Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
81
9
~
82
6
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
517
8
19
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Effect of
Cont
am
inant Fl
ow-
r
ate and Applied Volt
age on t
h
e
Current Densit
y and Electric Fiel
d of P
o
l
y
mer Tracking T
e
st
F.
L. Mu
hame
din, M.
A.
M. P
i
ah, N.
A.
O
t
h
m
an
and
N
a
si
r Ahm
e
d
Al
ge
el
ani
Institute
of High
Voltag
e
and Hi
gh Current
, Fa
cu
lt
y of
El
ec
tric
al
Engine
ering,
Universiti
Tekno
logi Ma
la
ysia
,
Mala
y
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 2, 2015
Rev
i
sed
D
ec 20
, 20
15
Accepte
d Ja
n
6, 2016
Ele
c
tri
cal
fa
ilur
e
due
to surfa
c
e
disch
a
rge on
the insul
a
tion
m
a
teria
l
wil
l
caus
e
m
a
teri
al d
e
grada
tion and e
v
entua
l
l
y
le
ad to
s
y
s
t
em
failure
. The flow of
leak
age curr
ent
(LC) on the ins
u
lator surfa
ce u
nder wet cont
a
m
ination is
used to determine the material
degr
adation lev
e
l. According to
IEC 60587
standard, LC
ex
ceed
ing 60 m
A
for m
o
re
than two seconds is c
onsidered as
failur
e
. In this
s
t
ud
y, the el
ectr
i
c
fiel
d and curr
ent density
distr
i
butions on the
linear low-density
po
ly
eth
y
len
e
(LLDPE
) and n
a
tural rubber b
l
end material
have been an
aly
z
ed using f
i
nite
element method (FEM) analy
s
is. Th
e
ph
y
s
ical par
a
meters used in FE
M si
mu
lation were appl
ied with
voltage an
d
contaminan
t flo
w
rate, in
accor
dance to
con
t
aminant conductivity
.
Tr
ack
ing
test condition
according to
IEC
60587
sta
ndardh
a
s been
applied
as proposed
b
y
th
e refer
e
nc
e
work in sim
u
la
tion
using Quick Field FEM so
ftware.
The
results show that the el
ectr
i
c fi
el
d a
nd current de
nsit
y
would be
c
o
m
e
critic
al
in higher app
lied
voltag
e
and
con
t
aminant flow rate. The high
est average an
d
highest maximum current de
nsity
and
electr
i
c f
i
eld are found
in b
o
th applied
voltag
e
of
6 kV
and con
t
aminan
t flow r
a
te of 0
.
9
0
mlmin
-1
.
Keyword:
Cu
rren
t Den
s
ity
Electric Field
Finite Elem
ent Softwa
re
I
E
C 6
058
7
Po
lym
e
ric in
su
lato
r
Surface Disc
ha
rges
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
F. L
.
M
u
ham
e
di
n,
In
stitu
te o
f
Hi
gh
Vo
ltag
e
and
High
C
u
rren
t,
Facu
lty of Electrical Eng
i
n
eerin
g
,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia,
U
n
i
v
ersiti Tekn
o
l
o
g
i
Malaysia, 813
10
Skudai, Joho
r, Malaysia.
Em
a
il: fliyan
a
5
@liv
e.u
t
m
.
my
1.
INTRODUCTION
In h
i
g
h
vo
ltage in
stru
m
e
n
t
s, ou
tdo
o
r i
n
su
lato
r
failu
re
du
e to
d
e
gradatio
n
is m
o
stly cau
sed
b
y
in
su
lator po
llu
t
i
o
n
,
aci
d
rai
n
,
u
ltrav
i
o
let rad
i
atio
n
and
wet co
n
t
am
in
atio
n
.
Po
ly
m
e
r-b
ased
materials co
mm
o
n
l
y
face s
u
rface
discharge
due to aging
[1
].
Surface disc
ha
rge
is a phenom
enon
of failure
on ins
u
lating s
u
rface
due
to i
n
tensi
v
e leakage
c
u
rrent (LC
)
flow. The
m
a
terial
surface c
o
mmonly show
s a l
o
w capacitive
leakage
current
in dry co
nditions with the prese
n
ce
of
di
rt. Under wet conditions, in
sulat
o
r surface usually suffers
flow of leaka
g
e curren
t
[2
].
Wet layer con
t
a
m
in
an
t is th
inn
e
st n
e
ar
th
e
gr
oun
d
electro
de d
u
e
t
o
ev
apor
atio
n.
Si
m
u
ltaneous flow
of leaka
g
e
curre
nt will heat up th
e i
n
sulating surface
and form
dry band. Whe
n
ai
r-ga
p
reaches t
h
e crit
ical flashover
voltage ac
ross
the dry
band
, a
r
c spa
r
ks will be form
ed
, whi
c
hburns
t
h
e insulator
material and creates carboni
zed trac
k. Ele
c
trical track
ing
du
e to
p
r
og
ressiv
e
d
e
grad
atio
n
of th
e i
n
su
latin
g
surface
by surface discha
rges will lead
to i
n
sulation
failure whe
n
a form
ation of c
a
rbonize
d trac
k c
o
nnects
t
h
e el
ect
ro
des
t
o
fo
rm
cond
uct
i
ng
pat
h
s.
The electrical
and m
echanical pr
op
erties o
f
po
lym
e
r-b
ased
m
a
terial
s h
a
v
e
b
een
co
n
tinuo
usly
i
m
p
r
ov
ed
i
n
t
h
is field. Additio
n
of filler
in
to
po
ly
m
e
r b
l
end
s
su
ch as micro
f
iller an
d
n
a
n
o
filleroffers a
p
r
o
m
isin
g
ou
t
c
o
m
e fo
r in
su
latio
n
m
a
terials
[3
,
4
]
.
Apart
fro
m
th
at, th
e m
a
terial treatmen
t
, tex
t
ure
o
f
th
e
insulator s
u
rfa
ce and m
a
terials process
ha
ve
been t
h
e i
n
terest am
ong researc
h
e
r
s t
o
investigate
[5-7].
Ho
we
ver
,
t
h
e i
m
provem
e
nt
on t
h
e el
ect
ri
cal
pr
op
ert
i
e
s o
f
materials can only enha
nce the years
of se
rvice.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
9 – 8
2
6
82
0
Th
e
d
e
grad
ation
lev
e
l
o
f
po
lymer d
u
e
t
o
electrical tr
acki
n
g
can
be m
easured u
s
i
n
g se
ver
a
l
param
e
t
e
rs whi
c
h
ar
e leak
ag
e cu
rr
en
t, car
bon tr
ack
d
e
v
e
lop
m
en
t, er
o
s
ion
d
e
p
t
h
,
w
e
igh
t
lo
ss, th
er
mal co
n
d
u
c
tiv
it
y an
d
h
ydroph
ob
icity lo
ss. On
lin
e
m
o
n
ito
rin
g
LC
is wid
e
ly u
s
ed
b
y
research
ers to
inv
e
stig
ate th
e track
ing an
d
erosi
on
resistance of m
a
terials [8-10]. Leakage c
u
rren
t i
ndicates the s
u
rface disc
ha
rge activity, thus LC is
pr
o
p
o
r
t
i
onal
t
o
t
h
e
deg
r
ee
of
m
a
t
e
ri
al
degra
d
at
i
o
n
[
1
1]
.
The sim
u
lation of electrical stresse
s du
e
to
w
a
ter
d
r
op
let
an
d
vo
id
h
a
s b
e
en
co
ndu
cted
by
a
n
u
m
b
e
r
of resea
r
c
h
ers
[1
2-
1
4
]
.
It
i
s
kno
w
n
that electric field, adm
i
ttance, and
dielectric loss increase in a defe
ctive
v
o
i
d
in
su
lato
r.
W
h
en
app
lied v
o
ltag
e
is in
creased
, th
e
electric field
in
tensity an
d
cu
rrent d
e
n
s
ity lo
ss wou
l
d
increase [12]. Tracki
ng is more se
ve
re in
defective sam
p
les, since th
e
prese
n
ce of s
u
rface contam
ination
would inc
r
eas
e the
distorti
on
of the electric field a
r
oun
d
the defect [14].
Electric
fi
el
d i
s
e
nha
nce
d
at
t
h
e
contact edges
betwee
n electrode
s and po
lymer surface a
n
d at the triple poi
nt
of
polymer, water, and air whe
n
water droplet is placed at the
center
of the
gap
[13]. A
water droplet on
the surface of insu
lator will initiate
cor
o
na di
sc
har
g
es. C
o
r
ona
di
schar
g
e i
s
t
r
i
g
gere
d by
the
presence
of a l
o
cal high electric field. The c
o
rona
discha
rge is able to propa
g
ate along the
wat
e
r surface.
Under a
pplied
high voltage, wate
r layer is form
ed due
to vibration of water
droplet
s.
Whe
n
water layer cove
rs t
h
e specim
e
n s
u
rface, the c
o
nductivity of
flow
of
leakage
c
u
rre
nt
can be detected. In
th
i
s
regi
on
, t
h
e
cu
rre
nt
de
nsi
t
y
i
s
o
b
s
e
rve
d
as
n
o
n
-
u
ni
f
o
rm
. Local
l
y
hi
g
h
cu
rren
t
d
e
nsity b
e
tween
th
e
drop
lets can
resu
lt in
th
e fo
rm
at
i
on o
f
dry
ba
nds
[
15]
. T
h
i
s
hi
g
h
cu
rre
nt
d
e
nsi
t
y
bet
w
ee
n t
h
e
d
r
o
p
l
e
t
s
ca
n re
sul
t
i
n
t
h
e
fo
r
m
at
i
on o
f
dry
ba
nd
s.
T
h
e
cur
r
ent
,
I
can be
calculated
us
ing
Equ
a
tio
n (1
).
d
I
JA
(1
)
whe
r
e
A
is the area of the cross section of the i
n
sulat
o
r and
J
is curre
nt de
nsity. The calculated current can
be com
p
are
d
with the m
easure
d
l
eaka
g
e c
u
r
r
ent
obt
ai
ne
d f
r
om
IPT t
e
st
. El
ect
ri
c pot
e
n
t
i
a
l
di
st
ri
but
i
on al
on
g
the insulator is depe
nde
nt on
bot
h
conductivity of pollution and location
of pollution
on t
h
e ins
u
lator s
u
rface.
The
im
pulse voltage for
a pol
l
uted
bottom
surface is m
o
re
critical
than
polluted upper surface
[16].
Prev
iou
s
ly, th
e stu
d
i
es in
th
e field
si
m
u
lati
o
n
fo
cu
sed
m
a
j
o
rly in
th
e p
a
rtial d
i
sch
a
rg
e
p
h
e
no
m
e
n
a
[17-18]. The a
n
alysis in field sim
u
lation of surface tra
c
king is trivial.
There
f
ore, t
h
e
r
e is a possibi
lity
to
analyze the m
odelling
of s
u
rf
a
ce tracki
n
g in
field work
.
In
t
h
is stud
y, t
h
e
distr
i
b
u
tions
of the electric fiel
d a
nd
current de
nsity on the insula
tor surface were investigated
using Finite
Ele
m
ent Softwa
re under wet condition.
The m
a
terials
use
d
for a
n
alyseswere linear low-de
ns
ity po
lyeth
y
len
e
(LLDPE) an
d
n
a
tu
ral ru
bb
er b
l
end
material. Th
e si
m
u
latio
n
o
f
fin
ite ele
m
en
t an
alysis (FEA)
was co
m
p
lian
t
with
th
e test set-up
con
f
i
g
urat
io
n
o
f
IEC
6
0
5
8
7
st
a
nda
r
d
t
r
ac
ki
n
g
an
d er
osi
o
n t
e
st
. The c
o
nt
r
o
l
l
e
d
param
e
t
e
rs i
n
t
h
e si
m
u
l
a
t
i
on we
re a
p
pl
i
e
d
v
o
ltag
e
, electri
c con
d
u
c
tiv
ity
an
d p
e
rm
it
tiv
it
yo
f i
n
su
lating
sam
p
le an
d
con
t
amin
an
t so
lutio
n
.
2.
R
E
SEARC
H M
ETHOD
2.
1. M
a
teri
al
and
C
o
n
t
a
m
i
n
ant
S
o
l
u
ti
on P
r
oper
ti
es
In
t
h
is stud
y,
material p
r
op
erties o
f
electri
c co
ndu
ctiv
ity an
d
relativ
e perm
i
ttiv
it
y o
f
th
e sam
p
les,
co
n
t
am
in
an
t solu
tio
n
and
air
were req
u
i
red
for sim
u
latio
n
p
u
rp
o
s
e. Th
e
relativ
e p
e
rm
itti
v
ity an
d cond
uctiv
it
y
of t
h
e ai
r
were
1 a
n
d
2
x
1
0
-4
Sm
-1
, resp
ectiv
ely [19
]
. Th
e relativ
e p
e
rm
i
ttiv
ity o
f
con
t
amin
an
t so
lu
ti
on
was
81 [20]. T
h
e
form
ulated
therm
oplastic elastom
e
r
material was com
pose
d
of Li
near Low-Density
Po
lyeth
y
len
e
with
Nat
u
ral R
u
bb
er
(LLDPE/NR) with
80
:20
ratio. Th
e
ra
t
i
o of
p
o
l
y
m
e
r
bl
en
d o
f
LL
DP
E/
NR
was selected
because it canprovi
de
g
ood in
electrical tracking a
n
d erosio
n resista
n
ce [21]. The estim
a
t
ion
of
con
d
u
ct
i
v
i
t
y
of
t
h
e t
e
st
obj
ect
was o
b
t
a
i
n
e
d
f
r
om
t
h
e
m
easurem
ent
of pol
a
r
i
zat
i
on a
nd
de
pol
a
r
i
zat
i
on c
u
rre
nt
.
The test
object
was
cha
r
ged fo
r a su
fficien
tly lo
ng
tim
e so
th
at th
e ch
arg
i
n
g
respo
n
se
≅0
, the dc
co
ndu
ctiv
ity (
)
o
f
t
h
e
com
posi
t
e
di
el
ect
ri
c
coul
d
be e
x
p
r
e
ssed as
f
o
l
l
o
wi
ng
eq
uat
i
o
n.
()
()
ro
pd
p
oo
it
i
t
CU
(2
)
whe
r
e
o
is free space dielectri
c consta
nt (8.854 x
10
-12
F/m
)
,
o
C
is capacitance of m
a
ter
i
al, and
o
U
is
ap
p
lied vo
ltag
e
(1
000
V)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ef
f
ect
of
C
o
nt
a
m
i
n
ant
Fl
ow
-r
at
e a
n
d
A
p
pl
i
e
d V
o
l
t
a
ge
on
t
h
e C
u
rre
nt
Den
s
i
t
y
an
d …
(F
.
L
.
Mu
ham
ed
in)
82
1
Mean
wh
ile, d
e
termin
atio
n
s
o
f
th
e
i
n
ductance
, capa
c
itance,
resistan
ce (LCR) m
e
ter of t
h
e uppe
r a
nd
bot
t
o
m
el
ect
ro
des
were
car
ri
ed
out
t
o
m
easure
t
h
e
capac
i
t
a
nce be
fo
re
usi
n
g E
q
uat
i
o
n
(3
) t
o
obt
ai
n t
h
e
p
e
rm
itt
iv
ity o
f
th
e in
su
lator material. Tab
l
e
1 sho
w
s th
e m
a
t
e
rial p
r
op
erties fo
r i
n
su
lato
r
sa
m
p
le.
r
o
Cd
A
(3
)
whe
r
e
d
is th
ick
n
ess of sam
p
le material (1
mm
) an
d
A
is area
of sam
p
le affe
cted (50.27 c
m
2
)
Tabl
e
1. M
a
t
e
r
i
al
pr
ope
rt
i
e
s
Capacitance (pF)
Relative Per
m
ittivi
t
y
Conductivity
(S/
m
)
120.
67
2.
71
2.
944E
-
1
2
The
param
e
ters use
d
t
o
st
udy the electric field an
d c
u
r
r
e
n
t
de
nsi
t
y
di
st
ri
b
u
t
i
ons
we
re
co
nt
am
i
n
ant
flow rate and
ap
p
lied
vo
ltage. To
i
n
d
i
cate
th
e ch
an
g
e
i
n
co
n
t
am
in
an
t flo
w
rate in
th
e
si
m
u
latio
n
wo
rk
s, t
h
e
co
ndu
ctiv
ity of co
n
t
am
in
an
t so
l
u
tio
n was u
s
ed
.
Acco
rdin
g
t
o
th
e IEC 60
587
stand
a
rd
, th
e
vo
lume of
contam
inated solution
was s
e
t diffe
re
nt
for each contaminant
fl
ow rat
e
. The
conduc
tivity of conta
m
inant
sol
u
t
i
o
n w
a
s c
h
an
ge
d co
rre
sp
on
di
n
g
l
y
t
o
t
h
e
vol
um
e of con
t
am
i
n
ant
sol
u
t
i
on
base
d o
n
c
o
nt
am
i
n
ant
fl
o
w
rat
e
.
The volum
e
(
V
) of c
ontam
inant sol
u
tion obtained
for each cont
aminant flow rate is shown in Table
2. The
l
e
ngt
h (
l
) o
f
cont
am
i
n
ant
wa
s 50 m
m
and m
easured
bet
w
een hi
g
h
vol
t
a
ge el
ect
ro
de and
gr
o
u
n
d
el
ect
ro
de
,
wh
ile th
e area
(
A
) of each
co
nta
m
in
an
t was
ob
tain
ed using
t
h
e eq
u
a
tion
b
e
l
o
w.
V
A
l
(4)
Th
e resistan
ce o
f
co
n
t
am
in
an
t so
lu
tio
n fo
r e
ach co
nt
am
i
n
ant
fl
o
w
rat
e
w
a
s cal
cul
a
t
e
d u
s
i
ng E
quat
i
o
n
(5
) by
in
serting
the resistiv
ity eq
u
a
l t
o
tho
s
e
3.95
.
as stated in IEC
60587 sta
nda
rd [
2
0]
.
l
R
A
(5)
Th
en
, th
e resi
stiv
ity o
f
each con
t
amin
an
t
v
o
l
u
m
e was calcu
lated
fo
r th
e seco
nd
time to
ob
tain
el
ectric
con
d
u
ct
i
v
i
t
y
also by
usi
ng E
q
uat
i
on
(5
) wi
t
h
area si
zi
ng f
r
o
m
Qui
c
k fi
el
d
Fm
Sim
u
l
a
ti
on.
The co
n
duct
i
v
i
t
y
of
cont
am
i
n
ant
w
a
s cal
cul
a
t
e
d b
y
usi
n
g Eq
uat
i
on
(
6
).
Tabl
e
2
depi
ct
s t
h
e c
o
nd
uct
i
v
i
t
y
of c
ont
am
i
n
ant
sol
u
t
i
o
n
fo
r
diffe
re
nt co
ntam
inant fl
ow
rate.
1
(6)
whe
r
e
R
,
,
l
and
A
are th
e resistan
ce , resistiv
ity, len
g
t
h
o
f
c
ont
a
m
i
n
ant
sol
u
t
i
o
n an
d a
r
ea
of c
ont
am
i
n
an
t
so
lu
tion
,
resp
ectiv
ely.
Table
2. Electric conductivity
of co
n
t
am
in
an
t so
lu
tion
Volu
m
e
of conta
m
inant (c
m
3
) 0.
15
0.
30
0.
60
0.
90
Ar
ea of contam
inant (
c
m
2
) 0.
03
0.
06
0.
12
0.
18
L
e
ngth of contam
inant (
c
m
)
5.
0
5.
0
5.
0
5.
0
Resistance (
Ω
) 65.
83
32.
92
16.
46
10.
97
Ar
ea of contam
inant (
c
m
2
)
Fro
m
Quickfield
Fm
Si
m
u
lation
0.
70
0.
77
1.
18
1.
24
Resistivity (
Ω
.m
)
92.
16
50.
70
38.
85
27.
20
Conductivity
(
S
/m
)
0.
011
0.
020
0.
026
0.
037
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
9 – 8
2
6
82
2
2.
2. FE
M Si
m
u
l
a
ti
on
Th
e electric
field
and
cu
rren
t d
e
n
s
ity d
i
strib
u
tion
i
n
the in
su
lating
m
o
d
e
l were so
lv
ed
u
s
ing
Qui
c
kFi
e
l
d
F
E
A so
ft
wa
re. T
h
e t
e
st
co
nfi
g
urat
i
o
n m
e
t
hods u
s
ed
fo
r e
v
al
uat
i
ng
resi
st
ance t
o
t
r
ac
ki
ng a
n
d
erosi
o
n
,
we
re
base
d o
n
IEC
60
5
87 st
a
nda
r
d
as a si
m
u
l
a
t
i
on
refe
ren
ce m
odel
.
Fi
g
u
re
1
prese
n
t
s
t
h
e si
m
u
l
a
t
i
o
n
dra
w
i
n
g
of
t
w
o-
di
m
e
nsi
onal
(2
D)
pl
a
n
e
par
a
l
l
e
l
m
odel
.
A
ccor
d
i
n
g t
o
t
h
e i
n
cl
i
n
ed
pl
a
n
e t
r
acki
n
g
m
e
tho
d
of
IEC
6
0
5
8
7
st
a
nda
r
d
, a
rect
an
gul
a
r
sam
p
l
e
wi
t
h
si
ze
of
5
0
m
m
x 120
m
m
and t
h
i
c
k
n
ess
of
6 m
m
was
used
[2
2]
.
Fi
gu
re
1.
Si
m
u
l
a
t
i
on m
odel
o
f
t
e
st
speci
m
e
n wi
t
h
t
h
e
el
ect
r
ode
s
Th
e h
i
gh
vo
ltag
e
(HV) termin
al
s were connected to
uppe
r el
ect
ro
de
and g
r
o
u
nde
d at
bot
t
o
m
electrode
. T
h
e
pat
h
of conta
m
inant sol
u
tion
was
draw
n
according t
o
t
h
e act
ual patte
rn capt
u
re
d
from
the
expe
ri
m
e
nt
. Thi
s
sim
u
l
a
t
i
on was co
nd
uct
e
d
i
n
t
h
e AC
C
ond
uct
i
o
n anal
y
s
i
s
. To so
l
v
e the electric field and
cur
r
ent
densi
t
y
, t
h
e com
b
i
n
at
i
on
of
Gau
ss’s
Law, C
u
r
r
ent
C
ont
i
n
ui
t
y
Eq
uat
i
on a
n
d O
h
m
’
s Law gi
ven
i
n
(7
),
(8) an
d (9
) was app
lied
in th
is an
alysis:
E
(7
)
J
t
(8
)
J
E
(9
)
whe
r
e
is electr
i
c charge
de
ns
ity (c/m
3
),
is
dielectric cons
tant
of dielectric
m
a
terial
(
0
r
),
is the
electric conduc
tivity of
dielectric m
a
terial,
J
i
s
cu
rre
nt
de
nsi
t
y
(A/
m
2
) and
E
is electric field stre
ngth
(V/m
).
3.
R
E
SU
LTS AN
D ANA
LY
SIS
3.
1. Cons
tant Applied Voltage
I
n
FEM an
alysis, A
C
con
ductio
n
an
alysis w
a
s sel
ected to
determ
ine the electric field and c
u
rrent
d
e
nsity d
i
stribu
tio
n on
t
h
e insu
lato
r surface
cau
sed
b
y
altern
atin
g curren
t
s and
vo
ltag
e
s in
im
p
e
rfect d
i
electric
m
e
di
a. The sol
v
ed
fi
el
d si
m
u
lat
i
on p
r
o
f
i
l
e
of
t
h
e el
ect
ri
c fi
el
d an
d v
o
l
t
a
ge
di
st
ri
b
u
t
i
on
pr
ofi
l
e
o
n
t
h
e i
n
s
u
l
a
t
o
r
surface a
r
e s
h
own i
n
Figure
2. T
h
e m
easure
m
ent was ta
ken at the
re
d line
whe
r
e c
ont
a
m
inant sol
u
tion was
dra
w
n, as i
n
F
i
gu
re 2
.
F
r
om
t
h
e di
st
ri
but
i
o
n
of t
h
e el
ectri
c field as
shown in Fi
gure
2(a
)
, t
h
e electric field
di
st
ri
b
u
t
i
on
wa
s fo
un
d hi
ghe
r at
a cent
e
r regi
on
. The hi
g
h
es
t
el
ect
ri
c fi
el
d
di
st
ri
b
u
t
i
on a
p
peare
d
at
t
h
e n
a
rr
ow
and edge s
h
a
p
e of
contam
in
ant water. In t
h
is re
gion
, i
o
nization occ
u
re
d as the electric field intensity is
Gr
ound
Electrode
Air
Path of
conta
m
inant
solution
Sa
m
p
le
surf
ace
HV
Electrode
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Ef
f
ect
of
C
o
nt
a
m
i
n
ant
Fl
ow
-r
at
e a
n
d
A
p
pl
i
e
d V
o
l
t
a
ge
on
t
h
e C
u
rre
nt
Den
s
i
t
y
an
d …
(F.
L.
Mu
ham
ed
in)
82
3
co
n
c
en
trated
at th
e ed
g
e
s. In
th
e IPT test, th
e co
n
t
am
i
n
an
t layer was in
itiated
in
o
r
d
e
r to
im
i
t
a
t
e th
e
co
nd
itio
ns
o
f
h
ydroph
ob
icity lo
ss in
t
h
e m
a
terials. Hy
d
r
op
hob
icity lo
ss
o
f
th
e m
a
terials h
a
pp
en
s
wh
en
the
water
droplet has a c
o
ntact angle less
tha
n
90 de
gr
ee
s
and has
a large surface a
r
ea
with c
o
ntact of t
h
e
m
a
t
e
ri
al
s. The cont
am
i
n
ant
l
a
y
e
r was
not
un
i
f
orm
and e
v
a
p
orat
i
o
n
occu
rre
d
d
u
e t
o
l
e
a
k
a
g
e of c
u
r
r
e
n
t
fl
o
w
at
th
e th
i
n
n
e
st layer
of
con
t
ami
n
an
t layer n
e
ar gr
oun
d el
ectrode.
The
thickness of t
h
e c
ont
a
m
inant layer
affect
s
large s
u
rface
a
r
eas
diffe
re
ntly, causi
ng resi
stance to
re
duce; he
nce the
o
retically,
the leakage
c
u
rrent
value
sh
ou
l
d
b
e
h
i
gher at th
e th
inn
e
st co
n
t
am
in
an
t layer. Ev
en
tu
ally, d
r
y b
a
n
d
arcing
will o
c
cur wh
en
LC reach
e
s
th
e thresho
l
d vo
ltag
e
.
(
a
) (
b
)
Figu
re
2.
(a
) El
ectric
fi
el
d di
st
ri
b
u
t
i
o
n
,
(
b
) V
o
l
t
a
ge di
st
ri
b
u
t
i
on
A co
nst
a
nt
v
o
l
t
a
ge was ap
pl
i
e
d at
di
ffere
nt
cont
am
i
n
ant
fl
ow rat
e
o
f
0.
15 m
l
m
i
n
-1
, 0.30 m
l
m
i
n
-1
,
0.
60 m
l
m
i
n
-1
, and
0.
90 m
l
m
i
n
-1
. It is wo
rth
t
o
m
e
n
tio
n
th
at th
e con
d
u
c
tiv
it
y o
f
th
e con
t
amin
an
t so
lu
tion
v
a
ried
with
fi
x
e
d
app
l
ied
vo
ltag
e
. As sho
w
n
i
n
Tab
l
e 2
,
th
e con
ductiv
ity o
f
th
e
co
n
t
am
in
an
t so
l
u
tio
n in
creased with
the inc
r
ease
of the c
ontam
inant flow
rat
e
.
Fi
g
u
re
3 s
h
o
w
s t
h
e
g
r
ap
h
of c
u
rre
nt
de
n
s
i
t
y
and el
ect
r
i
c fi
el
d
distribution from
the HV el
ectrode to
a
g
r
o
u
nd el
ect
r
o
d
e
wi
t
h
a c
o
nst
a
nt
v
o
l
t
a
ge
of
4.
5
kV
. T
h
e
cur
r
ent
d
e
nsity d
i
stribu
tio
n in
creased
with
th
e increase
o
f
con
t
a
m
in
an
t water con
d
u
c
tiv
ity. The
ave
r
a
g
e
current
d
e
nsity w
e
r
e
0.06
73
A
/
m
2
, 0.12
0
2
A/
m
2
, 0.
15
7
2
A/
m
2
and 0
.
2
2
62
A/
m
2
for c
o
ntam
inant flo
w
rate
of
0.
15
ml
min
-1
,
0
.
30
ml
min
-1
,
0
.
60
ml
min
-1
, and
0.90
m
l
min
-1
, resp
ectiv
ely.
As th
e co
n
t
am
in
an
t layer
b
ecame th
ick
,
the resista
n
ce
on the
surface
reduce
d a
n
d he
nce a
d
ded m
o
re
LC
d
e
nsi
t
y
at
t
h
at
part
i
c
ul
ar
l
o
cat
i
on,
as
sh
ow
n i
n
Figure 3(a). Howe
ve
r, the electric
fi
el
d di
st
ri
but
i
o
n sh
o
w
ed n
o
cha
nge
s
as t
h
e vol
t
a
g
e
was ap
pl
i
e
d.
The
current de
nsity
increase
d
nea
r
the ground
e
l
ectrode
,whi
ch wasthe
location for t
h
e m
o
st severe
carbon tra
c
k
expe
ri
m
e
nt
al
ly [
4
,
6]
.
Di
st
an
ce
f
r
om h
i
g
h
vol
ta
ge
e
l
e
c
t
r
od
e t
o
gr
ou
nd
e
l
e
c
t
r
od
e (
c
m)
0123
45
C
u
r
r
en
t
D
ens
i
t
y
(
A
/
c
m
2
)
0.
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
15 ml
/
m
i
n
0.
30 ml
/
m
i
n
0.
60 ml
/
m
i
n
0.
90 ml
/
m
i
n
D
i
st
ance f
r
o
m
hig
h
vo
lt
ag
e el
ect
r
ode t
o
groun
d el
ect
r
o
d
e (cm)
0123
45
E
l
ec
t
r
i
c
f
i
el
d (
k
V
/
c
m
)
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2
1.
4
0.
15 m
l
/
m
i
n
0.
30 m
l
/
m
i
n
0.
60 m
l
/
m
i
n
0.
90 m
l
/
m
i
n
(a) C
u
r
r
e
n
t de
n
s
ity
(b
) Electric
field
Fi
gu
re
3.
C
o
ns
t
a
nt
v
o
l
t
a
ge
of
4.
5
kV
(a
) C
u
r
r
ent
De
nsi
t
y
(b
) El
ect
ri
c Fi
el
d
S
t
r
e
ngt
h
E (
1
0
4
V/
m
)
R
M
S
Ma
gni
t
ude
9.4
2
0
8.4
7
8
7.5
3
7
6.5
9
5
5.6
5
3
4.7
1
1
3.7
7
0
2.8
2
8
1.8
8
6
0.9
4
5
0.0
0
3
Vo
l
t
a
g
e
U (
V
)
RM
S
V
a
l
u
e
177
0
159
3
141
6
123
9
106
2
88
5
70
8
531
35
4
17
7
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
9 – 8
2
6
82
4
3.
2. C
o
ns
ta
nt Co
nt
ami
n
ant
Fl
ow
R
a
te
The sam
e
m
e
tho
d
as
des
c
ri
b
e
d i
n
Sect
i
o
n
3
.
1
was t
h
en
re
peated, but the
contaminant fl
ow rate
was
fixe
d
whi
l
e
t
h
e ap
pl
i
e
d v
o
l
t
a
ge was
vari
ed t
o
2
.
5
kV
, 3.
5 k
V
, 4
.
5 k
V
an
d 6.
0 kV
. Fi
g
u
re 4 s
h
o
w
s t
h
e g
r
a
p
h of c
u
r
r
ent
density and el
ectric field for cons
t
a
nt
fl
o
w
rat
e
of
0.
90
m
l
m
i
n
-1
that c
o
rres
pond
ed
t
o
0.
03
7
Sm
-1
for electric
co
ndu
ctiv
ity. Resu
lts in
Figu
re
4
(a) and
(b
) sh
ow th
at
t
h
e in
crease in
ap
p
lied
vo
ltage cau
sed
t
h
e cu
rren
t
d
e
n
s
ity
and electric fie
l
d distri
buti
o
n
to
inc
r
ease
on t
h
e insulator s
u
rface.
D
i
s
t
a
n
ce f
r
o
m
h
i
gh
v
o
l
t
ag
e el
e
c
tr
od
e t
o
gr
ou
nd
e
l
ect
r
o
d
e
(
c
m
)
0
1234
56
C
u
r
r
ent
D
e
ns
i
t
y
(
A
/
c
m
2
)
0.0
0.1
0.2
0.3
0.4
2.5 kV
3.5 kV
4.5k
V
6.0 kV
Di
sta
n
ce
fr
om hig
h
volt
age
elec
tr
ode
to
gr
ound
ele
c
tr
od
e (
c
m)
01234
56
E
l
ec
t
r
i
c
f
i
el
d
(
k
V
/
c
m
)
0.
0
0.
2
0.
4
0.
6
0.
8
1.
0
1.
2
2.
5
kV
3.
5
kV
4.
5
kV
6.
0
kV
(a) C
u
r
r
e
n
t De
nsity
(b
) Electric
Field
Fi
gu
re
4.
C
o
ns
t
a
nt
co
nt
am
i
n
ant
fl
ow
rat
e
of
0.
90
m
l/m
i
n
(a) C
u
r
r
e
n
t
De
nsi
t
y
(b)
El
ect
ri
c
Fi
el
d
Tabl
e 3
de
pi
ct
s t
h
e m
a
xim
u
m
current
d
e
n
s
i
t
y
and el
ectri
c field
value
of the c
o
nstant
contam
inant
flo
w
rate
of
0
.
90
m
l
m
i
n
-1
, and i
t
was
co
ncl
ude
d t
h
at
t
h
e i
n
crease
o
f
a
p
p
l
i
e
d v
o
l
t
a
ge ca
use
d
i
n
c
r
ease i
n
bot
h
current de
nsity and electric field. The
high electric field strengt
h showed i
n
crease in c
u
rrent density at c
e
rtain
locations
, and
hence t
h
e electric disc
ha
rge
activity existe
d on the i
n
sul
a
tor s
u
rface.
Highe
r applied
voltage
canprovi
de m
o
re e
n
ergy for el
ectron to be
de
posite
d
on th
e solid
i
n
sulator surface.
The
pre
s
ence
of this c
h
arge
increase
d
t
h
e s
u
rface
c
o
nduct
ivity and led t
o
th
e
inc
r
ease
in disc
harge
mag
n
itu
d
e
. Hi
g
h
LC fl
o
w
will cau
se n
o
n
-
un
ifo
r
m
h
eatin
g wh
ich
m
a
y le
ad
to
dry b
a
nd
arcing
, and
ev
en
tu
ally
dam
a
ge the insulator surface.
Whe
n
h
eated, i
t
will cause evapor
ation in the contam
inant fil
m
. This fil
m
will
t
h
en
brea
k
up
i
n
t
o
sm
al
l
port
i
ons
, an
d eac
h
of t
h
em
wo
ul
d t
e
n
d
t
o
i
n
t
e
r
r
u
p
t
a segm
ent
of LC
a
nd ca
use a
sm
a
ll partial discharge
(PD). PD ca
n
occ
u
r along the
surface
of the
ins
u
lator, if
the
s
u
rface ta
nge
ntial of
electric field is
high enough to cause
a brea
kdown along the insulat
o
r surf
ace. T
h
e increase of curre
nt
density
and el
ect
ri
c fi
el
d di
st
ri
b
u
t
i
o
n d
u
e t
o
t
h
e i
n
crem
ent
of a
ppl
i
e
d
vol
t
a
ge
coul
d c
ont
ri
b
u
t
e
t
o
sh
ort
t
r
a
c
ki
n
g
o
f
failu
re tim
e.
Tabl
e
3. C
u
r
r
e
n
t
De
nsi
t
y
an
d
El
ect
ri
c Fi
el
d f
o
r
di
f
f
ere
n
t
l
e
v
e
l
of
ap
pl
i
e
d
v
o
l
t
a
ge i
n
c
onst
a
nt
co
nt
am
i
n
ant
flo
w
rate
Applied
voltage
(
k
V)
2.
5 3.
5 4.
5 6.
0
M
a
xim
u
m
Cur
r
e
nt Density
(
A
/c
m
2
)
0.
08
0.
21
0.
35
0.
63
M
a
xim
u
m
E
l
ectr
i
c Field (
k
V/c
m
)
0.
70
1.
06
1.
33
1.
70
4.
CO
NCL
USI
O
N
In investigating electric field and c
u
rrent
density di
stribut
ions
on the ins
u
lator s
u
rface in this study,
th
e g
e
o
m
etry
p
l
an
e-p
a
rallel is estab
lish
e
d
u
s
ing
Fin
ite Ele
m
en
t An
alysis. In
clin
ed
p
l
an
e track
i
n
g
t
e
st (IEC
6
058
7) h
a
s
b
e
en
u
s
ed
as referen
ce in
th
e simu
latio
n
.
Th
e con
t
ro
lled
p
a
rameters u
s
ed
to
inv
e
stig
ate th
e electric
field
and
curren
t
d
e
n
s
ities h
a
v
e
b
e
en
app
lied
with
v
o
lta
g
e
an
d
con
t
amin
an
t flow rate. Th
e sim
u
latio
n
an
alysis
sh
ows t
h
at th
e
in
crease in
conta
m
in
an
t flo
w
rate and
ap
p
lied
vo
ltag
e
will co
n
t
ribu
te to
th
e in
crease in
cu
rren
t
den
s
i
t
y
and el
e
c
t
r
i
c
fi
el
d
di
st
r
i
but
i
o
n.
In
ad
di
t
i
on, t
h
e n
o
n
-
u
ni
f
o
rm
el
ect
ri
c st
ress i
s
obse
r
ved
at
t
h
e ce
nt
r
e
pat
h
of electrode
-ga
p
due to the differe
nt
f
o
rm
of co
nt
am
i
n
ant
sol
u
t
i
o
n. It
i
s
al
so fo
u
nd t
h
a
t
t
h
e hi
ghest
e
l
ect
ri
c
stress
occurs at
the
narrow a
n
d e
dge
s
h
ape
of th
e con
t
am
in
an
t so
lu
tion
,
al
o
n
g
t
h
e insu
lat
o
r surface.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ef
f
ect
of
C
o
nt
a
m
i
n
ant
Fl
ow
-r
at
e a
n
d
A
p
pl
i
e
d V
o
l
t
a
ge
on
t
h
e C
u
rre
nt
Den
s
i
t
y
an
d …
(F
.
L
.
Mu
ham
ed
in)
82
5
ACKNOWLE
DGE
M
ENTS
The authors
gratefully acknowledge
m
e
nt th
e Malaysia Ministry of
Educ
ation (MOE) a
nd
Universiti
Teknol
o
g
i
M
a
l
a
y
s
i
a
(UTM
) for t
h
e
fi
nanci
a
l
supp
ort
un
der
t
h
e research
grant
s
v
o
t
e
num
ber
R
.
J130
00
0.
78
2
3
.4L
1
3
3
,
Q.J1
30
00
0.2
5
2
3
.0
3
H
86
an
d R
.
J1
3
0
0
00.
78
23.
4F
7
51.
REFERE
NC
ES
[1]
Tum
i
ran, T
., e
t
al, "A
cce
ler
a
t
e
d
Aging Effect on Epox
y
-
poly
s
ilox
a
ne-Rice
Husk Ash Poly
meric Insulator
Ma
te
ria
l
",
TELKOMNIKA (
T
elecommunication C
o
mputing Electronics and Con
t
rol)
, vol 10(4)
, pp
655-666, 2012.
[2]
S
y
akur A, Berahim H, Tu
miran T, Rochmadi R,"Leak
age curr
ent m
easurement of epox
y
resin
compound with
silicon rubber"
, in
Electrical Engineering
and Informatics
(
I
C
EEI
)
,
2011 International C
onference Electrical
Engineering and
Informatics (
I
CEEI)
,
2011, pp 1
-
5, 2011
.
[3]
Ramirez-Vazquez I, Nava R
,
"A
pplica
tion o
f
nano particles for the modifica
tion
of high voltage insulators", I
EE
E
Transactions on
Dielectrics and
Ele
c
trica
l
Insula
tion,
vol 2
0
(6)
,
pp. 2262-2269
,
2013.
[4]
Nakamura T, Kozako M, Hiki
ta M, Inou
e R,
Kondo T, "Exp
erimental
inv
e
stigation
on erosion resistan
ce
an
d
h
y
drophobi
cit
y
of silicone rubb
er nanocom
posit
e",
in 2013 IEEE Internationa
l
Conf
erence on Solid Dielectrics
(I
C
S
D
)
, pp 230-233, 2013
.
[5]
Bian S, Jay
a
ram S, Cherney
EA, "Erosion R
e
sistan
ce of Electrospun Silicon
e
Rubber Nano
composites",
IE
EE
Transactions on
Diele
c
trics and
Ele
c
trica
l
Insula
tion
, vol 2
0
(1)
,
pp 185-193, 201
3.
[6]
Nekeb A, Hadd
ad A, Harid N, Griff
iths H, Waters R, "
E
ffect
s of UV i
rradiation on t
e
xtured
silicon
e rubber
ma
t
e
ri
al
",
Uni
v
ersities Pow
e
r En
gineering
Conference (
U
PEC)
,
2
012 47th In
terna
tional
, pp
1-5, 2
012.
[7]
S
a
r
k
a
r
P
,
H
a
d
d
a
d
A
,
W
a
t
e
r
s
R,
Griffiths H,
Harid N,
Char
alampidis P, "Inclined-plane
tests of
textur
ed silicon
e
rubber Samples",
in 2010 Inter
national Conference on High Vo
ltage Eng
i
neering and Applica
t
ion (
I
CHVE)
, pp
532-535, 2010
.
[8]
Kum
a
gai S, "Leakage
curren
t
su
ppression and resistance
to tr
acki
ng and
erosion o
f
HTV silicon
e r
ubber with
added
silicone
pl
astic
iz
er",
I
EEE Transactions on
Dielectr
ics and
El
ec
trical
Insulation
, v
o
l 14(2), pp 384
-
92, 2007
.
[9]
Vas
udev N, Ga
nga S
,
S
h
iv
aku
m
ara Aradh
y
a
R, P
a
i
BL,
" Ef
fect
of ATH f
ill
er con
t
ent
on th
e perform
an
ce o
f
silicone rubber b
y
incl
ined p
l
ane
track
ing and
ero
s
ion test m
e
thod
",
in 2012 I
EEE
10th Internation
a
l Conferen
ce o
n
the
Properties
a
nd Applications
of
Die
l
ec
tric
Ma
terials (
I
CPAD
M)
, pp 1-4, 2012
.
[10]
S
y
akur
, A.,
et al., "Electr
i
cal Track
ing Formation
on Silane Epox
y
Resin under
Variou
s Contaminants",
TELKOMNIKA (Telecommunica
tion Computing
Electronics and
Control)
, vol 11(
1), pp
17-28, 20
13.
[11]
Ja
ma
il NAM,
Pia
h
MAM,
M
uha
me
din FL,
Ka
sri NF,
Mu
hamad NA, Kamarudin QE,"Electrical tr
ack
in
g
charact
e
rization
of LLDPE-Natu
r
al R
ubber blen
ds filled with nanofillers",
in 2013 IEEE Confer
ence on El
ec
tric
al
Insulation and
Dielectric
Phenom
ena (
C
EIDP)
,
pp 695-698, 2013.
[12]
Padma V, Raghavan VS, "Analy
si
s of Insulatio
n
Degradation in Epox
y
In
sul
a
t
o
rs Using Finite Elem
ent Metho
d
",
in 2012 Third I
n
ternational
Co
nference on In
t
e
llig
ent S
y
stems
,
Modelling
and
Simulation
(
I
SMS)
, pp 498-503,
2012.
[13]
E. Da Silv
a SMR, "The dep
e
nd
ency
of water d
r
oplet b
e
haviour
and LC
pattern
on electrode
co
nfiguration",
in
2009 Annual Report Conferen
ce
on Electrical Insulation
an
d Dielectric Ph
enomen
a
,
pp 242-245
,
2009.
[14]
Andersson J, Guerrero RS, Gub
a
nski SM
, Hillbor
g H, "Tracking b
e
haviour
in th
e p
r
esence of condu
ctiv
e interfacial
defects",
in 200
9 CEIDP'09 IEEE Conferen
ce
on Electric
a
l
In
sulation and Dielectric
Phenom
ena
, pp 230-23
3,
2009.
[15]
Sarang B, B
a
sappa P,
Lakdawala V,
"Effect of
water
droplets and water f
ilms on the
ele
c
tri
c
a
l
perform
ance
of
practical outdoo
r insulators",
i
n
Conferenc
e
R
e
cord of the
201
0 IEEE
Interna
tional S
y
mposium on Ele
c
trica
l
Insulation (
I
SEI)
,
pp
1-6, 2010.
[16]
Ilhan S, Ozdemir A, Jay
a
r
a
m
SH, Cherney
EA, "Simulations of pollu
tion and their effe
cts
on the electr
i
c
a
l
pe
rforma
n
c
e
of gla
ss suspe
n
sion insula
tors",
in 2012 Annual
Report Conference on
Electrical Insulation an
d
Diele
c
tr
ic
Ph
eno
m
ena (
C
EIDP)
, pp 803-806, 201
2.
[17]
Illias HA, Chen
G, Lewin PL, "
M
easurem
ent an
d m
odelling of
parti
a
l disch
a
rge
behaviour
in a
spherica
l ca
v
i
t
y
within
a s
o
lid
di
ele
c
tri
c
m
a
t
e
ri
al
as
a fun
c
t
i
on of
cavi
t
y
di
am
eter"
,
in
Int
e
rnat
ional
Conferen
ce
on
S
o
lid Diel
ec
tric
s
(ICSD), pp 1-4,
2010.
[18]
Du B, Liu Y, Xia Y, Yang B, Liu B,
"D
y
n
amic
behavior of water dropl
et for ev
aluating outdoor
insulator",
2009
ICPADM 2009 IEEE 9th Int
e
rnational Conferen
c
e
on the Pr
opert
ies and Applicat
ions of
Dielec
tric Materials,
pp
272-275, 2009
.
[19]
Yong Z, Otsubo
M, Honda C
,
H
a
shimoto Y, Oh
no A., "Mec
hanism for change
in leak
age curr
en
t waveform on a
wet silicone rub
b
er surface-a st
u
d
y
using
a d
y
n
a
mic 3-D model",
IEEE Transactions on Di
electrics and Electrica
l
Insulation
, vol 1
2
(3), pp 556-56
5, 2005
.
[20]
Da Silva E, Ro
wland SM, "The depende
n
c
y
of
water droplet behaviour and
l
e
a
k
age curr
ent pa
t
t
ern on el
ectrod
e
configuration",
i
n
2009 CEIDP '09 IEEE Conf
erence on E
l
e
c
tric
al
Insulation an
d Dielec
tric Ph
e
nomena,
pp 242-
245, 2009
.
[21]
Piah MAM, Dar
u
s A, Hassan A.
, "Ele
ctrical tr
acking performance of LLDPE-n
atural rubber blen
ds by
emplo
y
ing
combination of
leakag
e curr
ent
level
and rate of
carbon tr
ack pro
p
agation",
IEEE Transactions on Dielectrics an
d
Ele
c
trica
l
Insula
tion,
2005, vol 1
2
(6), pp 1259-1
265.
[22]
Standard B
.
IEC 60587 Electri
cal insulating m
a
ter
i
als used
un
der seve
r
e
ambient conditions-Test
methods
for
evalu
a
ting
resistance to
tracking
and er
osion
.
Br
itish Standard
, pp
1-13, 2007
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
9 – 8
2
6
82
6
BIOGRAP
HI
ES OF
AUTH
ORS
Fatin Liy
a
na Muhamedin (F.L.
M
uhamedin) was born in Selan
gor
, Malay
s
ia o
n
Februar
y
27
,
1990. She recei
v
ed the B.E
.
degree in
el
ectri
cal power eng
i
neering from
Universiti T
echnolog
i
Malay
s
ia (UTM)
in 2013. Curren
t
l
y
, she
is pursui
ng the M.E
.
degr
ee at Institu
te of
High Voltag
e
and High Curre
nt (IVAT) in F
acul
t
y
of E
l
e
c
tri
cal
Engin
eering
,
UTM
.
Her r
e
s
earch
int
e
res
t
s
includ
e s
u
rfa
ce
dis
c
harge
and
m
a
ter
i
als fo
r high
voltag
e
insul
a
tor
.
Dr. Mohamed Afendi Mohamed Piah (M.A.M. Piah
)
is
an as
s
o
cia
t
e profes
s
o
r
at F
acult
y of
Ele
c
tri
cal
Engin
eering
,
Universi
ti Tekno
logi
Ma
la
y
s
ia and a f
e
ll
ow m
e
m
b
er of
the Institut
e
of
High Voltage and High Current (I
VAT).
He is also a Signato
r
y
of High Voltag
e
Testing
accr
edit
ation
la
b of ISO/IEC 17025. He rec
e
i
ved the B
.
El
ec
t. Eng
.
degre
e
from
Universiti
Teknologi Malay
s
ia in 1986
, M.Sc in Power S
y
s
t
em from Univer
sity
of Strathclyde, UK in
1990
and PhD in Hig
h
Voltag
e
Eng
i
neering
from Un
iversiti Teknologi Malay
s
ia
in
2004. He was
appointed as an
assistant dir
ector
(Test a
nd C
a
lib
ration Division
)
of IVAT
from 1996-2000 and
Deputy
Director
of IVAT from
2007-2009. He
has been invo
lv
ed in testing an
d calibration of
high voltage eq
uipments. His r
e
search
interest
s
include h
i
gh v
o
ltag
e
insulation
diagnostic
and
co-ordina
tion,
el
ectr
i
ca
l dis
c
harg
es
, pol
y
m
er na
n
o
com
posites insulating m
a
t
e
ria
l
s and insulator
condition
m
onit
o
ring.
N.A. Othman was born in Johor,
Malay
s
ia on Janua
r
y
19
, 1986. She received B.Eng in Electr
i
cal
Engineering fro
m
Universiti Teknologi Malay
s
i
a
(UTM) in 2010. She is curr
entl
y
pursuing
Ph.D. degree a
t
Institute of High Voltage and
High Current (IVAT) in Facult
y
of El
ect
ric
a
l
Engineering, U
T
M. Her resear
ch interest in
cludes the detection and diagnos
tics of par
tial
dis
c
harges
and s
p
ace
ch
arge
in
in
sulation
for
cond
ition m
onito
ring.
Dr. Nas
i
r Ahm
e
d Algeel
ani r
e
c
e
i
ved th
e B.
E. d
e
gree in
el
ec
tric
al
power s
y
s
t
em
from
Univers
i
t
y
of Aden, Yemen, Aden,
in 199
7, the M
.
E. degr
ee in
el
ectr
i
c
a
l
power s
y
s
t
em
e
ngineer
ing from
University
Tech
nolog
y
Malay
s
ia in 2009 and the
Ph.D. degree
in
high voltag
e
en
gineer
ing from
Universit
y
Tech
nolog
y
Mal
a
y
s
ia in 2014. He wa
s
a Lecturer wit
h
Industrial Technical Institut
e
(ITI) for 25
y
e
ars, where h
e
is
currently
a senior
le
cturer
of Hi
gh Voltag
e
Eng
i
neering
.
At
the
present he is a
postdoctoral can
didate at high
voltag
e
engineering depa
rtm
e
nt
at Univers
i
t
y
Techno
log
y
Malay
s
ia. He has published as auth
or
ed and co-authored more than 30 papers in
various techn
i
cal journals and
conferen
ce proc
eedings. His research interests
include high-
voltag
e
instrum
e
nta
tion, p
a
rti
a
l
discharge
,
det
ect
ion and war
n
ing s
y
stem
s a
nd condition
monitoring of h
i
gh power
equip
m
ent.
Evaluation Warning : The document was created with Spire.PDF for Python.