Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 3
,
Ju
n
e
201
6, p
p
. 1
190
~ 11
96
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
3.9
446
1
190
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Desi
gn and Analysis of
M
i
cro-
Can
t
ilever B
a
s
e
d Biosensor for
Swine Flu Detection
M.G
.
G.
Ji
the
ndra Pr
asad,
Syed
Sh
amee
m
Department o
f
Electronics
a
nd co
mmunication
En
gineer
ing,
K L
University
, A.
P,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 11, 2015
Rev
i
sed
Feb 6, 20
16
Accepted
Feb 20, 2016
Swine flu which
comes under th
e categor
y
of
in
fluenza is caused b
y
N1H1
virus. This Disease in 2009
was
termed
as p
a
ndemic b
y
WHO (World Health
Organisation)
. It was fast spreading almost
all
ov
er the
world the
n
. It is sam
e
as normal Flu and can
be
prevented b
y
f
l
u shots/vaccines. The r
e
al
im
portance of th
e dis
eas
e is
bec
a
u
s
e
,
it may
cau
s
e serious health
conditions
like Pneum
onia,
Respirator
y ast
h
m
a
, bronchitis
differen
t
t
y
pes o
f
m
u
cus line
canc
e
rs
,unlike n
o
rm
al flu. S
o
m
e
tim
es
hum
an life can be endang
er
ed b
y
pos
t
effec
t
s
of S
w
ine flu. According t
o
a s
t
ud
y
Infant
mortality
is because due to
lack of d
e
t
ect
io
n of dis
eas
es
.
T
hus
De
tection o
f
Swine flu viru
s, which is
cause for
infant mortality
is importa
nt. This
can be done usin
g the most
trusted form b
y
using MEMS. In this
paper the
Micro-Cantilev
e
r is used as
the sensing un
it. Using COMSOL 4.3b
, we d
e
signed rectangu
lar
cantilever
and also a rectan
gle with a hole punche
d forming SCR (Stress Co
ncentr
atio
n
Region)
conc
ept
,
an
al
ys
ed
and
o
p
tim
ized
.
Keyword:
Bio
s
en
so
r
COMSOL
MEMS
Micro
-
Can
tilev
e
r
Swine
fl
u
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
.
G.
G. Jithen
dra
Pra
s
ad
,
Depa
rtem
ent of Electrical and Comm
unication E
ngi
neeri
n
g,
K L Un
iv
ersity,
A P
,
I
n
dia.
Em
a
il: m
g
g
j
p19
93@g
m
ail.co
m
1.
INTRODUCTION
Th
e m
i
cro
e
lectron
i
c
m
ech
anical can
tilev
e
rs [1
],[2
] is o
n
e o
f
th
e m
o
st p
r
o
m
isin
g
an
d
tru
s
tab
l
e
b
i
o
s
en
so
rs. Can
tilev
e
r prov
i
d
es an
ou
tstan
d
i
n
g
p
l
at
form fo
r ex
tremely sen
s
itiv
e
p
r
o
cess lik
e ch
em
ical
sensing,
[3] bi
ological sensi
n
g [4] occasi
o
ns. Micro
cantilevers are
popularly kn
own
for their sensitivity &
selectiv
ity. It a
l
so
p
r
ov
id
es
u
s
co
m
p
atib
ili
ty
featu
r
es lik
e flex
ib
ility o
f
a ch
ip
circu
it, easily d
e
p
l
o
y
ab
le in
to
an
IC. It is popul
ar because of
ease in fabrica
tion like ot
her conventional devices the
r
e is no nee
d
to s
e
parate
ex
tern
al m
o
d
u
les for
d
e
tectio
n
or sen
s
ing
,
can
tilev
e
rs
wh
en fab
r
icated u
s
ing
m
a
ss produ
ctio
n
it yield
s
a
num
erous am
ount
of econom
ical features
like lo
w cost, flexi
b
ility in production
&
versatility
.
Bot
h
t
h
e
selectiv
ity an
d
th
e sen
s
itiv
ity p
l
ay a
k
e
y ro
le in
acco
u
n
ting
th
e qu
ality of t
h
e sen
s
o
r
. Micro can
tilev
e
r may b
e
u
s
ed
to sen
s
e
d
i
fferen
t
an
aly
t
es Glu
c
o
s
e [5], fung
al
d
e
tectio
n
s
[6
] etc., l
i
k
e
Using
th
e
Micro
-
Can
tilev
e
r we
can ac
hieve
both of the
above
chara
c
teri
stics. An
tig
en
-An
t
i
b
od
y
p
a
iring
is a n
a
t
u
ral
g
i
ft of th
e scien
ce
u
s
ed
in
attain
in
g
t
h
e Selectiv
ity [7
],[8
]. Th
e
d
e
tectio
n prin
ci
p
l
e of Micro
can
tilev
e
r m
a
y d
i
ffer
d
e
p
e
nd
ing
on
u
s
er
co
nstrain
t
s like m
a
ss d
i
fferen
tiatio
n
s
[9
], frequ
e
n
c
y ch
ang
e
s
[10
]
etc.,
Fo
r im
p
r
o
v
i
ng th
e sen
s
itiv
ity of the
sens
or
we ca
n use
diffe
re
nt approaches
like increasi
ng t
h
e l
e
ngt
h,
decr
easi
ng t
h
e t
h
i
c
kne
ss, c
h
an
gi
n
g
t
h
e
materials, according t
o
Stone’s La
w. In this
pape
r,
we
are
usi
n
g a c
once
p
t term
ed as SCR
[11]
(stre
s
s
conce
n
t
r
at
i
o
n
regi
ons
) t
o
i
n
c
r
ease t
h
e sensi
t
i
v
i
t
y
. W
e
can
pu
nch a
n
y
requi
red s
h
ape s
o
as t
o
chan
g
e
t
h
e
Sen
s
itiv
ity [12], Also
u
s
ing
t
h
is sensor so
as to
con
t
ri
b
u
t
e it fo
r an
Detectio
n
o
f
t
h
e Vi
ru
s
wh
ich
cau
s
es th
e
Swin
e
flu
is ou
r m
a
j
o
r
po
rtio
n. Swin
e fl
u
is co
mm
o
n
flu
,
b
u
t
if
n
e
g
l
ect
ed
it cau
ses seriou
s h
ealth
crisis for
hum
an [13]. In worst case scenari
o
it
m
a
y
also
lead
to
d
ead
ly d
i
seases lik
e Pn
eu
m
o
n
i
a, bron
ch
its, lu
ng
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Design
and Analysis of
Micro Cantilever Based Bi
os
e
n
sor f
o
r
Swine
Flu
.... (M.G.G. Jithendra Pr
asad)
1
191
cancer, throat cancer etc. T
h
us, if we
d
i
fferen
tiate th
e swin
e flu
fro
m
o
t
h
e
r no
rm
al fl
u
th
en
it m
a
y
sav
e
a
large num
b
er
of hum
an
lives.
2.
DESIG
N
CO
NSTR
AI
NTS
Ph
ysical rep
r
esen
tatio
n
of a
can
tilev
e
r is
no
th
ing
bu
t a sh
ap
e
an
cho
r
ed at an
y on
e
o
f
its en
d
.
Fo
r
exam
ple, rectangular,
triangular, trapez
oidal
,
v-s
h
a
p
ed, t-s
h
ape
d
,
shape
d
etc., beam
s are fixe
d to a
end
(face). Th
e d
e
sig
n
p
a
ram
e
ters o
f
can
tilev
e
r is b
a
sed
on
th
ree form
u
l
ae
[14
]
(i)Ston
e
’s form
u
l
a (ii)
Sp
ri
ng
co
nstan
t
fo
rm
u
l
a (iii)Hook
e’s law.
Th
e ab
ov
e eq
u
a
tion
p
r
o
v
i
d
e
s
u
s
a
k
e
y so
urce to
und
erstan
d th
e
beh
a
v
i
or
o
f
th
e MEMS
can
tilev
e
rs. Bri
e
fing
th
e above equ
a
tio
ns
h
e
re w
e
h
a
v
e
,
(i)
Stone’s
formula:
It is used to
cal
cu
late and
an
al
yse th
e
d
e
flectio
n of t
h
e m
i
cro
can
tilev
e
r
.
It
i
s
gi
ven
by
t
h
e
equat
i
o
n
Here
is Po
isso
n’s ratio
;
is
Youn
g’s m
o
d
u
lu
s; L is Bea
m
len
g
t
h
;
t is C
a
n
tilev
e
r th
ickn
ess;
is
applied stress;
is
Deflection
.
Th
e d
e
flectio
n o
f
th
e can
tilev
e
r dep
e
nd
s on
d
i
m
e
n
s
io
n
s
o
f
th
e stru
cture an
d
th
e m
a
te
rials u
s
ed
fo
r
construction of the st
ruct
ure
.
It als
o
decide
s on c
h
a
r
acteri
s
tic feature
s
lik
e the stiffn
ess of th
e m
a
teria
l
u
s
ed
i
n
const
r
uct
i
o
n, am
ount
of
t
a
rget
m
o
l
ecules, so as t
o
o
b
ser
v
e an
d an
al
y
ze t
h
e si
gni
fi
cant
am
ount
of t
h
e
defl
ect
i
o
n.
Tra
n
sd
uct
i
o
n
p
r
i
n
ci
pl
es are
use
d
i
n
or
de
r t
o
d
e
tect d
e
flections wh
ich are small. Th
e
b
e
low listed
are few of m
e
th
od
s.
(i)Op
tical read
ou
t (ii)Cap
acitiv
e read
ou
t (iii)Hard co
n
t
act/tu
nn
el
lin
g
(iv)Au
t
o
no
m
o
u
s
devi
ces
[
15]
.
(ii)
Spring Cons
tant
(K
)
Th
e secon
d
fo
rm
u
l
a relates to
spring constant
`K’,
wh
ich
p
l
ays a m
a
j
o
r ro
le in
an
alysing
th
e
deflection to be obser
v
e
d
as
=
He
re
f=
f
o
rce;
w=
widt
h.
(iii)
Hooke
’
s law
:
Ho
o
k
e’s l
a
w
g
i
ves u
s
a rel
a
t
i
on
bet
w
een t
h
e fo
rce a
ppl
i
e
d
t
o
t
h
e
di
spl
a
c
e
m
e
nt
. Th
us t
h
e am
ount
o
f
the extra m
a
s
s
exerts a force on the ca
ntilever b
eam
thus the displacem
ent
of
the beam increases
co
nsid
erab
ly. Hook
e’s law can
b
e
m
a
th
e
m
atically
rep
r
es
ent
e
d as F = -
K
X
.
The
nega
t
i
v
e sym
bol
i
s
due t
o
represen
tin
g the restoring
force ex
erted
.
3.
PRINCIPLE OF
BIOSENSOR
USING MICROCANTILEVER
W
i
t
h
i
t
s
wo
rk
i
ng t
h
e
gui
del
i
n
e of c
h
a
ngi
ng
ov
er o
f
bi
o ack
n
o
wl
e
d
g
m
ent
t
o
nan
o
-
m
echani
c
a
l
m
o
v
e
m
e
n
t
, th
e micro
can
tilever
b
a
sed b
i
o
s
en
sors
resu
lts
in
free
v
itality ch
ang
e
[4
]. The free v
itality ch
ang
e
causes the na
no m
echanical
m
ove
m
e
nt
on surface of cantilever
because
of respon
se of target analyte with test
co
v
e
ring
p
a
rti
c
le. To
reco
gnize a p
a
rticu
l
ar an
alyte,
t
h
e
min
i
atu
r
ized
scale can
tilev
e
r tran
sdu
cer is
forg
ed
with test cove
ring at
first
glance taking
int
o
account the
wa
y of t
h
e a
n
alyte.
The test covering is a
n
artificially
touc
hy layer that gives
speci
ficity to analyte acknowledg
m
e
n
t
. Th
e m
a
in
co
n
c
ep
t is ab
so
lu
tely in
v
i
ew
of t
h
e
o
n
ch
ang
e
cau
sin
g
sub
s
tan
ce/o
r
g
a
n
i
c b
o
o
s
ts u
p
in
t
o
m
ech
a
n
ical reactio
n
.
Can
tilev
e
r covering
is th
e th
in
g
th
at
an
alyte ato
m
d
i
ffuse in
to, in
t
h
e p
e
rsp
ectiv
e
o
f
p
r
esen
tin
g
it to
an
alyte v
a
po
r. Th
e cov
e
ri
n
g
starts to
o
s
cillat
e
with
th
e cli
m
b
o
f
m
a
ss. A
m
o
v
e
o
f
i
n
terfacial an
x
i
ety in
th
e m
i
d
d
l
e
o
f
cov
e
ri
n
g
an
d can
tilev
e
r
h
a
pp
en
b
r
i
n
g
i
n
g
abo
u
t a o
s
cillatio
ns (Deflectio
n) o
f
can
tilev
e
rs.
W
ith m
e
ta
l
co
ating
s
alon
g
s
i
d
e self-collected
m
onolayers or
polym
er, Substance res
ponses
are tra
n
sduce
d
by affectability of ca
ntile
vers into a m
echanical
reactio
n. Reducin
g
t
h
e fou
n
d
a
tio
n sign
als wh
ich
is a
llowed
b
y
referen
ce can
tilev
e
r sen
s
o
r
(d
ifferen
tial
esti
m
a
t
i
o
n
)
is im
p
e
rativ
e.
Can
tilev
e
r sen
s
or has d
i
v
e
rse co
ating
s
for d
i
stin
ctiv
e an
alyte recog
n
ition
.
In
Fi
g
u
re 1
t
h
e
com
pone
nts
of bio sensor
whi
c
h is s
h
own. S
m
all scale can
tilever
here is
utilized for bi
o i
d
entification.
At the
poi
nt whe
n
a
particular organic re
sponse happens on a surface of a
miniaturized scale cantilever, the
su
bsequ
e
n
t
chan
g
e
in surface
an
x
i
ety
av
o
i
d
s
th
e can
tilev
e
r sh
aft. A little ran
g
e
is test co
vering
at th
e free end
o
f
t
h
e sm
all scale can
tilev
e
r t
o
catch relating
targ
et an
tib
od
ies.
It is th
e po
in
t at
wh
ich
t
h
e
g
a
dg
et is
p
r
esen
ted
to
an
ob
j
ective h
o
s
tile to
b
odied
en
v
i
ron
m
e
n
t, th
at th
e cov
e
red
coun
ter actin
g
ag
en
t (o
n
free end
of s
m
al
l
scale can
tilev
e
r)
will catch
t
h
em
, reco
mm
e
n
d
i
n
g
in
a
reve
rb
eratio
n recu
rren
ce m
o
v
e
men
t
o
r
static b
o
wing
wh
ich
is id
en
tified
b
y
d
i
stin
ct
iv
e tran
sdu
c
tion
in
stru
m
e
n
t
. Th
e m
a
ss d
e
termin
atio
n
go
t with
can
tilev
e
rs
in
air
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
11
9
0
– 11
96
1
192
is in
th
e
Pico
an
d th
e
fem
t
o
g
r
a
m
rang
e. Mass ch
an
g
e
on
t
h
e can
tilev
e
r can
p
r
ecisely b
e
co
n
t
ro
lled b
y
ru
nn
ing
the instrum
e
nt in static m
ode and elem
ent
m
ode. Poly
mer layer is
utilized to c
o
at
on the
top surface of
can
tilev
e
r. Unp
r
ed
ictab
l
e
v
a
p
o
ro
u
s
an
alytes are
d
i
sting
u
i
sh
ed b
y
d
i
ssem
i
n
a
tio
n of t
h
e at
o
m
s in
to
th
e po
ly
m
e
r
layer, b
r
i
n
g
i
n
g
ab
ou
t free v
itality era an
d
there with
De
flectin
g
of th
e can
tilev
e
rs.
Furt
h
e
rm
o
r
e, in
t
h
e en
d, a
n
o
rm
al fo
r an
alyte is acq
u
i
red fro
m
th
e Deflectin
g
ex
am
p
l
e o
f
all can
tilev
e
rs.
Fig
u
re
1
.
Th
e sch
e
m
a
tic o
f
Can
tilev
e
r i
n
b
i
o
sen
s
ing
4.
BIOSENSING ME
CHANISM
USING MICROCANTILEVER
It is a fact that m
o
st life threatening disease
s
ar
e detected
only after the se
co
nd
ary sy
m
p
to
m
s
sets in
,
m
a
ki
ng i
t
t
o
u
g
h
f
o
r t
h
e t
r
eat
m
e
nt
. The rat
e
at
whi
c
h a pe
r
s
on
get
s
af
fect
ed by
a di
seas
e i
s
hi
gh, c
o
ns
i
d
eri
n
g
th
e gro
w
i
n
g pollu
tio
n
and
a ch
ang
e
d
lifestyle. Th
e scen
ari
o
reiterates
o
n
th
e
n
eed to m
o
n
ito
r hu
m
a
n
bo
d
y
on
a re
gular ba
sis, to stay away
from
th
e diseas
es.
T
h
e
natural res
o
urces
which
u
s
ed
to
b
e
ver
y
pu
r
e
ar
e now
fu
ll
o
f
po
llu
tan
t
s, co
urtesy th
e
g
l
ob
al warm
in
g
.
All th
e situ
ation
s
m
a
k
e
it i
m
p
o
rtan
t fo
r a
d
e
v
e
lop
e
d techn
o
lo
g
y
i
n
b
i
o
m
e
d
i
cal fi
eld
wh
ere accu
r
ate d
e
tection o
f
th
e d
i
sease at th
e earliest
is i
m
p
o
r
tan
t
. Micro
can
tilev
e
r b
a
sed
b
i
o
s
en
so
r
wh
i
c
h
is u
tilized
to
sen
s
e t
h
e v
i
cin
ity o
f
a su
re
m
o
lecu
le is
th
e co
rrect cho
i
ce. Micro
c
antilev
e
r
analyte ought to be covere
d
with an
artificially
touchy m
a
terial to acco
mm
odate a high level of speci
ficity
in
recogn
izin
g
certain
p
a
rticles o
r
an
alytes in
sid
e
o
f
an
ex
am
p
l
e. B
i
o
p
a
rt
icles can
b
e
utilized
as a p
a
rt o
f
cove
ring the c
a
ntilever,
whic
h rec
o
gn
izes particular analy
t
es inside of
a
little blood te
st fastidiously. The
characte
r
ized s
i
cknesse
s, from this tim
e forwa
r
d ca
n
be
treated with the choice
of suitable specification.
Micro
can
tilev
e
rs are used
as b
i
o
s
en
sors in d
e
tectin
g
a d
i
sease, wh
ich
giv
e
s scop
e fo
r
m
i
n
i
atu
r
izatio
n
and
p
a
rallelizatio
n
.
A l
o
t m
a
n
y
sa
m
p
les in
clud
in
g an
tibod
ies,
p
r
o
t
ein
s
, an
tigen
s
[4
] an
d DNA can
b
e
analyzed
thr
o
u
g
h
biose
n
sors
. It is already
in use in gluco
s
e
m
onitors
, pH se
nso
r
s,
p
r
otein bi
ndi
n
g
,
DNA
detectio
n an
d
g
e
n
e
exp
r
ession
pro
f
ilin
g Life th
reaten
i
n
g
viru
s th
at cau
s
e
d
i
seases lik
e
HIV, tub
e
rcu
l
o
s
i
s
can
b
e
d
e
tect
ed
in
the prim
ary sta
g
e of it. Surf
ac
e reaction take
s place whe
n
the analytes
are
confine
d
to the
surface of the probe
coat
i
n
g
.
Ge
ner
a
l
l
y
wi
t
h
a ty
pi
cal
l
e
ngt
h of
10 t
o
50
0
μ
m
l
o
ng
and
w
i
d
t
h o
f
100
μ
m
wide with 2
μ
m t
h
i
c
k
a
s
sho
w
n i
n
Fi
gu
r
e
2.
Fig
u
re
2
.
Con
v
en
tio
n
a
l Rectan
gu
lar Can
tilev
e
r with a su
ppo
rt
b
l
o
c
k
Micro
can
tilev
e
rs co
u
l
d
create a tran
sitio
n in
m
e
d
i
cal era.
A Sch
e
m
a
tic sid
e
p
e
rspectiv
e of a
microcantileve
r displaying ca
ntilever leng
th L. The t
o
p or base surface
or
both surfac
es ar
e cove
red with a
syn
t
h
e
tically respo
n
s
i
v
e m
a
t
e
rial p
l
an
n
e
d
particu
l
arly fo
r th
e fo
cu
sed
on
an
alyte. A senso
r
can
b
e
u
tilized
b
y
o
u
tlin
ing
a can
tilev
e
r
b
i
o
s
enso
r
with
an
al
tern
ate test co
at [7
],[8
].
A few su
b
s
tan
ces o
ugh
t to
b
e
at first
recogn
ized
with
th
e sam
e
sp
eci
m
e
n
as in
Fig
u
re
3
.
Ta
rg
et
material will b
e
d
i
stin
gu
ish
e
d wh
en
th
e can
t
ilev
e
r
base
d
biose
n
sor is
reache
d
wi
th a sy
nthetica
lly touchy
m
a
t
e
rial on ca
ntilevers surface.
A m
easure
of
target
material is
m
e
asu
r
ed
b
y
ch
eck
i
ng
an
ad
ju
st
men
t
in
on
e
o
r
a g
r
eater am
o
u
n
t
of th
e can
tilev
e
rs m
ech
an
ical an
d
electrical properties, for exa
m
ple, di
sl
od
gi
ng
,
re
si
st
ance or f
u
l
l
rec
u
r
r
e
n
ce.
An a
d
just
ment in the m
echanical
or electrical prope
rties is
watched whe
n
a
n
analyte tie
s with the
test cove
ring
on
a ca
ntilevers surface.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Design
and Analysis of
Micro Cantilever Based Bi
os
e
n
sor f
o
r
Swine
Flu
.... (M.G.G. Jithendra Pr
asad)
1
193
Fi
gu
re 3.
A
n
t
i
b
ody
a
n
d Ant
i
g
en pai
r
R
eact
i
o
n
Th
e tran
sdu
cer ch
ang
e
s it's
p
r
op
erty wh
en
m
o
re targ
et
materials are ap
p
e
nd
ed
to
th
e can
tilev
e
rs
surface. The subseque
nt change
will be
m
e
asure
s
. The quan
tity of analyt
e or particle
tie
s in the test co
veri
ng
is co
rrespon
d
i
n
g
t
o
th
e
b
o
wi
n
g
o
f
t
h
e m
i
cr
o
can
tilev
e
r. Th
is m
o
v
e
is h
a
n
d
l
ed
b
y
co
ord
i
n
a
ted
ci
rcu
i
t
o
r
flag
p
r
ep
ari
n
g
ci
rcuits o
f
MEMS in
to
relativ
e i
n
fo
rm
atio
n
.
Th
e
in
fo
rm
atio
n
in
th
e wak
e
of break
ing
down
will be
co
n
t
rasted
with
referen
ce info
rm
atio
n
to
d
e
cid
e
th
e so
rt of an
alyte an
d
i
t
s p
r
o
p
e
rties.
Th
e affectab
ility o
f
a
micro
can
tilev
e
r co
nstru
c
t b
i
o
s
en
sor d
e
p
e
nd
s in
lig
h
t
of th
e affectabilit
y o
f
th
e d
i
v
e
rsion
estimatio
n
fram
e
w
o
rk
.
A
micro
can
tilev
e
r ou
tlin
e
o
ught to
h
a
v
e
effectiv
e tran
sfo
r
matio
n
fro
m
th
e b
i
o
m
o
l
ecu
lar
b
o
o
s
t
in
to
a sub
s
tan
t
i
a
l
m
i
cro
can
tilev
e
r
red
i
rection, th
e estim
atio
n
affectab
ility g
u
a
ran
t
ees th
e
d
i
v
e
rsion
s
m
easu
r
ed
in light of the
biom
olecular c
o
nnectio
n and
not
because of som
e
source.
The affectability of the sm
all
scale
can
tilev
e
r can
b
e
ad
lib
b
e
d
by ch
an
g
i
n
g
the co
n
f
i
g
uratio
n
traits, fo
r exa
m
p
l
e, su
rface p
u
s
h
,
a sub
-
ato
m
ic
association, changi
ng s
o
as t
o
lessen the
firm
ness of
the cantilever
or the flexible
m
odulus
of the ca
ntilever
mater
i
als
.
5.
BREIFING T
H
E ANTIGE
N &
ANTIBODY
(i) SWI
N
E FLU:
The m
o
rp
hol
ogy
[
1
6]
of
swi
n
e i
n
fl
uen
za vi
rus r
e
sem
b
l
e
s som
e
t
h
i
n
g
as a spher
e
havi
ng
a
di
am
et
er o
f
75
-
1
5
0
n
m
wi
t
h
pl
eo
m
o
rphi
sm
as a com
m
on fea
t
ure.
The
co
re
of
vi
rus
com
p
ri
ses
majorly two t
h
ings
nam
e
ly RNA
ge
nom
e which is bee
n
se
gm
ented and e
x
isting as ei
ght pieces, along with
th
is RNA i
n
d
e
p
e
nd
en
t po
lymerase wh
ich p
l
ays a cru
c
ial ro
le fo
r tran
scrip
tio
n
o
f
a
v
i
ru
s in
a
fav
o
u
r
ab
le
co
nd
itio
n (i
n
s
i
d
e a ho
st cell). Th
e core is commo
n
l
y a ribon
u
c
leu
s
p
r
o
t
ei
n
.
Th
is nu
cleocap
su
le is su
rro
und
ed
by
t
w
o l
a
y
e
r
fo
rm
i
ng en
vel
o
p
e
.
T
h
e i
n
ner
si
de
of t
h
e l
a
y
e
r
i
s
m
a
de of
pr
ot
ei
n l
a
y
e
r,
w
h
er
eas t
h
e
o
u
t
e
r l
a
y
e
r i
s
m
a
de of l
i
p
i
d
.
The i
n
ner si
de
envel
ope i
s
ge
neral
l
y
c
ode
d a
ccor
d
i
n
g t
o
t
h
e
R
NA seq
u
e
n
c
e
of t
h
e vi
r
u
s
,
whe
r
e
as the outer si
de lipid layer will be
altered according to the host cell in wh
ic
h re
plicati
on/c
u
lture
of t
h
e virus
is accum
u
lated. Now c
o
m
i
ng the m
o
st im
portant pa
rt in
virus
related to th
e sensi
n
g application is t
h
e a
n
tigens
prese
n
t on the virus. Majorly classi
fied the antigens on the
vi
r
u
s are o
f
t
w
o t
y
pes nam
e
ly
(1) Hem
a
ggl
ut
i
n
i
n
(2)
Neuram
inidase C
o
m
p
ared to Ne
uram
inidas
e,
hem
a
ggl
ut
i
n
i
n
i
s
ve
ry
h
i
gh i
n
num
ber.
I
n
th
e b
e
l
o
w
vir
u
s d
i
ag
r
a
m
i
n
Figu
r
e
4, w
e
clear
can
see th
e
m
o
r
pho
logy o
f
sw
in
e f
l
u
v
i
ru
s N1
H1
havi
ng
C
o
re,
s
e
gm
ent
s
of
ei
ght
i
n
n
u
m
b
er, hem
a
ggl
ut
i
n
i
n
whi
c
h a
r
e
r
e
prese
n
t
e
d
as
t
r
i
a
ng
ul
ar
spi
k
es an
d
Neuram
inidase resem
b
ling mushroom
shape
d
. T
h
e m
o
lecu
lar wei
g
h
t
o
f
swin
e
flu
is
22
2KDa. Neuram
i
n
id
ase
will try to
redu
ce th
e v
i
sco
s
i
t
y o
f
th
e nu
cleu
s
fil
m
lin
i
n
g
.
Th
is
d
e
fines that Neuram
in
id
ase is th
e
o
n
e
wh
ich
reacts first in e
x
sa
nguinous e
nvi
ronm
ent. So
we c
once
n
tra
t
e on this a
n
tigen
prese
n
t
on the
virus M
o
rphol
ogy.
Fi
gu
re
4.
N
1
H
1
S
w
i
n
e
fl
u
Vi
rus
(
ii)
A
n
t
i
bo
dy:
Fo
r th
e selectiv
ity we k
n
o
w th
at th
e Antig
en
will b
e
in
teractin
g
o
n
l
y with
th
e
app
r
op
ri
at
e an
t
i
body
pai
r
. F
o
r
Neu
r
am
i
n
i
d
ase,
W
e
h
a
ve
a l
a
rge n
u
m
b
er of a
r
t
i
f
i
c
i
a
l
ant
i
b
o
d
i
e
s u
s
i
ng t
h
e
solutions. But
for the
Easy unde
rstanding
we will be
conside
r
ing the
Ig A (I
m
m
uglobulin A),
which is
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
11
9
0
– 11
96
1
194
naturally available hum
a
n secreted a
n
tibody. That ca
n
b
i
nd
Swin
e flu v
i
ru
s
u
s
ing
t
h
e Neu
r
am
in
id
ase
An
tigen.
Ig A is ass
u
m
e
d to be the anti
body for this because it can
be catabolised a
nd
have faster
response tha
n
the Ig
G
and
its
ab
und
an
t p
r
op
erty. Lets
u
s
n
o
t
go
m
u
ch
in
to
th
e
i
s
o
l
atio
n
of
Ig
A, We will
b
e
j
u
st
con
cen
t
r
atin
g
o
n
t
h
e st
ruct
ure
o
f
I
g
A
,
an
d i
t
s
part
i
n
bi
n
d
i
ng t
h
e A
n
t
i
g
e
n
pa
rt
i
c
l
e
s an
d t
h
e
free e
n
e
r
gy
p
r
od
uce
d
by
t
h
i
s
reaction a
n
d the change i
n
de
flection. T
h
e Antibody Ig
A
is said
to
h
a
ve Di
m
e
ris
m
an
d
symme
trical stru
ctu
r
e
that is, it will be ha
ving two c
h
ains
for
bindi
n
g actions, For the Reaction t
o
happe
n
, t
h
ere m
u
st be atleast two
B
i
ndi
n
g
si
t
e
s.
B
i
ndi
n
g
si
t
e
s are not
hi
n
g
bu
t
t
h
e
area
at whic
h
the
proper
attach
m
e
n
t
of
th
e can be tak
i
ng
place. One bi
nding site will
be use
d
for the i
m
m
obiliza
t
i
on
of the a
n
tibody on to
the requi
red
platform and
the second is for th
e antigen
reaction
to take place. By the help
of
El
ectron m
i
croscopy, the m
o
st common
form
observe
d is y shaped.
The hea
v
y Chain also known as
α
chai
n i
s
t
h
e one w
h
i
c
h cont
ri
b
u
t
e
s
t
h
e
Molecular m
a
ss of the
Antibody that
is 120kDa
. The st
ruc
t
ure of the
Im
m
unoglobulin
A will be som
e
thing
resem
b
lin
g
like th
e Fi
g
u
re
5
.
Fi
gu
re 5.
Im
m
ugl
ob
ul
i
n
A
6.
E
X
PERI
MEN
T
AL DES
I
G
N
A rectangu
lar can
tilev
e
r b
e
a
m
is
assu
m
e
d
with
th
e d
i
men
s
io
n
s
(15
0
, 3
0
, 1
)
X 10
-6
m
.
A sm
all
rect
an
gul
a
r
hol
e
(
4
5
,
15
, 1)
x
1
0
-6
m
is b
een
p
u
n
c
h
e
d throug
h th
e can
tilever so
as to in
crease th
e sensitiv
ity o
f
th
e Can
tilev
e
r. Th
is is
k
nown as SCR
(stress co
ncen
tration
reg
i
o
n
) co
n
c
ept. Th
e
h
o
l
e is t
o
b
e
pun
ch
ed
at th
e
fix
e
d
sid
e
o
f
t
h
e can
tilev
e
r .t
h
i
s
will
m
a
k
e
th
e can
tile
v
e
r to
d
e
flect than
actu
a
lly
m
ean
t to
b
e
. Th
e Reactio
n
area is c
o
nstra
i
ned a
s
well as the
deflection is i
n
creas
e
d
usi
n
g
t
h
i
s
pri
n
ci
pal
.
Let
u
s
no
w
use
Si
O
2
, Si
C
,
Si3
N
4
,
Plo
y
Si with
m
a
terial p
r
op
erties listed
in th
e
Tab
l
e
1
for
o
p
tim
izat
io
n
.
The s
u
rface of the rectangular beam
is assumed to ha
ve the imm
obilized antibody probe coating.
The initial displacem
ent wit
h
a for
ce 3.98e-21 Pa for
only coating
the probe anti
body consisting 20
m
o
lecu
les is no
ted
.
Now
with
an
assu
m
p
tio
n of
20
m
o
lecu
les
o
f
an
tibod
y is
b
e
ing
b
i
n
d
e
d
with 10
an
tig
en
m
o
lecules. The force is calculated for
10
m
o
lecules of
An
tig
en
an
d
ad
d
e
d
to
ex
isting
fo
rce
with
a to
tal o
f
1.13e
-20 Pa a
n
d displacem
ent of tota
l displa
ce
m
e
nt with both Antige
n
an
d anti body is calculated and note
d
.
By th
is we can
pred
ict th
at t
h
e swi
n
e fl
u
viru
s
N1H1
is bein
g
attach
ed
to
th
e imm
o
b
ili
zed
an
tibod
y in
th
is
case Ig A. The
above calculations ar
e
d
one
usi
n
g C
O
M
S
O
L
M
u
l
t
i
phy
si
cs
4.3
b
s
o
ft
wa
re.
For
opt
i
m
i
z
at
ion
o
f
cantilever we use
d
differe
n
t materials
and calculated
the
net displacem
e
n
ts with
i
n
itial
condition
and after
reactio
n
s
on
can
tilev
e
r.
Table 1.
Material
Properties of used
m
a
terials
Materi
al Pro
p
e
rti
e
s
Materi
als
SiO
2
SiC
Si
3
N
4
Poly
Si
Density
(
kg/m
3
)
2200
3216
3100
2320
Young’
s M
odulus(
Y
)
(GPa)
70
748
250
169
Possion’
s
Ratio
0.
17
0.
45
0.
23
0.
22
7.
SIM
U
LATI
O
N
RESULTS
AN
D DIS
C
US
SION
S
The
resul
t
s
f
o
r t
h
e ab
o
v
e
exp
e
ri
m
e
nt
al desi
g
n
m
ode
l
R
ect
angul
a
r
wi
t
h
St
re
ss
C
once
n
t
r
at
i
o
n
R
e
gi
o
n
(SC
R
)
w
as o
b
se
r
v
ed
,
For
o
p
t
i
m
i
zat
ion
o
f
t
h
e
desi
g
n
f
o
r
best
re
sul
t
s we ha
ve
use
d
di
ffe
rent
m
a
teri
al
s
like SiO2, SiC
,
Si3N4,
poly Si. SiO2
was obs
erved
to ha
ve
the
large
s
t
displacem
ent, whic
h desc
ribe
s for a
g
i
v
e
n
assu
m
p
tio
n
s
i
n
d
e
tection
of Swi
n
e flu v
i
ru
s, SiO2
was
m
o
re sen
s
itiv
e th
an
o
t
h
e
r ele
m
en
ts u
s
ed
. Th
e
Si
m
u
latio
n
s
are calcu
lated
w
ith
A
n
tibody alo
n
e
(in
itia
l) and
A
n
ti
bo
d
y
-An
tig
en
pair co
m
b
in
ed (After
reactio
n)
for Si
O2 m
a
terial is
as shown in
Fig
u
res
6
and
7
resp
ectiv
ely.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Design
and Analysis of
Micro Cantilever Based Bi
os
e
n
sor f
o
r
Swine
Flu
.... (M.G.G. Jithendra Pr
asad)
1
195
Fi
gu
re 6. In
itial (An
tibod
y alone)
Fi
gu
re 7.
After reactio
n
(bo
t
h An
t
i
b
o
d
y
and
An
tig
en)
The Sim
u
lation re
sults
of Antibody
alone (Initial)
and An
tibody-Antige
n
pair (A
fter reaction)
for
Si
C
m
a
t
e
ri
al
s is as s
h
o
w
n i
n
Fi
gu
res
8 a
n
d
9
respect
i
v
el
y
.
Figure
8
.
In
itial (An
tib
od
y alon
e)
Figu
re 9.
After reactio
n
(
bo
th
An
tib
od
y an
d An
tig
en)
The Sim
u
lation re
sults
of Antibody
alone (Initial)
and An
tibody-Antige
n
pair (A
fter reaction)
for
Si
3N
4 m
a
t
e
ri
als i
s
as s
h
ow
n i
n
Fi
gu
res
1
0
a
n
d
1
1
res
p
ect
i
v
el
y
.
Figure
1
0
. In
itial (An
tibod
y alone)
Figure
1
1
.
After reactio
n
(bo
t
h An
t
i
b
o
d
y
and
An
tig
en)
The Sim
u
lation re
sults
of Antibody
alone (Initial)
and An
tibody-Antige
n
pair (A
fter reaction)
for
p
o
l
y Si m
a
ter
i
als is as sh
own
i
n
Fi
g
u
r
e
s
12
an
d 13
r
e
sp
ectively.
Figure
1
2
. In
itial (An
tibod
y alone)
Fi
g
u
re 13
.
After
reactio
n
(bo
t
h An
t
i
b
o
d
y
and
An
tig
en)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
11
9
0
– 11
96
1
196
The Ta
ble
2
gives
us
the
brief idea
of t
h
e sim
u
lation results with Di
splacem
ents ta
bulated for
m
a
t
e
ri
al
s used
fo
r t
h
e
E
xpe
ri
m
e
nt
al
desi
g
n
.
Tabl
e
2.
Di
s
p
l
acem
e
nt
s of
re
sul
t
s
Displace
m
e
nt
Mate
rials
SiC SiO
2
Si
3
N
4
Poly
Si
W
ith Antibody
alo
n
e(
10
-1
4
µ
m
) 0.
163
1.
7746
0.
4961
0.
7341
W
ith both Antibod
y
and Antigen (
1
0
-14
µ
m
) 0.
463
5.
0383
1.
4086
2.
0844
We can
still in
crease th
e sen
s
itiv
ity o
f
th
e Can
tilev
e
r
b
y
increasing
th
e
d
i
men
s
io
n, suppo
se th
e sam
e
cantilever is de
signe
d
using
2
00µm
instead
of 150µm
then
the
displacement of t
h
e Cant
ilever is increa
sed
t
o
a co
nsi
d
e
r
abl
e
am
ount
basi
ng
St
one'
s
l
a
w
an
d
resul
t
s
a
r
e as
sh
ow
n i
n
Fi
g
u
r
e
14
an
d
Fi
g
u
r
e
1
5
respect
i
v
e
l
y
.
Figure
1
4
. In
itial (An
tibod
y alone)
Fi
g
u
re 15
.
After
reactio
n
(bo
t
h An
t
i
b
o
d
y
and
An
tig
en)
8.
CO
NCL
USI
O
NS
Th
e Micro
-
Can
tilev
e
r
d
e
si
g
n
ed
ex
h
i
b
its bo
t
h
selec
tiv
ity an
d sen
s
itiv
ity p
r
op
erties
wh
i
c
h
p
l
ay a ro
le
i
n
Det
ect
i
on
o
f
N
1
H
1
vi
ru
s.
Thi
s
can
be
use
d
t
o
se
nse
the Swi
n
e flu virus effectively. Also SiO2 was
sh
owing
th
e
h
i
g
h
Sen
s
itiv
ity th
an
o
t
h
e
r m
a
t
e
rials.
W
e
ev
en
ch
ang
e
d
th
e
d
i
m
e
n
s
io
n
s
to
alter th
e th
roug
h-p
u
t
of
sens
o
r
.
REFERE
NC
ES
[1]
M. Chaudhar
y
, “Microcan
tilever-
b
ased Sensors,”
Defence S
c
ien
c
e Journal
, vol/issue: 59(6)
, 2009
.
[2]
W. Zhou, “Simu
l
ation
and
desig
n
of piezo
electr
ic
microcantilev
e
r ch
emical sensors,”
Sciencedir
ect.
[3]
S. Logeshkum
ar, “FEM based
Estim
ation of B
i
ologica
l Int
e
raction Using a Cantilev
e
r Array
Sensor,”
Comsol
conferen
ce Bang
alore.
[4]
R. Ra
iter
i
,
“
M
icr
o
m
echanic
al
can
tilev
e
r-based
bio
s
ensors,”
Sensors and Actuators
B 4010
, pp. 1–1
2, 2001
.
[5]
N. K. Madzhi, “Design
Si
mul
a
tion and Analy
s
is of Poly
siliconba
sed CMOS Micromachined Piezoresistiv
e
Microcan
tilever
for Glucose Sen
s
i
ng,” London, U.K.,
July
4
-
6, 2012.
[6]
N. Nugaeva, “Microm
echani
c
al cant
ilev
e
r arr
a
y
sensor
s for selectiv
e fungal
im
m
obilization
and fast growth
dete
ction
,
”
Bios
ensors and Bioelectronics
, vo
l. 2
1
, pp
. 849–856
,
2005.
[7]
K. K.
Zad
e
h
and
B. Fr
y
,
“Nano
T
echnolog
y
-
Enab
led sensors,” Spr
i
nger.
[8]
V.
K.
Varadan,
et al.
, “NanoTech
nolog
y
Eng
i
neer
ing in
nano
and
bio medicine”.
[9]
D. K. Parsedi
y
a
,
“
S
im
ulation an
d anal
ysis of h
i
ghl
y
s
e
nsitiv
e
MEMS cantil
ev
er designs for “
i
n vivo lab
e
l fr
e
e
,”
biosensing, Procedia
Technology
, vol. 14
, pp
. 85
– 92, 2014.
[10]
F. M. Battison,
“
A
chem
ical sensor based on m
i
crofab
ric
a
te
d canti
lever
arr
a
y
wi
th sim
u
lta
neous resonanc
e-
frequency
and
b
e
nding r
eadou
t,” sens
ors and
actu
a
tors7 BB 14556
2 644<6C6.
[11]
R. A. R
a
him
,
“
D
es
ign and Anal
y
s
is
of M
E
M
S
P
i
ezores
i
s
t
i
v
e S
i
O2 Cant
il
ever-bas
ed
S
e
n
s
or with S
t
res
s
Concentr
ation
R
e
gion for
Biosen
sing Application
s
,”
ICSE 2008
Proc.
, Johor Bahr
u, Malay
s
ia, 200
8.
[12]
Rudresha K. J.
,
“
M
icrocant
ilev
e
r Optim
iz
a
tion
For MEMS Biosensor Applica
tions,”
International Journal o
f
Electronics &
C
o
mmunication
E
ngineer
ing
Res
e
ar
ch (
I
JECER)
, vol/issue: 1(1),
2
013.
[13]
A. Oliver
, “Ambiguity
Av
ersion
and th
e UK
Go
ve
r
n
me
n
t
’
s
R
e
sp
on
se
t
o
Swi
n
e Fl
u,
”
London
Schoo
l of Economics.
[14]
S. Arora, “
D
esig
n Of Mem
s
Based Microc
ant
ile
ver Using Com
s
ol Multiph
y
si
cs,
”
International Jour
nal of Applied
Engineering Research
.
[15]
P
.
G. Gopina
th,
“
M
EM
S
M
i
crocantil
evers
S
e
ns
o
r
M
odes of Oper
ation
and
Transd
uction Prin
ciples
,”
In
ternationa
l
Journal of Computer
En
g
i
neerin
g Science (
I
JCES)
, vol/issue: 4(2
)
, 2014
.
[16]
P
.
Ananthan
ara
y
an, “
M
icrob
i
olo
g
y
,” 8
th
edition, universities
pres
s.
Evaluation Warning : The document was created with Spire.PDF for Python.