Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 1
,
Febr
u
a
r
y
201
6,
pp
. 18
8
~
19
7
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
1.7
768
1
88
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Design of Quadcopter Robot as
a Disas
t
er Environment Remote
Monitor
Ma
de
S
u
d
a
rm
a,
I
.
B
.
Al
i
t
Sw
am
ardi
k
a
, Ad
i
n
at
a M
a
s
Pr
a
t
am
a
Computer S
y
stem and Informatics,
Depart
em
ent
of El
ectr
i
c
a
l
and
Com
puter S
y
s
t
e
m
Engineer
ing
Faculty
of Engin
eering
,
Uday
ana Univ
ersity
, Bukit Jimbaran
, Bali, Indonesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 8, 2015
Rev
i
sed
No
v 2, 201
5
Accepted Nov 19, 2015
As technolog
y
d
e
velopment incr
ease,
human more use robo
t technolog
y
to
help in man
y
f
i
elds. One of ro
bot te
chnolog
y
advances is the
fly
i
ng robo
t
Quadcopter
. Th
e quadcopter rob
o
t is
an Unmanned Aerial Vehicle or UAV
that consists of four propellers
and f
our brushless motors that function as
actu
a
tor. Quad
copter was designed b
y
using
KK Board
V 2.0 Flight
Controller whic
h is a series of
m
o
tor
rotation controller and all at once has
Accel
erom
eter
cens
o
r as
ac
ce
l
e
rat
i
on cens
o
r
and G
y
ros
c
op
cens
o
r as
a
balan
ce or stability
censor. Th
e robot c
ontrolling
is by
using remote contro
l
(RC), and GoPr
o HD
Hero2 camera was installed to monitor the condition o
f
the
environment. Result of
testin
g is
that th
e qu
adcopter
has max
i
mum load
for 4.4 kg
and
maximum ra
nge distance of RC
is 100 meters
without
an
y
barrier
and 50
meters with barrier.
In th
e testing, robo
t can fly
with
m
a
xim
u
m
height for 30 m
e
ters from
land surface. The robot is equ
i
pped wit
h
camera, so th
e q
u
adcopter fly
i
ng
robot
can
b
e
used to monitor
an
y places th
at
are h
a
rd
to r
e
a
c
h
.
Keyword:
En
gi
neeri
n
g
Fl
i
ght
c
ont
rol
l
er
GoPro cam
era
Qua
d
c
opt
e
r
r
o
bot
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
a
de S
u
darm
a
Depa
rt
em
ent
of El
ect
ri
cal
an
d
C
o
m
put
er Sy
s
t
em
Engi
nee
r
i
n
g
Engineeri
n
g Fa
culty,
Ud
ayan
a Un
iv
ersity
Ji
m
b
ar
an
Cam
p
u
s
,
K
u
ta 803
61
, Bali,
I
ndo
n
e
sia, Telp
./Fax.
: +6
236
170
3315
Em
a
il: m
s
u
d
a
rma@u
nud
.ac.i
d
1.
INTRODUCTION
As the tec
h
nol
ogy inc
r
ease,
robot is a technol
ogy
t
h
at
i
s
devel
ope
d t
o
h
e
l
p
h
u
m
a
n i
n
carry
o
u
t
a
certain tas
k
,
for e
x
am
ple a task t
h
at nee
d
s
a
high ca
re
fu
l
n
ess,
high
risk,
a task t
h
at nee
d
s a
huge
power,
or
any m
onotonous tas
k
s.
In a
d
dition, it can
a
l
so be used to
places that a
r
e
hard
t
o
reach or
a
r
e da
nge
rous for
hum
an. O
n
e
o
f
r
o
b
o
t
t
ech
n
o
l
ogy
t
h
at
i
s
bei
ng
de
vel
o
pe
d b
y
som
e
count
ri
es i
s
t
h
e fl
y
i
ng
ro
b
o
t
,
w
h
et
he
r
i
n
t
h
e
form
of plane or
helicopte
r
with va
ri
ous types. Flying robot of helicopt
e
r
type is used for the
necess
ity
that
cann
o
t
be
reac
hed
by
h
u
m
a
n such a
s
t
o
m
oni
t
o
r t
r
a
ffi
c j
a
m
,
sur
v
ey
an
d m
a
ppi
ng
, s
p
y
rob
o
t
,
t
o
m
oni
t
o
r
n
a
tural d
i
saster, to
m
o
n
ito
r lan
d
fi
re, to
assit fo
r fi
ri
ng
ex
tin
gu
ish
i
ng
equ
i
p
m
en
t,
searching m
e
dia for Searc
h
an
d Rescu
e
(SAR) m
i
ssio
n
,
to
escort th
e
presid
en
t and
t
o
m
o
n
ito
r
bu
ild
ing
co
n
s
t
r
u
c
ti
o
n
in
ci
v
il eng
i
n
e
er
field.
Recently
m
a
ny researc
h
s about
qua
dc
opte
r
robot ha
s been done es
pe
cially related
to ha
rdware
design and the
sim
u
lation about the st
ability of the qua
dc
opte
r
robot by usin
g a cam
e
ra that was installed to
t
h
e q
u
ad
co
pt
er
t
h
at
fu
nct
i
o
n
as a na
vi
gat
i
o
n sy
st
em
t
o
t
h
e qua
dc
opt
e
r
r
o
b
o
t
s
o
m
a
ke i
t
possi
bl
e t
o
m
ove
autom
a
tically
[1]. Whe
r
eas othe
r
resea
r
ch
desi
g
n
a q
u
a
d
co
pt
er t
h
at
i
s
abl
e
t
o
m
ove by
usi
n
g
vi
su
al
fl
i
g
h
t
co
n
t
ro
l, wh
ere
th
e rob
o
t
can
visu
alize th
e con
d
ition
o
f
its su
rroun
d
i
n
g
env
i
ro
n
m
en
t and th
en it m
o
v
e
s
b
a
sed
o
n
th
e m
o
tio
n
d
e
tecto
r
on
t
h
e ro
bo
t so
m
a
k
e
it p
o
ssib
l
e to
m
o
v
e
au
to
m
a
ti
cally [2
].
If
we see fro
m th
e
robo
t techn
o
l
o
g
y
d
e
v
e
lop
m
en
t esp
ecially th
e flyin
g
ro
bo
t, and
th
e
co
nd
itio
n of
In
d
onesi
a t
h
at
oft
e
n ex
peri
e
n
ce di
sast
er an
d
safet
y
di
st
ur
b
a
nce, t
h
e
n
i
n
t
h
i
s
resear
ch i
t
was desi
gn a f
l
y
i
ng
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
:
18
8
–
19
7
18
9
ro
b
o
t
of
hel
i
c
opt
e
r
t
y
pe wi
t
h
f
o
ur m
o
t
o
rs
and
f
o
u
r
p
r
o
p
el
l
e
rs t
h
at
i
s
cal
l
e
d qu
adc
o
pt
er.
Q
u
adc
o
pt
er was
desi
g
n
e
d
by
us
i
ng
K
K
B
o
a
r
d
V
2.
0 Fl
i
g
ht
C
ont
r
o
l
l
e
r t
h
at
i
s
a seri
es
of
m
o
t
o
r rot
a
t
i
o
n
co
nt
rol
l
e
r
an
d
al
l
at
o
n
c
e h
a
s
Accelero
m
e
ter cen
so
r as an
acceleratio
n
cen
s
o
r
an
d
t
h
e
Gyrosco
p
cen
sor as a b
a
lan
ce
or stab
ilit
y
cen
so
r. R
o
b
o
t
co
n
t
ro
lling
is
b
y
u
s
i
n
g
rem
o
te co
n
t
ro
l Tu
rn
ig
y 2.4 GHz, an
d
Go
Pro
HD Hero
2
cam
era was
in
stalled
to
mo
n
itor th
e cond
itio
n
of th
e en
v
i
ron
m
en
t, so
it is ex
p
ected
to
b
e
ab
le to
g
i
v
e
a so
l
u
tio
n
to
accelerate the s
earchi
n
g of
nat
u
ral
disaster
vi
ctim
s.
2.
COMP
ONE
N
TS
2
.
1
.
K.K. B
o
ard V 2.0 Flig
ht
Co
nt
ro
ller
KK B
o
ard
V
2.0
Fligh
t
Con
t
ro
ller is a series o
f
brush
l
ess
m
o
to
r ro
tation co
n
t
ro
ller and all at o
n
c
e
has
Accelerometer censor as
an acceler
ation ce
nsor a
n
d
Gyroscop Ce
nsor
as a
stability censor.
The
r
e a
r
e
som
e
fl
yi
ng de
vi
ce con
f
i
g
urat
i
ons o
n
t
h
e K
K
B
o
ar
d V 2
.
0
Fl
i
ght
C
ont
r
o
l
l
er. KK B
o
a
r
d V 2.
0 i
s
al
so abl
e
t
o
be reprogrammed according to the necess
ity of the user. Figure 1 shows that
there are 6 PIN ISP tha
t
can be
u
s
ed
to
inpu
t th
e pro
g
ram
in
t
o
th
e
KK B
o
ard
V
2
.
0
Fligh
t
Co
n
t
ro
ller. There are
5
inp
u
t
d
a
ta th
at will be u
s
ed
by
K
K
B
o
a
r
d
V
2.
0 t
o
be a
b
l
e
t
o
co
nt
r
o
l
t
h
e
Qua
d
c
opt
e
r
Fl
y
i
n
g
ve
hi
cl
e t
hose
are
t
h
e El
evat
or
dat
a
f
o
r
forward
and
back
ward
con
t
ro
l, Aileron
d
a
t
a
for left
and
rig
h
t
con
t
ro
l, Th
ro
ttle d
a
ta fo
r u
p
and
down
(as g
a
s
pedal
)
, R
u
d
d
l
e
r dat
a
f
o
r co
nt
rol
t
h
e
Q
u
adc
opt
e
r
t
o
be abl
e
t
o
m
ove i
n
ho
ri
zo
nt
al
rot
a
t
i
on an
d
Au
x
dat
a
t
o
activ
ate th
e Self Balan
c
in
g
fu
n
c
tion
fro
m
KK B
o
ard
in
o
r
d
e
r t
h
at th
e
Qu
ad
co
p
t
er wi
ll b
e
ab
le to
stab
ilize
i
t
s
el
f whe
n
t
h
e
r
e wa
s
di
st
ur
b
a
nce
fr
om
out
si
de fact
or.
I
n
t
h
i
s
K
K
B
o
ar
d,
t
h
e
user
can
s
e
t
m
a
nual
co
ns
t
a
nt
an
PI
fo
r Sel
f
B
a
l
a
nci
n
g
fo
rm
t
h
e Q
u
adc
o
pt
er a
ccor
d
i
n
g t
o
i
t
s
di
m
e
nsi
on a
n
d
wei
g
ht
.
Fi
gu
re 1.
C
o
nfi
g
u
r
at
i
o
n of So
cket
K
K
B
o
ar
d
V 2.
0 [3]
2.2. Electr
o
nic
s
Speed Contr
o
ller
ESC
(El
ect
r
o
n
i
c Spee
d C
ont
r
o
l
l
e
r)
o
n
Fi
g
u
r
e
2
has
f
u
nct
i
o
n
as a
m
o
t
o
r
spee
d c
ont
rol
l
er;
besi
de i
t
al
so has
fu
nct
i
on t
o
i
n
crea
se
t
h
e am
ount
o
f
cur
r
ent
neede
d
by
m
o
t
o
r. ES
C
can be al
s
o
cal
l
e
d as m
o
t
o
r d
r
i
v
e
r
by
p
r
od
uci
n
g
p
u
l
s
e f
o
r
br
us
hl
ess m
o
t
o
r t
h
at
cam
e
from
t
h
e
m
i
cro-co
nt
r
o
l
l
e
r.
Fi
gu
re
2.
El
ect
ro
ni
c S
p
ee
d C
ont
rol
l
e
r
[
4
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
Qu
a
d
co
pt
er
R
o
bot
as a Di
saster
E
n
vironmen
t Remo
te
Mon
ito
r
(
M
ad
e S
uda
rma)
19
0
2.
3. B
r
ushl
ess
Mo
t
o
r
Bru
s
h
l
ess m
o
t
o
r on
Figu
re
3
is a
m
o
to
r t
h
at h
a
s p
e
rm
an
en
t m
o
to
r o
n
th
e ro
to
r
p
a
rt
, wh
ile th
e
el
ect
rom
a
gnet
on
t
h
e
st
at
or
part
.
Ge
ne
ral
l
y
, t
h
e s
p
ee
d
o
f
br
us
hl
ess m
o
t
o
r r
o
t
a
t
i
o
n
p
r
o
d
u
ced
by
E
S
C
was
arra
nge
d
by
t
h
e pul
se
fr
om
t
h
e
m
i
cro-co
nt
r
o
l
l
e
r, so i
t
i
s
di
f
f
ere
n
t
fr
om
brush
e
d
[5]
,
[
6
]
.
B
L
DC
m
o
t
o
r or ca
n
al
so be cal
l
e
d as B
L
AC
m
o
t
o
r, i
s
a sy
nchr
o
n
o
u
s el
ect
ri
c m
o
t
o
r AC
pha
se 3. The
di
ffe
rent
i
a
t
i
on i
n
na
m
i
ng i
s
due t
o
B
L
DC
t
h
at
has B
E
M
F
wi
t
h
t
r
a
p
e
z
oi
d s
h
a
p
e
while th
e BLAC h
a
s BEMF
with
sin
u
s
o
i
dal sh
ap
e.
Eve
n
t
h
ou
g
h
, b
o
t
h
ha
ve t
h
e sa
m
e
st
ruct
ure a
nd ca
n be co
nt
rol
l
e
d
by
usi
n
g
si
x-st
ep m
e
t
hod
or P
W
M
m
e
t
h
o
d
.
To
be c
o
m
p
ared wit
h
ot
her
DC
m
o
tor types
,
the BLDC
has
lowe
r m
a
intenance c
o
st and
higher
spee
d
because
it uses no
brus
h. T
o
be c
o
m
p
ared
with i
n
duction m
o
to
r, t
h
e BLDC
has
highe
r efficienc
y
because
the
rot
o
r
an
d in
itial to
rsi
o
n pro
d
u
c
ed
mad
e
o
f
p
e
rm
an
en
t m
a
g
n
e
t.
Fi
gu
re
3.
B
r
us
hl
ess M
o
t
o
r
[
7
]
2.
4. Pro
p
el
l
er
The
pr
o
p
el
l
e
r
on
Fi
g
u
r
e
4 i
s
a t
y
pe o
f
fa
n t
h
at
pr
o
duces
p
o
w
er
by
c
o
nve
rt
i
ng
r
o
t
a
t
i
on m
ovem
e
nt
i
n
t
o
im
pet
u
s t
o
m
ove a t
h
i
n
g.
The
bl
ade
s
of
t
h
e
pr
o
p
el
l
e
r h
a
s
f
unct
i
o
n a
s
rot
a
t
i
ng
wi
n
g
s t
h
at
p
r
o
d
u
ce a
di
f
f
e
renc
e
of press
u
re
bet
w
een the
front
s
ide a
n
d the
ba
ckside
of
t
h
e
b
l
ade. P
r
opel
l
e
r
i
s
de
vi
de
d i
n
t
o
t
w
o
t
y
pes t
hos
e are
CW
an
d
C
C
W
.
Fi
gu
re 4.
Pr
o
p
e
l
l
e
r
2.
5.
PID
C
o
n
t
rol
S
y
ste
m
In a co
nt
r
o
l
sy
st
em
t
h
ere ar
e som
e
cont
ro
l
act
i
ons, am
o
ng
ot
he
rs t
h
e pr
o
p
o
r
t
i
onal
c
ont
rol
act
i
o
n
,
i
n
t
e
gral
co
nt
r
o
l
act
i
on, an
d t
h
e deri
vat
i
v
e c
o
nt
r
o
l
act
i
on. E
ach o
f
co
nt
r
o
l
act
i
on has ce
rt
ai
n su
peri
ori
t
y
, whe
r
e
th
e action
s
are
as th
e
fo
llowing
:
1.
The pr
o
p
o
r
t
i
o
n
a
l
cont
rol
act
i
o
n has q
u
i
c
k ri
s
e
t
i
m
e
superi
ori
t
y
.
2.
Th
e i
n
teg
r
al con
t
ro
l actio
n h
a
s sup
e
ri
o
r
ity to min
i
m
i
ze error.
3.
The
deri
vat
i
v
e
cont
rol
act
i
o
n
has s
u
peri
ori
t
y
t
o
m
i
nim
i
ze er
ro
r
or
t
o
m
u
ffl
e o
v
ers
h
ot
/
u
n
d
e
rsh
o
t
.
Gene
ral c
h
arac
teristic to be
used i
n
the
cont
ro
lling
of a
sy
stem
am
ong
ot
hers
include t
h
e stability,
accuracy,
respond spee
d and sensitivity. In the action
of
proportional c
ont
rol,
output
of t
h
e control syste
m
always p
r
o
portio
n
a
l with
th
e
in
pu
t. Ou
tpu
t
sig
n
a
l is an
am
p
l
ificatio
n
o
f
an
erro
r si
g
n
a
l with
certain
factor;
th
is a
m
p
lificati
o
n
fact
o
r
is a propo
rtio
n
a
l con
s
tan
t
an
o
f
th
e syste
m
,
th
at is
stated
with
Kp
, wh
ere th
is
Kp
h
a
s
hi
g
h
a
n
d
q
u
i
c
k
res
p
o
n
d
.
I
n
i
n
t
e
gral
c
ont
rol
act
i
on,
o
u
t
p
ut
of
t
h
i
s
c
ont
rol
l
er al
way
s
cha
n
ge
du
ri
n
g
de
vi
at
i
o
n
o
ccur, and th
e ou
tpu
t
ch
ang
e
sp
eed
is pro
p
o
r
tion
a
l
with
it
s d
e
v
i
atio
n, t
h
e con
s
tan
t
an
is stated
i
n
Ki,
wh
ere
th
is Ki
h
a
s h
i
g
h
sen
s
itiv
ity, th
at is
b
y
th
e m
e
th
od
o
f
red
u
c
i
n
g erro
r
produ
ced fro
m
feedb
a
ck
si
g
n
a
l. The
g
r
eater
Ki v
a
l
u
e, t
h
e
h
i
gh
er its sen
s
itiv
ity, bu
t tim
e n
eed
ed to reach
t
h
e stab
ility is faster, so
thu
s
in
t
h
e
cont
rary
.
Whe
r
eas t
h
e deri
vat
i
ve cont
rol
act
i
on w
o
r
k
s ba
s
e
d o
n
t
h
e devi
at
i
on cha
nge r
a
t
e
, so t
h
i
s
cont
r
o
l
l
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
:
18
8
–
19
7
19
1
typ
e
is always
u
s
ed
tog
e
th
er with
th
e p
r
o
p
o
r
tion
a
l and
in
teg
r
al con
t
ro
ll
er, th
e con
s
tantan
is stated
a
s
Kd,
whe
r
e t
h
is
Kd infl
uence
the
stability of t
h
e
system
, becau
se this action
can
reduce
error [8]. Fi
gure
5 is a
di
ag
ram
bl
ock
of
t
h
e
PI
D c
ont
rol
sy
st
em
wi
t
h
cl
o
s
e l
o
o
p
.
Fi
gu
re
5.
B
l
oc
k
Di
ag
ram
of P
I
D C
o
nt
r
o
l
Sy
s
t
em
[8]
2.
6. T
h
e G
o
Pr
o H
D
Hero
2
C
a
mer
a
Th
e Go
Pro
HD
H
e
ro2
cam
er
a o
n
Figur
e 6,
w
ith d
i
m
e
n
s
i
o
n
of
3
.
9
x
3.9
x
9
.
6
″
, a
n
d l
e
ns t
h
at
has
po
we
r of
1
1
m
p
can perf
or
m
t
o
t
a
ke 10
pi
ct
ures
o
n
l
y
in 1 sec
o
n
d
,
or
m
o
re so
phi
st
i
cat
ed by
usi
n
g
‘Ti
m
e-
Lapse
’
m
ode t
h
at
p
r
od
uces
1
sh
ot
onl
y
i
n
0
.
5
seco
n
d
.
Fi
g
u
re
sh
o
o
t
i
n
g c
a
n
be
d
one
q
u
i
c
kl
y
wi
t
h
ve
ry
fi
ne
p
i
ctu
r
e qu
ality. Th
is is b
e
cause it is co
m
p
leted
with sp
ecial len
s
o
n
th
e
fro
n
t
si
d
e
in ord
e
r it will no
t h
a
v
e
di
st
ur
ba
nce at
t
h
e t
i
m
e of pi
ct
ure
sh
o
o
t
i
n
g
.
Fi
gu
re
6.
G
o
P
r
o C
a
m
e
ra her
o
2
2.
7.
Sender
Sk
yZ
one
5.
8 G
4
0
0
mW
vi
de
o
Sen
d
er
S
k
y
Z
o
n
e
5.
8
G
4
0
0
m
W
vi
deo
i
s
a
com
m
uni
cat
i
on
de
vi
ce t
h
at
i
s
use
d
t
o
sen
d
dat
a
i
n
t
h
e
fo
rm
of A
udi
o
Vi
de
o wi
t
h
m
a
xi
m
u
m
di
st
ance of
5
ki
l
o
m
e
t
e
rs wi
t
h
l
i
n
e
o
f
si
de co
n
d
i
t
i
on.
Fi
gu
re
7 an
d
Fi
gu
re
8 s
h
ow t
h
e T
r
a
n
sm
itter and R
eceiver.
The s
p
ecifications
of t
h
e
Audio Vi
deo
Tran
smit
ter are as the fo
llo
wi
n
g
:
1.
It has
8 cha
n
ne
ls that can be
used.
2.
I
t
wo
rk
s
on
t
h
e Fr
equ
e
n
c
y C
h
an
n
e
l
f
r
o
m
5
645
Mhz to 594
5
Mh
z.
3.
Vide
o
form
at that can be
s
u
pported is the
NTSC/PAL
.
4.
Ope
r
at
i
o
n vol
t
a
ge
= DC
7
v
t
o
1
4
v
.
5.
C
u
r
r
ent
c
o
nsu
m
pti
on =
2
2
0
m
A.
6.
Ty
pe
of c
o
nne
ct
or a
n
t
e
n
n
a i
s
R
P
-SM
A
.
7.
Di
m
e
nsi
on =
5
5
x
26
x
1
7
m
m
.
8.
Wei
g
ht
=
25
g
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
Qu
a
d
co
pt
er
R
o
bot
as a Di
saster
E
n
vironmen
t Remo
te
Mon
ito
r
(
M
ad
e S
uda
rma)
19
2
Fi
gu
re
7.
Vi
de
o Se
n
d
er
Tra
n
s
m
i
t
t
e
r (T
x)
Fi
gu
re
8.
Vi
de
o Se
n
d
er
R
eci
v
i
er (R
x)
3.
R
E
SEARC
H M
ETHOD
Desi
g
n
m
e
t
hod o
f
qua
dc
opt
er r
o
b
o
t
co
nsi
s
t
s
of
q
u
adc
o
pt
er
3D
desi
g
n
an
d
har
d
wa
re desi
gn
o
f
qua
dc
opt
e
r
r
o
bot
.
On t
h
e d
e
si
gn
of t
h
e
q
u
adc
o
pt
er, i
t
also calculates all aspect
s that can influe
nc
e the
per
f
o
r
m
a
nce of
t
h
e
qua
dc
opt
e
r
.
On
t
h
e
ha
rd
ware
desi
gn
i
t
con
s
i
s
t
s
o
f
s
o
m
e
part
s t
h
ose
are:
1.
M
e
hani
cal
desi
gn
o
f
q
u
adc
o
pt
er
r
o
bot
.
2.
Electronic
syste
m
design.
Pi
ct
ure
9.
Is
a
desi
g
n
of
q
u
a
d
copt
e
r
r
o
bot
Pictu
r
e
10
is a
d
i
agr
a
m
b
l
o
c
k
o
f
electr
o
n
i
c syste
m
o
f
th
e
qu
ad
cop
t
er
r
obot.
Fig
u
r
e
10
.
Block
D
i
agr
a
m
El
ectronic Syste
m
s Quadc
opter
On
Fi
g
u
re
1
1
s
h
o
w
s t
h
at
t
h
e
r
e
m
o
t
e
cont
rol
gi
ves
o
r
de
r
si
gn
al to
qu
ad
copter
ro
bo
t,
t
h
en
the cam
era installed
o
n
t
h
e
q
u
a
d
c
op
ter
will sen
d
in
fo
rm
atio
n
in
th
e
form
o
f
v
i
d
e
o
an
d
audio
to
lap
t
o
p
by u
s
ing
v
i
d
e
o
send
er
devi
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
:
18
8
–
19
7
19
3
Fi
gu
re 1
1
. Il
l
u
s
t
rat
i
on of
Wo
r
k
Sy
st
em
s
Qua
d
co
pt
er
4.
R
E
SU
LTS AN
D ANA
LY
SIS
4.
1. Re
al
i
z
ati
o
n
o
f
Desi
g
n
R
e
sul
t
of
the
Q
u
adc
o
p
t
er R
o
bot
H
a
rdw
a
re
Assem
b
l
i
ng pr
ocess o
f
q
u
adc
opt
e
r
ro
b
o
t
wa
s st
art
e
d by
t
h
e assem
b
l
i
ng o
f
ro
b
o
t
’
s fram
e
and safet
y
bl
ade.
A
f
t
e
rw
a
r
ds t
o
be
co
nt
i
nue
d
by
i
n
st
al
l
i
ng el
ect
ro
ni
c
sy
st
em
wi
ri
ng, l
i
k
e i
t
i
s
se
en i
n
Fi
g
u
re
1
2
an
d
Figure 13.
Fi
gu
re
1
2
. as
se
m
b
ly
pr
ocess
Qua
d
c
opt
e
r
R
o
bot
R
eal
i
zat
i
on o
f
desi
g
n
res
u
l
t
o
f
qua
dc
opt
er
r
o
bot
t
h
at
ha
s
be
en c
o
m
p
l
e
t
e
d wi
t
h
Go
Pr
o
He
ro
2
cam
era.
Figu
re 1
3
. Act
u
al
Results De
sign
4.
2.
PW
M Si
g
n
al
T
e
s
t
i
n
g
Th
is testing
h
a
s pu
rpo
s
e t
o
fin
d
ou
t
pu
lse
wid
e
of each
co
n
t
ro
ller signal th
at was inp
u
tted to KK
boa
rd Flight controller from
t
h
e recei
ver. This testing
used
oscilloscope t
o
show
pu
lse wi
de from
each i
n
puts.
Inputs m
eant are the
A
ilero
n,
Elev
ato
r
, Th
ro
t
l
e, Ru
dd
er, and Au
x
ilary.
Th
e
PW
M testing
resu
lt can
b
e
seen
in
Figure 14.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
Qu
a
d
co
pt
er
R
o
bot
as a Di
saster
E
n
vironmen
t Remo
te
Mon
ito
r
(
M
ad
e S
uda
rma)
19
4
Fig
u
r
e
14
.
Sign
al Testing
Elev
ator
an
d A
ilero
n
4.
3.
L
i
f
t
P
o
w
e
r
T
e
sti
n
g of Q
u
adc
o
p
t
er R
o
bot
Li
ft
p
o
we
r t
e
st
i
ng
fr
om
t
h
e c
o
m
b
i
n
at
i
on
of
m
o
t
o
r an
d
bl
ade t
h
at
i
s
use
d
t
o
qua
dc
opt
e
r
r
o
b
o
t
has
fu
nct
i
o
n t
o
fi
n
d
o
u
t
h
o
w
m
u
ch m
a
xim
u
m
load t
h
at
can
b
e
gi
ve
n t
o
t
h
e
qua
dc
opt
e
r
i
n
or
der t
o
be a
b
l
e
t
o
fl
y
pr
o
p
erl
y
. B
a
se
d o
n
t
h
e
pre
v
i
o
us t
e
st
i
ng
resul
t
, wei
g
ht
of t
h
e
qua
dc
opt
er t
h
i
s
t
i
m
e
i
s
4.2 k
g
.
In Fi
g
u
re
15 i
t
can
b
e
seen
th
e lift p
o
w
er testin
g
of th
e m
o
to
r and
b
l
ad
e com
b
in
atio
n
u
s
ed
in
th
e qu
adco
p
t
er. Testing
resu
lt
obt
ai
ne
d t
h
at
l
i
ft
po
we
r o
f
t
h
e
m
o
t
o
r a
nd
bl
a
d
e com
b
i
n
at
i
o
n use
d
i
s
1.
1 k
g
. I
n
t
h
at
case,
fo
r q
u
a
d
co
pt
e
r
wi
t
h
fou
r
m
o
to
rs and
b
l
ad
es will b
e
ab
le to
lift lo
ad
fo
r 4.4
k
g
.
Th
is ti
m
e
, q
u
a
d
c
op
ter
weigh
t
is 4
.
2
kg
, so
it still
is
ab
le to
b
e
g
i
v
e
n
m
o
r
e
lo
ad
s
fo
r abou
t 0.2 kg.
Fi
gu
re
1
5
. Te
st
i
ng
o
f
P
o
wer
L
i
ft
fr
om
Qua
d
c
opt
e
r
R
o
b
o
t
4.
4. RP
M (R
o
t
a
t
ion
Per-
Mi
nute
)
Testi
n
g
and
Calculati
o
n
of P
o
wer of Brushless
Motor
The R
P
M
(R
ot
at
i
on Pe
r-M
i
n
u
t
e) Test
i
ng
of t
h
i
s
b
r
us
hl
ess
m
o
t
o
r has p
u
r
p
o
se t
o
fi
n
d
o
u
t
t
h
e am
ount
of r
o
t
a
t
i
o
n t
h
a
t
can be pe
rf
o
r
m
e
d by
brus
h
l
ess
m
o
t
o
r, be
cause R
P
M
p
r
od
uce
d
fr
om
thi
s
br
us
hl
ess
m
o
t
o
r
st
ro
ngl
y
rel
a
t
e
d t
o
p
o
we
r co
nsum
pt
i
on
per
f
o
r
m
e
d. Whe
r
e
a
s di
agram
bl
o
c
k o
f
R
P
M
t
e
st
i
ng o
f
t
h
i
s
br
u
s
hl
ess
m
o
to
r is as th
e
fo
llowing
:
Fig
u
r
e
16
. Block
D
i
agr
a
m
R
P
M Testing
From
t
h
e di
ag
ram
bl
ock o
n
Fi
gu
re 1
6
i
t
can be e
xpl
ai
n
e
d
t
h
at
t
h
e rot
a
t
i
on s
p
ee
d f
r
om
t
h
e br
us
hl
ess
m
o
t
o
r
depe
n
d
s t
o
P
W
M
(P
ul
se
Wi
dt
h M
o
dul
at
i
o
n
)
am
ount
gi
ven
.
To
be ab
l
e
t
o
m
easure R
P
M
from
br
ushl
ess
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
:
18
8
–
19
7
19
5
m
o
t
o
r, i
t
uses m
easurer t
h
at
i
s
t
achom
et
er. Fi
gu
re 1
7
s
h
o
w
s t
h
e
pr
ocess
of R
P
M
t
e
st
i
n
g f
r
om
brus
hl
e
ss m
o
t
o
r
o
n
th
e
qu
ad
copter
ro
bo
t.
Fig
u
r
e
17
. RPM Testin
g Process
Tabl
e
1 i
s
resul
t
of
R
P
M
(R
ot
at
i
on Pe
r-M
i
n
u
t
e) t
e
st
i
ng t
o
br
ushl
ess
m
o
t
o
r.
Tab
l
e
1
.
Resu
lt of RPM Testin
g
No
PWM Throttle
Pul
s
e
Given Motor
Rotation
(RPM)
1 0%
0
2 25%
3204
3 50%
6662
4 75%
1159
2
5 100%
1306
8
From
t
h
e t
e
st
i
n
g
res
u
l
t
i
t
ca
n
be c
o
ncl
u
de
d t
h
at
t
h
e
m
a
xim
u
m
R
P
M
(
R
ot
at
i
on
Per
-
M
i
nut
e)
f
r
om
br
us
hl
ess
m
o
t
o
r use
d
i
s
± 1
3
.
0
68
R
P
M
.
P
o
we
r c
ons
u
m
pti
on f
r
o
m
brus
hl
ess m
o
t
o
r
use
d
ca
n b
e
c
a
l
c
ul
at
ed re
feri
ng
t
o
dat
a
o
n
t
h
e
dat
a
sheet
f
r
o
m
t
h
e b
r
us
hl
ess m
o
t
o
r.
Mo
to
r Sp
ecificatio
n
:
M
odel
:
NTM
P
r
op
D
r
i
v
e
Seri
es
2
8
-
2
6
A
120
0kv
K
v
:
1
200
rp
m
/
v
C
u
rr
e
n
t
:
1
A
/7
6
5
r
p
m
M
a
x c
u
r
r
ent
:
18
A
Max
Po
w
e
r
: 2
16W
@
1
2v (3
S)
Sh
aft
:
3
m
m
Wei
g
ht
:
57
.6
g
*note :
Kv stated c
o
nstant m
o
tor s
p
ee
d m
easure
d
i
n
RPM
pe
r
volt.
Fro
m
th
e m
o
to
r sp
ecificatio
n
d
a
ta, to
o
b
t
ain
p
o
wer
u
s
ed in
m
o
to
r, th
e m
a
x
i
m
u
m
v
o
ltag
e
an
d curren
t
from
th
e
m
o
t
o
r can be obt
ai
ne
d ba
sed
on t
h
e m
a
xim
u
m
R
P
M
pro
d
u
ced
by
m
o
t
o
r
obt
ai
ne
d fr
om
t
h
e previ
o
u
s
t
e
st
i
ng.
Th
e
fo
llowing
is th
e calcu
latio
n pro
cess abou
t power u
s
ed
b
y
bru
s
h
l
ess mo
tor to ob
tain
max
i
m
u
m
RPM:
RPM
m
ax
= 130
68
rp
m
Voltage
nee
d
e
d
by m
o
tor to r
each m
a
xim
u
m RPM (13068rpm
) is:
Vm
= 13
06
8
r
p
m
/
120
0
(r
p
m
/
V
) =
10
.8
9
Vol
t
s
Vo
ltag
e
So
urce (Vs) =
1
1
.1
Vo
lts
(in
con
d
i
tio
n
th
at m
o
to
r h
a
s no
t
b
een lo
ad
ed)
Dr
op
V
o
l
t
a
ge
=
Vs – Vm
=
1
1
.
1
– 10
.8
9
=
0
.
2
1
Vol
t
s
Cu
rren
t
n
e
ed
ed b
y
m
o
to
r
for
max
i
m
u
m
RPM (130
68
rp
m) is:
Im
= 13
06
8
rp
m
x (1
A/
7
6
5
r
p
m
) = 17.
0
8
A
* M
a
xi
m
u
m
Cur
r
ent
fr
om
ESC
(El
ect
ro
ni
c
Spee
d C
ont
r
o
l
l
e
r):
20
A
Fro
m
th
e calculatio
n
of cu
rren
t and
vo
ltag
e
th
en
Po
we
r
ne
eded
by
m
o
t
o
r
t
o
reac
h m
a
xi
m
u
m
R
P
M
i
s
:
Pm
o
t
o
r
=
V
m
x
I
m
= 1
0
,
89
V x
17
,0
8 A =
18
6,001
2
W
a
tt
18
6
W
a
tt
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
Qu
a
d
co
pt
er
R
o
bot
as a Di
saster
E
n
vironmen
t Remo
te
Mon
ito
r
(
M
ad
e S
uda
rma)
19
6
4.
5. T
e
s
t
i
n
g
of
the
Qu
al
i
t
y
o
f
C
a
mer
a Fi
g
u
re Sendi
n
g
by
Usi
n
g
Vi
de
o
S
e
nder
5.
8 G
4
0
0
m
W
On t
h
e t
e
st
i
n
g of
pi
ct
ure se
nd
i
ng f
r
om
GoP
r
o He
ro
2 cam
era t
o
Tel
e
vi
si
o
n
scree
n
by
us
i
ng Vi
de
o
Sender 5.8G it will expose
d
by using table of res
u
lt of
dis
t
ance testing and re
sult
of picture
receive
d on
the
t
e
l
e
vi
si
on,
as
sho
w
n
on
Ta
b
l
e 2.
Thi
s
t
e
st
i
ng
was
pe
rf
or
m
e
d i
n
t
h
e La
bo
rat
o
ry
o
f
C
ont
rol
Te
ch
ni
q
u
e
o
f
El
ect
ro Tec
h
ni
que
St
u
d
y
P
r
o
g
ram
of
Tech
n
i
que
Facul
t
y
of
Udayana University
B
uki
t
Ji
m
b
aran C
a
m
pus.
Tabl
e
2. R
e
s
u
l
t
o
f
Fi
gu
re
Qual
i
t
y
Test
i
ng
No
Dist
ance of Tx
and Rx (Met
er)
Condition
Description o
f
Figure Quality
1
1
L
i
ne of side
Very
fine
2
5
L
i
ne of side
Fine
3
10
L
i
ne of side
Fine
4
10
W
a
ll bound
Pictur
e blur
r
e
d
5
15
L
i
ne of side
Fine
6
15
Differ
e
nt
stor
y
L
o
ss
7
50
L
i
ne of side
Fine
8
100
L
i
ne of side
Fine
9
100
T
r
ee
bound
Blur
r
e
d
10
300
L
i
ne of side
Fine
11
500
L
i
ne of side
Fine
4.
6. Resul
t
of
Outd
o
o
r
T
e
s
t
i
n
g
Thi
s
t
e
st
i
n
g
w
a
s pe
rf
o
r
m
e
d o
n
a
n
em
pt
y
are
a
nea
r
t
h
e e
n
t
e
r
gat
e
of
Ji
m
b
aran
cam
pus.
T
h
e
o
u
t
d
f
o
or
testin
g
p
e
rf
or
med
h
a
s
pu
rp
ose to
tak
e
su
rr
oun
d
i
n
g
’
s
t
r
aff
i
c
p
i
ctu
r
e, as
show
n on
Figu
r
e
18
an
d Figur
e
19
.
Figure 18. Obs
e
rvations Tra
f
fic
Traffic
Intersection
Jim
b
aran
Figu
re
1
9
.
Dis
p
lay
Stream
GoPr
o Cam
e
ra
Befo
re
A
i
r
i
ng
Pi
ct
ure 2
0
an
d
Fi
gure
21 s
h
o
w
s t
h
e st
ream
ing a
ppea
r
a
n
ce
of G
o
Pr
o cam
era by
usi
n
g l
a
pt
o
p
. R
e
sul
t
of
l
i
v
e
p
i
ctu
r
e
fro
m
Go
Pro
cam
era with
resu
lt of strea
m
in
g
p
i
cture h
a
s a
d
i
fferen
t
q
u
a
lity.
Streamin
g
p
i
cture resu
lted
h
a
s v
e
ry po
or q
u
a
lity, b
ecau
s
e th
e
d
e
liv
ered
p
i
ctu
r
e
h
a
s p
a
ssed
co
m
p
ressi
on
ph
ase p
e
rform
e
d
b
y
Vid
e
o
Send
er Tx. There is
d
e
lay ti
me lap
s
e
o
f
informatio
n
send
ing with
tim
e in
terv
al of
0
.
5
secon
d
.
Figure
20.
Dis
p
lay Stream
GoPro
cam
era while in
the air
Fi
gu
re
2
1
. M
a
xi
m
u
m
Hei
ght
30
m
e
t
e
rs On
Whe
n
Testin
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 6
,
N
o
. 1
,
Febru
a
ry
2
016
:
18
8
–
19
7
19
7
5.
CO
NCL
USI
O
N
The c
o
ncl
u
si
on
s t
h
at
ca
n
be
dr
awn
f
r
om
t
h
e
discussion
perform
ed are as t
h
e
followi
ng:
1.
Gene
ral
l
y
, t
h
e com
m
uni
cat
i
o
n t
o
co
nt
r
o
l
t
h
e
m
ovem
e
nt
of q
u
adc
o
pt
er r
o
b
o
t
usi
ng re
m
o
t
e
cont
r
o
l
a
n
d
cont
rol
l
e
r
KK
boa
r
d
V
2.
0 h
a
s wo
r
k
ed
pr
o
p
erl
y
, w
h
e
r
e t
h
e co
nt
r
o
l
l
i
ng
of m
ovem
e
nt
of t
h
i
s
q
u
adc
o
pt
e
r
ro
b
o
t
i
n
cl
u
d
e t
h
e m
ovem
e
nt
of
f
o
r
w
ar
ds,
ba
ckwa
r
d
s, l
e
ft
, a
n
d
ri
ght
w
h
i
c
h
were
pe
rf
orm
e
d
out
do
o
r
.
2.
Test
i
ng
o
f
i
n
f
o
rm
at
i
on del
i
v
ery
i
n
t
h
e
fo
r
m
of pi
ct
u
r
e f
r
o
m
t
h
e Go
P
r
o
Her
o
2 cam
era
used
t
h
e
vi
deo
sender m
e
dia has
worked prope
rly if
between T
x
a
n
d R
x
vide
o se
nder are
face to fa
ce (not
bound
by
bui
l
d
i
n
g
)
.
Di
st
ance ca
n
be re
ached
i
s
m
a
xi
m
u
m
for 5
0
0
m
e
t
e
r. R
e
sul
t
o
f
vi
deo
st
ream
ing
has
t
i
m
e
l
a
ps
e
fo
r
0.
5 sec
o
nd
.
3.
M
a
xi
m
u
m
R
P
M
(R
ot
at
i
o
n
P
e
r-M
i
n
ut
e) t
h
a
t
can be
p
r
o
d
u
ced
f
r
om
br
u
s
hl
ess m
o
t
o
r
NTM
P
r
o
p
Dr
i
v
e
Ser
i
es
2
8
-2
6A
1
200
k
v
used on
q
u
a
d
c
o
p
t
er
is 13
.0
68
rp
m
w
ith
pow
er n
e
ed
ed
is
f
o
r
18
6 w
a
tt.
4.
M
a
xi
m
u
m
l
i
f
t
po
we
r t
h
at
ca
n be
p
r
o
d
u
ced
by
q
u
a
d
co
pt
e
r
by
usi
n
g
br
u
s
hl
ess m
o
t
o
r
NTM
P
r
o
p
Dr
i
v
e
Ser
i
es
2
8
-2
6A
1
200
k
v
and
pro
p
e
ller sized11 x
4
.
7
cm
is f
o
r 4
.
4
kg
.
ACKNOWLE
DGE
M
ENTS
I wo
ul
d l
i
k
e t
o
expre
ss m
y
very
great
ap
pre
c
i
a
t
i
on t
o
goe
s
t
o
research t
e
am
and col
l
eague
wh
o has
mad
e
v
a
luab
le
co
n
t
ribu
tio
n
s
i
n
th
is stud
y and
th
ei
r critical
co
mmen
t
s on
t
h
is m
a
n
u
s
cri
p
t.
REFERE
NC
ES
[1]
Engel, J. 2011.
Autonomous
Ca
mera-Based Navigation of
a Q
u
adcopter. Jerm
an: (
The
s
is
) Universitas Munche
n
Je
rma
n
.
[2]
Zhang L., Zhang
T., Wu H., Bors
t A., Kuhn
lenz
K. 2012. Vi
sual Flight Contro
l o
f
a Quadcopter
Using Bioinspir
e
d
Motion Detector
.
Je
rma
n
:
Intern
ational Journal of
Navigation
an
d Observation.
Vol.
2012
.
[3]
Bakke, R
.
R. 2
014. KK 2.1 Multi-Rotor Co
ntrol Boar
d [
c
i
t
ed 2014 Sept
em
ber 6]
. Avaible From
: URL ;
www.hobb
y
k
ing
.
com
[4]
SimonK. 2014.
ESC 20A OPTO [cit
ed
2014 September 6]
. Avaib
l
e
From : URL;
www.rctimer.co
m
[5]
Oriental Motor General C
a
talog
.
2010a.
Mo
tor Brushless
. [cited 2013 November 8 ]
.
Avaliable From : UR
L;
www.
orientalmotor.
com
[6]
Oriental Motor
Gene
ral Catalog
.
2010b.
Wiring
Diagram Motor Brushless
. [cited 2013 November 8 ]
.
Avaliab
l
e
From: URL; www.
orientalmotor.com.
[7]
Hobb
y
King
. 20
14. NTM Prop
Drive [cited 201
4 Sept
ember
6]
.
Avaible From :
URL; www.hobb
y
k
ing
.
com
[8]
Ogata, K. 1994.
Teknik
Kontrol
Automatik
J
ilid
1
. Jakarta: Erlan
gga.
Evaluation Warning : The document was created with Spire.PDF for Python.