Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 5
,
O
c
tob
e
r
201
6, p
p
. 2
041
~204
7
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
5.1
067
8
2
041
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Optimal Placem
ent of TCSC Base
d on Sensitivity Analysis for
Congestion Management
Na
g
a
Ra
ja
Ku
mari CH
1
, K. Chen
dra
Sek
h
a
r
2
1
Departem
ent
of
El
ectr
i
c
a
l
and
E
l
ectronics
Engin
eering
,
Ach
a
r
y
a
Nagarjuna Univ
ersity
, India
2
Departem
ent
of
El
ectr
i
c
a
l
Engin
eering
,
R
.
V.R
& J.C Colleg
e of
Engineering, Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 30, 2016
Rev
i
sed
May 21
, 20
16
Accepte
d
J
u
n 8, 2016
In a deregulated electr
icity
market
whenev
er congestio
n management
problem
occurs,
the n
e
twork co
l
l
apse be
cause
of
voltag
e
inst
abil
it
y. In
this
paper tot
a
l rea
l
and reac
tive po
wer lo
ss deviati
on based sensitivit
y
indexes
(PLDS and QL
DS) with rank c
o
-relation concept, has been pro
posed for the
optim
al loc
a
tion
and operating r
a
nge of TCS
C
devic
e
. W
ith this
placem
ent
the power flow
in over lo
aded
overhead
lin
es has been r
e
duced and th
at
res
u
lts
in an incr
eas
ed load
abi
lit
y of the power s
y
s
t
em
and als
o
im
proves
the
voltag
e
stability and security
and al
so solves the congestion
management
problem
. S
o
ul
tim
atel
y,
a m
o
re energ
y
effi
ci
ent tr
ans
m
is
s
i
on s
y
s
t
em
is
possible. Th
e case studies were
c
onducted on IEEE 14 bus test sy
stem. Th
e
ensue corrobor
ate the intended
approach for
social welfare maximization
in
real
tim
e
.
Keyword:
C
o
n
g
est
i
o
n M
a
nagem
e
nt
Vo
ltag
e
Stab
ili
ty
Ran
k
Corelatio
n
Sen
s
itiv
ity Index
TCSC
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Na
g
a
Ra
ja
Ku
mari CH
Departem
ent
of
Ele
c
tri
cal
and
E
l
ectron
i
cs
Eng
i
ne
ering
Achar
y
a Nagarjuna University
Nagarjuna Nagar, Guntur
,
Andhr
a Pradesh
52251
0, India
Email: nrkumar
i84@gmail.com
1.
INTRODUCTION
In
de
re
gul
at
ed
el
ect
ri
ci
t
y
m
a
r
k
et
due t
o
vi
ol
at
i
on of sy
st
e
m
operat
i
ng l
i
m
i
t
s
t
r
ansm
i
s
sion
net
w
or
k i
s
una
bl
e t
o
acc
o
m
m
odat
e
al
l
t
h
e
desi
re
d t
r
a
n
sact
i
ons.
I
n
su
ch cases
c
o
n
g
e
st
i
on m
a
nage
m
e
nt
pr
o
b
l
e
m
s
occ
u
r
and i
t
l
eads
t
o
t
h
e
occ
u
r
r
e
n
ce o
f
hu
ge
reve
n
u
e l
o
ss
to
m
a
rk
et p
a
rticip
an
ts [1
].
FACTS tech
no
log
y
in
corpo
r
ation
i
n
th
e transm
iss
i
o
n
system will h
e
lp
to
cap
ture th
e un
u
tilised
po
ten
tial o
f
t
r
an
sm
issio
n
syste
m
.
In
trod
u
c
tion
o
f
FACTS
d
e
v
i
ces is an
alternativ
e so
lu
tion
t
o
im
p
r
o
v
e
t
h
e
efficien
cy
o
f
ex
istin
g
tran
sm
i
ssio
n
net
w
or
ks
by
r
e
di
spat
c
h
i
n
g l
i
n
e fl
o
w
pat
t
e
r
n
s i
n
s
u
ch
a
way th
at th
e
th
erm
a
l li
mi
ts b
e
tween
grid and
stak
eho
l
d
e
rs an
d
i
n
creasi
n
g
t
h
e system lo
adab
ility [2
],
so
lv
es th
e co
ng
estio
n
m
a
n
a
g
e
men
t
p
r
ob
lem
an
d
also
v
o
ltag
e
stab
ility p
r
o
b
l
em
. Thyristo
r con
t
ro
ll
ed
series capacito
r is an
im
p
o
r
tan
t
FACTS
dev
i
ce wh
ich h
a
s b
e
en
use
d
i
n
p
o
w
er
sy
st
em
t
r
ansm
issi
on
net
w
or
ks
[3]
,
[
4
]
.
T
h
e se
curi
t
y
of t
h
i
s
d
e
reg
u
l
a
t
e
d
po
wer sy
st
em
operat
i
o
n
i
s
m
a
i
n
l
y
depe
nde
nt
o
n
t
h
e d
eci
si
ons
of
I
n
d
e
pen
d
e
n
t
Sy
st
em
Operat
or
(I
SO)
.
T
h
e
opt
i
m
al
deci
si
ons
un
de
r
n
e
two
r
k
con
g
e
stio
n
will m
a
x
i
mize so
cial welfare as
well as profit of th
e po
wer system
p
e
rfo
r
m
a
n
ce.
For
t
h
i
s
IS
O ca
n
use t
h
e f
o
l
l
o
wi
n
g
m
e
t
hods
[5]
:
1) Cost
free m
e
thods:
i)
Op
eratio
n of tran
sform
e
rs tap
s
/ph
a
se sh
ifters
ii) Ou
tin
g of C
o
ng
ested
lin
es
iii) Op
eration
o
f
FACTS
d
e
vices p
a
rticu
l
arly Series FACTS d
e
v
i
ces.
2)
C
o
st
base
d
m
e
t
hods:
i) L
o
ad curtailment
ii) Resch
e
du
lin
g g
e
n
e
ratio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
204
1
–
20
47
2
042
C
o
st
fre
e m
e
tho
d
s
ha
ve m
o
re ad
va
nt
age
o
us t
h
a
n
c
o
st
b
a
sed s
u
ch
as
wi
t
h
o
u
t
di
st
ur
bi
n
g
ec
on
om
i
c
m
a
t
t
e
r. FAC
T
S devi
ces
, [6]
l
i
k
e Thy
r
i
s
t
o
r C
ont
r
o
l
l
e
d Se
r
i
es C
a
paci
t
o
r (
T
C
S
C
)
ha
ve f
o
un
d t
o
be m
o
re
usef
ul
t
h
an
ot
he
r de
v
i
ces. Thy
r
i
s
t
o
r
C
ont
r
o
l
l
e
d
S
e
ri
es C
a
paci
t
o
r (TC
S
C
)
i
s
a
vari
a
b
l
e
i
m
pedance
t
y
pe F
A
C
T
S
d
e
v
i
ce and
is co
nn
ected in
series with
th
e tran
sm
issi
o
n
lin
e
to
in
crease th
e
p
o
wer tran
sfer
cap
ab
ility, i
m
p
r
ov
e
tran
sien
t
stab
ility, an
d redu
ce tran
sm
issio
n
l
o
sses [7
]. B
ecau
s
e
o
f
th
e d
y
na
m
i
cs TCSC an
d its con
t
ri
b
u
t
io
n
t
o
t
h
e sy
st
em
st
udy
m
u
ch at
t
r
act
i
ons
has bee
n
pai
d
o
n
TC
SC
. I
n
t
h
i
s
pa
per t
h
e si
ze an
d l
o
cat
i
o
n o
f
FAC
T
S
d
e
v
i
ce is cho
s
en
b
a
sed
o
n
MTLVS ind
e
x (m
i
n
im
u
m
tran
smi
ssio
n
lo
ss and
max
i
m
u
m
v
o
ltag
e
stab
ility). W
i
t
h
th
is op
ti
m
a
l p
l
ace
m
e
n
t
, TCSC con
t
ribu
ted
fo
r l
o
ad
a
b
il
ity enhancem
ent and s
o
we
can avoid
for the
p
o
s
sib
ility o
f
co
ng
estion
in
t
h
e n
e
two
r
k
an
d
asso
ciated
econ
o
m
ic lo
ss and also
vo
ltag
e
i
n
stab
ility p
r
o
b
le
m
s
.
So a
m
o
re ene
r
gy efficient tr
a
n
sm
ission syste
m
i
s
pos
si
bl
e.
2.
TCSC MODE
LLING
According to the IEEE
definitions
TCSC
is a co
m
b
ination of TCR (T
hyristor controlled reactor)
with
a fix
e
d
cap
acito
r t
o
en
ab
le co
n
tinuo
u
s
con
t
ro
l ov
er th
e series co
m
p
en
satio
n
.
Series capacitiv
e
co
m
p
en
satio
n
h
a
s b
e
en
u
s
ed
to
in
crease line p
o
wer tran
sf
er as well as to
enh
a
n
ce syste
m
stab
ilit
y. Fig
u
re 1
sh
ows th
e m
a
i
n
circu
it of a
TCS
C
.
Fi
gu
re
1.
TC
S
C
C
o
n
f
i
g
urat
i
o
n
Norm
ally in accorda
n
ce to t
h
e system
para
m
e
ter vari
ations t
h
e firi
ng angles
of t
h
e thyristors are
cont
rolled to a
d
just the TCSC reactan
ce ac
cording t
o
the
syste
m
control al
gorithm
.
According to the
variati
on
of t
h
e t
h
y
r
i
s
t
o
r
’
s fi
ri
n
g
a
ngl
e,
t
h
i
s
p
r
ocess c
a
n
be m
odel
l
e
d as a
fast
swi
t
ch
bet
w
ee
n c
o
r
r
esp
o
ndi
ng
rea
c
t
a
nc
e
of
fere
d t
o
t
h
e po
we
r sy
st
em
.
Av
oi
di
ng t
h
e s
t
eady
st
at
e resona
nce, TC
SC
can be ope
rat
e
d ei
t
h
er i
n
i
n
duct
i
v
e
m
o
d
e
o
r
in
cap
acitiv
e
m
o
d
e
. Th
ere ex
ists a stead
y-state
relatio
n
s
h
i
p
b
e
tween
th
e firi
n
g
an
g
l
e
α
and t
h
e
reactance
X
TCSC
.
Thi
s
rel
a
t
i
ons
h
i
p can
be
de
scr
i
bed
by
t
h
e
f
o
l
l
o
wi
ng
eq
uat
i
o
n:
X
TCSC
(
α
) =
X
C
X
l
(
α
)/ X
l
(
α
) -
X
C
(1)
Whe
r
e,
X
l
(
α
) =
X
L
(
π
/
π
-2
α
-sin
α
)
(2)
α
i
s
t
h
e
fi
ri
ng
angl
e,
X
L
is t
h
e reactance
of
the induct
o
r a
n
d
Xl
is the
effective reactan
ce of the
inductor at
fi
ri
n
g
a
ngl
e.
T
h
e e
ffect
i
v
e
ser
i
es t
r
ansm
i
ssi
on i
m
pedance
i
s
gi
ve
n
by
:
X
eff
=
(
1
-
k
) X
(
3
)
Whe
r
e k
is t
h
e
degree
of serie
s
com
p
ensation.
K =
X
TCSC
/ X
(4)
Figure 2
sho
w
s a tran
sm
issio
n
lin
e with a
TC
SC
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Opt
i
m
al
Pl
ace
m
ent
of
TC
SC
Base
d
on
Se
nsi
t
i
v
i
t
y
Anal
ysi
s
f
o
r C
o
n
g
est
i
o
n
..
.. (
N
a
g
a
R
a
j
a
K
u
m
a
ri
. C
H
)
2
043
Fig
u
re
2
.
Static m
o
d
e
l o
f
lin
e
with
TCSC
Co
mm
o
n
l
y, p
o
w
er
i
n
j
ection m
o
d
e
l [
8
]-[13
]
is
u
s
ed for th
e static m
o
d
e
llin
g of
TC
SC in
po
w
e
r
syste
m
. TCSC beha
ves as
va
riable capacitive reacta
n
ce.
It reduces the l
i
ne react
ance during
the ope
r
ation
wh
ich
im
p
r
o
v
es th
e power t
r
an
sfer cap
a
b
ility. Th
e inj
ectio
n
m
o
d
e
l represen
ts t
h
e
TC
SC
as a
devic
e
that
injects
ce
rtain am
ount of
active
a
n
d reactive
powe
r i
n
a
node.
P
ic
= V
i
2
G
’
ij
– V
i
V
j
[
G
’
ij
os(
δ
ij
)+
B
’
ij
sin(
δ
ij
)
]
(5
)
Q
ic
= -
V
i
2
(B’
ij
+
B
sh
)-
V
i
V
j
[
G’
ij
sin(
δ
ij
)-
B
’
ij
cos
δ
ij
)
]
(
6
)
P
jc
= V
j
2
G
’
ij
- V
i
V
j
[
G
’
ij
co
s
(
δ
ij
)+
B
’
ij
sin(
δ
ij
)
]
(7
)
Q
jc
= -V
j
2
(B’
ij
+
B
sh
)-
V
i
V
j
[
G’
ij
sin(
δ
ij
)-
B
’
ij
cos
δ
ij
)
]
(
8
)
W
h
er
e
G’
ij
= r
ij
/ [ r
2
ij
+(
x
ij
– x
c
)
2
]
(
9
)
B’
ij
= -(x
ij
– x
c
) / [
r
2
ij
+(x
ij
– x
c
)
2
]
(10)
3.
CO
NGESTI
O
N
MA
N
A
GE
MENT
In
d
e
regu
lated
p
o
wer indu
stry
on
e
o
f
t
h
e m
a
j
o
r issu
es is th
e tran
sm
issio
n
lin
e co
ng
estion
.
At presen
t
in
th
e wo
rl
d
,
electric u
tilit
ies
h
a
v
e
b
e
en
in
creased
th
eir
g
e
neratio
n
to
m
eet
th
e in
creased
d
e
m
a
n
d
for electric
p
o
wer. Th
e network
con
s
train
t
s in
clud
e
th
erm
a
l
l
i
m
its
, vo
ltag
e
/VAR requ
irem
en
ts and
th
e stab
ility
considerations
. In
uncontrolled electri
c system o
r
in
v
e
rtically in
teg
r
at
ed
electric syste
m
, conge
stion c
a
n
not
be tolerate
d except
briefly.
Because
of this it
may
lead to the outa
g
es of the tra
n
smission lines
with
unc
o
n
t
r
ol
l
e
d l
o
ss
of l
o
ad
. T
h
e c
o
n
d
i
t
i
on
whe
r
e
ove
rl
oa
ds i
n
t
r
ansm
i
ssi
on l
i
n
e
s
occ
u
r i
s
cal
l
e
d
co
nge
st
i
o
n
.
Co
ng
estion
man
a
g
e
m
e
n
t
in
is n
o
t
si
m
p
le in
th
e d
e
reg
u
l
ated
po
wer en
v
i
ron
m
en
t. Flex
ib
le Altern
ativ
e
Tran
sm
i
ssi
on Sy
st
em
(FAC
TS)
de
vi
ces c
a
n
be an
al
t
e
r
n
ativ
e to red
u
ce th
e fl
o
w
s in
h
eav
ily lo
aded
lin
es,
resu
lting
in
an
in
creased
lo
adab
ility, lo
w syste
m
lo
ss, i
m
p
r
ov
ed
stab
ility o
f
t
h
e n
e
t
w
ork an
d
red
u
c
ed
co
st of
p
r
od
u
c
tion
b
y
co
n
t
ro
lling
th
e p
o
wer
in
th
e network.
4.
PROBLEM FORMATION
4.
1.
Screening for
continge
ncy
W
i
t
h
ou
t con
ting
e
n
c
y th
ere is
n
o
n
e
ed
fo
r any co
m
p
en
satio
n
.
In
m
o
st o
f
t
h
e op
erati
n
g
co
nd
itio
ns, an
opt
i
m
al
pl
acem
e
nt
of F
A
C
T
S de
vi
ces i
s
o
n
e
whi
c
h
gi
ves t
h
e be
st
res
u
l
t
s
.
The se
vere
l
i
n
e out
a
g
e c
ont
i
nge
ncy
is foun
d with
Max
i
m
u
m
To
tal Real Power
Lo
ss i
n
d
e
x (M
PI) and
is d
e
fined
as
M
P
I= m
a
x (P
L1
: P
Ln
)
(11)
Wh
ere
n
is t
h
e
to
tal n
u
m
b
e
r
of lin
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
204
1
–
20
47
2
044
P
L
= P
G
– P
D
(
1
2)
P
G
i
s
powe
r
ge
nerat
i
o
n an
d P
D
i
s
power de
m
a
nd. De
pe
ndi
ng
on t
h
e t
o
t
a
l
act
i
v
e po
wer l
o
ss, t
h
e ra
n
k
i
n
g of t
h
e
critical lines were c
onsi
d
ere
d
.
4.
2.
Proposed inde
x
for
op
tim
a
l placement of TCSC
Real and react
ive powe
r loss deviation ba
sed se
ns
itivity inde
x ha
ve
been use
d
in t
h
is work to
optim
ally place TCSC t
o
re
duce
the
ove
r
flows in the
t
r
ansm
ission li
nes
which
res
u
lts in an inc
r
eased
lo
ad
ab
ility o
f
th
e power system an
d
so
th
e
max
i
m
u
m
re
li
ef of con
g
e
stion
m
a
n
a
g
e
m
e
n
t
p
r
o
b
l
em
is ac
h
i
ev
ed
an
d also
im
p
r
ov
es th
e vo
ltag
e
stab
ility as well as secu
r
ity. Screen
ing
o
f
t
h
e critical lin
e ou
tag
e
is
do
ne with
M
a
xi
m
u
m
R
e
al
Powe
r Los
s
i
nde
x (M
P
I
)
.
T
h
e o
p
t
i
m
al
l
o
cat
i
on o
f
TC
SC
has bee
n
deci
ded
by
t
h
e Tot
a
l
R
eal
an
d
Reactiv
e
Power Lo
ss
Dev
i
atio
n
Based Sen
s
itiv
ity in
d
e
x
e
s (PLDS
an
d
QLDS) with
rank
co
-rel
atio
n
,
com
puted for
each tra
n
sm
iss
i
on line is
defi
ned a
s
fo
llows
(with s
u
itable
com
p
en
sation i.e., 10% t
o
70%).
To
tal Real Power Loss Sen
s
i
tiv
ity In
d
e
x
,
PLDS
=
(P
Lb
– P
La
) / P
La
(13
)
QLD
S
= (Q
Lb
–
Q
La
) / Q
La
(1
4)
whe
r
e
P
La
is real
p
o
wer lo
ss after com
p
en
satio
n
.
P
Lb
is real power los
s
before
c
o
m
p
ensation.
R
a
nki
ng
f
o
r
t
h
e t
r
a
n
sm
i
ssi
on l
i
n
es
i
s
gi
ve
n acc
or
di
n
g
t
o
PL
DS i
nde
x
and
Q
L
D
S
i
n
dex
.
S
o
t
h
at
m
eans t
w
o
di
f
f
ere
n
t
ra
nki
ng
s were
obt
ai
ne
d.
No
w by
usi
ng R
a
nk C
o
r
r
e
l
at
i
on co
ncept
a uni
que
ran
k
i
ng i
s
g
i
v
e
n
for th
e tran
sm
issio
n
lin
es.
So fi
n
a
lly we i
d
en
tified
th
e top
ten tran
sm
issio
n
lin
es fo
r t
h
e
p
l
acemen
t
o
f
TCSC.
5.
RANK CORRELATION
Correlation is
a statistical an
alysis which
measures
a
nd
analyses the
degree
or ex
ten
t
to
wh
ich
t
w
o
vari
a
b
l
e
s fl
uct
u
at
e wi
t
h
re
fer
e
nce t
o
eac
h
ot
her
.
Pearm
a
n’s ra
nk c
o
rrel
ation c
o
efficient,
ſ
= 1-(6
∑
D
2
/ (N
3
-
N
)
)
(15)
whe
r
e
D
2
i
s
s
u
m
of t
h
e sq
uare
s
of t
h
e di
f
f
ere
n
ce
o
f
t
w
o
ra
nks
.
N i
s
num
ber
o
f
pai
r
e
d
o
b
ser
v
a
t
i
ons.
From
this rank correlation c
o
ncept
we ca
n s
t
ate th
at
t
h
e PLDS i
nde
x a
n
d Q
L
D
S
i
n
dex
are fl
uct
u
at
e
with
refe
rence
to each ot
her w
ith 38.33% for
our case
study.
6.
SYSTE
M
ST
UDIE
S
The propose
d m
e
thod for the
optim
al
placem
ent of TCSC
has bee
n
tested on IEE
E
14
bus system
.
The
IEEE
1
4
b
u
s sy
st
em
repr
esent
s
fi
ve
ge
n
e
rat
o
r
buse
s
a
n
d
ni
ne
l
o
a
d
bu
s
e
s. T
h
e t
o
p
t
e
n
ra
nks
f
o
r t
h
e
c
r
i
t
i
cal
lin
es are g
i
v
e
n on
t
h
e sev
e
rit
y
o
f
th
e to
tal real po
wer lo
ss.
It
ca
n
be s
een
fr
om
Tabl
e 1
t
h
at
t
h
e
o
u
t
a
ge
of
l
i
n
e
3
in IEEE14
bu
s system
is th
e m
o
st critical
co
n
ting
e
n
c
y.
Tabl
e
1. Li
ne
o
u
t
a
ge c
o
nt
i
n
ge
ncy
ra
n
k
i
n
g (
b
ase case l
o
a
d
i
n
g)
S.NO
I
E
EE
14 BUS SYST
E
M
L
i
ne Outage
E
nd Buses
Rank
1 3
2-
3
1
2 2
1-
5
2
3 13
6-
13
3
4 4
2-
4
4
5 1
1-
2
5
6 7
4-
5
6
7 15
7-
9
7
8 5
2-
5
8
9 17
9-
14
9
10
10
5-
6
10
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Opt
i
m
al
Pl
ace
m
ent
of
TC
SC
Base
d
on
Se
nsi
t
i
v
i
t
y
Anal
ysi
s
f
o
r C
o
n
g
est
i
o
n
..
.. (
N
a
g
a
R
a
j
a
K
u
m
a
ri
. C
H
)
2
045
B
a
sed
on
t
h
e
P
L
DS i
n
dex
t
h
e
t
op t
e
n
ran
k
s
f
o
r
t
h
e t
r
a
n
sm
i
s
si
on
l
i
n
es a
r
e s
h
o
w
n i
n
Ta
bl
e
2.
Tab
l
e
2
.
To
tal
Real Power
Loss Dev
i
atio
n Sen
s
itiv
ity Ind
e
x
(PLDS)
LIN
E
PLDS
RANK
2-
4 0.
0057
57
1
2-
5 0.
0040
72
2
1-
2 0.
0029
49
3
1-
5 0.
0028
08
4
3-
4 0.
0019
66
5
5-
6 0.
0015
45
6
4-
5 0.
0002
81
7
6-
12
0.
0002
81
8
13-
14
0.
0002
81
9
6-
11
0.
0001
4
10
B
a
sed
on
t
h
e
Q
L
DS i
n
dex
t
h
e
t
op t
e
n
ran
k
s
f
o
r
t
h
e t
r
a
n
sm
i
s
si
on
l
i
n
es a
r
e s
h
o
w
n i
n
Ta
bl
e
3.
Tab
l
e
3
.
To
tal
Real Power
Loss Dev
i
atio
n Sen
s
itiv
ity Ind
e
x
(QLDS)
LIN
E
QLDS
RANK
2-
4 0.
0467
29
1
1-
5 0.
0360
25
2
3-
4 0.
0331
5
3
2-
5 0.
0279
58
4
4-
5 0.
0107
04
5
6-
13
0.
0044
73
6
4-
9 0.
0038
34
7
5-
6 0.
0034
35
8
9-
14
0.
0023
96
9
1-
2 0.
0021
57
10
Accord
ing
to ran
k
correlation con
cep
t t
h
e t
w
o
sen
s
itiv
ity facto
r
s are
d
i
rect
ly related
with
5
5
.6%.
In the m
o
st conge
sted line
i.e line
betwee
n bus
3
an
d
b
u
s
4,
t
h
e
l
o
a
d
i
n
g
has
bee
n
i
n
cr
eased t
o
5.
0
1
ti
m
e
s
fro
m
th
e b
a
se state to
f
a
u
lt state. After in
stallin
g
TCSC
in
lin
e 9
-
10
on
th
e b
a
sis o
f
PLDS ind
e
x
,
the
lo
ad
ing
of lin
e 9
-
10
in
creases to
1
.
07
% in
ex
ch
ang
e
fo
r
a lo
ad
ing
d
e
cre
m
en
t o
f
lin
e 1
0
-1
1
to
1.47% an
d
loading of line 7-9 is inceased
to 0.078% and for line 4-9 it
is increased to
0.18%. By
m
o
st of the operat
ional
st
anda
rd
s, t
h
e
sy
st
em
wi
t
h
one h
u
g
e vi
ol
at
i
on i
s
m
u
ch
m
o
re sev
e
re th
an
th
at with
m
a
n
y
s
m
all v
i
o
l
atio
n
s
.
As
it is seen
in Tab
l
e 4, th
e lo
ad
i
n
g ch
ang
e
s
o
f
o
t
h
e
r lin
es are
n
e
g
lig
i
b
le.
Tabl
e
4. L
o
a
d
i
n
g
o
f
t
h
e l
i
n
es
bef
o
re
an
d a
f
t
e
r
pl
aci
ng
TC
S
C
Lin
e
L
o
ading dur
ing
fault
W
ithout T
C
SC (MVA)
Loading With
T
C
S
C
(M
V
A
)
1-
2 31.
193
31.
194
1-
5 45.
367
45.
365
2-
4 60.
856
60.
860
2-
5 47.
265
47.
262
3-
4 50.
553
50.
555
4-
5 58.
810
58.
841
4-
7 7.
722
7.
723
4-
9 8.
882
8.
898
5-
6 28.
028
27.
991
6-
11
9.
756
9.
677
6-
12
9.
112
9.
116
6-
13
21.
525
21.
545
7-
8 38.
503
38.
511
7-
9 39.
399
39.
430
9-
10
6.
831
6.
904
9-
14
10.
649
10.
626
10-
11
5.
281
5.
207
12-
13
2.
052
2.
056
13-
14
7.
009
7.
033
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
204
1
–
20
47
2
046
B
u
s
vol
t
a
ge
l
e
vel
be
f
o
re
an
d
aft
e
r
com
p
ens
a
t
i
on
pr
o
cess is show
n in
Tab
l
e 5.
In sp
ite o
f
effectiv
e
relief of co
ng
estio
n
,
it is clear th
e im
p
r
ov
emen
t o
f
vo
lta
ge stab
ility is n
e
g
lig
ib
le an
d th
ere is im
p
e
rmissib
l
e
v
o
ltag
e
dro
p
at so
m
e
o
f
t
h
e
bu
ses. Ot
h
e
r
resu
lts of
lo
ad
flow calcu
lation
b
e
fo
re and
after in
stallin
g of
TCSC
are s
h
own in T
a
ble 6.
Tabl
e
5.
V
o
l
t
a
ge Le
vel
B
e
f
o
r
e
an
d
Aft
e
r
C
o
m
p
ensat
i
o
n
BUS
Voltage in p.
u
without T
C
SC
Voltage in p.
u with
TCSC
1 1.
060
1.
060
2 1.
045
1.
045
3 1.
020
1.
010
4 1.
031
1.
025
5 1.
032
1.
027
6 1.
070
1.
070
7 1.
066
1.
062
8 1.
090
1.
090
9 1.
059
1.
053
10
1.
054
1.
048
11
1.
058
1.
055
12
1.
055
1.
054
13
1.
051
1.
048
14
1.
038
1.
031
Tab
l
e 6
.
Oth
e
r resu
lts o
f
lo
ad
flow
calcu
lation
b
e
fo
re
and
after
in
stallin
g
of
TCSC
Par
a
m
e
ter
W
ithout T
C
SC
W
ith T
C
SC
Active Power Gen
e
r
a
tion (
M
W)
262.
19
7
279.
31
2
Reactive Power Gener
a
tion(
M
V
AR)
20.
968
45.
408
Active Power L
o
ss
(
M
W
)
3.
200
7.
122
Reactive Power loss(
M
VAR
)
-
33.
529
-
12.
522
% Real Power
loss
1.
22%
2.
55%
Fi
gu
re 3.
Loa
d
i
ng Pr
ofi
l
e
B
e
f
o
re
an
d Aft
e
r C
o
m
p
ensat
i
o
n
7.
CO
NCL
USI
O
N
In t
h
i
s
pa
per a
new m
e
t
hod
has bee
n
pr
o
p
o
se
d t
o
l
o
cat
e
TCSC
in power syste
m
s. The suggeste
d
ap
pro
ach
is com
p
o
s
ed
of sensitiv
ity an
alysi
s
and
rank
co
rrelatio
n
con
c
ep
t. Ev
ery
hu
man
b
eeing
is go
od
as
well as
ba
d.
Depending on t
h
e situa
tion the
y
will be
have
.
Si
m
ilarly accord
i
n
g to the
power system
operating
co
nd
itio
ns, th
e b
e
st lo
catio
n
will b
e
cho
s
en b
a
sed
on
PLDS an
d
QLDS in
d
e
x
e
s.
The resu
lt of lo
ad
fl
ow
calculation
before
and a
f
ter c
o
m
p
ensation proces
s
sh
ows
red
u
c
tion
of lo
ad
ing
in cong
est
e
d
lin
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Opt
i
m
al
Pl
ace
m
ent
of
TC
SC
Base
d
on
Se
nsi
t
i
v
i
t
y
Anal
ysi
s
f
o
r C
o
n
g
est
i
o
n
..
.. (
N
a
g
a
R
a
j
a
K
u
m
a
ri
. C
H
)
2
047
REFERE
NC
ES
[1]
Y. Song and
X.
Wang, “Operation
of Mark
et-Or
i
ented Power S
y
stem
s,” London
, UK, Springer
,
2
003.
[2]
N. Hingoran
i, “Flexible AC
trans
m
ission,”
IEE
E
Spectr
u
m
, v
o
l/is
sue: 30(4), pp
. 4
0
-45, 1993
.
[3]
CIGRE Working Group 14, 18, “Th
y
ristor con
t
r
o
lled series
compensation
,
” CIG
R
E Techn
i
cal Br
oucher, vo
l. 112
,
1996.
[4]
J. Urbanek,
et
al
., “Th
y
risto
r
controlled series compensation prot
ot
y
p
e i
n
stalla
tion in t
h
e Slatt 500k
v
Substation,”
IEEE Trans.on Pow
e
r Delivery
, vo
l/issue: 8(3), pp. 1
460-1469, 1993
.
[5]
L. Rajalakshmi,
et al.
, “Congestion Management in
Deregu
lated Power S
y
stem
b
y
Locatin
g Series FACTS
Devices
,
”
In
tern
ational
Journal
of Computer
Ap
plications (
0975 – 8887)
, vol/issue: 13(8)
, 2011
.
[6]
N. G. Higoran
i
and L. G
y
ug
y
i
,
“Unde
rstanding
FACTS Concept and
techno
log
y
of
Flexib
le A
C
Transmission
S
y
ste
m
s.
”
[7]
D.
Murali,
et a
l
.
,
“
C
om
paris
on of F
A
CTS
De
vices
for
P
o
wer S
y
s
t
em
S
t
ab
ili
t
y
Enh
a
ncem
ent
,
”
In
ternation
a
l
Journal of Computer App
lica
tion
s
(
0975 – 8887)
, vol/issue:
8(4), 2
010.
[8]
S. N. Singh and
A. K. David, “Optimal Locatio
n of FACTS De
vices for
Congestion Management,”
El
e
c
t
.
P
o
wer
Syst. Res
., vo
l/is
sue: 58(2), pp
. 7
1–79, 2001
.
[9]
S. N. Singh and A. K. David, “
P
lacem
ent of
F
A
CTS Devices i
n
Open Power Market,”
Int.Co
nf. on Ad
vances
in
Power System C
ontrol, Oper
atio
n and Manag
ement, Hong Kong
, pp. 173-177, 20
00.
[10]
H. Besharat and
S. A. Tah
e
r, “Conge
stion Manag
e
ment b
y
Deter
m
ining Optim
al
Location of
TCSC in Deregu
lated
Powe
r S
y
ste
m
s,”
Elect. Pow
e
r a
nd Energy Syst
.,
vol/issue:
30(10)
, pp
. 563–568
, 2
008.
[11]
A. S. Nay
a
k an
d M. A. Pai, “Conges
tion Man
a
gement in
Restr
u
ctured
Po
wer
S
y
stems Using an Optimal Power
Flow Framework,”
MS
Thesis
, Univ. I
llino
i
s Urb
a
na- Ch
am
paign
,
pp
. 30–44
, 200
2.
[12]
N. Achar
y
a
and
N. Mithulan
anth
an, “L
ocating Series FACTS Devices for C
ongestion Management
in Deregulated
Ele
c
tri
c
it
y M
a
rk
ets,”
Ele
c
t. Powe
r Sy
st. Re
s
., vol/issue: 77(3-
4),
pp. 352–360
, 20
07.
[13]
N. Achar
y
a and N. Mithulanan
th
an, “Influence of TCSC
on Con
g
estion and Spot Price in Electricity
Market with
Bilat
e
ra
l Contr
a
ct,
”
Ele
c
t
.
Pow
e
r Syst.
Res
., vo
l/issue: 77(8), pp.
1010-1018, 200
7.
BIOGRAP
HI
ES OF
AUTH
ORS
Naga Ra
ja Ku
m
a
ri.CH is a
Ph.D. Cand
ida
t
e
in the
Depar
t
m
e
nt of
El
ect
ric
a
l
&
El
ectron
i
cs
Engineering
at the University
of
Achar
y
a Nagar
j
una at Guntur
(I
ndia).
S
h
e h
a
s
r
ece
ived h
e
r M
.
Tech
in Power
S
y
stem Engin
e
ering from the A
c
ha
r
y
a N
a
garjun
a University
at
Guntur and B.
Tech in El
ec
tric
al & Ele
c
troni
cs
Engineer
ing
from Achary
a Nag
a
rjuna University
, Guntur
. Her
res
earch
int
e
res
t
includ
es
powe
r
s
y
s
t
em
s
opera
tional
and contr
o
l, appl
ication
of FACTS in
deregulated pow
er s
y
stems, and voltag
e
stability
and P
o
wer Qualit
y. S
h
e is
a li
fe m
e
m
b
er of
IS
TE.
K. Chandra Sekhar is Professor & Head of
th
e depar
t
men
t
of Electrical & Electronics
Engineering in
RVR & JC College of Eng
i
neer
i
ng, Guntur. He holds B.
T
e
c
h
in E
l
ec
t
r
ic
al
&
Electronics Engineer
ing from
Nagarjuna Univ
ersi
ty
, Guntur in the
y
e
ar 199
1. M.Tech in
Electrical Machines & Industrial
Drives from Re
gional Eng
i
neerin
g College (REC
)
,
Warangal
in
the Year 1994
and Ph.D in
the F
aculty
of
Electr
i
cal Engin
eer
ing, J.N.T U,
H
y
der
a
bad
in He has
published numerous articles on
Power Electron
ics & Drives, F
A
CTS Controlle
rs, and Power
Quality
Improvement concepts.
He
is a m
e
m
b
er
of IEEE
, I
ETE
,
ISTE, I
E
(India)
and Char
ter
e
d
Engineer (Ind
i
a)
.
Evaluation Warning : The document was created with Spire.PDF for Python.