TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 5204 ~ 52
1
0
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.567
7
5204
Re
cei
v
ed
Jan
uary 26, 201
4
;
Revi
sed Ma
rch 1
2
, 2014;
Acce
pted Ma
rch 2
5
, 2014
An Improved A Low Power CMOS TIQ Comparator
Flash ADC
A. Al, M. B. I. Reaz*, J.
Jalil, Mohd. Alauddin Mohd.
Ali
Dep
a
rtment of Electrical, El
ec
tronic an
d S
y
st
ems Engi
ne
eri
n
g
Univers
i
ti Keb
a
ngsa
an Mal
a
ys
ia
436
00 UKM, Bang
i, Sela
ngor,
Mala
ysi
a
T
.
Elektro IT
P
Pada
ng Ind
o
n
e
s
ia
*Corres
p
o
n
id
n
g
author, e-ma
i
l
: al_mt62
@
ya
hoo.com
A
b
st
r
a
ct
T
h
is pa
per w
a
s prese
n
ted th
e des
ign
of a thresh
ol
d
invert
er qu
anti
z
e
d
(T
IQ) compar
ator
in fla
s
h
ana
log to
dig
i
ta
l converter. T
h
e T
IQ-compar
a
t
or has a
h
i
gh
spee
d resp
ons
e; how
ever this
circuit invo
lves
a
lot of transistor
s
hence w
a
ste
f
ul pow
er cons
umptio
n. T
he desi
gn is i
n
ten
ded to o
b
tai
n
a low
-
pow
er T
I
Q
-
compar
ator an
d red
u
ces the
area
of
the chi
p
in 0.1
8
µ
m
C
M
OS technol
o
g
y. T
he metho
d
w
a
s prop
ose
d
t
o
set each of the
transistor cha
nne
l len
g
th for the thre
sho
l
d v
o
ltag
e differe
n
c
e gai
ned of th
e inverter eac
h
in
the T
IQ-comp
arator a
nd
ad
din
g
a tra
n
sist
or as co
mp
e
n
s
ation to
over
come the
li
mit
a
tions
of the
l
engt
h
chan
nel ex
pa
n
s
ion d
ue to the
body effect influe
nce.
T
h
is method h
a
s redu
ced t
he dra
i
n current of CMOS
transistors; he
nce the
pow
er
dissip
a
tio
n
ca
n
be re
duc
ed. T
he ev
ent h
a
s a
c
hiev
ed l
o
w
po
w
e
r dissip
a
tio
n
of
31.14
µ
W
a
nd
a chip si
z
e
of 1
065
µ
m
2 w
i
th
0
to 0.6 V input sign
al con
d
iti
o
n.
.
Ke
y
w
ords
: T
IQ-comp
arator,
low
pow
er, CMOS technolo
g
y
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Analog to
digi
tal conve
r
ter (ADC) is a u
s
eful
buildi
ng
block in
many
appli
c
ation
s
su
ch a
s
a data storag
e read
chan
n
e
l and an en
vironme
n
t
co
ndition monit
o
ring receive
r
becau
se th
e
y
rep
r
e
s
ent the
interface bet
wee
n
the re
a
l
world
analo
g
sign
al and
the digital sig
nal pro
c
e
s
so
rs.
Many implem
entation
s
hav
e bee
n re
po
rted in the lit
e
r
ature in
order to obtain hi
g
h
perfo
rma
n
ce
ADC, for exa
m
ple su
cce
s
sive approxim
ation, delta si
gma and fla
s
h ADC.
Flash
ADC
a
r
chite
c
tu
re i
s
kno
w
n
for its
hi
gh-sp
eed
o
peratio
n. An
analo
g
in
put
voltage
is simultan
eo
usly com
pared
by 2
n
–
1 voltage
co
mparators i
n
an
n-bit fla
s
h A
D
C [1].
The
comp
arators
are th
e mo
st
critic
al
comp
onent
s in a fl
ash A
D
C. In this de
sig
n
, the compa
r
at
ors
are reali
z
ed
with the inverters, whi
c
h
avoid
the complexity in the desig
n of conventio
nal
comp
arators. An inverter is used a
s
a
compa
r
ato
r
kno
w
n a
s
thresh
old invert
er qua
ntizati
o
n
(TIQ)-Comp
a
r
ator.
The TIQ-com
parato
r
ha
s
been often p
r
opo
se
d and
simulate
d in flash ADC d
e
sig
n
for
high spee
d, small si
ze, lo
w po
wer
con
s
umptio
n, an
d linearity [1-3]. A basic T
I
Q comp
arat
or
circuit con
s
ists of two
ca
scad
ed
CMO
S
inverter
s a
s
sho
w
n in F
i
gure
1 [2, 4]. Here, the fi
rst
inverter th
re
shold voltag
e
(
V
th
) a
c
ts a
s
voltage reference. The
se
con
d
inverte
r
se
rves
as t
he
gain bo
oste
r to kee
p
the lin
earity in bala
n
ce fro
m
the voltage risi
ng
and falling in
tervals [5].
For
the co
nst
r
uct a
compa
r
ator req
u
ires
two
inve
rters. An inverter
contai
ns t
w
o
CMOS
transi
s
to
rs, so for the sin
g
le co
mpa
r
at
or re
quires
f
our of CM
OS
transi
s
tors
such a
s
Fig
u
re 1.
Therefore, it i
s
in th
e con
s
truct
of the 6
4
-
bit
TIQ-co
m
parato
r
req
u
ires a
s
m
u
ch a
s
4 X
64
= 2
56
CMOS tra
n
si
stors. The o
p
e
ration
of the transi
s
tor
as
it will not slig
htly powe
r
co
nsum
e and l
a
rge
chip a
r
ea, if not caution mo
re plan
ned.
The p
r
eviou
s
re
se
arche
r
s have p
r
o
posed ma
ny ways
to
set the TIQ-co
mparator
for
quanti
z
ati
on
of data i
n
flash
-
ADC
system.
Yoo
and T
ang
el
have be
en
sugge
sted th
a
t
the
analo
g
input signal qu
anti
z
ation level is set
in th
e first stage by changing the voltage
trans
fer c
u
rve (VTC) [5, 6].
They
were
confirmed tha
t
to get
the
V
th
s
h
ift is
to s
e
t the
W
ratio of
PMOS and
NMOS, wh
ereas the
L
i
s
fixed. The other h
and, t
he si
ze of transi
s
tor
cha
nnel
length
s
,
L
an
d width,
W
a
r
e adju
s
ted [4].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Im
proved
A Low Power CMOS TIQ Com
parator
Flash A
DC (A
. Al)
5205
Figure 1. A T
I
Q Comp
arat
or Basi
c Ci
rcuit
This
re
sea
r
ch appli
e
s to
anothe
r meth
od, by adju
s
t
i
ng
L
a
nd
keepin
g
W
fix
ed an
d
addin
g
1
or 2 tran
sisto
r
s a
s
co
mpe
n
satio
n
to
o
v
erco
me th
e
limitations
of the
L
ch
annel
expan
sion
du
e to the b
ody
effect influe
n
c
e. Th
e adva
n
tage
s of thi
s
method
are redu
ced
po
we
r
con
s
um
ption
and area o
f
the layout. Incre
a
si
ng
L
red
u
ces th
e tran
sisto
r
drain
cu
rrent
,
I
D
according to [7] for a transi
s
tor in
saturated co
ndition
as:
(1)
Whe
r
e
µ
is
electro
n
mobili
ty,
ox
is the permittivity of the silicon di
oxide,
t
ox
is the
thickne
ss
of the oxide l
a
ye
r
, V
GS
is the
gate–
sou
r
ce
va cha
nnel l
e
ngth mod
u
lati
on coefficie
n
t
is a chan
nel
length mo
du
lation co
effici
ent and
V
DS
is drain-so
urce volt
ag
e. More
over, in
the
prop
osed me
thod, the physical form is
more
symme
trical to ea
se
the arra
ngin
g
and
layout
of
device
s
.
The ba
sic d
e
sig
n
of the TIQ-Com
p
a
r
at
or for a
n-bit flash
ADC re
qui
re
s 2
n
-1
comp
arators [8]. Therefo
r
e a 6
-
bit fl
ash A
DC re
quire
s (2^6)
-
1
= 63 TIQ
com
p
a
r
ators.
Mean
while, a
c
cordi
ng to [9
, 10, 11],
L
of each first inv
e
rter PM
OS of the comp
a
r
ator i
s
de
rived
from the mat
hematical expre
ssi
on for
V
th
of any quantize
d
su
b-u
n
it given approximately as:
(
2
)
Whe
r
e
V
tn
and
V
tp
a
r
e
the thresh
old voltag
es for
NMOS
and
PMOS
devices
respe
c
tively, and
K
n
= (W/
L)
n
.
µn
C
ox
,
Kp
=
(W
/L)
p
.
µ
p
C
ox
and
µ
n
and
µ
p
are the ele
c
tron
a
n
d
hole m
obility’s of
NMOS
and PMOS, respectively.
C
ox
denot
es
gat
e-oxide
capa
citan
c
e p
e
r
u
n
it
area.
Sec
t
ion II s
h
ows
the methodology of this wo
rk
. Sec
t
ion III s
hows
Res
u
lt and disc
us
s
i
on.
Section IV sh
ows the co
ncl
u
sio
n
.
2. Rese
arch
Metho
d
We u
s
ed the
followin
g
desi
gn pro
c
e
s
s to develop the
prop
osed TIQ
-
Co
mpa
r
ato
r
.
a)
Firstly, the d
e
velopme
n
t o
f
the com
parat
or
wa
s ba
sed on
the
ba
sic
ci
rcuit given in
Figure 1.
b)
Secon
d
ly, Equation
(2
)
wa
s u
s
e
d
to
cal
c
ul
ate
L
of the firs
t inverter P
M
OS,
according to
the desired
value of thresh
old voltag
e and this result is sho
w
n in
Figure 2.
Th
e g
r
aph
in
Fi
gure
2
sho
w
ed a
n
in
crea
se
L
of
TIQ-comp
arator e
a
ch
numbe
r from
no. 1 to no. 21. The increase
in the grap
h is not linear d
ue to the
Equation (2
) contai
ns of the squ
a
re ro
ot
elements.
Therefore the
TIQ-com
p
a
r
ator
for the next numbe
r is re
qu
ired ad
dition tran
sisto
r
s as
comp
en
satio
n
.
)
1
(
)
(
2
1
2
0
DS
t
GS
D
V
V
V
L
W
t
x
ox
I
p
n
p
n
tn
tp
VDD
th
K
K
K
K
V
V
V
1
|
|
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5204 – 52
10
5206
c)
Lastly, the
in
put voltage
range
of
the
TI
Q Com
p
a
r
ator i
s
matched to the
o
u
tput
voltage of temperature
se
nso
r
,
whi
c
h e
x
tends from
360mV to 56
0mV with 1.
6V
sup
p
ly voltage.
Figure 2.
The
Calculation
Re
sults of the
PMOS Tran
sistor Chan
nel
Length
d)
Furthe
r imple
m
entation of
the desi
gn
is
done
a
s
follo
ws: the de
sig
n
size of
L
an
d
W
of the secon
d
inverte
r
is
fixed, accord
i
ng to the
de
sign
stan
da
rd of the 0.1
8
-
µm
CMOS
Te
ch
nology. Th
e
stand
ard
de
sign i
s
0.18
µ
m
for
L
a
nd
1.4 µm fo
r
W
of
PMOS and NMOS tran
sist
ors. PMOS transi
s
tor’
s
W
on the first in
verter is fixed
at
1.4 µm, whe
r
eas the
cha
n
nel
L
is a
d
ju
stable for ea
ch sub
-
u
n
it according to Fi
g. 2
.
However, NMOS of all firs
t inve
rters follo
w the stan
dard desi
gn.
The cal
c
ul
ation is mad
e
starting from
most
sig
n
ificant bit (MSB) of quantizati
on to the
least
signifi
ca
nt bit (LSB)
with the val
u
e of
V
th
, 600
mV to 285
m
V
. In this
cal
c
ulatio
n, only
the
siz
e
of
L
for the
comp
arat
or n
o
. 1 to
2
1
are o
b
taine
d
, with th
e ch
annel
L
from
0.51 µm to
2.
91
µm as shown
in Figure 3.
Figure 3.
The
TIQ
Compa
r
ator (from no.
1 to no. 21)
Furthe
rmo
r
e,
to overcome
the limitations
of the L ch
annel expa
nsion due to the body
effect influen
ce a
c
cordi
ng
to Equation (3) as:
(
3
)
Whe
r
e,
V
t
i
s
threshold
voltage,
V
to
co
rresp
ond
s to t
he threshold
voltage when
V
BS
= 0V
,
is
the body eff
e
ct pa
ram
e
ter an
d
F
is th
e su
rfa
c
e p
o
tential at st
rong i
n
versio
n, hen
ce th
e
|
|
2
|
|
2
F
SB
F
to
t
V
V
V
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Im
proved
A Low Power CMOS TIQ Com
parator
Flash A
DC (A
. Al)
5207
comp
arator
n
o
. 22 to 6
3
o
ne o
r
two
PM
OS tran
si
stors were in
se
rted a
s
comp
e
n
satio
n
in
dio
d
e
con
n
e
c
tion, to extend the
achi
ev
ement
of the expect
ed voltage in
put ran
ge to
the lowe
r si
d
e
.
The
comp
en
sation tra
n
si
st
or i
s
in
se
rted
betwe
en V
D
D to the
first
inverter PM
O
S
tran
sisto
r
s
as
sho
w
n in
Fig.
4. The ci
rcuit is de
sign
ed
and
simu
late
d by usin
g th
e tools of the
Mentor
Gra
p
h
ics
De
sign Archit
ect (DA
)
CE
DEC_KIT. This desig
n
and simulation
s are iterated to achi
eve a linear
quanti
z
ation.
Figure 4. Co
mparator with
CMOS Co
m
pen
sation
3. Results a
nd Analy
s
is
Based o
n
th
e compl
e
te
circuit de
sig
n
of 64 levels TIQ-co
m
parato
r
, exe
c
uted the
simulatio
n
schematic by p
r
oviding
a
DC inp
u
t
of 0V
to 0.61V. Th
e graphi
c q
u
antizatio
n out
put
wa
s sho
w
n in
Figure 5. Th
e qua
ntizatio
n output i
s
kn
own th
erm
o
m
e
ter
code
u
s
ually. From t
h
is
grap
h we
can
see, that is, resp
ondi
ng fro
m
0.285V
to 0.6V. If
the DC input level is belo
w
0.28
5V
and a
bove 0.
6V the outp
u
t quanti
z
ation
no respon
se.
The the
r
mo
meter
cod
e
i
s
to
cha
nge
one
level if the
DC inp
u
t 5mV chang
es u
p
or down.
In this simula
tion conditio
n
s are o
b
tain
ed
31.14
μ
W po
wer dissip
ation. The
s
e
p
henom
ena
a
r
e
convin
cin
g
to qua
ntify the anal
og
data
sen
s
o
r
within
the rang
e of 0.36 and 0.5
6
V
only.
Figure 5. Qua
n
tization O
u
tput from the DC Inp
u
t Voltage 0 to 0.61
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5204 – 52
10
5208
Figure 6. Qua
n
tization O
u
tput for t
he Sine Input Voltage 0.61V an
d 10KHz
Figure 6 ill
ust
r
ates the
sim
u
lated
re
sult
of
the
TIQ Co
mparator de
signed on 64
l
e
vels
of
quanti
z
ation
with the sinu
soidal input vol
t
age of
0V to
0.6 V-pea
k at the frequen
cy of 10KHz and
half wave
po
sitive tran
siti
on. Thi
s
g
r
a
phical respon
se exhi
bits
a
good
linea
rit
y
and
sen
s
iti
v
ity
with linea
r ri
se and fall of t
he input
sign
al. If t
he input signal 1
0
KHz ab
ove to b
e
given to th
e
circuit, h
ence
it wa
s not
ca
pable
to p
e
rf
orm li
nea
rly d
a
ta qu
antization, du
e in
cre
a
sin
g
the
len
g
th
L
of the CM
OS transi
s
to
r or body effe
ct infl
uen
ce
con
s
e
que
ntly increa
sing d
e
lay time, wh
ich
means that this ci
rcuit has the
ability to respond up to 10KHz
onl
y. Therefore, this
circui
t is
suitabl
e
for use as a
se
nso
r
si
gnal pro
c
e
ssi
ng which not
re
q
u
ired high speed su
ch a
s
a
temperature
sen
s
o
r
, humi
d
ity sensor a
nd etc.
In this simul
a
tion, con
d
ition
s
ob
tained 31.14
μ
W
power di
ssi
pa
tion.
Finally, the layout of the circuit wa
s de
si
gned by usi
n
g Mentor G
r
a
phics IC CE
DEC_KIT
desi
gn a
s
sh
own in Fig
u
re
7. This pictu
r
e provid
e
s
inf
o
rmatio
n that; proceed
s lay
out desi
gn area
of 150 x 71µm or 1065
0µ
m
2
. This layout area ha
s n
o
t been incl
u
ded of the other ci
rcuits in
th
e
flash ADC sy
stem.
Figure 7. Layout De
sign of
t
he TIQ-co
m
parato
r
Pro
p
o
s
ed
The compa
r
isons of the TI
Q-comp
arato
r
for
the flash
ADC with
rela
ted works are
sho
w
n
in Table 1. It is evident that
the desig
ned
work
a
c
hiev
ed sm
aller
ch
ip area. Mo
re
over, the po
wer
dissipatio
n is
also
signifi
ca
ntly lower tha
n
the
previou
s
wo
rks. Although
thei
r re
search ha
s be
en
in the form of a complete fl
ash ADC, ho
wever, it
is e
noug
h to pro
v
ide an overv
i
ew of sig
n
ificant
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Im
proved
A Low Power CMOS TIQ Com
parator
Flash A
DC (A
. Al)
5209
comp
ari
s
o
n
s due the TI
Q-comp
arato
r
part o
c
c
upi
es a
spa
c
e t
hat excee
d
s
50% and p
o
w
er
con
s
um
ption
wa
s al
so a
s
i
n
the complet
e
Flas
h ADC
system. Th
us the pro
p
o
s
e
d
de
sign
can
be
expecte
d that
the
chi
p
a
r
e
a
of
16.4 tim
e
s
sm
aller th
an the
Ta
nge
l A an
d
Choi,
K [6]
works,
and
the power co
nsum
ption of 14.3 times lo
wer tha
n
the desi
gn of the SC Hsi
a
and
Lee WC [8].
This re
sult is better beca
u
se of the
method
s use
d
by incre
a
si
ng
the length
L
of the
transi
s
to
r cha
nnel. In addition the use o
f
smaller
CM
OS technol
o
g
y such a
s
[6] uses a la
rger
CMOS te
chn
o
logy, whi
c
h
is 2
μ
m an
d supply voltage
of 5V, so that he gaine
d
greate
r
po
wer
dissipatio
n (3
350
μ
W) and
3500
0µm
2
la
yout are
a
s. I
n
the
other re
feren
c
e
s
it
can
be
seen
that
the use of th
e CMOS technolo
g
y is 0.18
μ
m [1] and
[2] with the sup
p
ly voltage disp
arate
a
r
e
1.8V and 2.5
V
resp
ectivel
y
, they gain higher p
o
wer d
i
ssi
pation a
s
well.
Table 1. The
Comp
ari
s
o
n
Re
sults
with
Eight other Compa
r
ators for flash A
D
Cs
References
CMOS
Technolog
y
(µm)
T
y
pe of
Result
Input rang
e
(V)
Suppl
y
Voltage (V)
Power
Dissipation
(µW
)
La
y
out area
(µm
2
)
[1] 0.18
Simulated
-
1.8 36980
-
[2] 0.18
Simulated
1.6
2.5
53000
-
[6]
2.00
Simulated & fabricated
1.72
5
3350
35000
[8]
0.35
Simulated & fabricated
0.4-2.4
3.3
895
-
[11]
0.35
Simulated & fabricated
0.785-2.0
9
2
3.3
-
-
[12]
0.35
Simulated & fabricated
3.8
5
4730000
650000
[13]
0.70
Simulated & fabricated
-
5.5
-
3996000
[14] 0.35
Simulated
1.6
3.3
12400
-
Thi
s
Wor
k
0.1 8
Simulated
0.315
1.6
31.14
1065
4. Conclusio
n
The TIQ
Co
mparator i
s
desi
gne
d an
d verifi
ed
by
usin
g the
Mentor Grap
hics VLSI
De
sign Software. It consi
s
ts of 63 pairs of CM
OS inverters. The
design i
s
able to quanti
z
e
analo
g
inp
u
t from 28
5mV
to 600mV, wi
th 64 qu
antiz
ation level
s
that ma
ke u
s
e of the
sou
r
ce
voltage of 1
.
6V. The TI
Q-Comp
arato
r
is qua
nt
izi
ng the i
nput
sign
al a
n
y 5mV increm
ent
comp
arable t
o
an increa
se
of 1 (one) lev
e
l output in the thermom
e
ter co
de sy
ste
m
.
Achieving l
o
w po
we
r di
ssi
pation of 31.
14µ
W and
a smalle
r chip size
of
10
65µ
m
2
make
this de
sign
su
itable for a se
nso
r
having t
he output in the ran
ge of q
uantization.
Ackn
o
w
l
e
dg
ements
This work wa
s su
ppo
rted
by Ministry of Sc
ience, Te
chn
o
logy and
Innovation, Malaysia
unde
r Te
chn
o
Fund: TF1
0
08C130.
Referen
ces
[1]
Kulkar
ni M, Sri
dhar
V, Kulk
ar
ni GH.
T
he Qu
antize
d
D
i
ffere
ntial
Com
parat
or in
F
l
ash
An
alo
g
to
Dig
ital
Conv
erter Des
i
gn.
Intern
atio
n
a
l Jo
urna
l of
Co
mp
uter
Net
w
orks & Co
mmu
n
ic
ations (I
JCNC)
. 20
10;
15(4): 37-4
5
.
[2]
Rames
h
J, Gunav
athi K.
A 8-Bit T
IQ Based 7
80 MS
PS CMOS F
l
ash A/D Co
n
v
erter.
IEEE
Internatio
na
l o
n
Comp
utatio
n
a
l Intell
ig
ence
and Mu
ltim
ed
ia
Applic
atio
n co
nferenc
e. Siva
kasi. 200
7; 2:
201-
205
[3]
Yoo J, Ch
oi K,
Lee
D. Comp
a
r
at
or Gener
atio
n an
d Se
lectio
n for Hi
ghl
y
Li
n
ear CMOS F
l
a
s
h Ana
l
o
g
to
Digita
l
Co
nvert
e
r.
Journa
l of Anal
og Integr
ate
d
Circuits a
nd
Sign
al Process
i
ng
. 20
03; 35(
2
)
: 179–1
87.
[4]
I
y
a
ppa
n P, J
a
muna
P, Vij
a
yasamu
ndis
w
a
r
y S.
Des
i
gn
of
Ana
l
og
to
Dig
ital C
onv
erter
Using
CMOS
Log
ic
. Internat
ional Conference on Advances
in Rec
e
nt T
e
chnologie
s in Communication and
Comp
uting. Ko
tta
y
a
m. 20
09; 74–
76.
[5] Yoo
J.
A
T
I
Q
Based CMOS F
l
ash A/D Co
nverter for S
y
stem-on-C
h
ip
Appl
icatio
ns. Ph. D
T
hesis,
Pens
ylv
ani
a: Penns
yl
van
i
a St
ate Univ
ersit
y
;
200
3.
[6]
T
angel A, Ch
o
y
K.
T
he CMOS Inverter as a
Comp
arator i
n
ADC Des
i
g
n
s.
Journ
a
l An
al
o
g
Integrat
ed
Circuits a
nd Si
gna
l Processi
n
g
.
2004; 3
9
(2): 147
–1
45.
[7]
U
y
emura JP. F
und
ament
als o
f
MOS Digital In
tegrate
d
Circ
u
its. Addiso
n-
W
e
sle
y
. 1
9
8
8
.
[8]
Hsia SC, Lee
WC.
A very lo
w
-
pow
er flash
A/D conv
erter
base
d
o
n
CM
OS inverter c
i
r
c
uit
. IEEE Proc.
T
he 9th Internationa
l Data
bas
e Engi
ne
erin
g & Applic
atio
n Symp
osi
u
m.
Ca
nad
a, 200
5: 10
7-11
0.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5204 – 52
10
5210
[9]
Cele
bi
A, A
y
t
a
r
O, A. T
angel
A. A
10-
bit 5
0
0
M
s/s tw
o-step F
l
ash A
D
C
. IE
EE Internati
o
n
a
l C
onfer
enc
e
Comp
uter as a
tool. Belgra
de.
2005: 8
98–
90
1.
[10]
Khot SS, PW
W
ani PW
.
Des
i
gn
of a 45
n
m
T
IQ Compar
a
t
or for Hig
h S
pee
d an
d L
o
w
Pow
e
r 4–Bit
F
l
ash AD
C.
Pr
oc. 20th
Inter
n
ation
a
l
Conf
er
ence
on
Adv
a
n
c
es in
El
ectric
al &
Electro
n
ic
s.
T
r
ivandrum,
India. 20
10: 6-
10.
[11]
Rajas
hekar
G, Bhat
MS.
D
e
sig
n
of R
e
s
o
luti
on A
d
a
p
ti
ve T
IQ
F
l
ash
ADC
usin
g
AMS 0.35
μ
m
T
e
chnolog
y.
In
ternatio
nal J
o
u
r
nal of Infor
m
at
ion a
nd C
o
mmunic
a
tion T
e
c
h
nol
ogy.
20
09; 2(1): 1–6.
[12]
A
y
tar O,
T
angel A. Empl
o
y
ing thres
h
o
l
d i
n
vert
er qu
anti
z
ation (T
IQ)
techn
i
qu
e in
d
e
sig
n
in
g 9-Bit
foldi
ng an
d in
terpol
ation CM
OS analo
g
-to-
digit
a
l conv
erters (ADC
).
Acade
mic Journ
a
ls Scientifi
c
Research and
Essays
. 2011;
6(2): 351
–3
62.
[13]
Creten Y, Merken P, Sanse
n
W
.
An 8-Bit F
l
ash Analo
g
-
to-Digita
l
Con
v
erter in Stan
dard CMOS
T
e
chnolog
y F
u
nction
al F
r
om 4.2 K to 300 K.
IEEE Journal of Solid-State
Circuits
. 200
9; 44(7): 20
19–
202
5.
[14]
Cha
uha
n SS, Mana
bal
a S, Bose SC, Ch
an
d
e
l R.
A Ne
w
Ap
proac
h to Des
i
gn L
o
w
Po
w
e
r
CMOS F
l
ash
A/D Conv
erter.
Internati
ona
l J
ourn
a
l
of VLSI
desi
gn
& Co
mmu
n
ic
ation Sys
t
ems
(V
LSICS)
.
2011; 2(2):
100
–1
08.
Evaluation Warning : The document was created with Spire.PDF for Python.