Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 1
,
Febr
u
a
r
y
201
6,
pp
. 40
~52
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
1.8
718
40
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Multi-input DC-AC Inverter fo
r Hybrid Renewable Energy
Power S
y
st
em
Mohd Az
man Rosli,
Nor
Z
a
ihar
Yah
a
ya,
Z
uhairi
Baharudin
Department o
f
Electrical and
El
ectronic Eng
i
neer
ing, Petronas Un
iv
ersity
of Tech
nolog
y
,
Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Aug 18, 2015
Rev
i
sed
D
ec 2
2
5
, 2
015
Accepted Dec 15, 2015
The objective of
this pap
e
r is
to
design
a m
u
lt
i-in
put dc-
ac
invert
e
r
integr
at
ed
photovoltaic
arr
a
y
,
wind turb
ine and fuel
cell in
order to simplif
y
th
e h
y
brid
power s
y
stem and reduce th
e cost. Th
e
output
power char
act
er
is
tics
of th
e
photovoltaic
arr
a
y
,
wind
turbin
e and fu
el
cell are introduced. Th
e operational
principl
e and
technical d
e
tails o
f
th
e proposed
m
u
lti-inputdc-ac invert
er i
s
then exp
l
ained.
The proposed
in
verter
consists o
f
a thr
e
e inputf
l
y
b
ack d
c
-dc
converter and
a
single phase fu
ll bridge
dc-
ac in
verter
. Th
e control strateg
y
for the proposed inverter to d
i
stribut
e the pow
er reasonably
to
the sources
and it ach
ieved
a priority
of the new en
erg
y
ut
i
liz
ation is discu
ssed. This
m
u
lti-input dc-
a
c inver
t
er is cap
a
ble of b
e
ing op
erat
ed in fiv
e
co
nditions and
power deliver
ed
to the acload can be eith
er ind
i
vidually
or simultan
e
ously
.
First to th
ird
condition
oc
cur
s
when the
po
wer del
i
ver
e
d
from
either
renewable en
erg
y
sources indiv
i
dually
,
fourth
co
ndition h
a
ppens
when power
is demanded from two
sources simultane
ously
,
and finally
when
power are
available from three sources simultan
e
ous
ly
.
The proposed inverter has b
een
simulated b
y
em
plo
y
ing NI Mu
lti
si
m
12.
0 c
i
rc
ui
t si
mul
a
t
o
r.
Keyword:
Fuel cell
Hy
bri
d
p
o
we
r sy
stem
Mu
lti-in
pu
t inverter
Pho
t
ov
o
ltaic array
PW
M con
t
r
o
ller
W
i
nd
turb
in
e
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
No
r Zai
h
ar
Ya
hay
a
,
Depa
rtm
e
nt of
Electrical an
d Electronic
Engineering,
Un
i
v
ersiti Tekn
o
l
o
g
i
Petro
n
a
s,
Ban
d
a
r
Ser
i
Isk
a
nd
ar
, Tro
noh
3
175
0, Per
a
k, Malaysia.
Em
a
il: n
o
r
zaihar_
yah
a
ya@petron
a
s.co
m
.
my
1.
INTRODUCTION
The de
velopment of alternati
v
e ene
r
gy sources is
continuously increa
sing
because of the limited
con
v
e
n
t
i
onal
e
n
er
gy
so
urce
s suc
h
as oi
l
,
g
a
s and
ot
he
rs.
No
waday
s
, t
h
e con
v
e
n
t
i
onal
ener
gy
so
urc
e
s are
cu
rren
tly d
ecreased
and
fu
tu
re will co
llap
s
e. Mo
reo
v
e
r,
env
i
ro
n
m
en
tal co
n
cern
s
su
ch
as g
l
o
b
a
l warm
i
n
g
are
becom
i
ng i
n
c
r
easi
ngl
y
seri
o
u
s a
nd
re
qui
re
si
gni
fi
ca
nt
at
t
e
nt
i
on
an
d
pl
anni
ng t
o
s
o
l
v
e
.
R
e
ne
wabl
e e
n
er
gy
(RE) sources
are the
a
n
swe
r
to t
h
ese
nee
d
s and
concer
ns, since they
a
r
e a
v
ailable as
long as t
h
e s
u
n is
burning and
because they a
r
e sustai
na
ble
as they ha
ve
no
or sm
all
im
pact on the
envi
ronm
ent. W
i
t
h
the
devel
opm
ent
o
f
R
E
t
ech
nol
og
i
e
s, t
h
e cost
of
t
h
e p
hot
ov
ol
t
a
i
c
(PV
)
ar
ray
s
,
wi
n
d
t
u
rbi
n
es
(
W
T
)
a
nd
fuel
-
cel
l
s
(FC) are e
xpec
t
ed to decrease
in futu
re and
they are gaining prom
inence as
they are
m
o
re energy effic
i
ent,
reduce
pollution a
n
d serve a
s
a prom
ising s
o
lution t
o
t
h
e
toughest e
n
ergy
crisis f
ace
d during
t
h
e recent years.
In M
a
l
a
y
s
i
a
, R
E
sou
r
ces s
u
ch
as sol
a
r an
d w
i
nd e
n
er
gy
co
n
v
ersi
on a
r
e seri
ous c
o
nsi
d
e
r
at
i
on
beca
use
th
e p
o
t
en
tial fo
r
b
o
t
h
of th
is en
erg
y
g
e
n
e
ratio
n
d
e
p
e
n
d
s
on
th
e av
ailab
ility o
f
th
e so
lar an
d
wi
nd
resou
r
ces
that varies wit
h
location. E
n
ergy
efficiency and re
newa
bl
e energy under the Ei
ght
Malaysia Plan (2001-
20
0
5
) a
n
d
Ni
nt
h M
a
l
a
y
s
i
a
n Pl
an (
2
00
6
-
2
0
1
0
)
are
f
o
cu
sed
o
n
t
a
r
g
et
i
n
g f
o
r
rene
wa
bl
e ene
r
gy
t
o
be si
gni
fi
cant
cont
ri
b
u
t
o
r a
n
d f
o
r
bet
t
e
r ut
i
l
i
zat
i
on of e
n
e
r
gy
res
o
urces
.
An em
phasi
s t
o
f
u
rt
her r
e
d
u
c
e
t
h
e de
pen
d
e
n
cy
o
n
pet
r
ol
eum
pr
ov
i
d
es f
o
r m
o
re e
f
f
o
rt
t
o
i
n
t
e
grat
e alternative
source
of e
n
ergy
[1].
A hy
bri
d
re
ne
wabl
e e
n
er
gy
gene
rat
i
o
n sy
s
t
em
(HR
E
GS
)
com
b
i
n
es m
o
re t
h
a
n
o
n
e e
n
ergy
s
o
u
r
ce.
Th
e m
a
in
adv
a
n
t
ag
e
of im
p
l
e
m
en
tin
g
HREGS is t
h
e en
h
a
n
cem
en
t o
f
reliab
ility o
f
th
e
syste
m
u
s
ed
an
d also
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 4
0
–
52
41
can re
duce t
h
e
battery size. Nowa
days, the
s
e syste
m
s ar
e
im
port
a
nt
a
nd
bet
t
e
r t
h
a
n
co
n
v
ent
i
o
nal
sy
st
em
s. In
order to accom
m
odate diffe
r
ent
renewa
ble
ene
r
gy s
o
urc
e
s, the
conce
p
t of m
u
lti-i
nput
inverte
r
ha
ve been
p
r
op
o
s
ed
. Some literatu
resh
as
p
a
id
attentio
n
to HREG
S recen
tly. Mo
st of t
h
e m
u
lti-in
pu
t conv
erters are
base
d onm
u
lti-
input DC-DC boost
converte
r [2], [3],
[4], [5] and m
o
st of the
m
u
lti-
input
inverters
consi
s
ts of
a bu
ck
/
b
u
c
k-bo
o
s
t
fu
sed
m
u
lti-in
pu
t DC
-DC con
v
e
rter and
a
fu
ll-bridg
e
DC-AC i
n
v
e
rter [6
],
[7
]. Th
e m
a
in
d
i
sadv
an
tag
e
s
o
f
th
ese t
o
po
l
o
g
i
es are co
m
p
lex
ity in
op
eratio
n
a
t wi
d
e
variab
le inpu
t vo
ltag
e
fro
m
d
i
fferen
t
ener
gy
s
o
u
r
ces
t
o
pr
od
uce a
c
onst
a
nt
out
put
vol
t
a
ge
t
o
t
h
e l
o
ad
.T
hi
si
nve
rt
er i
s
used
i
n
se
veral
st
a
g
es i
n
po
we
r
con
v
e
r
si
o
n
w
h
i
c
h i
n
creases t
h
e n
u
m
b
er of
po
we
r swi
t
c
he
s and c
o
m
pone
nt
s an
d com
p
l
i
cat
ed co
nt
rol
s
y
st
em
.
These
disa
dva
ntages
incre
a
se
the c
o
st, size
a
n
d wei
ght
of the h
ybrid system
an
d
th
e con
t
ro
l
b
e
co
m
e
d
i
fficu
lt.
The o
b
j
ect
i
v
e
of t
h
i
s
pape
r i
s
t
o
pr
o
pose a
m
u
lt
i
-
i
nput
D
C
-AC
i
n
vert
er
fo
r hy
bri
d
PV
,
W
T
an
d FC
p
o
wer system
wh
ich
co
n
s
is
ts o
f
a m
u
lti-in
pu
t DC
-DC
flyb
ack conv
erter and
a si
n
g
l
e
ph
ase
fu
ll-b
r
i
d
ge DC-
AC
i
n
vert
e
r
i
n
o
r
de
r t
o
pr
o
d
u
ce a
co
nst
a
nt
o
u
t
p
ut
vol
t
a
g
e
fr
om
t
h
e di
ff
erent
e
n
e
r
gy
s
o
u
r
ces.
A
s
t
h
e
p
o
we
r
fr
om
PV and
wi
n
d
so
u
r
ces i
s
i
n
t
e
rm
it
t
e
nt
, a char
ge c
ont
r
o
l
l
e
r i
s
use
d
t
o
pr
ovi
de u
n
i
n
t
e
rr
upt
e
d
s
u
p
p
l
y
t
o
t
h
e
con
v
e
r
t
e
r
whi
l
e t
h
e
po
wer
f
r
om
FC
so
urc
e
i
s
sam
e
vol
t
a
ge l
e
vel
s
a
n
d
co
nst
a
nt
.
The
ad
vant
a
g
es
o
f
t
h
e
p
r
op
o
s
ed
m
u
lti
-inp
u
t
DC
-AC
in
v
e
rter are: i) sim
p
le
co
n
f
ig
uration
,
ii) h
i
g
h
ex
tend
ib
ility an
d
flex
ib
ility, iii)
in
crease the efficien
cy and
reliab
ility o
f
th
e in
v
e
rter in
a lo
wer co
st and
less size, and
i
v) su
ited
fo
r h
ybrid
ren
e
wab
l
e en
erg
y
app
licatio
n
with
m
o
re th
an two inp
u
t
sou
r
ces.
2.
PROP
OSE
D
HYBRID
S
Y
S
TEM
The use of separate single input inverte
r
s in HREG
S lead
s to
relativ
ely co
m
p
lex
co
nfigu
r
ation
,
h
i
gh
cost
an
d l
o
w
i
n
t
e
g
r
at
i
o
n
.
As
an al
t
e
r
n
at
i
v
e,
m
u
lt
i
-
i
nput
i
n
v
e
rt
er i
s
use
d
t
o
red
u
ce c
o
m
p
l
e
xi
t
y
;
im
prove
p
o
w
e
r
den
s
i
t
y
and re
duce t
h
e cost
of
hy
bri
d
p
o
w
er sy
st
em
s [8]
.
Fi
gu
re 1 s
h
o
w
s t
h
e bl
ock
di
ag
ram
of pr
op
ose
d
m
u
lt
i
-
i
nput
dc-
ac i
nve
rt
er i
n
HR
EG
S. It
c
o
nsi
s
t
s
o
f
a t
h
re
e i
n
p
u
t
fl
y
b
ac
k
dc-
d
c c
o
n
v
ert
e
r an
d a si
n
g
l
e
pha
se
ful
l
bri
dge
dc
-
ac i
n
v
e
rt
er
. T
h
e M
a
xi
m
u
m
Powe
r
Poi
n
t
Tr
a
c
king
(MPPT
)
is de
dicated t
o
extract the
m
a
xim
u
m
po
we
r p
o
i
n
t
f
r
o
m
phot
o
v
o
l
t
a
i
c
array
and
w
i
nd t
u
rbi
n
e by
usi
n
g pe
rt
u
r
bat
i
on a
nd
obs
er
v
a
t
i
on o
f
M
PPT
. The
opt
i
m
u
m
fuel
cel
l
operat
i
o
n r
a
nge i
s
set
by
Prot
o
n
Ex
c
h
an
ge M
e
m
b
rane Fuel
C
e
l
l
(PEM
FC
) and c
h
a
r
gi
ng
o
r
di
scha
rgi
n
g
o
f
bat
t
e
ry
i
s
o
p
e
r
at
ed by
t
h
e c
h
a
r
ge
co
nt
r
o
l
l
e
r.
Fig
u
re
1
.
Blo
c
k
d
i
agram
o
f
propo
sed m
u
lti-i
n
pu
t
d
c
-ac inverter ap
p
lication
for
HREGS
Th
e
po
wer
ou
tp
u
t
fro
m
ren
e
wab
l
e en
erg
y
sou
r
ces will
b
e
reg
u
l
ated
b
y
the th
ree inpu
t fl
yb
ack d
c
-dc
co
nv
erteru
tilizin
g
Pu
lse
W
i
d
t
h
Mod
u
l
ation
(PW
M
) con
t
rol sch
e
m
e
to
t
h
e po
wer swit
ch
es. Th
en, the d
c
p
o
wer o
u
t
p
u
t
fro
m
th
eco
nv
erter will b
e
stab
ilized
b
y
th
e sin
g
l
e p
h
ase fu
ll b
r
idg
e
d
c
-aci
n
v
e
rter
u
s
ing
Si
nus
oi
dal
P
u
l
s
e
W
i
dt
h M
o
d
u
l
a
t
i
o
n
(S
P
W
M
)
co
nt
r
o
l
t
o
achi
e
ve
t
h
e i
n
put
o
u
t
p
ut
po
wer
fl
o
w
bal
a
nce.
Th
e
expect
e
d
out
p
u
t
fr
om
t
h
e i
nve
rt
er i
s
2
4
0
V
A
C
, 5
0
H
z
f
r
e
que
ncy
an
d
2
5
0
W
po
we
r
out
put
.
3.
RENEWABL
E ENERGY
SOURCES
3.
1. Ph
ot
ov
ol
t
a
i
c
Arr
a
y
Th
e
p
h
o
t
ovo
ltaic array is constru
c
ted
b
y
m
a
n
y
series
o
r
p
a
rallel co
nn
ected
so
lar cells [9], [10
]
. The
el
ect
rom
a
gnet
i
c
radi
at
i
on
of
sol
a
r ene
r
gy
can be di
rec
t
l
y
convert
e
d
t
o
el
ect
ri
ci
t
y
thr
o
ug
h p
h
o
t
o
v
o
l
t
a
i
c
effect
.T
he eq
u
i
val
e
nt
ci
rcui
t
of t
h
e ge
ner
a
l
m
odel
whi
c
h
consi
s
t
s
o
f
a ph
ot
o cu
rre
nt
, a di
ode
, a p
a
ral
l
e
l
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Mu
lti-in
pu
t
DC-AC In
verter
fo
r Hyb
r
i
d
Renewa
b
l
e En
erg
y
Po
wer S
y
stem
(
N
.Z. Y
a
hay
a
)
42
resistor e
x
pres
sing a leaka
g
e current, a
nd a
series resistor
descri
bi
n
g
an i
n
t
e
r
n
al
re
sistance to the curre
nt flow
is illu
strated
in Figu
re 2.
Fi
gu
re
2.
The
e
qui
val
e
nt
ci
rc
u
i
t
of a
sol
a
r cel
l
The m
o
st
com
m
on
m
odel
us
ed t
o
p
r
e
d
i
c
t
ener
gy
pr
od
uct
i
o
n
i
n
p
hot
ov
ol
t
a
i
c
cel
l
m
odel
i
ng i
s
t
h
e
sin
g
l
e
d
i
od
e circu
it m
o
d
e
l [1
1
]
.
Th
is equ
i
v
a
len
t
circu
it
m
o
d
e
ls th
e g
e
n
e
ral
form
th
e equ
a
tio
n th
at
relates
cu
rren
t and
v
o
l
tag
e
in
a pho
tov
o
ltaic cell as
g
i
v
e
n
in Eq
.
(1) to Eq.
(3).
Ip
v
I
s
c
I
o
e
1
V
I
R
s
Rp
(1
)
Vp
v
V
d
R
s
.
I
p
v
(2
)
Vp
v
N
s
.
V
p
v
(3
)
whe
r
e,
I
pv
is solar cell cu
rren
t
(A), I
sc
i
s
l
i
ght
gene
rat
e
d c
u
r
r
ent
(
A
)
,
I
o
i
s
di
o
d
e sat
u
rat
i
on cu
rre
nt
(
A
), q i
s
electron c
h
arge (
1.6x10
C
, k i
s
B
o
l
t
z
m
a
nn`s c
o
nst
a
nt
(
1
.
38x10
j/
K
), T
c
is cell te
m
p
eratu
r
e in
Kelv
in
(K),
V
pv
is so
lar cell o
u
t
pu
t vo
ltage (V), R
s
is solar cell series resistance (
Ω
), R
p
is so
lar cell
sh
un
t
resistance (
Ω
) an
d
N
s
is
n
u
m
b
e
r of cells in series.
A n
u
m
b
er o
f
app
r
oaches
fo
r
cel
l
s
and m
odul
es pa
ram
e
t
e
r
det
e
rm
i
n
at
i
on can be a
d
o
p
t
e
d usi
ng t
h
e
datasheet of param
e
ters
specified
by
m
a
nuf
act
urer
o
r
m
e
asure
d
.
The
per
f
o
r
m
a
nce of s
o
l
a
r cel
l
i
s
no
r
m
al
ly
ev
alu
a
ted
u
n
d
e
r th
e stan
d
a
rd
test co
n
d
ition
(STC), wh
ere
an
av
erag
e so
lar sp
ectru
m
at
AM 1
.
5
is u
s
ed
, the
irrad
i
an
ce is
no
rm
alized
to
10
00W
/m
2
,
an
d th
e cell tem
p
eratu
r
e is
d
e
fined
as 25
ºC.
3.
2.
M
axi
m
u
m Pow
er
Poi
n
t T
r
ac
ki
ng
Al
gori
t
hm
In
o
r
de
r t
o
ut
i
l
i
ze t
h
e m
a
xim
u
m
out
put
p
o
we
r
fr
om
t
h
e p
hot
ov
ol
t
a
i
c
array
a
n
d
wi
n
d
t
u
rbi
n
e, a
n
app
r
op
ri
at
e co
nt
r
o
l
al
go
ri
t
h
m
i
s
adopt
ed
.
Gene
ral
l
y
, t
h
e
m
a
xim
u
m
p
o
we
r p
o
i
n
t
t
r
a
c
ki
n
g
ef
fi
ci
en
ci
es (
η
MPPT) of
the th
r
e
e co
mmo
n algo
r
ith
m
s
fo
r
ph
o
t
o
v
o
l
taic ar
r
a
y ar
e show
n in
[
1
2
]
. Per
t
ur
b
a
tion
and
obs
er
vat
i
o
n
m
e
t
h
o
d
i
s
one
o
f
t
h
e m
o
st
com
m
onl
y
used [
1
3]
. T
h
e pe
rt
u
r
b
a
t
i
on
of t
h
e
out
put
p
o
we
r i
s
ac
hi
eve
d
by
pe
ri
o
d
i
cal
l
y
cha
ngi
ng
(ei
t
h
er i
n
c
r
easi
n
g
o
r
decreasi
n
g
)
t
h
e c
ont
rol
l
e
d
o
u
t
p
ut
p
o
w
er
. T
h
e
pert
ur
bat
i
o
n
an
d
obs
er
vat
i
on m
e
t
h
o
d
i
s
ap
pl
i
e
d t
o
det
e
rm
i
n
e t
h
e chan
gi
n
g
di
rect
i
o
n o
f
t
h
e l
o
ad beca
use
t
h
e out
put
p
o
w
er
of
t
h
e p
h
o
t
o
vol
t
a
i
c
array
a
n
d
wi
nd
t
u
rbi
n
e are
not
c
o
nst
a
nt
.
3.
3. Wi
nd
T
u
r
b
i
n
e
W
i
nd
turb
i
n
es
co
nv
ert th
e k
i
n
e
tic
energy present in t
h
e wind int
o
m
echanical energy by
m
eans of
pr
o
duci
ng t
o
r
q
ue.
Am
ong
va
r
i
ous t
y
pe
s o
f
wi
n
d
t
u
rbi
n
es,
t
h
e pe
rm
anent
m
a
gnet
sy
nc
hr
on
o
u
s
wi
n
d
t
u
rbi
n
e
,
wh
ich
has h
i
gh
er
reliab
ility
an
d
efficien
cy, is p
r
efer
red [1
4
]
,
[15
]
. Th
e av
ailab
l
e power
o
f
wi
n
d
en
erg
y
sy
st
em
i
s
gi
ve
n i
n
E
q
.
(4
).
P
1
2
ρAV
(4
)
Whe
r
e,
ρ
(kg/
m
)
is the air de
nsity and Ais t
h
e area
swe
p
t
out
by
t
u
rbi
n
e bl
ade
i
n
(m
), whi
l
e
V
wind
is th
e
wi
n
d
sp
eed
in (m
/s). To d
e
scrib
e
a
wind
turb
in
e
po
wer ch
ar
acteristic, this Eq.
(4) desc
ribes
the m
echanical powe
r
gene
rat
e
d
by
t
h
e
wi
n
d
.
The
e
quat
i
o
n i
s
g
o
v
e
r
ne
d
by
E
q
.
(
5
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 4
0
–
52
43
P
1
2
ρAV
³
Cp
λ
,β
(5
)
Whe
r
e,
ρ
is t
h
e
air d
e
n
s
ity (k
g
/
m³), A is th
e area o
f
th
e t
u
rb
ineb
lad
e
s (m
²),
V is th
e wi
n
d
velo
city (m/s), an
d C
p
is the
po
we
rco
e
fficient.T
h
e
p
o
we
r c
o
e
fficient (C
p
) is a
non
lin
ear fun
c
tion
that rep
r
esents th
e efficien
cy o
f
the
w
i
nd
tur
b
i
n
e to
conv
er
t
w
i
nd
energy into m
echanical e
n
er
gy
. It
depe
n
d
s
on t
w
o
va
ri
abl
e
s, t
h
e t
i
p
s
p
ee
d rat
i
o
(TSR
)
an
d t
h
e
pi
t
c
h a
n
gl
e. T
h
e T
S
R
(
λ
)
refers to a
ratio
of th
e tu
rb
in
e an
gu
lar sp
eed
ov
er th
e
wind
sp
eed.
The
pi
t
c
h a
n
gl
e (
β
) refers to
t
h
e an
g
l
e i
n
which
th
e t
u
rb
in
e
b
l
ad
es
are align
e
d with resp
ect to
its lo
ng
itud
i
n
a
l
ax
is. Th
e
v
a
l
u
e of TSR
is ob
tain
ed
fro
m
Eq
.
(6
).
TSR
λ
Rω
V
(6
)
Whe
r
e, R is the radius
of the
roto
r o
f
the w
i
nd tu
rbi
n
e (m
), an
d
ω
is th
ero
t
ation
a
l sh
aft
sp
eed
o
f
th
e
wi
nd
tu
rb
in
e (rad
/
s).
3.
4. Fuel
Cel
l
Fuel cells are electrochem
i
cal devices that proces
s H
2
an
d o
x
y
g
e
n
t
o
ge
ner
a
t
e
el
ect
ri
c power
, havi
n
g
wat
e
r
va
po
r as
t
h
ei
r
o
n
l
y
by
-
p
r
o
duct
[1
6]
.
There
are
seve
ral
ki
nds
o
f
fu
el
cel
l
.
In
pa
rt
i
c
ul
ar,
p
r
ot
on
e
x
cha
n
g
e
me
m
b
rane fuel
cell has reached a high deve
lopm
ent status
. In the last decade, a great num
ber of researcher’s
has
bee
n
c
o
n
d
u
ct
ed t
o
i
m
pro
v
e t
h
e
pe
rf
o
r
m
a
nce
of
t
h
e
proton e
x
cha
n
ge
m
e
m
b
rane fuel cell, so t
h
at it ca
n
reach a signific
ant m
a
rket pe
netration.
Prot
o
n
e
x
cha
n
ge m
e
m
b
rane
fuel
cel
l
pri
m
ari
l
y
consi
s
t
s
o
f
t
h
ree
com
p
o
n
e
nt
s:
a
negat
i
v
e
l
y
char
ged
electrode
(cat
hode
), a posit
i
vely
charged electrode
(anode
) and a s
o
lid polym
er electrolyte
m
e
mbra
ne.
Hy
dr
at
ed
hy
dr
oge
n
gas i
s
s
u
p
p
l
i
e
d at
t
h
e a
n
ode a
n
d ai
r i
s
s
u
p
p
l
i
e
d at
t
h
e
cat
ho
de.
At
t
h
e
ano
d
e,
hy
dr
og
en g
a
s
in
th
e
presen
ce of th
e p
l
atinu
m
catalys
t is io
n
i
zed
in
t
o
p
o
s
itiv
ely ch
arg
e
d h
y
d
r
og
en
io
n
s
and
n
e
g
a
tiv
ely
charge
d electrons.
The
reaction at
t
h
e
an
o
d
e i
s
gi
ve
n
by
E
q
.
(
7
):
H
2H
2
e
(7
)
Th
ere are three v
o
ltag
e
l
o
sses in
vo
lv
ed
in
fuel ce
l
l
out
put
v
o
l
t
a
ge w
h
e
n
t
h
e cur
r
ent
fl
owi
ng t
h
r
o
u
g
h
the external circuit. Thos
e are
act
i
v
at
i
on p
o
l
a
ri
zat
i
on,
o
h
m
i
c pol
a
r
i
zat
i
on
and c
o
ncent
r
at
i
on
pol
a
r
i
zat
i
on. T
h
e
out
put
v
o
l
t
a
ge of
a
si
n
g
l
e
cel
l
can be defi
ned
by
t
h
e f
o
l
l
o
wi
n
g
E
q
.
(
8
):
V
E
V
V
V
(8
)
Whe
r
e,
V
FC
i
s
t
h
e o
u
t
put
v
o
l
t
a
ge
of
a si
ngl
e
cel
l
,
E
ner
n
st
is
the electroc
h
e
m
ical therm
odynamic pote
n
tial of
th
e cell and
it represen
ts its rev
e
rsi
b
le vo
ltag
e
,
wh
ich
is an
id
eal
o
u
t
pu
t v
o
ltag
e
.
V
act
is th
e vo
ltag
e
dro
p
du
e
to
th
e activ
atio
n
of th
e an
ode an
d
cat
ho
d
e
. V
ohm
ic
is a
measure
of ohmic voltage
drop ass
o
ciated with the
co
ndu
ctio
n of th
e pro
t
o
n
s
th
ro
ugh
th
e so
lid
electro
lyte an
d
electron
s
throug
h
t
h
e in
tern
al electron
ic
resistances a
n
d V
conc
rep
r
esen
ts th
e vo
ltag
e
d
r
o
p
resu
lting fro
m
th
e co
n
c
en
tration
or mass tran
sp
ortatio
n
of
the reacting
ga
ses.
3.5. Specific
a
tion of
Re
newable Energy
Sources
The s
p
ecificati
o
n of t
h
e
rene
wable
ene
r
gy
s
o
urces
su
ch
as
p
h
o
t
ovo
ltaic array,
wind
turb
in
e and
fu
el
cell as listed
in Tab
l
e
I are
u
s
ed
an
d im
p
l
e
m
en
ted
i
n
t
h
e
propose
d
sc
hem
e
. T
h
e table
shows c
h
aracte
r
istics of
sol
a
r
pa
nel
m
odel
SM
10
0,
wi
nd
t
u
rbi
n
e m
o
d
e
l
10
0S
an
d
f
u
el
cel
l
m
odel
H
-
1
0
0
PEM
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Mu
lti-in
pu
t
DC-AC In
verter
fo
r Hyb
r
i
d
Renewa
b
l
e En
erg
y
Po
wer S
y
stem
(
N
.Z. Y
a
hay
a
)
44
Tabl
e 1. Speci
f
i
cat
i
on
o
f
R
e
ne
wabl
e Ene
r
gy
So
urces
Solar
Panel
M
odel SM
100
Peak power
output
100W
17.
5V
5.
72A
6.
30A
21.
5V
36 &
72 M
ono cells
-
40°
C ~ 90°
C
M
a
xim
u
m
power
v
o
ltage
M
a
xim
u
m
power
cur
r
e
nt
Short circuit curre
n
t
Open circuit volta
ge
No.
and ty
pe of cell
Working te
m
p
er
at
ure
W
i
nd T
u
r
b
ine M
o
del 100S
Rated power
100W
M
a
xim
u
m
power
130W
No
m
i
n
a
l v
o
ltag
e
1
2
/
2
4
V
Star
t
-
up wind speed
2.
0
m
/s
Rated
win
d
sp
eed
1
0
m
/
s
Su
rv
iv
al win
d
sp
eed
5
5
m
/
s
Gener
ator
Per
m
an
ent M
a
gnet Sy
nchronous
W
o
r
k
ing tem
p
eratur
e
-
40°
C ~ 80°
C
Fuel Cell M
odel
H-
100PE
M
Typ
e
o
f
f
u
el cell
P
r
o
t
o
n
Ex
ch
an
g
e
Me
m
b
ran
e
Nu
m
b
e
r
o
f
cells
2
0
Rated power
100W
Perf
o
r
m
a
n
ce
1
2
V
@8
.3
A
Reactants
H
y
drogen and Air
Max stack te
m
p
era
t
ure
65°C
H2 pr
essur
e
0.
45-
0.
55bar
Ef
f
i
cien
cy o
f
stack
4
0
%
@
1
2
V
4.
MULTI
-IN
P
UT D
C
-
A
C
I
NVE
RTER
C
I
RC
UIT T
O
P
O
LOG
Y
The sc
hem
a
ti
c
di
ag
ram
of t
h
e pr
o
pose
d
m
u
l
t
i
-i
n
put
DC
-AC
i
nve
rt
er i
s
sh
o
w
n i
n
Fi
g
u
re
3.
It
con
s
i
s
t
s
of a c
o
m
b
i
n
ed
t
h
ree i
n
p
u
t
fl
y
b
ack
DC
-
D
C
c
on
ve
rt
er t
o
pol
o
g
y
an
d a si
n
g
l
e
phase
f
u
l
l
bri
d
ge dc
-ac i
n
vert
er. B
y
appl
y
i
n
g
t
h
e P
W
M
cont
rol
s
c
hem
e
and dri
v
er ci
rc
ui
t
t
o
the DC
-
D
C
co
nve
rt
er, t
h
e
po
wer can
be del
i
vere
d
fro
m
th
e so
urce in
d
i
v
i
du
ally an
d sim
u
ltan
e
o
u
s
ly. Mean
wh
ile, th
e con
v
e
rter
o
u
t
p
u
t
vo
ltag
e
will b
e
regu
lated
b
y
th
e
d
c
-ac inv
e
rter with th
e
SPW
M
con
t
ro
l sch
e
m
e
to
g
e
t
th
e con
s
tan
tin
pu
t-o
u
t
p
u
t
po
wer
b
a
lan
ce.
DC-
D
C Co
n
verter
DC-
A
C In
v
e
rter
Fig
u
re
3
.
Sch
e
matic d
i
ag
ram
o
f
propo
sed
mu
lti-in
pu
tinv
e
rt
er
4.1. Three Input Fl
yback
DC-DC Conver
ter
Mu
ltip
le-inp
u
t
DC-DC con
v
erters are
u
s
ed to
co
m
b
in
e sev
e
ral inpu
t p
o
wer sou
r
ces
wh
ere
v
o
ltag
e
l
e
vel
s
an
d/
or
p
o
we
r ca
paci
t
y
are di
f
f
ere
n
t
f
o
r re
gul
at
ed
o
u
t
put
vol
t
a
ge
[
1
7
]
. The p
r
op
ose
d
i
s
ol
at
ed t
h
ree
i
n
p
u
t
fl
y
b
ack
DC
-
D
C
c
on
vert
e
r
ha
s
a si
m
p
l
e
i
s
ol
at
ed t
o
pol
ogy
an
d thu
s
in
cu
rri
n
g th
e lowest
co
st, least nu
m
b
er
of
po
we
r com
p
o
n
e
nt
s, easi
l
y
u
n
d
erst
oo
d a
n
d e
a
sy
t
o
i
m
pl
ement
,
i
t
i
s
wel
l
sui
t
e
d
fo
r
hy
br
i
d
re
newa
bl
e e
n
er
gy
appl
i
cat
i
o
n wi
t
h
m
o
re t
h
an
t
w
o i
n
put
so
u
r
ces. A fl
y
b
ac
k i
s
a coupl
e
d
i
nduct
o
r an
d
i
s
not
a t
r
ue base
d
transform
e
r conve
rter. Thepro
pose
d c
o
nve
r
ter can acce
pt up to three
in
put
sources by other
c
o
m
p
etitors
wit
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 4
0
–
52
45
t
h
e sam
e
vol
t
a
ge l
e
vel
.
It
o
n
l
y
has one
pri
m
ary
cou
p
l
e
d i
n
duct
o
r
wi
n
d
i
n
g
,
whi
c
h can
tr
an
s
f
er
th
e
power to
th
e
l
o
ad i
ndi
vi
d
u
al
l
y
or si
m
u
l
t
a
neousl
y
wi
t
h
l
o
w
e
r v
o
l
t
a
ge
st
res
s
es o
n
t
h
e
po
w
e
r s
w
i
t
c
hes.
Th
e co
nve
rt
er
use
s
t
h
e
pri
n
ci
pl
e of
m
a
gnet
i
c
cou
p
l
i
ng t
o
c
o
m
b
i
n
e m
o
re i
nput
so
u
r
ces w
h
i
c
h are c
o
n
n
ect
ed i
n
paral
l
el
. The
adva
nt
age
s
o
f
pr
o
pose
d
c
o
n
v
e
rt
er are t
h
e ga
l
v
ani
c
i
s
ol
a
tion is a desi
red
feature s
o
that faults on one si
de do
not
a
ffect
t
h
e
o
t
her si
de
of t
h
e
co
nve
rt
er
[
18]
, an
d t
h
e l
eaka
g
e i
n
d
u
ct
o
r
e
n
ergy
of
t
h
e c
o
u
p
l
e
d i
n
d
u
ct
o
r
c
a
n
be
recycled, t
hus
i
n
creasi
n
g the
e
fficiency a
n
d restrain
ing
t
h
e
v
o
ltag
e
stress acro
ss th
e active switch [1
9
]
.
Tabl
e 2. 8-M
o
des o
p
erat
i
o
n o
f
t
h
ree input fl
yback
D
C
-D
C co
nv
er
ter
M
ode Sour
ce
Q
1
Q
2
Q
3
Q
4
D
1
D
2
D
3
1 Vin1
On
Of
f
Of
f
On
On
On
Of
f
2
Vin2
Of
f
On Of
f On
On
On
Of
f
3
Vin3
Of
f
Of
f
On On On
On
Of
f
4
Vin1+Vin2
On
On Of
f On
On
On
Of
f
5
Vin2+Vin3
Of
f
On On On On
On
Of
f
6
Vin1+Vin3
On
Of
f
On On On
On
Of
f
7
Vin1+Vin2+Vin3
On
On On On On
On
Of
f
8
Vin1+Vin2+Vin3
Of
f
Of
f Of
f Of
f Of
f
Of
f
On
To achie
ve as
uccess
f
ul de
sign
of t
h
epropose
d
conve
rter, the Metal Oxide Sem
i
conduct
o
r Fiel
d
Effect
(M
OSF
ET) ha
d bee
n
cho
o
se
n. I
n
t
h
i
s
pape
r,
the co
nv
erter ad
op
ts th
r
ee input sources s
u
ch a
s
p
h
o
t
ovo
ltaic
array, wind
tu
rb
in
e and
fu
el
cell.
Ou
tpu
t
fro
m
th
is co
nv
erter is con
n
e
cted
to fu
ll
b
r
idg
e
DC-
ACinv
e
rter b
e
fo
re d
e
liv
ering
th
e
p
o
wer to th
e ac lo
ad
s.
In th
is section
,
t
h
e an
alysis of
th
ree i
n
pu
t
flyb
ack
DC
-
D
C
c
o
n
v
ert
e
r t
o
p
o
l
o
gy
i
s
expl
ai
ne
d. Ta
bl
e 2 sh
ows t
h
e HR
E
G
S u
n
d
er di
ffe
rent
o
p
erat
i
o
n m
odes by
PW
M co
n
t
ro
ll
er of three inpu
t flyb
ac
k c
o
n
v
ert
e
r
.
T
h
i
s
t
a
b
l
e sho
w
s t
h
e e
qui
val
e
nt
ci
rc
u
i
t
s
con
d
i
t
i
on
fo
r m
ode
1
un
til
m
o
d
e
8, resp
ectiv
ely.
Th
ese
o
p
e
rating
m
o
d
e
s are em
p
l
o
y
ed
to
feed
th
e lo
ad
b
y
op
ti
m
i
zin
g
th
e en
erg
y
obt
ai
ne
d
fr
om
t
h
e re
ne
wabl
e
ener
gy
s
o
u
r
ces
.
From
t
h
e Tabl
e 2, M
ode
1 s
h
ows
t
h
e s
w
i
t
c
h
e
s Q
1
and
Q
4
are cond
u
c
ting
wh
ile
Q
2
a
nd
Q
3
ar
e
tur
n
ed
of
f. D
1
and D
2
are conducting, D
3
are bl
oc
k
e
d. T
h
e p
hot
ov
ol
t
a
i
c
vol
t
a
ge s
o
u
r
ce V
in1
is app
lied
to
th
e primary
wi
n
d
i
n
g
of t
h
e
co
upl
e i
n
d
u
ct
or a
n
d c
u
r
r
ent
of
t
h
e
p
r
im
ar
y winding inc
r
eases linear
ly. The i
n
duct
or
of t
h
e
couple induct
o
r accum
u
lates
energy, and the load
curre
nt
is provi
d
ed
by the filter capa
c
itor, C
2
. Du
ri
ng
t
h
i
s
m
ode, Q
2
and Q
3
s
u
st
ai
n t
h
e
vol
t
a
ges
of
V
in2
and V
in3
wh
ile D
3
su
st
ai
n t
h
e seco
n
d
ar
y
wi
ndi
n
g
vol
t
a
ge o
f
co
up
le indu
ctor
,
V
sec
respecti
v
ely. In m
ode
2,
Q
2
and
Q
4
ar
e co
ndu
ctin
g
an
d Q
1
an
d Q
3
are
off.
D
1
an
d D
2
are on
while D
3
are bl
ocke
d. The
wind turbi
n
e voltage source V
in2
is ap
p
lied
to
th
e
prim
ary
win
d
i
ng
o
f
t
h
e
co
up
le indu
ctor
and
cu
rr
en
t
of
th
e
p
r
im
ary wind
ing
in
creases lin
early. Du
ri
n
g
t
h
is m
o
d
e
, Q
1
and
Q
3
su
s
t
a
i
n
th
e v
o
ltag
e
s of V
in1
and V
in
3
wh
ile D
3
s
u
s
t
ai
n t
h
e secon
d
ary
wi
n
d
i
n
g
vol
t
a
ge
of co
upl
e i
n
duct
o
r
,
V
sec
resp
ectiv
ely.In th
e th
ird
m
o
de, Q
3
and Q
4
are conducting and
Q
1
and
Q
2
ar
e
of
f.
D
1
and
D
2
are
on while
D
3
a
r
e bl
oc
ke
d.
The f
u
el
-cel
l
vol
t
a
ge s
o
urce
V
in3
is app
lied
to
th
e prim
ary
wind
ing
of th
e co
up
le ind
u
c
t
o
r and
cu
rren
t
o
f
th
e
p
r
im
ary win
d
i
n
g
in
creases lin
early.
During th
is m
o
d
e
, Q
1
and Q
2
su
stain th
e vo
ltag
e
s of
V
in1
and V
in2
wh
ile D
3
sust
ai
n
t
h
e
seco
nda
ry
wi
n
d
i
n
g vol
t
a
ge o
f
c
o
u
p
l
e
i
n
d
u
ct
or
, V
sec
respectiv
ely. In th
e
m
o
d
e
4
co
nd
itio
n, Q
1
, Q
2
and
Q
4
a
r
e co
n
duct
i
ng
and
Q
3
are
off.
D
1
and
D2
are
on while
D
3
a
r
e
bl
oc
ke
d. T
h
e
p
h
o
t
ovo
ltaic vo
ltag
e
so
urce
V
in1
an
d w
i
n
d
t
u
rb
in
e
vo
ltag
e
so
ur
ce
V
in2
is ap
p
lied to
the pri
m
ary win
d
i
ng
o
f
t
h
e
co
up
le in
du
ct
or and
cu
rren
t o
f
th
e
p
r
im
ary
win
d
i
n
g
in
creases lin
early. Du
ri
ng
th
is m
o
d
e
, Q
3
su
s
t
a
i
n
th
e
vol
t
a
ge
o
f
V
in3
wh
ile D
3
su
stai
n
th
e seco
nd
ary w
i
nd
ing
v
o
l
t
a
g
e
o
f
coup
le in
du
ctor
, V
sec
respectively.
In t
h
e eq
ui
val
e
nt
ci
rcui
t
f
o
r m
ode
5,
Q
2
, Q
3
and Q
4
are c
o
n
duct
i
n
g a
n
d Q
1
are off.
D
1
and
D2
ar
e
o
n
wh
ile D
3
a
r
e
b
l
ocke
d.
The
wi
nd
t
u
rbi
n
e
vol
t
a
ge s
o
urce
V
in2
and fuel cell
voltage s
o
urce
V
in3
is app
lied
to
th
e
pri
m
ary
wi
ndi
ng
of t
h
e c
o
u
p
l
e i
nduct
o
r an
d cu
rre
nt
of t
h
e pri
m
ary
wi
ndi
n
g
i
n
crea
ses
l
i
n
earl
y
. Du
ri
ng t
h
i
s
m
ode, Q
1
sust
a
i
n t
h
e
v
o
l
t
a
ge
of
V
in1
wh
ile D
3
su
stain
t
h
e seco
nd
ar
y w
i
n
d
in
g vo
ltag
e
of
co
up
le i
n
du
ctor
,
V
se
c
respectively.In the m
ode 6,
Q
1
, Q
3
and
Q
4
are c
o
nducting a
n
d Q
2
are
off.
D
1
and
D2
are on while
D
3
are
bl
oc
ked
.
The
ph
ot
o
v
o
l
t
a
i
c
vol
t
a
ge so
urce
V
in1
and fuel
cell voltage source V
in3
is ap
p
lied
to
th
e p
r
i
m
ary
w
i
nd
ing
of
the co
up
le inducto
r
an
d
cur
r
e
n
t
of
th
e
p
r
imar
y w
i
nd
ing
i
n
cr
eases lin
early. D
u
r
i
ng
th
is
m
o
d
e
,
Q
2
s
u
st
ai
n t
h
e
vol
t
a
ge
o
f
V
in
2
wh
ile D
3
sus
t
ai
n t
h
e sec
o
n
d
ary
wi
n
d
i
n
g
vol
t
a
ge
o
f
c
o
upl
e i
n
d
u
ct
or,
V
se
c
respect
i
v
el
y
.
M
ode
7s
ho
ws al
l
t
h
e po
we
r s
w
i
t
c
hes
Q
1
, Q
2
, Q
3
and
Q
4
are conducting, and D
1
and D
2
ar
e
co
ndu
ctin
g and
D
3
are
al
l
re
versel
y
bl
oc
ke
d. T
h
e t
h
ree i
n
put
p
o
we
r s
o
u
r
ces V
in1
, V
in2
a
nd
V
in3
a
r
e c
o
nnected
i
n
paral
l
e
l
,
ap
pl
y
i
ng o
n
t
h
e
pri
m
ary
wi
ndi
ng
of t
h
e c
o
u
p
l
e
i
n
d
u
ct
o
r
.
The cu
rre
nt
of
t
h
e pri
m
ary
wi
n
d
i
n
g
in
creases lin
early. During
th
is
m
o
d
e
, on
ly D
3
sustain
th
e secon
d
a
ry wind
ing
vo
ltag
e
s o
f
coup
le in
ducto
r, V
sec
respectively.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Mu
lti-in
pu
t
DC-AC In
verter
fo
r Hyb
r
i
d
Renewa
b
l
e En
erg
y
Po
wer S
y
stem
(
N
.Z. Y
a
hay
a
)
46
For t
h
e m
ode 8, Q
1
, Q
2
, Q
3
and Q
4
are all tu
rn
ed
off,
D
1
a
nd
D
2
a
r
e re
ve
rsel
y
bl
oc
ked a
nd
D
3
is on
.
Th
e en
erg
y
st
o
r
ed
in
th
e ind
u
c
t
o
r
o
f
th
e
co
up
le in
du
ct
or is released to the
load t
h
rough the seconda
ry
w
i
n
d
i
n
g
,
an
d
th
e
cu
rr
e
n
t o
f
th
e
s
e
con
d
a
ry wind
ing
d
ecreases
lin
early. Q
1
, Q
2
, Q
3,
D1
an
d D2
su
stain
the
vol
t
a
ge
s o
f
V
in
1
, V
in2
and
V
in3
, resp
ectiv
ely.
Lastly, Q
1
, Q
2
and Q
3
a
r
e all turned
off and
the energy stored in
the couple i
n
ductor has
bee
n
released c
o
m
p
lete
l
y
and t
h
e l
o
ad c
u
rre
nt
i
s
pr
o
v
i
d
e
d
by
C
2
. I
t
’s shou
ld
be n
o
t
ed
t
h
at
t
h
i
s
m
ode
o
n
l
y
exi
s
t
s
u
nde
r di
sc
ont
i
n
uo
us
cu
rre
nt
m
ode.
Fr
om
the ab
ove anal
y
s
i
s
, we can see t
h
at
as
lo
ng
as wh
en
on
e of
Q
1
, Q
2
a
nd Q
3
is turn
ed
on
, and
Q
4
m
u
st
be t
u
rne
d
on
, an
d
Q
4
must be t
u
rned
off at the
sam
e
tim
e whe
n
Q
1
, Q
2
and Q
3
are tu
rn
ed
o
f
f. Practically, in
Mo
d
e
1
thro
ugh
Mo
d
e
3
,
th
e in
pu
t so
urces can
p
o
wer th
e lo
ad in
d
i
v
i
du
ally or sep
a
rately, M
o
d
e
4 thr
oug
h
Mo
d
e
6 th
e
pow
er d
e
liv
er
f
r
om
tw
o
inpu
t sou
r
ces
si
m
u
ltan
e
o
u
s
ly
, and
M
o
d
e
7
i
s
co
m
b
in
e all in
pu
t sou
r
ces to po
wer t
h
e lo
ad
sim
u
ltan
e
o
u
s
ly.
The co
n
v
ert
e
r
i
s
unde
r co
nt
i
n
u
o
u
s
cur
r
e
n
t
m
ode, i
n
w
h
i
c
h t
h
e p
o
we
r
pr
o
v
i
d
e
d
by
p
hot
ov
ol
t
a
i
c
array
a
s a
V
in1
,
wind turbi
n
eas
a V
in2
a
n
d fuel
cell as a V
in3
c
a
n
be c
ont
r
o
l
l
e
d
by
t
h
e
dut
y
c
y
cl
es
δ
1
,
δ
2
and
δ
3
of
th
e p
o
wer switch
e
s Q
1
, Q
2
and
Q
3
. In sim
u
lation, the ass
u
m
p
tion are tha
t
δ
1
the duty cycle of Q
1
is eq
u
a
l to
δ
2
the
duty cycle ofQ
2
, a
n
d
δ
2
the
duty cycle ofQ
2
is equ
a
l
to
δ
3
the
duty
cycle ofQ
3.
In
m
o
d
e
s 1
un
til 8
,
the
increase i
n
t
h
e
coupled inductor m
a
gnetic flux is
go
v
e
r
n
ed
by Eq
. (9
) to
Eq.
(16
)
r
e
sp
ectively.
∆∅
V
N
δ
T
(9
)
∆∅
V
N
δ
T
(1
0)
∆∅
V
N
δ
T
(1
1)
∆∅
V
δ
V
δ
2N
T
(1
2)
∆∅
V
δ
V
δ
2N
T
(1
3)
∆∅
V
δ
V
δ
2N
T
(1
4)
∆∅
V
δ
V
δ
V
δ
3N
T
(1
5)
Whe
r
e,
Ts i
s
a
swi
t
c
hi
n
g
peri
od
.
Th
e
d
ecrease i
n
th
e coup
led in
du
ctor m
a
g
n
e
tic flu
x
is;
∆∅
V
N
1
δ
T
(1
6)
In
a s
w
i
t
c
hi
n
g
peri
od
, t
h
e
co
u
p
l
e
d i
n
d
u
ct
or
m
a
gnet
i
c
fl
u
x
i
s
co
nse
r
vat
i
v
e
,
nam
e
l
y
gi
ven
by
E
q
.
(1
7
)
.
∆∅
∆
∅
∆
∅
∆
∅
(1
7)
From
Eq.
(
9
)
t
o
E
q
.
(
1
7
)
,
t
h
e
out
put
v
o
l
t
a
ge
equat
i
o
n
V
o
i
s
deri
ved
as E
q
.
(1
8)
.
V
1
n
V
δ
V
δ
V
δ
31
δ
(1
8)
The i
n
p
u
t
cur
r
e
nt
s o
f
t
h
ree i
n
put
s
o
urces ca
n be
o
b
t
a
i
n
e
d
a
s
st
at
ed i
n
E
q
.
(1
9)
, E
q
. (
2
0)
and
Eq
. (
2
1
)
respectively.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 4
0
–
52
47
I
I
δ
n1
δ
V
δ
V
δ
/2
2L
T
(1
9)
I
I
δ
n1
δ
V
δ
V
δ
/2
2L
T
(2
0)
I
I
δ
n1
δ
V
δ
V
δ
/2
2L
T
(2
1)
T
h
e
av
e
r
ag
e ou
tpu
t
c
u
r
r
e
n
t
I
o
, E
q
,
(2
2
)
i
s
fo
un
d t
o
be
I
1
2
I
I
1
δ
(2
2)
Whe
r
e, I
sm
a
x
and
I
sm
i
n
are t
h
e m
a
xim
u
m
and m
i
nim
u
m
val
u
e of t
h
e sec
o
nd
ary
wi
n
d
i
n
g cu
rre
nt
of t
h
e co
upl
e
d
in
du
ctor
, r
e
sp
ectiv
ely.
Fo
r th
e con
t
rol str
a
teg
i
es, the iso
l
ated th
r
e
e in
pu
t
f
l
yb
ack
D
C
-D
Cconver
t
er
sho
u
l
d
ach
i
ev
e th
e
fo
llowing
two
fun
c
tion
s
: (i)
ou
tpu
t
vo
ltag
e
reg
u
l
ation
,
a
nd
(i
i
)
real
i
ze t
h
e
po
we
r ge
nerat
i
on
of t
h
e t
h
r
e
e
i
n
p
u
t
rene
wa
bl
e ene
r
gy
s
o
u
r
ces.
T
h
e re
gul
at
i
n
g
p
u
l
se wi
dt
h m
o
d
u
l
a
t
i
o
n
i
s
c
o
m
m
onl
y
used
i
n
t
h
e ci
rc
ui
t
t
o
c
ont
rol
the power swi
t
ching de
vice
on and
off
by
providi
n
g the
pulse signal
according t
o
t
h
e
duty cycle
and
swi
t
c
hi
n
g
f
r
e
q
uency
.
Fu
rt
he
r
m
ore, t
h
e val
u
e of
o
u
t
p
ut
is in
ad
equ
a
te to co
ndu
ct th
e
g
a
te term
in
al
o
f
t
h
e
switch
.
So
, th
e co
n
t
ro
l circu
i
t
will fu
n
c
tion
th
at can
am
p
lifi
e
s co
n
t
ro
l signal wh
ich
is vo
l
t
ag
e ou
tpu
t
o
f
PW
M
to
lev
e
l req
u
i
red
to
d
r
ive these p
o
wer swi
t
ch
es.
Wh
en
t
h
e con
t
ro
ller tu
rn
s
o
n
(t
on
) the m
o
sfet, the
couple
in
du
ctor
cu
rr
en
t, I
Lp
will increases linearly from
zero to I
pk
. Du
rin
g
the tu
rn
-o
n pe
rio
d
the energy is stored in
the couple inductor.
Whe
n
the
m
o
sfet turns
off (t
off
), th
e en
erg
y
sto
r
ed
in co
up
le in
du
ct
o
r
will d
e
liv
er
to
th
e
out
put
o
f
t
h
e
p
o
we
r c
o
nve
rt
er
t
h
r
o
ug
h t
h
e
ou
t
put
rect
i
f
i
e
r.
Fi
gu
re
4.
B
l
oc
k
di
ag
ram
of t
h
e co
nt
r
o
l
sy
st
em
for DC
-DC
con
v
e
r
t
e
r
Fi
gue
w
4 s
h
o
w
s t
h
e
co
rre
sp
on
di
n
g
c
o
nt
r
o
l
sy
st
em
bl
ock
di
ag
ram
for
pr
op
ose
d
c
o
n
v
e
r
t
e
r, i
n
cl
u
d
i
n
g
t
h
e 12
V dc su
ppl
y
,
C
o
m
p
en
sat
o
r,
P
u
l
s
e W
i
dt
h
M
o
d
u
l
a
t
o
r
(P
WM
)
circ
uit, Gate
Dri
v
er
(G
D)
an
d
OR
gate.
Th
e PW
M 1
t
h
roug
h
PW
M
3 will
g
e
n
e
rate desired
g
a
te
si
gn
als
for p
o
wer switch
e
s Q
1
thr
oug
h Q
3
wh
ile O
R
g
a
te will g
e
nerate ou
tpu
t
sig
n
a
l
for
p
o
wer switch
e
s
Q
4
. T
h
e
output signals of t
h
e C
o
m
p
ensator
1,
Com
p
ensator 2 and C
o
m
p
ens
a
tor
3
are
t
h
e dr
iv
e
si
gn
al
of
PW
M
Cir
c
u
it 1
,
PW
M
Cir
c
uit
2
an
d
PW
M Cir
c
u
i
t
3. T
h
e
o
u
t
p
ut
si
gnal
s
of
t
h
e
P
W
M
C
i
rc
ui
t
1,
P
W
M
C
i
rc
u
i
t
2 an
d
P
W
M
C
i
rcui
t
3 a
r
e t
h
e
dri
v
e si
g
n
al
of
G
D
Circu
it 1,
GD
Circu
it 2 and
GD Circu
it
3
.
Th
e
ou
tpu
t
sign
al of t
h
e
GD Circu
it
1
,
GD Circu
it
2
an
d GD
C
i
rcui
t
3 a
r
e
d
r
i
v
e si
gnal
o
f
s
w
i
t
c
hi
n
g
devi
c
e
s Q
1
, Q
2
and
Q
3
sep
a
rately. Th
e
ou
tpu
t
sign
als fro
m
all PWM
ci
rcui
t
i
s
an i
nput
si
g
n
al
s fo
r
t
h
e OR
gat
e
ci
rcui
t
.
The o
u
t
put
si
gnal
o
f
OR
gat
e
i
s
t
h
e dri
v
e
n
at
swi
t
c
hi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Mu
lti-in
pu
t
DC-AC In
verter
fo
r Hyb
r
i
d
Renewa
b
l
e En
erg
y
Po
wer S
y
stem
(
N
.Z. Y
a
hay
a
)
48
devi
ce Q
4
. The pulse
signal of t
h
e Q
1
, Q
2
and
Q
3
ca
n
be co
nt
r
o
l
l
e
d
by
ad
ju
st
ed t
h
e dut
y
rat
i
o (
d
)
a
n
d
switching
fre
quency
(f) i
n
t
h
e PW
M
circ
uits. T
h
e
design
im
p
l
e
m
en
tatio
n
of th
e co
n
t
ro
l
circu
it is
realized
b
y
usi
n
g t
h
e a
uxi
l
i
ary
anal
o
g
ci
r
c
ui
t
s
desi
g
n
.
I
m
pl
em
ent
a
t
i
on of c
ont
rol
of
p
o
we
r co
n
v
ert
e
r
had
bee
n
d
o
m
i
nat
e
d
with
an
alog
ue
co
n
t
ro
l tech
n
i
qu
e
d
u
e
to
its si
m
p
l
i
city an
d
low co
st.
4.
2.
DC
-A
C Pow
er
In
ver
t
e
r
an
d Co
ntr
o
l
l
er
For
pr
o
v
i
d
i
n
g
el
ect
ri
c powe
r
t
o
ac, t
h
e dc o
u
t
p
ut
of
is
olated three input fl
yback DC
-DC
c
onve
rter is
reg
u
l
a
t
e
d o
r
i
n
vert
e
d
i
n
a si
ngl
e phase
ful
l
bri
dge dc
-
ac i
nve
rt
er. T
h
e i
n
vert
er
po
wer i
s
pr
ovi
ded by
t
h
e dc
so
urce an
d
will in
j
ect a sin
u
soid
al cu
rren
t in
t
o
th
e ac m
a
in
s. Usu
a
lly a PWM co
n
t
ro
ller is u
s
ed
t
o
p
e
rfo
r
m th
e
task
s.Th
is syste
m
is u
s
ed
to
si
m
p
lify th
e o
p
e
ratio
n
co
m
p
l
e
xi
t
y
and re
duce
t
h
e cost
. T
h
e e
qui
val
e
nt
ci
rc
u
i
t
of
a
t
y
pi
cal
si
ngl
e
pha
se ful
l
bri
dge
DC
-
A
C
i
nve
rt
er wi
t
h
t
h
e P
W
M
co
nt
rol
l
e
r f
o
r
hy
br
i
d
rene
wabl
e
ener
gy
gene
rat
i
o
n sy
st
em
i
s
shown i
n
Fi
g
u
re
5. Tr
ansi
st
o
r
s Q
5
t
h
ro
u
gh Q
10
a
r
e use
d
as po
we
r swi
t
c
hi
n
g
de
vi
ces. I
n
vol
t
a
ge
s
o
u
r
ce
i
nve
rt
er,
s
w
i
t
c
hes a
r
e
rep
r
e
s
ent
e
d
by
Darl
i
ngt
o
n
t
r
ansi
st
ors
.
T
h
e
o
u
t
p
u
t
vol
t
a
g
e
(
V
ou
t
)
fro
m
in
v
e
rter will be d
e
liv
ered
to
th
e PW
M co
n
t
ro
ller an
d
sen
s
e b
y
co
m
p
en
sato
r as a feedb
ack
con
t
ro
lled
.
Th
e
o
u
t
p
u
t
si
g
n
a
l
o
f
co
m
p
en
sator is an
i
n
pu
t sig
n
a
l for PWM circu
it and
can
ad
ju
sted th
e vo
ltag
e
(V
ref
) as
a
referen
ce for th
e PW
M circuit. Th
e o
u
t
pu
t sig
n
a
l of th
e gate d
r
iv
e circu
i
t is a
d
r
iv
e sign
al to
th
e switch
e
s Q
5
th
ro
ugh
Q
10
fo
r pr
o
duci
ng si
n
u
soi
d
al
AC
cu
r
r
ent
.
I
n
o
r
der t
o
co
nt
r
o
l
t
h
e p
r
o
p
o
sed
DC
-
A
C
i
nvert
er
pr
o
p
erl
y
,
th
e cen
tral con
t
ro
l u
n
it n
e
ed
to
sen
s
e th
e o
u
t
pu
t vo
ltage co
n
tinuo
u
s
ly
. Th
e d
e
sign
im
p
l
e
m
en
tatio
n
o
f
th
e
co
n
t
ro
l
un
it is realized
b
y
u
s
ing
th
e aux
iliary
an
alog
co
n
t
ro
l
circu
it.
Fi
gu
re
5.
B
l
oc
k
di
ag
ram
of t
h
e co
nt
r
o
l
sy
st
em
for DC
-AC
i
nve
rt
er
4.
3. Perf
orm
a
nce
C
o
mp
ari
s
on
The previ
ous
m
u
lti-input
inverter
c
o
nsists of
a
buc
k
/buck-boost
fused m
u
lti-input DC-DC
c
o
nve
r
ter
and
a f
u
l
l
-
bri
dge
DC
-AC
i
nve
rt
er
[6
],
[7]. These
powe
r inverters are
no
n-
iso
l
ated
cir
c
u
it top
o
l
o
gy an
d
regu
lated
po
wer
b
y
two
i
n
pu
t ren
e
wab
l
e en
erg
y
so
urces
to
th
e lo
ad
indiv
i
d
u
a
lly
o
r
sim
u
l
t
an
eo
usly.
Th
ese
topologies are
very com
p
lex
configur
ations
and
will increa
se the num
b
er of
powe
r switc
hes and c
o
m
ponents
.
To im
prove t
h
e power i
nve
rter desi
gn, the
new m
u
lti-input
inve
rter is proposed. It is consists
of a m
u
lti-input
flyback
DC-DC converter a
nd a si
ngl
e ph
ase fu
ll-
br
idge D
C
-
A
C inver
t
er
. Th
e pr
op
o
s
ed
co
nv
er
ter
is an
el
ect
ri
cal
i
s
ol
at
i
on bet
w
een t
h
e i
n
put
a
nd
o
u
t
p
ut
, has a si
m
p
l
e
st
ruct
u
r
e
and s
u
i
t
a
bl
e f
o
r
hy
b
r
i
d
re
ne
wabl
e
energy powe
r
syste
m
for input sources
m
o
r
e
t
h
an t
w
o. T
h
e param
e
t
e
rs of t
h
e p
r
evi
o
u
s
and
pr
o
p
o
s
ed
m
u
lt
i
-
in
pu
t inv
e
rter are sh
own
in Tab
l
e 3.
Tabl
e 3.
C
o
m
p
ari
s
o
n
of
i
n
put
and
o
u
t
p
ut
par
a
m
e
t
e
rs
Pr
evious wor
k
[6]
Pr
evious wor
k
[7]
Pr
oposed wor
k
Solar
voltage,
Vpv
230V DC
250~4
50V DC
Solar
voltage,
Vpv
12 ~ 17.
5V DC
W
i
nd tur
b
ine voltage,
Vwind
80 ~ 200V DC
80~20
0V DC
W
i
nd tur
b
ine voltage,
Vwind
12V DC
Fuel cell voltage,
Vfc
12V DC
DC bus voltage,
Vdc
230V DC
230V DC
DC bus voltage,
Vdc
±12V DC
Output voltage,
Vac
110V AC,
60Hz
110V AC
,
60Hz
Output voltage,
Vac
240V AC,
50Hz
Output power
,
Pm
ax
1kW
1kW
Output power
,
Pm
ax
250W
Conver
t
er
topolog
y
Buck/buck-
b
oost f
u
sed
conver
t
er
Buck/buck-
b
oost f
u
sed
conver
t
er
Conver
t
er
topolog
y
Fly
b
ack conver
t
er
I
nput sour
ces
2 input,
1 batter
y
2 i
nput,
1 batter
y
I
nput sour
ces
3 input
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
: 4
0
–
52
49
Tabl
e 3 sh
o
w
s t
h
e conce
p
t
o
f
pre
v
i
o
us m
u
l
t
i
-i
n
put
i
n
verter. It is a
co
m
p
licat
ed structure to com
b
ine
two
i
n
pu
t power sources
with
th
e
d
i
ff
ere
n
t
hi
g
h
vol
t
a
ge
l
e
vel
s
i
n
hi
g
h
vol
t
a
ge
ra
nge
s
and
di
f
f
i
c
ul
t
t
o
get
regulated cons
tant output voltage fo
r the load from
the
m
.
The proposed
inverter acce
pt up to three
input
so
urces b
y
o
t
her co
m
p
etito
rs with
th
e sam
e
v
o
ltag
e
le
v
e
l
in
lo
w vo
ltag
e
rang
es to
prod
u
ce co
nstan
t
o
u
t
p
u
t
v
o
ltag
e
fo
r th
e
lo
ad
. Th
e ouput p
o
w
e
r is alw
a
ys in
con
s
tan
t
w
e
th
er
th
e i
npu
t sour
ces
d
e
liv
er
po
w
e
r
t
o
the lo
ad
i
ndi
vi
dual
l
y
or
si
m
u
l
t
a
neousl
y
.
5.
SIMULATION RESULTS
Th
e
p
r
o
p
o
s
ed
syste
m
is i
m
p
l
e
m
en
ted
and
si
m
u
lated
u
s
ing NI M
u
ltisi
m
1
2
.0
software. Th
e
o
u
t
p
u
t
vol
t
a
ge
an
d c
u
rre
nt
are s
h
ow
n i
n
Fi
g
u
re
6 t
o
Fi
gu
re
12
. I
n
or
de
r t
o
veri
f
y
t
h
e o
p
erat
i
o
n
pri
n
ci
pl
e
of t
h
e ne
w
m
u
lti-input i
n
verter, a
250W
syste
m
was de
signe
d to supply a consta
nt DC bus
voltage of 12V DC
from
a
t
h
ree i
n
put
s
o
u
r
ces wi
t
h
t
h
e
v
o
l
t
a
ge ra
nge
1
2
~
1
7.
5V
DC
a
nd
pr
o
duce l
o
a
d
v
o
l
t
a
ge o
f
2
4
0
V
AC
, 5
0
H
z
. The
swi
t
c
hi
n
g
fre
q
u
ency
o
f
10
0 k
H
z
i
s
use
d
fo
r dri
v
i
n
g
al
l
t
h
e swi
t
c
hi
n
g
de
vi
ces, Q
1
~Q
4
of
con
v
e
r
t
e
r.
From
t
h
e si
m
u
l
a
t
i
on res
u
l
t
s
,
Fi
gu
re
6 sh
o
w
s t
h
e o
u
t
p
ut
v
o
l
t
a
ge an
d cu
rre
nt
wa
vef
o
rm
s of t
h
e t
h
ree
in
pu
t flyb
ack
DC-DC co
nv
erter
wh
en
t
h
e
p
o
wer is
d
e
liv
ered to t
h
e
DC-AC i
nve
rter by
one
input
source
i
ndi
vi
dual
l
y
(
V
in1/
V
in2/
V
in3
)
.
Fi
gu
re 7 s
h
o
w
s t
h
e o
u
t
p
ut
vol
t
a
ge a
nd c
u
r
r
ent
w
a
ve
fo
r
m
s of t
h
e co
n
v
ert
e
r
wh
en
th
e power is d
e
liv
ered
to
th
e in
v
e
rter
fro
m
two
in
pu
t
so
urces sim
u
lt
an
eou
s
ly (V
in
1
+V
in2
), (
V
in2
+V
in3
)
and (V
in1
+V
in3
).
Th
e last co
nd
itio
n, Fi
g
u
re 8 sh
ows t
h
e
o
u
t
p
u
t
wav
e
fo
rm
s o
f
con
v
e
rter
wh
en
p
o
wer
d
e
liv
ered
b
y
all th
ree in
pu
t so
urces sim
u
lta
n
e
ou
sly (V
in
1
+V
in2
+V
in3
). Fi
gu
re 9 s
h
o
w
s t
h
e si
n
u
soi
d
al
out
pu
t
reg
u
l
a
t
e
d
v
o
l
t
a
ge a
n
d
cu
rre
nt
wave
f
o
rm
s of
t
h
e DC
-AC
i
n
vert
er
w
h
e
n
t
h
e p
o
we
r
fr
om
m
u
lt
i
-
i
nput
c
o
nve
rt
e
r
is d
e
liv
ered
to th
e lo
ad
b
y
o
n
e
i
n
pu
t source ind
i
v
i
du
ally (V
in1
/V
in2
/V
in3
)
.
Figu
r
e
10
show
s
th
e o
u
t
p
u
t
reg
u
l
a
t
e
d v
o
l
t
a
ge an
d cur
r
e
n
t
wavef
o
rm
s of t
h
e i
nvert
er
wh
en
th
e
p
o
wer is d
e
liv
ered
to
th
e lo
ad
from two
in
pu
t so
urces si
m
u
ltan
e
o
u
s
ly
(V
in1
+V
in
2
), (
V
in2
+V
in3
) a
n
d
(V
in
1
+V
in3
).
The l
a
st
c
o
ndi
t
i
on,
Fi
g
u
r
e
11
sho
w
s
th
e ou
tpu
t
reg
u
l
ated
wav
e
fo
rm
s wh
en
po
wer d
e
liv
ered
b
y
all th
ree in
pu
t sou
r
ces si
m
u
ltan
e
o
u
s
ly
(V
in1
+V
in
2
+V
in
3
)
.
Fi
g
u
r
e
1
2
sho
w
s t
h
e
out
put
v
o
l
t
a
ge an
d o
u
t
put
c
u
r
r
e
n
t
i
n
pu
re si
nu
soi
d
al
wave
f
o
r
m
s of
si
ngl
e p
h
ase fu
l
l
-
bri
d
ge DC
-
A
C
i
nve
rt
er.
(a)
(b
)
(c)
Fi
gu
re 6.
O
u
t
p
ut
v
o
l
t
a
ge an
d cur
r
ent
o
f
t
h
re
e
i
n
p
u
t
fl
y
b
ack
DC
-
D
C
c
o
nve
rt
er (a) Vi
n
1
w
o
r
k
i
ndi
vi
d
u
al
l
y
,
(
b
)
Vi
n
2
wo
rk
i
n
di
vi
d
u
al
l
y
an
d (c
) Vi
n
3
w
o
rk
i
n
di
vi
d
u
al
l
y
(a)
(b
)
(c)
Fi
gu
re
7.
O
u
t
p
ut
v
o
l
t
a
ge
an
d
cur
r
ent
o
f
t
h
re
e i
n
p
u
t
fl
y
b
ack
DC
-
D
C
c
o
nve
rt
er
(a)
Vi
n
1
a
n
d
Vi
n2
w
o
rks
sim
u
l
t
a
neousl
y
, (
b
)
Vi
n2
an
d
Vi
n
3
wo
rk
s si
m
u
lt
aneou
s
l
y
and
(c
)
Vi
n
1
a
n
d
Vi
n
3
wo
r
k
s s
i
m
u
l
t
a
neousl
y
Evaluation Warning : The document was created with Spire.PDF for Python.