TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5720 ~ 5728
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.621
5
5720
Re
cei
v
ed Ma
rch 1
1
, 2014;
Re
vised Ma
y 4, 2014; Acce
pted May 2
5
, 2014
Simulation of Cascaded H-Bridge Multilevel Inverter
Based DSTATCOM
Rammohan Rao
Ma
kine
ni
1
, C.N.Bha
skar
2
1
Departme
n
t of EEE, Vivekan
and
a Instit
ute of
T
e
chnol
og
y
,
Jaipur Ind
i
a
2
T
r
ainee En
gin
eer IBM Pune, India
A
b
st
r
a
ct
T
h
is pap
er pr
esents an i
n
v
e
stigati
on of five-L
evel C
a
s
c
ade
d H-bri
d
g
e
(CHB) inv
e
rter as
distribution static com
p
ensat
o
r (D
ST
AT
COM) in
pow
er s
ystem (PS)
for
co
mpe
n
sati
on
of reactiv
e
po
w
e
r
and h
a
r
m
o
n
ics
.
T
he advanta
g
e
s of CHB inve
rter are low
ha
rmo
n
ic dist
ortio
n
, reduce
d
nu
mb
er of sw
itches
and suppress
ion of switching losses.
T
h
e
DS
T
A
T
C
OM help
s
to i
m
prove
th
e p
o
w
e
r factor
and
el
i
m
in
ate t
h
e
total h
a
r
m
o
n
ic
s distorti
on
(T
HD) dr
aw
n fro
m
a
no
n-li
ner
dio
de r
e
ctifier
l
oad
(NL
DRL).
T
he D-Q r
e
fer
enc
e
fram
e theory is
used to
gener
ate the refer
e
nce co
mpens
ating c
u
rrents for
DSTA
TCOM while
proportional
and i
n
tegr
al (PI) control is use
d
for capacit
or DC volt
a
ge reg
u
lati
on. A CHB
Inverter is con
s
ider
ed for shu
n
t
compe
n
satio
n
of a 11kV dist
ributi
on syste
m
. Final
ly a le
vel shifted PW
M (LSPWM) and ph
ase sh
ifted
PWM (PSPWM) techniques
are adopted
to investigate the per
for
m
ance of CHB Inverter. The results
ar
e
obtai
ne
d throu
gh Matla
b
/Si
m
ulink s
o
ftw
are packa
ge.
Ke
y
w
ords
:
DST
A
T
C
OM, le
vel shifted car
r
ier Pulse w
i
dt
h mo
du
latio
n
(LSPW
M), pha
se shifted carr
ie
r
puls
e
w
i
dth
mo
dul
ation
(PSP
W
M),
Proportio
nal-Inte
g
ral
(PI) cont
rol,
C
H
B mu
ltilev
e
l inver
t
er,
D-Q reference
frame th
eory
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Powe
r Qu
ality (PQ) i
s
the
key to
su
cce
ssful
delive
r
y of quality p
r
o
duct
and
ope
ration
of
an in
du
stry. The in
crea
se
d ap
plication
of ele
c
tr
oni
c l
oad
s a
nd
ele
c
troni
c co
ntro
llers which a
r
e
sen
s
itive to t
he qu
ality of power m
a
kes se
riou
s e
c
o
n
o
mic
co
nseq
uen
ce
s an
d
of reven
u
e
s
l
o
ss
each yea
r
. P
oor P
Q
can
cau
s
e
malfun
ctionin
g
of e
quipme
n
t pe
rforman
c
e,
ha
rmoni
cs, voltage
imbalan
ce,
sag an
d flicke
r pro
b
lem
s
, st
andin
g
wa
ve
s an
d resona
nce
– a
r
e
so
me of the i
s
sues
that adversel
y
affect prod
uction a
nd its qualit
y leadi
ng to huge l
o
ss in te
rm
s of prod
uct, ene
rgy
and d
a
mag
e
t
o
equi
pment.
Thus, it b
e
co
mes im
pe
rati
ve to be a
w
a
r
e of quality of
power
grid
a
n
d
the deviation
of the quality parameters from t
he norm
s
/ standard
such
as IEEE-519 standard [1]
to avoid brea
kdo
w
n o
r
equ
ipment dam
a
ge.
In pre
s
ent d
a
y distrib
u
tio
n
syste
m
s
(D
S),
majo
r power con
s
u
m
ption
ha
s been
i
n
rea
c
tive loa
d
s
. Th
e typical loa
d
s ma
y be
comp
u
t
er loa
d
s, li
ghting
balla
sts, sm
all rating
adju
s
table
speed
s d
r
ives (ASD) in a
i
r co
ndition
ers, fans, refri
gerato
r
s, pu
mps a
nd ot
her
dome
s
tic and
comm
ercial applia
nce
s
are
gen
era
lly b
ehaved as n
online
a
r
lo
ad
s.
The
s
e
l
o
a
d
s
dra
w
la
ggin
g
power-facto
r curre
n
ts and
therefo
r
e gi
ve ri
se
to
rea
c
tive power bu
rden
in
the
DS.
More
over, situation wo
rse
n
s
i
n
the
pre
s
en
ce
of un
b
a
lan
c
ed
and
non-li
nea
r lo
ads,
affect th
e
quality of sou
r
ce
cu
rrents t
o
a large extent. It
affects the voltage
at point of co
mmon
coupli
n
g
(PCC)
wh
ere
the fa
cility is
con
n
e
c
ted.
This ha
s
ad
verse
effect
s on the
sen
s
itive equipm
e
n
ts
con
n
e
c
ted to
PCC a
nd
may damag
e
the equipm
ent applia
nces. Exce
ssiv
e
rea
c
tive p
o
we
r
demand increases feeder
losses and reduce
s activ
e
power flow capa
bility of
the DS, whereas
unbal
an
cing
affects the op
eration of tra
n
sformers an
d gene
rato
rs
[2-3].
Many techni
q
ues have b
e
e
n
prop
osed to improv
e the sup
p
ly side p
o
we
r factor to
cancel
out the h
a
rm
onics g
ene
ra
ted by po
we
r elect
r
oni
c lo
ads. T
he
re
medie
s
to P
Q
problem
s
are
repo
rted i
n
th
e literatu
r
e
a
nd a
r
e
kno
w
n by t
he
gen
eric nam
e of
cu
stom p
o
we
r devi
c
e
s
(CPD)
[4]. The DST
A
TCOM
(Di
s
t
r
ibution
static comp
en
sa
tor) is a
shu
n
t-conne
cted
CP
D, with the lo
ad
whi
c
h ta
ke
s
care of the
compen
satio
n
of rea
c
tive p
o
we
r an
d un
balan
ce l
oadi
ng in the
DS
(i.e
PQ probl
em
s). Similarly, the appli
c
ation
of Ca
sca
ded
H-Bri
dge
(CHB) Multilevel Voltage source
conve
r
ter wit
h
split capa
ci
tors fo
r th
re
e
-
pha
se
three-wire
sy
stem i
s
fou
nd to
be
sati
sfacto
ry [
6
-
12]. Among the different control techniq
ues a
ppli
ed t
o
three
-
ph
ase three
-
wi
re compen
sato
rs, the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
lation of
Ca
scade
d H-Bridge Multile
vel Inverte
r
Base
d… (Ram
m
ohan Rao
Makin
eni
)
5721
SRFT (syn
ch
rono
us
refe
re
nce frame th
eory) b
a
sed
techni
que i
s
found to be
suitabl
e for t
h
e
c
ontrol of DS
TATCOM [14].
This pa
per
pre
s
ent
s various issu
es
in
desig
n of Proportio
nal
Integral (PI) and
comp
ari
s
o
n
b
e
twee
n the le
vel shifted ca
rrie
r
(LSCP
W
M) an
d pha
se shifted
ca
rrier pul
se
widt
h
modulatio
n (PSCPWM
)
Tech
niqu
es a
r
e used to ob
tain swit
chin
g logic for DSTATCOM.
The
perfo
rman
ce
of these
co
ntrolle
rs i
s
d
e
mon
s
trat
e
d
wit
h
linea
r r
e
si
st
iv
e-inductive (R-L) loads
throug
h sim
u
l
a
tion re
sults
usin
g Powe
r
Syst
em toolboxes
(PST) of Simulink
/ MATLAB.
2. Design of
Multilev
e
l Based DST
A
T
C
OM
2.1 .Principl
e
of DSTATCOM
A D-STA
T
COM
(Di
s
trib
ution Static Co
mpen
sato
r),
whi
c
h i
s
sch
e
matically
de
picted
in
Figure 1, con
s
ist
s
of a two-le
vel
Voltage Source Conv
erter (VSC
), a dc
ene
rgy storage
device
,
a
cou
p
ling tra
n
s
form
er con
necte
d in shunt to
the distributio
n
network through a
cou
p
ling
transfo
rme
r
.
The VSC
co
nverts the
dc voltage ac
ro
ss th
e sto
r
ag
e device into
a set of three-
pha
se
ac out
put voltage
s.
These voltag
es
are
in
ph
a
s
e
and
coupl
ed
with the
a
c
system
thro
ugh
the rea
c
tan
c
e of the coup
ling tran
sformer. Su
itable
adjustm
ent of the phase
and mag
n
itu
de of
the D-STAT
COM
output
voltages al
lows effectiv
e co
ntrol
of active a
n
d
rea
c
tive po
wer
excha
nge
s b
e
twee
n the DSTATCOM a
nd the ac sy
stem. Such co
nfiguratio
n all
o
ws the device
to abso
r
b o
r
gene
rate cont
rollabl
e active
and rea
c
tive power.
Figure 1. Sch
e
matic Di
ag
ram of a DST
A
TCOM
The VSC
co
nne
cted in
shunt with the
ac sy
stem p
r
ovide
s
a mu
ltifunctional t
opolo
g
y
whi
c
h can be
use
d
for up to
three quite di
stinct pu
rpo
s
es:
1. Voltage re
gulation a
nd
comp
en
satio
n
of rea
c
tive power;
2. Corre
c
tion
of powe
r
fact
or
3. Elimination
of current ha
rmoni
cs.
Here, su
ch
device i
s
e
m
ployed to
provide
conti
nuou
s voltag
e reg
u
lation
usin
g an
indire
ctly con
t
rolled conve
r
ter. As sho
w
n in Fi
gure 1 the shu
n
t inje
cted current Ish corre
c
ts the
voltage sa
g by adjusting t
he voltage drop acro
ss th
e system imp
edan
ce Zth. The value of Ish
can
be
contro
lled by
adju
s
ti
ng the
o
u
tput
voltage of
the
co
nverte
r. T
he
shu
n
t inje
cted
cu
rrent I
s
h
can b
e
writte
n as:
I
sh
=I
L
-I
S
I
sh
=I
L
-(V
TH
-V
L
)/Z
T
H
(
1
)
The co
mplex
power inje
ctio
n of the D-ST
ATCOM
can
be expre
s
sed
as:
S
TH
=V
L
I
SH
(2)
It may be me
ntioned th
at the effe
ctiveness of
the
DS
TATCOM
in
correctin
g
voltage
sa
g
depe
nd
s on the value of Zth or fault leve
l of the
load b
u
s. Wh
en the
shunt inje
cte
d
cu
rre
nt Ish i
s
kept in
qua
drature
with VL
, the desi
r
e
d
voltage
corre
c
tion can be achi
eved with
out
inje
cting any
active p
o
wer
into the
sy
ste
m
. On
the
other ha
nd,
wh
en the
value
of Ish
is mini
mized,
the
sa
me
voltage co
rre
c
tion can be
achi
eved with
minimum
ap
pare
n
t power
injectio
n into the syste
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 572
0 –
5728
5722
2.2. Contr
o
l for Rea
c
tiv
e
Po
w
e
r Comp
ensa
tion
The aim
of the control
scheme i
s
to m
a
inta
in
con
s
t
ant voltage
magnitud
e
at
the point
whe
r
e a se
n
s
itive load u
nder
system
disturb
a
n
c
e
s
is co
nne
ct
ed. The co
ntrol syste
m
only
measures th
e root m
ean
squ
a
re
(rm
s
) volta
ge at
the load
p
o
int, i.e., no rea
c
tive po
wer
measurement
s are re
quired. The VS
C switchi
ng
strategy i
s
b
a
se
d on a
sinusoidal P
W
M
techni
que
wh
ich
offers si
mplicity an
d
good
re
sp
on
se. Sin
c
e
cu
stom p
o
wer i
s
a
rel
a
tively low-
power ap
plication, PWM method
s offer a more
flexi
b
le option th
an the funda
mental freq
u
ency
swit
chin
g me
thods favo
re
d in FACTS
appli
c
ation
s
. Apart from th
is, high
swit
ching fre
que
n
c
ie
s
can
be
u
s
ed
to imp
r
ove
on
the effici
en
cy of the
conv
erter, witho
u
t incu
rri
ng sig
n
ificant swit
chi
n
g
losses.
Figure 2. PI control for
Rea
c
tive Powe
r Comp
en
satio
n
The controlle
r input i
s
an
error
sign
al o
b
tained from
the refe
ren
c
e
voltage and
the rm
s
terminal volta
ge me
asure
d
. Such
erro
r i
s
pro
c
e
s
sed
b
y
a PI cont
roll
er; the
output
is the
an
gle
δ
,
whi
c
h i
s
pro
v
ided to th
e
PWM
sign
al
gene
rato
r. It is im
porta
nt to note
that i
n
this case,
of
indire
ctly con
t
rolled conve
r
ter, there i
s
acti
ve and re
active po
wer exchan
ge with the netwo
rk
simultan
eou
sl
y. The PI co
n
t
rolle
r processe
s the
erro
r
sign
al an
d g
e
nerate
s
th
e required
angl
e
to
drive the erro
r to zero, i.e. the load rms v
o
lt
age is b
r
ou
ght back to the referen
c
e voltage.
2.3. Contr
o
l for Harmonic
s
Compen
sa
tion
The Modifie
d
Synchrono
us Frame
method
is p
r
esented in
[7]. It is called the
instanta
neo
u
s
current
co
mpone
nt (id
-
i
q
) meth
od.
T
h
is i
s
simil
a
r
to the Synch
r
onou
s
Refere
nce
Frame the
o
ry
(SRFT
)
meth
od. The tran
sformation
a
n
g
l
e is now o
b
ta
ined with the
voltages of the
ac net
work. T
he majo
r differen
c
e is th
at, due to voltag
e harm
oni
cs
and imbal
an
ce, the spee
d of
the refe
ren
c
e
frame i
s
n
o
l
onge
r
con
s
ta
nt. It varies in
stantan
eou
sl
y depen
ding
of the wavefo
rm
of the 3-ph
ase voltage system. In this method
the co
mpen
sating
currents a
r
e o
b
tained fro
m
the
instanta
neo
u
s
a
c
tive and
rea
c
tive current
comp
one
nts of
the
no
nlinea
r lo
ad.
In the
sam
e
way,
the main
s vo
ltages V (a,b
,c)
and
the
a
v
ailable
cu
rre
n
ts il
(a,b,
c
) i
n
α
-
β
co
mpo
nents mu
st be
cal
c
ulate
d
a
s
given by (4
),
whe
r
e
C is
Clarke
Tra
n
sf
ormatio
n
Mat
r
ix. However,
the load
cu
rrent
comp
one
nts
are de
rived from a SRF b
a
se
d on the
Park transf
o
rmation, whe
r
e „
θ‟
re
pr
es
en
ts
the instanta
n
eou
s voltage
vector an
gle (5).
=C
(3)
=
(4)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
lation of
Ca
scade
d H-Bridge Multile
vel Inverte
r
Base
d… (Ram
m
ohan Rao
Makin
eni
)
5723
Figure 3. Block
Diag
ram o
f
SRF Metho
d
Figure 3 sho
w
s the bl
ock diagram SRF
method.
Und
e
r bala
n
ced a
nd sin
u
soidal
voltage
con
d
ition
s
an
gle „
θ‟
i
s
a uniformly increa
sing fun
c
t
i
on of time.
This tra
n
sfo
r
mation angl
e
is
sen
s
itive to voltage harm
onics
an
d un
balan
ce; therefore d
θ
/dt
may not be con
s
tant ove
r
a
mains p
e
ri
od.
With tran
sformation given
belo
w
the direct voltage compon
ent is:
=
(5)
I
I
=
(6)
2.4. Casc
ade
d
H-Bridge
Multilev
e
l In
v
e
rter
Figure 4. Circuit of the Single Ca
scade
d H-
Bridge Invert
er
Figure 5. Block
Diag
ram o
f
5-level CHB
Inverter Model
Figure
4 sh
o
w
s
the circuit
model of
a si
ngle CHB
i
n
verter co
nfigu
r
ation. By usin
g sin
g
le
H-Bri
dge
we
can g
e
t 3 voltage levels. T
he numb
e
r
of
output voltage levels of CHB is give
n
b
y
2n+1 a
nd vo
ltage
step
of
ea
ch
level i
s
give
n
by
Vdc/2n,
wh
ere n
is num
b
e
r
of H-b
r
idg
e
s
con
n
e
c
ted in
ca
scade
d. The swit
chin
g table is given in
Table 1.
Table 1. Swit
chin
g Table o
f
Single CHB
Inverter
S
w
itching sta
t
e
s
Voltag
e le
v
e
ls
S1,S2 V
DC
S3,S4 -V
DC
S4,D2
0
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 572
0 –
5728
5724
The switchi
n
g
mecha
n
ism for 5-l
e
vel CHB inverter is
shown in Tabl
e 2.
S
w
itching tur
n
Voltag
e le
v
e
ls
S1,S2 V
DC
S1,S2,S5,S6 2V
DC
S4,D2,S8,D6
0
S3,S4 -V
DC
S3,S4,S7,S8 -2V
DC
2.5. PWM Te
chniques
for
CHB Inv
e
rter
The mo
st pop
ular PWM techniqu
es for
CHB inverter a
r
e:
1. Phase Shif
ted Carrie
r PWM (PSCP
W
M),
2. Level Shifted Ca
rri
er P
W
M (LS
C
PWM).
Cas
e
-1
:- Pha
se Shifte
d
Carrier PWM (PSCPWM)
Figure 6. Phase Shifted Ca
rrie
r
PWM
Figure 6
sho
w
s the
Pha
s
e
shifted
carrie
r p
u
lse
width
modulatio
n. I
n
ge
ne
ral, a
multilevel
inverter with
m
voltage levels requi
res
(
m
– 1) triangul
ar
carri
ers. In th
e pha
se
shif
ted
multica
rrie
r
m
odulatio
n, all
the trian
gula
r
ca
rri
e
r
s h
a
ve the same f
r
e
quen
cy an
d t
he
same
pea
k-
to-pea
k ampl
itude, but there is a pha
se shift
betwe
en any two adjacent ca
rri
er wave
s, given
by
∅
.
The mod
u
lat
i
ng sig
nal is usually a t
h
ree
-
p
h
a
s
e
sinu
soi
dal wave with adj
ustabl
e
amplitude a
n
d
freque
ncy. The gate si
g
nals a
r
e g
e
n
e
rated by co
mpari
ng the
modulatin
g wave
with the carri
e
r waves. It mean
s for the
five leve
l inverter, fou
r
are
triangul
ar
carriers a
r
e ne
e
ded
with
a
90
° p
hase
di
spl
a
cement betwe
en
a
n
y
two
adja
c
ent ca
rriers.
In
thi
s
ca
se
th
e
p
h
a
se
displ
a
cement
of Vcr1 = 0°,
Vcr2
= 90°, V
c
r1
- = 1
80° a
nd Vcr2-
= 27
0°.
Cas
e
-2
:- L
e
v
e
l Shifted C
a
rrier PWM (L
SCPWM
)
Figure 7. Level Shifted Phase Shifted Carri
er PWM
Figure 7
sho
w
s the
Level
shifted
ca
rri
er pul
se width
modulatio
n. An
m-level
Cascad
ed
H-b
r
id
ge inve
rter
usin
g lev
e
l shifted
mo
dulation
re
qui
res (
m–
1
) tria
ngula
r
carrie
rs, all h
a
ving t
he
same f
r
equ
en
cy and a
m
plitude. The freq
uen
cy modul
ation index i
s
given by
mf
=
fc
r / fm
, whic
h
remai
n
s th
e
same
a
s
that
for the
pha
se-shift
ed mo
dulation
sche
me. For PI
D
modulatio
n, the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
lation of
Ca
scade
d H-Bridge Multile
vel Inverte
r
Base
d… (Ram
m
ohan Rao
Makin
eni
)
5725
multilevel co
nverter
with multilevel req
u
ire
s
(m1
)
tri
angul
ar carri
e
rs
with sam
e
amplitude
and
freque
ncy. Th
e freque
ncy
modulatio
n in
dex „mf
‟
which can b
e
expressed a
s
:
m
Whe
r
e „fm
‟
is modul
ating
frequen
cy a
nd „fcr
‟
are carrie
r wave
s frequ
en
cy. The amplitu
de
modulatio
n in
dex „ma
‟
i
s
d
e
fined by:
m
a=
∗
for 0
≤
ma
≤
1
Whe
r
e
Vm i
s
the
pea
k val
ue of
the
mo
dulating
wave an
d V
c
r is the
pea
k val
ue of
the
ea
ch
carrie
r
wave
[1]. The
ampli
t
ude m
odulati
on in
dex, ma
is
1
and
the
freque
ncy
mo
dulation
ind
e
x
,
mf is 6. The triggeri
ng ci
rcuit is d
e
si
g
ned
ba
sed o
n
the three
pha
se si
nuso
i
dal modul
ation
wave
s, Va,
Vb, and
Vc.
Three
of th
e si
ne
wave
so
urce
s
ha
ve bee
n o
b
tained
with
same
amplitude
an
d fre
quen
cy
but di
spla
ce
d
120
° o
u
t of
the ph
ase
wi
th ea
ch
othe
rs. F
o
r carrie
rs
wave source
s block param
eters, t
he tim
e
values of e
a
ch
carrie
r waves are set to [0 1/600 1/3
00]
while th
e out
puts valu
es
a
r
e
set a
c
cordi
ng to the
di
spositio
n of ca
rrie
r
waves.
After com
pari
ng,
the output si
gnal
s of com
parato
r
a
r
e transmitt
ed to
the IGBTs. F
i
gure
10, 11,
12 sh
ows th
e
waveforms b
a
se
d o
n
three
scheme
s
of level
shi
fted multilevel mod
u
latio
n
s:
(a) in
p
hase
disp
ositio
n (I
PD) fig-10,
whe
r
e all
ca
rrie
r
s
ar
e in
pha
se; (b
) alternative
pha
se o
ppo
site
disp
ositio
n (APOD) fig-11
, where all carri
ers are
al
ternatively in oppo
site dispositio
n; and
(c)
pha
se op
po
si
te dispo
s
ition
(POD) fig-12
, where
all
carri
ers above
zero
refe
ren
c
e are in pha
se
but in o
ppo
sit
i
on with
tho
s
e belo
w
th
e
zero
refe
ren
c
e
[1]. Out of IPOD, APOD
and PO
D, IPOD
g
i
ve
s
b
e
tte
r
ha
r
m
on
ic
pe
r
f
or
ma
nc
e
.
Figure 8. Alternative Pha
s
e
Oppo
site
Dis
p
o
s
ition (
APOD)
Figure 9. Phase Op
po
site Dispo
s
ition (POD)
3. MATL
AB/
SIMULINK Modeling and
Simulation Results
Figure 10. Matlab/Simulin
k Powe
r
Ci
rcuit Model of DSTATCOM
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 572
0 –
5728
5726
Figure 10 sh
ows the Matlab/Simulin
k p
o
we
r ci
rc
uit model of DS
TATCOM. It con
s
i
s
ts of
five blocks named a
s
source blo
c
k, nonlinea
r load blo
ck, control blo
c
k, APF block and
measurement
s blo
ck. The
system pa
ra
meters fo
r si
mulation stu
d
y
are sou
r
ce voltage of 11KV,
50Hz A
C
su
pply, DC bu
s ca
pacita
n
ce
1550
e-6 F,
Inverter
se
rie
s
ind
u
cta
n
ce
10m
H, Sou
r
ce
resi
stan
ce
of
0.1 ohm
and i
ndu
ctan
ce of
0.9 mH.
L
oad
re
sista
n
ce a
nd ind
u
cta
n
ce are cho
s
en
as
30mH a
nd 60
ohms respe
c
tively.
Cas
e
-1 Pha
s
e
shifted car
rier PWM te
c
hnique resul
t
s
Figure 11
sh
ows the ph
ase-A voltage o
f
five
level output of phase
shifted carrie
r PWM
inverter.
Figure 11. Five Level PSCPWM Output
Figure 12
sh
ows the th
re
e pha
se
source vo
ltag
es, three pha
se sou
r
ce curre
n
ts
an
d
load cu
rrents respe
c
tively
without DST
A
TCOM.
It
i
s
clea
r that
wit
hout
DSTAT
C
OM
load
cu
rre
nt
and source
currents a
r
e same.
Figure 13
sh
ows the th
re
e pha
se
source vo
ltag
es, three pha
se sou
r
ce curre
n
ts
an
d
load current
s respe
c
tively with DSTAT
C
OM. It is clea
r that with DSTATCOM e
v
en though l
o
ad
curre
n
t is non
sinu
soid
al so
urce cu
rrents
are si
nu
soid
a
l
Figure 12. Source Voltage,
Current an
d Load
Current without DSTATCOM
Figure 13. Source Voltage,
Current an
d Load
Cur
r
e
n
t with DSTATC
OM
Figure 14
sh
ows the DC b
u
s voltage. T
he DC
bu
s v
o
ltage is
reg
u
l
ated to 11
kv by using
PI regulator.
Figure 14. DC Bus Voltag
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
lation of
Ca
scade
d H-Bridge Multile
vel Inverte
r
Base
d… (Ram
m
ohan Rao
Makin
eni
)
5727
Figure 15 shows the h
a
rmo
n
ic spe
c
trum
of Phase–A Sou
r
ce
cu
rre
nt without
DSTATCOM.
The THD of sou
r
ce cu
rr
en
t without DST
A
COM is 3
6
.89%.
Figure 16
sh
ows the h
a
rm
onic
sp
ect
r
u
m
of
Pha
s
e–
A
Source cu
rrent with
DS
TATCOM.
The THD of source current
without DST
A
COM is 5.0
5
%
.
Figure 15. Ha
rmoni
c Spe
c
trum of Pha
s
e
-
A
Source Curre
n
t without DS
TATCOM
Figure 16. Ha
rmoni
c Spe
c
trum of Pha
s
e
-
A
Sourc
e
Current with DSTA
TCOM
Cas
e
-2 L
e
v
e
l shifted c
a
rri
er PWM te
ch
nique results
Figure 17
sh
ows the th
re
e pha
se
source vo
ltag
es, three pha
se sou
r
ce curre
n
ts
an
d
load current
s respe
c
tively with DSTAT
C
OM. It is clea
r that with DSTATCOM e
v
en though l
o
ad
curre
n
t is non
sinu
soid
al so
urce cu
rrents
are si
nu
soid
a
l
.
Figure 18 sh
ows the DC bus voltage
with
respe
c
t to time. Th
e DC bu
s voltage i
s
regul
ated to 1
1
kv by usin
g PI regulator.
Figure 17. Source Voltage,
Current an
d Load
Cur
r
e
n
t with DSTATC
OM
Figure 18. DC Bus Voltag
e
Figure 19 shows the h
a
rmo
n
ic spe
c
trum
of Phase–A Sou
r
ce
cu
rre
nt without
DSTATCOM.
The THD of sou
r
ce cu
rren
t without DST
A
COM is 2
9
.48 %.
Figure 20 sh
ows the ha
rm
onic
spe
c
tru
m
of P
hase –
A
Source cu
rrent with
DST
A
TCOM.
The THD of source current
without DST
A
COM is 7%.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 572
0 –
5728
5728
Figure 19. Ha
rmoni
c Spe
c
trum of Pha
s
e
-
A
Source Curre
n
t without DS
TATCOM
Figure 20. Ha
rmoni
c Spe
c
trum of Pha
s
e
-
A
Sourc
e
Current with DSTA
TCOM
4. Conclusio
n
A DSTATCO
M
with five l
e
vel CHB inve
rter i
s
inve
sti
gated. Simul
a
tion mo
del f
o
r
singl
e
H-Bri
dge
inv
e
rter is devel
oped
which
can b
e
ex
ten
d
ed
to multi H-Bridg
e
.
Th
e sou
r
ce
voltag
e,
load voltage,
sou
r
ce curren
t, load cu
rre
nt, powe
r
facto
r
simulatio
n
re
sults
unde
r n
on-lin
ea
r load
s
are i
n
vestig
ated for
both P
S
CPWM
and
LSCPWM a
nd a
r
e tab
u
la
ted. Finally with the hel
p o
f
Matlab/Simuli
nk ba
sed mo
del simul
a
tio
n
we
co
ncl
u
d
e
that PSCPWM is better than LSCPWM
techni
que
s a
nd the re
sults are presente
d
.
Referen
ces
[1]
IEEE Recomm
end
ed Practic
e
s and Re
qu
ire
m
ents for
Har
m
onics C
ontrol
in Electric Po
w
e
r S
y
st
ems.
IEEE Std. 519. 1992.
[2]
A Moreno-M
u
n
o
z. Po
w
e
r Qua
lit
y
:
Mitig
a
tio
n
T
e
c
hnolog
ies i
n
a Distribute
d
Environm
ent. Lon
do
n, U.K.
Sprin
ger-Ver
la
g. 2007.
[3]
NG Hing
o
ran
i
. Introduci
ng C
u
stom Po
w
e
r.
IEEE Spectrum
. 199
5; 32(6): 41
-48.
[4]
Ghosh, G
Led
w
i
ch, P
o
w
e
r
q
ualit
y
enc
ha
nc
ement
usin
g c
u
stom p
o
w
e
r
devic
es. L
ond
on, Kl
u
w
e
r
Academ
ic Publ
ishers. 20
02.
[5]
Acha, VG Agelidis, O An
a
y
a-
L
a
ra. T
H
E Mill
er
. Po
w
e
r
El
ectro
n
icCo
ntrol
i
n
El
ectrical
s
y
stem
s. Engl
an
d,
Ne
w
n
es. 20
02.
[6]
A Pan
d
e
y
, B
S
i
ng
h, BN S
i
n
g
h
, A C
han
dra,
K Al-Ha
d
d
ad,
DP Koth
ari. A
Revie
w
of
Mult
ileve
l P
o
w
e
r
Conv
erters.
IE
(I) Journal. EL
.
2006; 8
6
: 220-
231.
[7]
KA Corzin
e, YL Famili
ant. A Ne
w
C
a
scad
e
d
Multi-l
e
vel
H-
Bridg
e
Drive.
I
EEE Trans. Power. Electron.
200
2; 17(1):1
2
5
-13
1
.
[8]
JS Lai, F
Z
Pe
ng. Multi
l
ev
el
converters: A
ne
w
bre
ed
of converters.
IE
EE T
r
ans. Ind.
Appl
i.,
19
96
;
32(3): 50
9-5
1
7
.
[9]
T
A
Maynar
d,
M F
ade
l, N A
o
uda.
M
o
d
e
ll
ing
of mu
ltilev
e
l
c
onverter.
IEEE
T
r
ans. Ind.El
e
c
tron.,
199
7;
44: 356-
36
4.
[10]
P Bha
g
w
a
t, V
R
Stefan
ovic.
Genera
lize
d
st
ructure of
a m
u
ltilev
e
l PW
M
Inverter.
IEEE Trans. Ind.
Appl
n
. 198
3; 1A-19(6): 10
57-
106
9.
[11]
J Rodr
ig
uez, Ji
h-she
ng
La
i, F
Z
heng
pe
ng. M
u
ltilev
e
l
Inverte
r
s; A Su
rve
y
of T
opolog
ies, C
ontrols,
a
n
d
Appl
icatio
ns.
IEEE Trans. Ind. Electron.,
200
2; 49(4): 72
4-7
38.
[12]
Rooz
beh
Na
d
e
ri, Abd
o
lrez
a
rahm
ati. Ph
a
s
e-shifted c
a
rri
er PW
M techniq
ue for g
e
n
e
ral casc
ad
ed
inverters.
IEEE Trans. Power.
Electron.,
20
08
; 23(3): 125
7-1
269.
[13]
Bhim Si
ng
h, Kamal A
lHa
dd
a
d
&
Ambr
ish C
han
dra, 1
9
9
9
, A Revi
e
w
of A
c
tive F
ilter for
Po
w
e
r Qu
al
i
t
y
Improveme
n
ts, IEEE
T
r
ans on Industr
ial El
ec
tronics, 46(5),
pp.96
09
70
[14]
Maurici
o
An
gu
lo, Pab
l
o L
e
za
na, Samir Ko
u
r
o, Jos´e Ro
dr
´
ı
gu
ez, Bin W
u
. Leve
l
-shifte
d PW
M for
Casca
ded M
u
l
t
ilevel I
n
verter
s w
i
th Even
Pow
e
r Distrib
ution.
IEEE P
o
w
e
r Electronics specialist
confere
n
ce. 20
07: 237
3-2
378.
[15]
BP McGrath,
DG Holmes. Multicarri
er
PWM strategies for multilevel inverters.
IEEE Trans. Ind.
Electron.
, 49(4
)
: 858.
Evaluation Warning : The document was created with Spire.PDF for Python.