TELKOM
NIKA
, Vol.11, No
.11, Novemb
er 201
3, pp. 6825
~6
830
e-ISSN: 2087
-278X
6825
Re
cei
v
ed Ma
y 4, 2013; Re
vised July 2
0
, 2013; Accept
ed Augu
st 4, 2013
The Development of LOHAS Automated Guiding
Vehicle
Chen
g-I Hou
1,2
, Han-Ch
e
n
Huang
1
, Tian-Sy
ung Lan*
3
1
Departme
n
t of Leisur
e
Mana
geme
n
t, Yu Da
Universit
y
, T
a
iw
a
n
2
Departme
n
t of Leisur
e
an
d R
e
creati
on Man
agem
ent, Chu
ng Hu
a Univ
er
sit
y
, T
a
i
w
a
n
3
Departme
n
t of Information M
ana
geme
n
t, Yu Da Univ
ersit
y
,
T
a
i
w
a
n
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: tslan@
yd
u.e
du.t
w
A
b
st
r
a
ct
Auto
mate
d Gu
idin
g Ve
hicl
e (
A
GV) is w
i
dely
used
in
factor
ie
s, hospita
ls, w
a
reh
ouses,
an
d offices.
It can als
o
b
e
control
l
ed r
e
motely to
oper
ate un
der
ha
z
a
r
d
ous e
n
viro
n
m
e
n
ts that are
un
suitab
le for
hu
ma
n
prese
n
ce. On the other h
a
n
d
, med
i
cal a
d
va
nce
m
e
n
t
and the decr
ease of
birth ra
te are push
i
ng the w
o
r
l
d
into p
o
p
u
lati
on
agi
ng. F
o
r
el
d
e
rly or
the
phy
sically/
m
e
n
tal
l
y
-
chall
e
n
g
e
d
p
a
t
ient, so
me
of the co
mmon f
o
ot
prob
le
m inc
l
ud
es dia
betic foo
t, myot
enos
itis, havin
g call
use
s
in the soles
of the foot, foot deformiti
es, e
t
c.
T
h
is res
earch
i
s
ai
med
at the
des
ign
a
n
d
th
e i
m
ple
m
entati
on of
a
n
auto
m
ate
d
gui
di
ng
vehicl
e,
w
h
ich
is
control
l
ed by P
C
. Once the input is
receiv
ed
from optic
al se
nsors, it w
ill pass the informati
on to chip, w
h
i
c
h
w
ill process th
e infor
m
ati
on a
nd outp
u
t the decisi
on to
ste
ppi
ng motor to
finish the proc
ess. The resea
r
ch
inclu
des
un
de
rstandi
ng th
e
mec
h
a
n
ica
l
d
e
s
ign, o
p
ti
cal s
ensor
inp
u
t, d
e
fini
ng the c
o
ntrol u
n
its, an
d
initiating step
ping motor. Using BASIC progr
a
mming, the program
is bur
ned onto a chip,
which works a
s
the central of the AGV.
The result can b
e
a
ppli
ed i
n
barri
e
r-free
facilities.
This research
ana
ly
z
e
s the p
r
os
and co
ns of AGV based o
n
its behav
ior u
n
d
e
r different sce
nari
o
s.
Ke
y
w
ords
: au
tomat
ed g
u
id
in
g vehic
l
e, lifes
tyles of hea
lth
and susta
i
n
a
b
ility, s
ens
or s
ystem, stepp
in
g
mot
o
r
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Duri
ng op
era
t
ion, sen
s
o
r
s are in
stalled
on
AGV (Automated G
u
iding V
ehi
cle
)
[1].
A
su
ccessful
A
G
V is heavily relied on h
o
w well
the
sen
s
o
r
s a
r
e i
m
pleme
n
ted and wh
ethe
r the
stren
g
th of each sen
s
or is identified and fully
utilized. In short, such an auto
m
ated device
can
be seen a
s
t
he integ
r
atio
n of dif
f
erent
system
s [2].
The re
se
arch on
AGV
ca
rrie
d
out thro
ugh
modula
r
i
z
atio
ns, whi
c
h a
r
e: powe
r
system, se
n
s
or
system, guid
ance system,
and actu
ating
system [3].
The guida
nce system, bein
g
the most im
portant of all four
, mu
st dire
ct
AGV to mo
ve
on a relia
ble
track to the
destination [
4
]. By comm
andin
g
the actuating
syst
em and sen
s
or
tracking
spe
c
ial marks, th
e guida
nce system ca
n
di
rect the
AGV
to move along on the p
r
eset
track
.
AGV is an in
depe
ndent m
obile vehi
cle;
theref
ore its power come
s from battery
,
instead
of alternating
current.
As the battery capa
city
is limited, it’
s
recomm
end
ed to consi
der t
he
amount of po
wer
con
s
u
m
p
t
ion durin
g de
sign p
h
a
s
e.
As the batte
ry is being
use
d
, its voltage
will
also chan
ge. Wh
en the
voltage re
aches to
a
certai
n
level, some of
the element
s
wit
h
in
AG
V will be unable to
function
norm
a
lly [5], which will
prod
uce error message
s. It’
s re
comm
en
ded to impl
e
m
ent a voltage surveill
an
ce system so that
dif
f
erent acti
ons
can be
taken in respon
se to
voltage cha
nge
s.
Aside
s
fro
m
understan
ding
battery voltage and ca
pacit
y by-the-min
u
te, develope
r can al
so de
sign a me
cha
n
ism to cut o
f
f
spe
c
ific p
o
we
r input/output
whe
n
the volt
age re
ache
s a previou
s
ly defined level
[6].
The a
c
tuating
system is al
so de
sig
ned
with
a su
rveill
ance mechan
ism.
This i
s
b
e
ca
use
that sometim
e
s wh
en the motor is ope
rating, the
guidan
ce syste
m
is also ma
king comm
and
s.
T
o
ensure the information i
s
synced
between the
systems,
the surveillance system
is
desi
gned
to
c
h
eck
motor
s
t
atus
[7].
The ce
ntral
body of the
AGV is 8051
chip. It
requ
ires o
n
ly sim
p
le wiri
ng, h
a
s sm
all
footprint, and
boa
sts a fa
st
er p
r
o
c
e
ssi
ng
spe
ed,
which ma
ke
s it id
eal for
guida
n
c
e p
u
rp
oses [
8
].
What n
eed
s t
o
be di
scussed is h
o
w to
burn B
a
si
c p
r
ogra
mming
o
n
to 805
1 chi
p
, and ma
kin
g
it
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 11, Novemb
er 201
3: 682
5 – 6830
6826
the main factor in co
ntrol
ling moveme
nts, maki
ng
optical a
naly
s
is, an
d a
c
commod
a
te with
steppi
ng mot
o
r [9-1
3]. Ste
pping moto
r is a devic
e th
at transfo
rms input pulse
freque
ncy int
o
mech
ani
cal e
nergy
.
Coupl
ed with 85
01
chip, the
two
become
s
the central drive
of
AGV [14].
2. Rese
arch
Bac
k
grou
nd
AGV is “a ve
hicle that i
s
fully motivated and
cont
roll
ed u
s
ing lig
ht, electro m
a
g
net, and
lead wi
re, without the intervention of
human fact
or”. Based o
n
the c
hara
c
teri
stics of th
e
guida
nce me
cha
n
ism, it
can be fu
rthe
r
divided into
several type
s.
But rega
rdle
ss of which, e
a
ch
AGV must eq
uip a fully integrated
syste
m
that
con
s
ists of the following five maj
o
r area
s.
2.1. Po
w
e
r S
y
stem
AGV must a
u
tomatically
sen
s
e n
a
vig
a
tion path, a
nd deliver fo
rwa
r
di
ng or
back up
comm
and
s.
The bo
dy of the AGV sh
ould in
clud
e
the main b
o
dy part, mot
o
r, wh
eel
s, light
sen
s
o
r
s,
and
cont
rol p
ane
l. It must also co
ntai
n th
e
power
so
urce. This
re
se
a
r
ch
is
ba
sed
on
eight 1.2V Ni-MH battery a
s
the
po
wer
source, ma
kin
g
the total voltage 1.2Vx8=9.6V. This gives
sufficie
n
t po
wer sou
r
ce
with the
voltage
stabili
zat
i
on effe
ct, m
a
kin
g
it the
ideal
ch
oice
for
experim
entin
g on small
-
scale AGV.
2.2. Driv
er
Stepping
mot
o
r h
a
s go
od
resp
on
sibility. Ju
st on
e pul
se si
gnal i
s
en
ough
to mov
e
it one
step fo
rward. The
r
efo
r
e, it
is wi
dely u
s
ed in
AG
V
re
sea
r
che
s
. Th
ere
are fo
ur related
coil
s
o
n
a
steppi
ng mot
o
r’s
stator, e
a
ch p
r
ovide
s
90 degr
ee
s of phase dif
f
eren
ce. Wh
en the step
p
i
ng
motor
i
s
set a
s
singl
e
pol
e
i
n
itiation,
a pu
lse cu
rrent
ca
n sto
p
e
a
ch rotor in
the
rel
e
vant po
sitio
n
.
An angle
that
can
be
set
at a si
ngle m
o
ve is
calle
d
a Step Angl
e. The
relatio
n
between
st
ep
angle a
nd si
n
g
le pole initiat
i
on ca
n be illu
strated
with the followi
ng formul
a:
Step angle =
360°/Pha
se n
u
mbe
r
x rotor teeth numbe
r
Example: the step an
gle of 4 pha
se
an
d 50 roto
r teeth
can be
sho
w
n as:
Step angle =
360°/(4x50
) = 1.8
2.3. Chipse
t
The main
pu
rpo
s
e of the
chip i
s
control.
It demand
s processin
g
spee
d. The
r
efore, its
prog
ram
m
ing
is base
d
o
n
assembly l
angu
age, like EM78XX serie
s
. In pra
c
tice, a
s
sem
b
ly
langu
age i
s
cl
osely lin
ked t
o
CPU. Sin
c
e
the pro
g
ra
m
m
ing form
at is very simil
a
r,
it can be e
a
sily
applie
d to an
y CPU instru
ction set (ISA). Asse
m
b
ly langua
ge is
the colle
ction
of comman
d
s
.
Each in
stru
ct
ion set in
clu
des the foll
o
w
ing fou
r
types: data h
a
n
d
ling an
d me
mory ope
rati
on,
control flow, arithmeti
c
an
d logic, note
and comme
nt.
2.4. Contr
o
l Sy
stem
Control syst
em indicates the AGV’s motherb
oard and guid
a
n
ce me
ch
ani
sm. The
motherboa
rd
use
s
EM78
4
47 as AGV’
s core. The g
u
idan
ce me
chani
sm u
s
e
s
taped guid
a
n
ce,
whi
c
h i
s
don
e by
applying
ele
c
tri
c
al ta
p
e
on
a
white
board, then use
s
Infrare
d
sen
s
o
r
to detect
wheth
e
r th
ere is g
u
ida
n
ce line o
n
the
white b
o
a
r
d.
Whe
n
the
g
u
idan
ce li
ne
doe
sn’t exist,
the
optical sensor
will receive the
in
frared
ray that is reflected f
r
om
the whiteboard,
whi
c
h
will m
a
ke
electro-optica
l
crystal b
e
co
me satu
rated
.
On t
he other han
d, if guidan
ce lin
e is dete
c
ted, the
black el
ect
r
ical tape
will
cause no
refle
c
tion, p
r
even
ting the o
p
tical se
nsor f
r
o
m
re
ceiving t
he
reflecte
d infrared
ray. The different b
ehavio
r b
e
tween white
boa
rd and el
ectrical tape can
be
use
d
to control AGV.
2.5. Guidanc
e
Sy
stem
The pla
c
eme
n
t and the po
sition betwee
n
optical sen
s
or a
nd the g
u
idan
ce line
are very
importa
nt. Re
fer to Figure
1 whe
r
e thre
e optical
se
n
s
ors (L, C, R) are sh
ow
n. If they are placed
too far ap
art, as sho
w
n i
n
scen
ario A
,
the AGV won’t modify its he
ading
di
rectio
n until i
t
’s
depa
rted too
far a
w
ay fro
m
the gui
da
nce
path,
m
a
kin
g
the ve
hicle
move i
n
a
side
win
d
ing
pattern. S
c
en
ario B
sho
w
s
the two
ele
m
ents
pla
c
ing
too
clo
s
e
agai
nst e
a
ch oth
e
r
, which
ma
kes
the vehicl
e m
odify its po
siti
on too
often
and
cau
s
e
it to sha
k
e. Sce
nario
C is th
e
most
ade
qua
te
distance and
thus facilitates t
he AGV to move forward smoothly.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
The De
vel
o
p
m
ent of LOHAS Autom
a
te
d Guidin
g Vehicle (Ch
eng
-I Hou)
6827
Figure 1. (A)
Too wid
e
, (B) Too clo
s
e, (C) Perf
ect
3. Rese
arch
Metho
d
s
3.1. Design
AGV must a
u
tomatically
sen
s
e n
a
vig
a
tion path, a
nd deliver fo
rwa
r
di
ng or
back up
comm
and
s.
The bo
dy of the AGV sh
ould in
clud
e
the main b
o
dy part, mot
o
r, wh
eel
s, light
sen
s
o
r
s, a
nd
control pa
nel.
The d
r
iver
ci
rcuit u
s
e
s
initi
a
tion si
gnal t
o
co
ntrol the i
n
itiation curre
n
t
swit
ch in th
e
steppi
ng mo
tor. The hi
gh
-freq
uen
cy Darlingto
n
tra
n
s
isto
r is
often
use
d
to swit
ch
circuit. A four-p
ha
se ste
p
p
ing moto
r u
s
e
s
four
Darl
ington tran
si
stor, ea
ch co
ntains 3A d
r
i
v
e
forc
e.
In chi
p
d
e
si
g
n
, EM78
se
ri
es i
s
used
as the m
a
in
part. EM78 chip
has a total
of
58
ro
ws
of comm
and
and
with a
13-di
git width
.
Each com
m
and
can
b
e
se
en a
s
t
w
o p
a
rts. T
h
e first
highlight the
operation co
de for com
m
and
s. The ot
her pa
rt poin
t
s out the variable
s
tho
s
e
ar
e
requi
re
d for the o
peration
co
de.
Com
m
and type
can b
e
roug
hl
y divided int
o
four types:
(1
)
Control
type, su
ch as
INT and others. (2) Regi
ste
r
comman
d
, such a
s
MOV
A.Reg
B:move
Reg
B to A and others. (3) Bitwise ope
ratio
n
comm
and,
su
ch a
s
BC.JBS and others. (4)
Con
s
ta
nt
comm
and, su
ch a
s
MOV A. @0X55:mov
e
0X55 to A and others.
3.2. Contr
o
l
As
sho
w
n
in
Figure 2, th
e
con
n
e
c
ting
ci
rcuit
on
EM7
8447
is u
s
ed
to co
nne
ct to
the main
part of the vehicle and to deliver task
command.
Figure 3 illustrat
e
s how it
works
with infrared
ray sen
s
o
r
s to detect navi
gation path a
nd turn at corner.
Figure 2. EM7844
7 Circuit
Conn
ectio
n
Figure 3. Optical Sen
s
o
r
Flow Chart
Yes
Di
s
a
b
l
e W
D
T, s
e
t
P5
as
out
put
, s
e
t
P6
as
hig
h
b
i
t
rat
e
o
u
t
put
an
d l
o
w
bi
t ra
te
in
p
u
t
.
T
u
rn o
ff L
E
D
and
s
e
t P6
def
a
u
lt
va
lu
e.
Di
sp
l
a
y
s
e
nso
r
st
at
us
P6.
Sen
s
or 0
to
uc
he
s
li
ne
Tu
rn
ri
ght
No
No
No
Yes
Yes
Go
s
t
raigh
t
Tu
rn
l
e
ft
P6.
Sen
s
or 1
to
uc
he
s
li
ne
P
6
.
s
ens
o
r
2
tou
ch
es
lin
e
Star
t
(A) (B
) (C)
L
C
R
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 11, Novemb
er 201
3: 682
5 – 6830
6828
4. Result a
n
d Discus
s
io
n
A circul
ar
pat
h (ex: Fi
gure
4)
ca
n te
st
an AGV’
s mi
nimum tu
rn
-a
roun
d
radiu
s
and th
e
quality of se
nso
r
s.
The
vehicl
e sho
w
e
d
great
st
abil
i
ty during
mo
vement. Ho
wever, du
e to
the
steppi
ng mot
o
r an
d the le
ngth of AGV, the minimu
m turn-aro
un
d radi
us i
s
9
0
mm. The ov
erall
perfo
rman
ce i
s
sati
sfying.
Figure 4. Circular Path
Figure 5 sho
w
s the AGV runnin
g
on a path with
righ
t angles to test the behavi
o
r wh
en
encounte
r
ing
90-d
e
g
r
ee
co
rne
r
tu
rn. Th
e key to th
e
experim
ent li
es i
n
the
p
r
o
c
e
ssi
ng
qualit
y of
chip
set
s
.
A
c
t
ual t
e
st
ing
sh
ow
s t
hat the vehicle
can
make
a turn i
n
3 se
co
nds
while h
o
ldin
g goo
d
balan
ce. Alth
ough
sce
nari
o
like thi
s
d
oesn’t ha
ppe
n often i
n
re
al life a
nd th
ere i
s
n’t
ma
ny
resea
r
ch on its actu
al ope
ration.
Figure 5. 90 degree Ri
ght Angle Squa
re
d Path
Curve
path (ex: Figure 6
)
is one of the
mo
st commo
n path that AGV run
s
on. It can b
e
used to test t
he quality of
a v
ehi
cle’
s st
ability,
light sensor, st
eppi
ng m
o
tor,
and
chip processing
spe
ed. In thi
s
exp
e
rim
ent
, the turning
radiu
s
uses t
he mini
mum
turn-aro
und
radiu
s
. Vehi
cl
es
move in sl
ow
and
stable p
a
c
e d
u
rin
g
the
experim
ent. Whe
n
the ve
hicle
start
s
to
go off-tra
c
k, the
dire
ction is im
mediately rev
i
sed.
The ove
r
all re
sult is
satisfying.
Figure 6. Curve Path
Uphill
path (ex: Figure
7) poses
as
a
chall
enge
to
AGV’s ste
ppi
ng moto
r an
d po
wer
system. Whil
e
this research
main
ly focuses on
the behavior on a fl
at surf
ace, the uphill testing is
only use
d
a
s
reference. In the experim
ent, the
vehicle move
s ve
ry slo
w
ly on
a su
rface which
maximum sl
o
pe is
20 d
egrees. It’s b
e
lie
ved that
by improvin
g the
whe
e
l’s
gro
u
nd grasping f
o
rce
and po
we
r sy
stem, the re
sult shoul
d be
impre
s
sive.
90
∘
r
i
ght angle
9
0
mm
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
The De
vel
o
p
m
ent of LOHAS Autom
a
te
d Guidin
g Vehicle (Ch
eng
-I Hou)
6829
Figure 7. Uph
ill Slope
Compli
cate
d turning path (ex:
Figure
8
)
fo
cu
se
s on
the AGV’s se
nsitivity and real-life
perfo
rman
ce.
AGV requi
re
s very sensiti
v
e path se
nsor an
d the ca
pability of revising n
a
vigati
on
path withi
n
a
very sh
ort ra
nge of time.
Eight 3A batterie
s
work a
s
power
sou
r
ce. Although t
h
e
vehicle
s
sha
k
e occa
sion
all
y
during the f
i
rst tes
t, the issue is
re
sol
v
ed after revi
sion. The
po
wer
sup
p
ly is en
o
ugh fo
r the
vehicl
e to
run
contin
uou
sl
y f
o
r 3
ho
urs. T
he ove
r
all
pe
rforman
c
e
is very
impressive.
Figure 8. Co
mplicate
d
Turning Path
Figure 9. AGV Image
5. Conclusio
n
AGV bea
rs g
r
eat p
o
tential
and
also e
n
j
o
ys a
ce
rtain
degree
of infl
uen
ce o
n
the
market.
Chip
set
s
are
being
wid
e
ly use
d
in travel
ling, m
anufa
c
turing, tra
n
sp
ortation, et
c. Its advantag
e
s
inclu
de lo
w
cost, hig
h
safe
ty, and high
efficien
cy. Th
e ea
sy de
sig
n
and
a
s
sem
b
ly are
al
so t
h
e
rea
s
on
why it’s bein
g
wid
e
ly used in ind
u
strie
s
.
The optical sensi
ng AGV (see Fig
u
re 9
)
design
ed by
our lab is un
able to move in high
spe
ed. Thi
s
i
s
b
e
cause th
e ste
pping
m
o
tor
can
only
pre
c
e
de
usi
ng ex
cited
current an
d
step
angle. Th
e to
rque
strength
is al
so a
noth
e
r a
r
ea fo
r im
provem
ent. T
he current d
e
s
ign i
s
limited
to
run on flat su
rface
s
and
ca
nnot be ap
pli
ed to uphill o
peratio
n.
Future resea
r
ch
es o
n
AGV and steppi
ng motor sh
ould co
nsi
d
e
r
usin
g moto
rs with
highe
r torsio
n to a
c
comm
odate to l
e
ve
ling surfa
c
e
s
.
This way, A
G
V usage
ca
n be
applie
d
to
more
situatio
ns. Different
chip
set
s
a
nd feat
ure can al
so b
e
inclu
ded to
stren
g
then t
h
e
integratio
n an
d appli
c
ation
of AGV.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No
. 11, Novemb
er 201
3: 682
5 – 6830
6830
Referen
ces
[1]
Martins F
N
, Celest
e W
C
, Carel
li R, Sar
c
inel
li-F
i
l
ho M,
Bastos-F
ilho
T
F
.
An adapti
v
e d
y
n
a
mic
control
l
er for
auton
omo
u
s mobil
e
ro
bot trajector
y
track
i
ng.
C
ontrol E
ngi
neer
in
g Practice.
2
008;
16(1
1
): 1
354-
1
363.
[2]
Hua
ng SJ, W
ang SS. Mechatro
nics a
nd Co
nt
rol of
a Long-R
a
n
ge Na
nomete
r
Positioni
n
g
Servomec
han
i
s
m.
Mechatronics
. 2009; 1
9
(1
): 14-28.
[3]
F
u
kunar
i M, Malmb
o
rg CJ.
A
Net
w
ork Qu
eu
i
ng
Ap
pr
oac
h fo
r Evalu
a
tio
n
of
Performanc
e
Measur
es i
n
Autonom
ous V
ehicl
e Stora
g
e
and
Retriev
a
l
S
y
stems.
Eur
ope
an J
ourn
a
l
of Operatio
na
l Res
earc
h
.
200
9; 193(
1): 152-1
67.
[4]
Choi
Y
H
, Lee
T
K
, Oh SY
.
A
Line F
eatur
e base
d
SLA
M
w
i
th L
o
w
Grade R
ang
e S
ensors Usi
n
g
Geometric C
o
n
s
traints an
d
Ac
tive E
x
pl
orati
o
n for Mob
i
l
e
R
obot.
Co
ntrol E
ngi
neer
in
g Pra
c
tice
. 200
8;
24(1): 13-
27.
[5]
Gulbag
A,
T
e
m
u
rtas F
,
T
a
saltin C, Oz
turk Z
Z
.
A
Neural Netw
o
r
k Impleme
n
ted Microco
n
troller S
y
st
e
m
for Quantitative
Classificati
on of Hazard
o
u
s Organic Gases
in the
Ambie
n
t
Air
.
Internation
a
l Journ
a
l o
f
Enviro
n
m
ent a
nd Pol
l
utio
n
. 2
009; 36(
1): 151
-165.
[6]
Do KD, Se
et G. Motion C
ontr
o
l of
a
T
w
o-W
h
eel
ed Mo
bi
le V
ehicl
e
w
i
t
h
a
n
I
n
verted P
e
n
dul
um.
Journ
a
l
of Intellig
ent & Rob
o
tic Systems.
20
10; 60(
3
)
: 577-60
5.
[7]
Sugis
a
ka M,
Dai F
,
Kimur
a
H.
Applic
ation
of
a Ne
uro-F
u
zz
y
S
y
st
em to Co
ntrol a M
obil
e
V
e
hicl
e.
Artificial Lif
e
an
d Rob
o
tics.
20
04; 8(1): 77-8
2
.
[8]
Lee S.
Appl
ica
t
ion of a Soft
w
a
re Co
nfigur
ab
le Dig
ital Serv
o
Amplifier to
an Electric Ma
chin
e Contro
l
Cours
e
.
Internation
a
l Jo
urna
l of Modern En
gi
neer
ing.
2
009;
9(2): 49-5
7
.
[9]
Vlad
imir G, Da
i F
,
Kimura H.
Reli
ab
ilit
y of
Mi
croproc
esso
r Based
Rel
a
y Protection
De
vices: M
y
th
s
and R
eal
it
y
.
Se
rbia
n Journ
a
l o
f
Electrical Eng
i
ne
erin
g
. 200
9; 6(1): 167-1
86.
[10]
Ilka R, Gholamian SA. Optimum Desig
n
of
a
F
i
ve-Phase
PMSM for Under
w
a
ter V
ehic
l
es b
y
use of
PSO.
T
E
LKOMNIKA
Indo
nesi
an Jour
nal
of Electrical E
ngi
ne
erin
g
. 201
2; 10
(5): 925-9
32.
[11]
Bi J, Z
hang
Y
,
Z
hang
Y
.
Late
x
D
i
pp
in
g Mac
h
in
e PLC
Cont
rol a
nd Its Pro
g
rammin
g
.
TEL
K
OMNIKA
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2012; 1
0
(6): 1
189-1
1
9
7
.
[12]
Hua
ng J, W
a
n
g
H. A
Passivit
y
-b
ase
d
Co
ntrol for DC M
o
to
r Drive S
y
stem
w
i
t
h
PWM.
TELKO
M
NI
K
A
Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2012; 1
0
(6): 2
267-
227
1.
[13]
Li Z
,
Y
i
n Z
,
Xio
ng
Y
,
Liu
X. R
o
tor Spee
d an
d
St
ator Resista
n
ce Ide
n
tificati
on Sch
e
me for
Sensorl
e
ss
Inductio
n
Moto
r Drives.
T
E
LKOMNIKA
Indon
esia
n Jour
nal o
f
Electrical En
g
i
ne
erin
g
. 201
3; 1
1
(1): 503
-
512.
[14]
Sarkar S, Sen P
,
Perumana B
,
Y
eh D, Da
w
n
D, Pinel S, Laskar J. 60 GH
z single-c
h
i
p
9
0nm CMOS
radi
o
w
i
th i
n
te
grated s
i
gn
al
process
o
r.
IEEE MTT
-
S Inter
national M
i
crowave Sym
p
osium
Digest.
Atlanta. 20
08; 1
1
6
7
-1
1
70.
Evaluation Warning : The document was created with Spire.PDF for Python.