
e filters to
av
o
i
d
in
terferen
ces. In
sp
ite o
f
b
e
ing
a sim
p
le and
effectiv
e
tech
n
i
qu
e, th
e
u
s
e
o
f
filte
rs in
creases th
e co
m
p
lex
ity an
d co
st
o
f
t
h
e anten
n
a
sy
st
em
. The ke
y
com
pone
nt
s i
n
Ul
t
r
a-
W
i
de
B
a
nd
(
U
W
B
) a
r
e ba
n
d
pass a
n
d
ba
n
d
st
o
p
[
3
]
-
[
4
]
.
Not
c
h
ban
d
i
s
also refe
rre
d a
s
ban
d
sto
p
fi
lter which
rejects speci
fi
c b
a
nd
of
fre
q
u
e
n
ci
es o
r
i
t
m
a
y
be cal
l
e
d as ban
d
rej
ection
filter o
r
b
a
nd
li
m
i
t fi
lter o
r
T-no
tch
filter.
Th
ese notch
filters are h
a
v
i
ng
n
a
rro
w ban
d
wid
t
h
and
h
i
gh
dim
e
nsion less
pa
ram
e
ter whi
c
h is
Q
factor
whic
h is
not ne
cessary [5]-[6]. For t
h
ese
notc
h
filters, the
a
m
ount
to
wh
ich unnecessar
y
sign
als at th
e
n
o
t
ch
fr
eq
u
e
n
c
y
m
u
st be reject
ed
determ
ines the acc
uracy
of the
com
pone
nts, but not the Q, whic
h is governed
by de
sire
d steepness
of the notc
h i.e., the ba
ndwidt
h around
th
e no
tch b
e
fo
re atten
u
a
tion
beco
m
e
s s
m
all [
7
]-[8
].
In
or
der t
o
de
si
gn a
n
t
e
n
n
as
wi
t
h
ba
n
d
-
not
ched
fu
nct
i
o
ns
, seve
ral
m
e
t
hods
ha
ve bee
n
pr
op
ose
d
,
in
c
l
u
d
i
n
g
e
t
c
h
in
g L
-
sh
ap
ed
,
C-
s
h
ap
ed
,
H
-
sh
a
p
ed
, U-
sh
a
p
ed, E
-
s
h
a
p
ed,
T-s
h
ape
d
, and
half-ci
r
cle slot
s on the
radi
at
i
o
n pat
c
h
or
on t
h
e
gr
o
u
n
d
pl
ane.
Hi
g
h
dat
a
rat
e
s wi
t
h
a l
a
rge si
gn
al
-t
o-
noi
se
rat
i
o
i
n
W
i
rel
e
ss
Local
Area
Net
w
or
ks
(
W
L
A
N) s ca
n be ac
hi
eve
d
by
usi
n
g m
u
l
t
i
pl
e-i
n
p
u
t
m
u
l
tipl
e
-
out
put
(M
I
M
O) a
n
t
e
n
n
a s
y
st
em
s
[9
]-[12
]. MIM
O
system
s b
o
o
st d
a
ta reliab
ility b
y
u
s
in
g
mu
ltip
le rad
i
at
o
r
s at th
e transmittin
g
and
receiv
ing
end
s
.
In
o
r
de
r
to ens
u
re a m
i
nim
u
m
correlation in
a ri
c
h
s
cattering e
n
vironm
ent, the a
n
tenna elem
ents m
u
st
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
opl
an
ar
Wav
e
G
u
i
d
e
Fed
D
ual
Ba
n
d
N
o
t
c
hed
MI
MO
Ant
e
nn
a (
D
S R
a
m
k
i
r
an)
1
733
be ke
pt
i
s
ol
at
e
d
f
r
om
t
h
e radi
at
i
on o
f
nei
g
hb
ori
ng el
em
ent
s
[1
3]
-[
1
4
]
.
The
appl
i
cat
i
o
ns o
f
M
I
M
O
sy
st
e
m
s are
not
l
i
m
i
t
e
d t
o
n
a
rr
ow
ba
n
d
c
o
m
m
uni
cat
i
ons,
a n
u
m
b
er
of
d
u
al
-
b
an
d
has
b
een
pr
o
pose
d
.
In th
is article a p
l
an
ar m
o
no
po
le
M
I
M
O
a
n
t
e
nna
i
s
desi
g
n
e
d t
o
n
o
t
c
h
du
al
ban
d
i
n
t
h
e
U
W
B
re
gi
o
n
.
The p
r
o
p
o
se
d ant
e
n
n
a i
s
des
i
gne
d & si
m
u
lat
e
d wi
t
h
di
ff
erent
i
t
e
rat
i
o
n
s
on
HFS
S
t
o
ol
& pr
ot
ot
y
p
e
d t
h
e
pr
o
pose
d
m
odel
on FR
4 su
bs
t
r
at
e
m
a
t
e
ri
al
.
The ra
di
at
i
ng e
l
em
ent
i
s
i
n
t
h
e form
of hal
f
ci
rcl
e
d sl
ot
m
ono
p
o
l
e
w
ith
def
ected g
r
ou
nd
stru
ct
ure
o
n
t
h
e
ot
her si
de
of t
h
e su
bst
r
at
e m
a
t
e
ri
al
. The
d
e
si
gne
d i
t
e
rat
i
ons
are
p
r
esen
ted in
Fig
u
re1
& corresp
ond
ing
d
i
m
e
n
s
io
n
s
are
p
l
aced
in Tab
l
e1
. An
tenn
a1 is
h
a
v
i
n
g
sp
littering
slo
t
on
radi
at
i
n
g el
em
ent
i
n
l
a
rge
r
d
i
m
e
nsi
on.
Ant
e
nna
2 i
s
al
so
havi
ng si
m
i
l
a
r
ki
nd
of sl
ot
at
bot
t
o
m
si
de
of t
h
e
radi
at
i
n
g el
em
ent
w
h
i
c
h i
s
n
earer t
o
fee
d
l
i
n
e.
Ant
e
nna
3 i
s
sh
owi
ng sl
ot
on t
h
e fee
d
l
i
n
e i
t
s
el
f. A
n
t
e
nna
4 i
s
showing sl
ot with optim
ized
dim
e
nsions on the
patch
ce
nter. T
h
e sl
ot dim
e
nsions for each case a
r
e
give
n
i
n
Fi
gu
re
2.
The
m
a
i
n
adva
nt
a
g
e o
f
t
h
e
p
r
o
p
o
s
e
d a
n
t
e
n
n
a i
s
t
h
e
hi
g
h
reject
i
o
n
ba
n
d
l
e
vel
i
n
t
h
e
n
o
t
c
he
d
r
e
gi
o
n
.
2.
MATE
RIAL
S AND METHOD
Th
e d
e
sign
of
th
e p
r
op
osed
an
tenn
a is carri
ed
ou
t in
fou
r
stag
es as sh
own
in
Fi
g
u
re 1.
In
itially a
semi circu
l
ar p
a
tch
with
slo
t
in
th
e MIMO co
nfigu
r
a
tion
is designed. T
h
e slot
on t
h
e
antenna is pla
ced at
di
ffe
re
nt
l
o
cat
i
ons a
nd
opt
i
m
ized co
nfi
g
u
r
at
i
on i
s
fi
xe
d wi
t
h
i
t
e
rat
i
on 4
.
The n
o
t
c
h ba
n
d
s
and o
p
e
r
at
i
ng
ban
d
s
are selected prope
rly at sa
m
e
fre
que
ncy in al
l these itera
tio
n
s
. FR
4
Sub
s
trate
m
a
terial
is p
r
ov
id
ing
th
e su
ppo
rt
f
o
r
th
is g
e
o
m
e
t
r
y
f
r
o
m
lo
w
e
r sid
e
. Cop
p
e
r
mater
i
al is u
s
e
d
in
th
e
d
e
sign o
f
p
a
tch
,
f
eed lin
e an
d
th
e
gr
ound
plane.
A
50
ohm
s
SMA connect
or is c
o
nnected to t
h
e
po
rt
t
o
m
easure t
h
e S
-
pa
ra
m
e
t
e
rs and
ra
di
at
i
on
charact
e
r
i
s
t
i
c
s. Fi
ni
t
e
El
em
en
t
M
e
t
hod base
d El
ect
rom
a
gn
et
i
c
t
ool
HFSS
i
s
used i
n
t
h
e desi
g
n
an
d si
m
u
l
a
t
i
o
n
o
f
th
e cu
rren
t
work. Th
e m
e
t
h
odo
log
y
fo
r desig
n
and
v
e
ri
ficatio
n
is
p
r
ov
id
ed in
t
h
e
b
e
low section
.
Fi
gu
re
1.
Desi
gn
an
d
Pr
oce
d
ure
M
e
t
h
o
d
o
l
o
gy
The desi
gne
d
a
n
tenna
m
odels with
iterations are pres
e
n
ted i
n
Fi
gure
2. T
h
e slot
placem
e
n
t for
notc
h
band c
h
a
r
acteri
s
tics can
be cle
a
rly observe
d
from
Figure
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
32
–
1
741
1
734
(a
)
(
b
)
(c)
(
d
)
Fi
gu
re
2.
N
o
t
c
h
Ant
e
nna
M
o
del
s
,
(a)
M
o
del
1,
(
b
)
M
o
del
2
,
(c
) M
odel
3,
(
d
)
M
o
del
4
Fi
gu
re 3.
Sl
ot
Di
m
e
nsi
ons on
di
f
f
ere
n
t
i
t
e
rat
i
ons
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
To
ove
ral
l
pe
r
f
o
r
m
a
nce of t
h
e desi
g
n
e
d
a
n
t
e
nna
m
odel
s
are anal
y
z
e
d
&
pre
s
ent
e
d i
n
t
h
i
s
sect
i
o
n
.
The
refl
ect
i
o
n
coef
fi
ci
ent
of
t
h
e
desi
g
n
e
d
a
n
t
e
nna
m
odel
s
a
r
e
prese
n
t
e
d
i
n
Fi
g
u
re
4.
It
ha
s bee
n
o
b
se
rve
d
t
h
at
ant
e
n
n
a i
s
w
o
r
k
i
n
g i
n
t
w
o ba
nds
& re
ject
i
n
g ot
her
wi
de
b
a
nd
s fr
om
2 t
o
5
GHz
& 7
t
o
1
1
G
H
z.
At
fi
rst
fu
n
d
am
ent
a
l
reson
a
nt
f
r
eq
ue
n
c
y
ant
e
nna i
s
sho
w
i
n
g an i
m
peda
nce ba
n
d
w
i
d
t
h
of
33%
& at
secon
d
re
son
a
nt
fre
que
ncy
i
t
is abo
u
t
1
6
%.
Fi
gu
re 5 s
h
o
w
s t
h
e S
12 c
h
aracteristics
o
f
th
e fou
r
iteratio
n
s
with
ch
ang
i
ng
ope
rating fre
quency.
It is be
en obse
rve
d
that at the
o
p
e
ratin
g
b
a
nd
s th
e reflectio
n
co
efficien
t is less th
an
-
13
dB
. T
h
e VS
WR
charact
e
r
i
s
t
i
c
s of fo
u
r
an
t
e
nna m
odel
s
are sh
ow
n i
n
Fi
gu
re 6;
a hi
g
h
e
s
t
reject
i
o
n of
11
dB
is attain
ed
in
t
h
e VSW
R
ch
aracteristics o
f
t
h
e 3
rd
iteration
m
o
d
e
l. In
th
e
o
p
e
rating
b
a
nds an
tenn
a is sho
w
i
n
g
2:
1 rat
i
o
wi
t
h
ban
d
wi
dt
h
of
2 GHz at
f
u
ndam
e
nt
al
resona
nt
fre
q
u
e
n
cy
and 1
.
6
G
H
z at
secon
d
reso
na
nt
fre
que
ncy
.
Fi
g
u
re
7 sh
o
w
t
h
e im
pedance c
h
aract
eri
s
t
i
c
s
o
f
an
tenn
a m
o
d
e
ls with
respect to
frequ
ency o
f
ope
rat
i
o
n.
At
2
res
ona
nt
m
o
d
e
s al
l
t
h
e
desi
g
n
ed
m
odel
s
are
sh
o
w
i
n
g i
m
pedance
neare
r
t
o
40
ohm
s and
i
n
t
h
e
not
c
h
ban
d
a
n
t
e
nna
s are
s
h
o
w
i
ng
p
o
o
r
i
m
ped
a
nce m
a
t
c
hi
ng
charact
e
r
i
s
t
i
c
s.
Fig
u
re
4
.
Retu
rn
lo
ss of an
tenna m
o
d
e
ls
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
opl
an
ar
Wav
e
G
u
i
d
e
Fed
D
ual
Ba
n
d
N
o
t
c
hed
MI
MO
Ant
e
nn
a (
D
S R
a
m
k
i
r
an)
1
735
Figu
re 5.
S
1
2
Param
e
ter
for
anten
n
a
m
odel
s
Fi
gu
re
6.
V
S
WR
Vs
Fre
q
u
e
nc
y
Fi
gu
re
7.
Im
pedance
V
s
F
r
eq
uency
Fi
gu
re 8 t
o
15
sho
w
s t
h
e ra
di
at
i
on cha
r
act
er
i
s
t
i
c
s of t
h
e de
si
gne
d m
odel
s
i
n
pass ba
n
d
&
not
ch
ban
d
.
Ant
e
nna
1
sh
o
w
s
om
ni
di
rect
i
onal
ra
di
at
i
o
n
pat
t
e
rn
i
n
H
pl
ane
wi
t
h
l
o
w
c
r
oss
pol
ari
zat
i
o
n
at
5.
8
GHz
.
I
n
t
h
e
not
c
h
ban
d
t
h
e
co
-p
ol
ari
zat
i
o
n l
e
vel
i
s
ve
ry
l
e
ss an
d a
n
t
e
n
n
a i
s
gi
vi
ng
w
eak
radi
at
i
o
n
p
a
t
t
e
rn
of
l
e
ss t
h
an
-
13
dB
.
A
n
t
e
n
n
a
2
i
s
al
s
o
s
h
ow
i
ng
om
ni
di
rect
i
onal
radi
at
i
o
n
wi
t
h
l
o
w
cr
os
s p
o
l
a
ri
zat
i
o
n
of
-
8dB
i
n
t
h
e
n
o
t
c
h
ban
d
t
h
e ant
e
n
n
a radi
at
i
o
n pa
t
t
e
rn i
s
di
st
ur
b
e
d i
n
E-
pl
a
n
e & sho
w
i
n
g p
o
o
r gai
n
ch
aracteristics. An
tenn
a3
is
showing
bette
r ra
diation characteris
tics of H-plane at
5.7GHz
when
co
m
p
ared
wi
th
earlier iteratio
n
s
.
Ant
e
nna
4 i
s
sh
owi
n
g
di
rect
t
o
ra
di
at
i
on
pat
t
e
rn
i
n
E
-
pl
ane
& l
o
w c
r
os
s
po
l
a
ri
zat
i
on i
n
H
-
pl
ane.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
32
–
1
741
1
736
Fi
gu
re
8.
R
a
di
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
1
at
5.
8
GHz
Fi
gu
re
9.
R
a
di
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
1
at
11
.5
G
H
z
Fi
gu
re
1
0
. R
a
d
i
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
2
at
5.
9
GHz
Fi
gu
re
1
1
. R
a
d
i
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
2
at
11
.8
G
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
opl
an
ar
Wav
e
G
u
i
d
e
Fed
D
ual
Ba
n
d
N
o
t
c
hed
MI
MO
Ant
e
nn
a (
D
S R
a
m
k
i
r
an)
1
737
Fi
gu
re
1
2
. R
a
d
i
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
3
at
5.
7
GHz
Fi
gu
re
1
3
. R
a
d
i
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
3
at
11
.6
G
H
z
The
pre
s
ent
e
d
resul
t
s
i
n
t
h
ese
fi
g
u
re
s
gi
ves t
h
e
bet
t
e
r
un
de
r
s
t
a
ndi
ng
re
gar
d
i
n
g t
h
e
pa
ss
b
a
nd
&
not
c
h
ban
d
ra
d
i
at
i
on
ch
aract
e
r
i
s
t
i
c
s.
Fi
gu
re
1
4
. R
a
d
i
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
4
at
6.
2
GHz
Fi
gu
re
1
5
. R
a
d
i
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
4
at
11
.5
G
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
32
–
1
741
1
738
Figure 16 to
19 shows the s
u
rf
ace c
u
rrent
distribution of the desi
gne
d models at their
ope
rating &
not
c
h
ban
d
s
.
T
h
e
di
rect
i
o
ns
o
f
t
h
e
cu
rre
nt
s c
o
r
r
es
po
n
d
i
n
g
t
o
th
e in
tensity lev
e
ls can b
e
clearly an
alyzed with
t
h
ese fi
g
u
res
.
At
a part
i
c
ul
ar
ope
rat
i
ng
ban
d
t
h
e o
r
i
e
nt
at
i
on
of c
u
r
r
ent
e
l
em
ent
s
i
n
a part
i
c
ul
ar di
rect
i
on wi
l
l
gi
ve a
cl
ear
pi
c
t
ure
rega
r
d
i
n
g
t
h
e m
odes
of
p
r
o
p
a
g
at
i
o
n
at
t
h
at
pa
rt
i
c
ul
ar
b
a
nd
.
Fig
u
r
e
16
.
C
u
rr
en
t d
i
str
i
bu
tion
o
n
An
tenn
a 1
at
11
.5
G
H
z
Fig
u
r
e
17
.
C
u
rr
en
t d
i
str
i
bu
tion
o
n
An
tenn
a 2
at
11
.8
G
H
z
Fig
u
r
e
18
.
C
u
rr
en
t d
i
str
i
bu
tion
o
n
An
tenn
a 3
at
11
.6
G
H
z
Fi
gu
re 1
9
.
C
u
r
r
ent
di
st
ri
b
u
t
i
o
n on
A
n
t
e
n
n
a 4
at
6.
2 G
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
opl
an
ar
Wav
e
G
u
i
d
e
Fed
D
ual
Ba
n
d
N
o
t
c
hed
MI
MO
Ant
e
nn
a (
D
S R
a
m
k
i
r
an)
1
739
Fig
u
re 20
sh
ows th
e
g
a
in
characteristics o
f
th
e d
e
si
g
n
e
d
m
odel
s
at
t
h
ei
r ope
rat
i
n
g ba
n
d
s com
p
are
d
t
o
A
n
t
e
n
n
a m
odel
s
1
& 2, m
o
del
3 & m
odel
4 are s
h
owi
ng
bet
t
e
r gai
n
cha
r
act
eri
s
t
i
c
s at
fun
d
am
ent
a
l
resona
nt
fre
que
ncy
&
at
seco
nd
res
ona
nt
f
r
e
que
n
c
y
.
A
n
t
e
n
n
a
2
&
4 are
sh
o
w
i
n
g s
upe
ri
o
r
gai
n
cha
r
act
e
r
i
s
t
i
c
s.
Efficiency
wise also ante
nna 4 is showing alm
o
st
90%
efficiency whereas a
n
tenna2 is showing poor
effi
ci
ency
of
6
5
% at
fu
n
d
am
ent
a
l
res
ona
nt
f
r
e
que
ncy
.
At
se
con
d
res
ona
nt
fre
que
ncy
al
l
t
h
e
desi
g
n
e
d
m
odel
s
are s
h
owing a
n
ave
r
age
efficiency
of 88
%
in
th
e o
p
e
rating
b
a
nd
.
Fi
gu
re 2
0
. Fre
que
ncy
Vs Gai
n
Fi
gu
re 2
1
. Fre
que
ncy
Vs
E
ffi
ci
ency
The f
r
eq
ue
ncy
vs ef
fi
ci
ency
pl
ot
o
f
Fi
g
u
re
21
gi
ves cl
ea
r i
d
ea reg
a
r
d
i
n
g
t
h
e di
scu
ssed
r
e
sul
t
s
w.
r.t
.
efficiency
of the a
n
tenna m
odels. Fi
g
u
re
22 sho
w
s th
e
d
i
rectiv
ity p
l
o
t
of th
e
d
e
sign
ed
an
tenn
a m
o
d
e
ls with
ope
rat
i
n
g
ban
d
s
&
n
o
t
c
he
d
ba
nds
basi
c a
n
t
e
nna
1
m
odel
i
s
sh
o
w
i
n
g
po
o
r
di
rect
i
v
i
t
y
o
f
l
e
ss t
h
a
n
1.
5
d
B
i
n
t
h
e
ope
rat
i
n
g ban
d
s
w
h
en
c
o
m
p
ared wi
t
h
ot
he
r m
odel
s
.
Fi
gu
re 2
2
. Fre
que
ncy
Vs Di
r
ect
i
v
i
t
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
32
–
1
741
1
740
Fi
gu
re
23
an
d
24
sh
o
w
s t
h
e
f
a
bri
cat
ed
ant
e
n
n
a m
odel
.
T
h
e
pr
o
pose
d
a
n
t
e
n
n
a m
odel
i
s
o
p
t
im
i
zed an
d
pr
ot
ot
y
p
e
d
o
n
Fr4 s
u
bst
r
at
e.
The real
t
i
m
e
m
easurem
ent
of t
h
e
pr
ot
ot
y
p
ed a
n
t
e
n
n
a i
s
t
a
ken f
r
om
ZNB
2
0
vect
o
r
net
w
o
r
k anal
y
zer a
n
d p
r
ese
n
t
e
d i
n
Fi
gu
re
25
. T
h
e m
easured
results are
in
g
ood
agreem
e
n
t with
si
m
u
latio
n
results o
f
HFSS.
Figure 23. Fabricated Ante
nna
Top View,
Fi
gure
24. Fa
bricated Antenna B
o
ttom View
Fi
gu
re
2
5
. M
e
a
s
ure
d
S1
1
o
f
a
n
t
e
n
n
a m
odel
on
Z
N
B
2
0
V
N
A
4.
CO
NCL
USI
O
N
A
CPW
f
e
d
dual b
a
nd
no
tch
e
d
MI
MO
an
tenn
a is d
e
sign
ed
an
d
an
alyzed
i
n
th
is wo
rk
. Th
e pr
opo
sed
m
odel with MIMO structure i
s
reducing
t
h
e pola
r
ization diversity
related i
ssues
whe
n
placed in t
h
e rea
l
tim
e
envi
ro
nm
ent
.
The p
r
ot
ot
y
p
e
d
ant
e
nna m
easurem
ent
resul
t
s on FR
4 s
u
b
s
t
r
at
e are p
r
o
v
i
di
ng si
m
i
l
a
r ki
nd
of
r
e
su
lts
w
h
en
co
m
p
ar
ed
w
ith si
m
u
latio
n
of H
F
SS. Th
e
pr
opo
sed
an
tenn
a is pr
ov
i
d
ing
g
a
i
n
of
4
dB an
d
efficiency m
o
re than
86% in the oper
at
i
ng
ban
d
s
.
I
n
t
h
e
not
c
h
b
a
n
d
s
g
a
i
n
i
s
ne
gat
i
v
e
and
ra
di
at
i
on
i
s
ver
y
po
o
r
. Peak
di
r
ect
i
v
i
t
y
of 3 d
B
an
d om
ni
di
rect
i
onal
ra
d
i
atio
n in
H-p
l
an
e is attain
ed fo
r th
e
propo
sed
MIMO
antenna.
ACKNOWLE
DGE
M
ENTS
Aut
h
o
r
s l
i
k
e t
o
ex
pre
ss t
h
ei
r g
r
at
i
t
ude t
o
war
d
s t
h
e
de
p
a
rt
m
e
nt
of EC
E and m
a
nage
m
e
nt
of K L
Un
i
v
ersity for
th
eir sup
p
o
r
t
an
d encou
r
ag
emen
t du
ring this wo
rk
. Fu
rther
we lik
e to ex
press ou
r
g
r
at
itu
d
e
t
o
D
S
T
t
h
rou
g
h
FI
ST gr
an
t SR/FST/ETI-
316
/201
2.
REFERE
NC
ES
[1]
Q.
X.
Chu and Y.
Y.
Yang,
“A compact
ultra-wid
e
band
antenn
a with
3.4/5.5
GHz d
u
al band-no
tch
e
d
chara
c
t
e
ris
t
i
c
s
,
”
IEEE Transactio
ns on Antennas
and Propagation
, vol. 56
, pp
. 363
7–3644, 2008
.
[2]
A. Edalat
i and
T. A. Denidn
i, “
A
com
p
act uwb antenn
a with du
al band-not
ched
chara
c
t
e
ris
t
i
c
s
,
”
Microwave and
Optical Technology Letters
, vo
l.
52, pp
. 1183–11
86, 2010
.
[3]
M.
T.
Isla
m,
et al.
, “Coplanar waveguide fed printed anten
n
a
with compact size for broadband wireless
applications,”
Jo
urnal of In
frared, Mi
llime
t
er,
and
Terahertz Wav
e
s
, vol. 31, pp. 14
27–1437, 2010
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
opl
an
ar
Wav
e
G
u
i
d
e
Fed
D
ual
Ba
n
d
N
o
t
c
hed
MI
MO
Ant
e
nn
a (
D
S R
a
m
k
i
r
an)
1
741
[4]
B. Garg, D
.
Saleem. “Innovative
Double H
Metamaterial Structu
r
e for Ameliorati
on in Patch
Antenna
Parameters,”
Bulletin
of Electrical E
ngineerin
g and Informatics
. 2013; 2
(
4): 27
8-285.
[5]
N. Feiz
, F. Mohajer
i
, A. Gh
azna
v
i, ”Opt
im
ized
Microstrip
Ante
nnas with Meta
m
a
teria
l
Superst
r
ates Using Parti
c
l
e
Swarm
Optim
ization,
”
Bu
ll
etin
of
El
ectr
i
cal
E
ngineering and
Info
rmatics
. 2013; 2
(
2): 123-131
.
[6]
R. Movahed
i
nia and M. N. A
zar
mane
sh, “A novel planar
UWB monopole ante
n
n
a with
variable frequen
c
y
b
a
nd
-
notch function based on etch
ed slot-ty
p
e
ELC on
the patch
,
”
Microwave and Optical Techno
logy
Letters
, vol. 52
,
pp. 229–232
, 20
10.
[7]
B
.
T
.
P
.
M
a
d
h
a
v
,
et al.
, “Novel
Printed Monopo
le Trapezoid
a
l N
o
tch Antenna with S-Band Rejection,”
Journal of
Theoretical and
Applied
Informa
tion Technology
, vol. 76, pp. 42-
49, 2015
.
[8]
S.
F.
Niu,
et al
., “Design of a novel ellip
tical m
onopole
UWB antenna with du
al band-not
ched
function
,
”
Micr
o
w
ave and
Opti
ca
l T
echno
logy
L
e
t
t
er
s
, vol. 52
, pp
.
1306–1310, 201
0.
[9]
P. Lakshmikanth,
et al.
, “
P
rint
ed Log Periodi
c
dipole an
tenn
a
with
Notched f
ilter
at 2
.
45 GHz Frequenc
y f
o
r
wireles
s
com
m
unica
ti
on applications,”
Journal o
f
Engin
eering
an
d Applied S
c
iences
, vol. 10
, pp
. 4
0
-44, 2015
.
[10]
H. L. Zh
ang,
et al.
, “Designs of ultra-w
i
deband (UWB) prin
ted
ellip
tical monopole antenn
as with
slots,
”
M
i
crowa
ve and
Optical T
echnolog
y Letter
s
, vol. 52, pp. 46
6–471, 2010
.
[11]
D
.
S
.
R. K
i
ran and B. T. P
.
M
a
dhav, “
N
ovel com
p
act as
y
m
m
e
tr
ic
al fra
ctal ap
ertur
e
Notch band antenna,”
Leonardo
Electronic Journ
a
l of Pr
actices a
nd Technolog
ies
, vol. 27
,
pp. 1-
12, 2015
.
[12]
M. Ojaroudi,
et al.
, “Small square monopole
antenna
for
UWB applications with va
riable frequ
ency
b
a
nd-notch
function
,
”
IEEE
Antennas and
W
i
reless Propagation Letters
, vo
l.
8, pp
. 1061–106
4, 2009
.
[13]
M
.
L
.
S
.
N
.
S
.
L
a
k
s
h
m
i
,
et al.
, “Novel Sequential Rotated 2x2 Array
Notch
e
d Cir
c
ular Patch Antenna,”
Journal of
Engineering Science
and Techno
logy
Review
, vo
l. 8
,
pp
. 73-77
, 2
015.
[14]
X. F
.
Zhu
and D
.
L
.
S
u
, “
S
y
m
m
e
tric
E-s
h
aped
s
l
ot for UW
B anten
n
a with b
a
nd-not
ched
chara
c
t
e
ris
t
ic,
”
Microwave
and Optica
l
Technology Letters
,
vol. 52
, pp
. 1594
–1597, 2010
.
Evaluation Warning : The document was created with Spire.PDF for Python.