TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 65
1
1
~ 651
8
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.486
5
6511
Re
cei
v
ed O
c
t
ober 2
0
, 201
3; Revi
se
d May 27, 20
14; Acce
pted Jun
e
16, 2014
Industries TFP and Environmental Regulation Cost
Analysis Using Malmquist–Luenberger
Chunlan Liu,
Haiy
an Wang
Schoo
l of Information, Bei
jin
g
Forestr
y
Univ
e
r
sit
y
, Beij
in
g, Chin
a
Corresp
on
idn
g
author, e-mai
l
: liuch
unl
an
032
4@1
63.com;
w
ang
hai
ya
n
76@
126.com
A
b
st
r
a
ct
Enviro
n
m
enta
l
proble
m
is a
w
o
rldw
ide focus, so
as the
effect of environ
me
ntal reg
u
l
a
tion o
n
econ
o
m
ic. In this pa
per, w
e
constructed a
mo
de
l in
cl
udi
n
g
ener
gy cons
umptio
n
an
d in
tegrated p
o
l
l
ut
ant
emissio
n
s of "
T
hree w
a
stes"
as "ba
d
" o
u
tput
. T
h
is
pap
er us
ed Mal
m
qu
ist–
Lue
nb
erger
ba
sed o
n
dir
e
ctio
nal
distanc
e functi
on to meas
ure
T
F
P
and env
ir
on
me
ntal re
gul
ation cost of C
h
in
ese 3
6
in
du
stries from 2
0
0
1
t
o
201
0. T
h
e
re
sult w
a
s th
at: F
r
om the
o
v
erall
a
nalys
is
, the T
F
P
w
a
s l
o
w
e
r afte
r cons
ider
ing
th
e
envir
on
me
ntal
reg
u
lati
on.
T
e
chno
log
i
ca
l
pro
g
ress w
a
s the
ma
in
driv
er of
p
r
oductiv
i
ty gr
ow
th.
Enviro
n
m
enta
l
reg
u
lati
on
br
oug
ht a
bout
a
certai
n co
st;
from th
e
ind
u
s
try ana
lysis,
there w
e
re
so
me
differenc
es bet
w
een ind
u
strie
s
on T
F
P
grow
th and th
e co
st of enviro
n
m
e
n
tal reg
u
lati
on. T
he mon
o
p
o
ly a
n
d
heavy
in
dustrie
sw
ere the foc
u
s in th
e i
ndustr
y; from
th
e a
n
nua
l a
nalys
is,
T
F
P
increase
d
duri
ng
"Elev
e
nth
F
i
ve-Year Pl
an
" perio
d, main
l
y
drived by tec
hno
log
i
cal
prog
ress.
Ke
y
w
ords
: en
viron
m
e
n
tal re
gul
ation, d
i
recti
ona
l dista
n
ce functio
n
, T
F
P
,
techn
i
cal pr
ogr
ess
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Environme
n
tal issu
es hav
e al
ways be
e
n
a
wh
ole wo
rld
p
r
o
b
lem, wheth
e
r deve
l
oped
or
not develop
e
d
co
untrie
s
,
wheth
e
r p
oor or ri
ch
cou
n
t
ries m
u
st fa
ce. Enviro
nm
ental issue
s
but
also
with e
c
o
nomic i
s
sue
s
rise
d to a gl
obali
z
ation p
r
oblem
s. No
wadays, e
n
viro
nmental i
s
su
es
and e
c
ono
mi
c issue
s
both
must be taken into accou
n
t. Furtherm
o
re, it is a pair of contradi
ct
ory
relation
shi
p
need to bal
a
n
ce. Doe
s
Environm
ental
Regul
ation
as a me
asure to prote
c
t the
environ
ment,
wh
at have i
m
pact
on th
e
economy, p
r
omote o
r
hi
n
der
economi
c
gro
w
th?
TF
P is
one of the i
m
portant i
ndica
tors to
mea
s
u
r
e e
c
on
omi
c
perfo
rman
ce.
The tra
d
ition
a
l TFP ju
st take
labor, ma
npo
wer a
nd oth
e
r input
s of prod
uctio
n
factors into accou
n
t, not the resou
r
ce a
nd
environ
menta
l
facto
r
s into
con
s
id
eratio
n
,
whi
c
h
to
so
me
extent di
storted
cha
n
ges
in
the so
cial
welfare an
d
econ
omi
c
perfo
rman
ce evaluat
io
n, but also furthe
r misgui
ded
policy
recomme
ndat
ions [1].
Due to ab
se
nce of the p
r
ice info
rmati
on of
reso
urce and e
n
vironmental fa
ctors, the
traditional me
asu
r
e of TFP
(su
c
h a
s
the
Tornqvi
s
t index and Fischer ind
e
x) wil
l
not be able to
accou
n
t for the produ
ctivity with re
sou
r
ce a
nd
envi
r
onmental
co
n
s
traint
s. Trad
itional dista
n
c
e
s
function alth
ough can m
easure TFP without
b
o
th
prici
ng info
rmation, ca
nn
ot cal
c
ulate
d
th
e
prod
uctivity inclu
d
ing u
n
d
e
sirable o
u
tp
uts ("ba
d ou
tput", such
as waste
w
at
er di
scharge
s).
Pittman first
attempted to
take "b
ad" o
u
t
put as
an
i
n
put to me
asu
r
e the
produ
ctivity, but this is
contrary to the "mass bala
n
ce" (Materi
a
ls Ba
lan
c
ed
Appro
a
ch) [2
]. Chung et a
l
. [3] propose
d
Malmqui
st-L
u
enbe
rge
r
(ML
)
while
intro
d
u
ce
d a
ne
w
functio
n
- Dire
ctional
Di
stan
ce Fun
c
tion;
i
t
can m
e
a
s
ure
TFP existing
"bad" output,
and do
es
not
requi
re p
r
i
c
e i
n
formatio
n of resou
r
ces a
n
d
environ
menta
l
factors. ML index
ha
s pl
ayed a ce
rtai
n role on m
e
asu
r
ing TFP
existing "goo
d"
output and "
bad" output
s, the produ
cti
v
ity growth
can be furthe
r decom
po
se
d into efficie
n
cy
cha
nge a
nd tech
nolo
g
ical
prog
re
ss.
In recent yea
r
s, a la
rge
nu
mber
of schol
ars have con
ducte
d
empi
ri
cal
research on
TFP.
Tommy et al. [4] studied the Swedi
sh
CO2 em
i
s
si
on taxes an
d the EU ETS for the pa
per
industry in terms
of producti
vity effects. Wang
et al
. [5]
using M
L
measured
the APEC 17
cou
n
trie
s an
d regio
n
s, in
cludi
ng CO2
emissi
on
s from 19
80 to
2004, TFP growth a
n
d
its
components.
They draw
that
after consideration
of environm
ental regul
ation, APEC's TF
P
g
r
ow
th
ra
ise
,
te
c
h
no
lo
g
i
c
a
l p
r
og
r
e
ss
is a s
o
urc
e
of its
gro
w
th. Wan
g
et al. u
s
ed
ML to me
asu
r
e
regio
nal TFP
of Chin
a 1
998-200
7 wit
h
enviro
n
me
ntal co
nstrai
nts. The
stu
d
y found aft
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
11 – 651
8
6512
con
s
id
erin
g e
n
vironm
ental con
s
id
eratio
n
s
, the Ch
in
ese regio
nal ind
u
strial TFP in
dex decrea
s
e
d
,
mainly prom
oted by te
ch
nical
pr
ogress. Ye et
al.
use
d
ML
ind
e
x mea
s
u
r
e
TFP und
er four
different e
n
vironm
ental
regulatio
n po
licie
s in
all
regi
on
s
ch
ina 1
999
-20
08, draw th
at
environmental regulations
will in
crease
TFP. Shen et
al. [8]
consi
dering SO2
emissi
ons as a
“bad
”
output,
use
d
the
ML
to cal
c
ul
ate h
i
gh e
nergy-co
n
sumi
ng i
ndu
strie
s
T
F
P, a
nd o
n
the
ba
sis
of studyin
g in
dustry
and
in
ter-p
rovin
c
ial
differen
c
e
s
of
high
en
ergy
-con
sumi
ng i
n
dustri
e
s , the
y
empiri
cal
ana
lysis influ
e
n
c
i
ng TFP fa
cto
r
s.
Wan
g
et
a
l
. used
of the
dire
ctional
di
stan
ce fun
c
ti
on
and th
e M
L
t
o
e
s
timate T
F
P of 36
ind
u
strial
China
2001
-20
08
wi
th CO
2 e
m
ission
s
co
nstra
i
nts,
the TFP l
e
vel
s
we
re i
n
crea
sed
in
differe
nt deg
ree
s
.
Chai
[10] ta
ki
ng SO
2 a
nd
CO
D e
m
issio
n
s
as "ba
d
outp
u
t", calcul
ate
d
the traditio
nal TFP
with
out con
s
id
eri
ng enviro
n
m
ental co
nst
r
ai
nts
and
con
s
ide
r
ation of environmental
co
n
s
traint
s
envi
r
onment TFP
36 ind
u
stri
es in Chin
a 20
01-
2009.
Ho
wever, fe
w peo
ple di
scuss theT
F
P
in our
ind
u
stry pe
rspe
ctive; few p
eople d
o
resea
r
ch with
energy a
s
an
input; mean
while, in sel
e
cting the "bad
" output indicators, mo
st take
the sin
g
le i
n
d
i
cator,
but
we
kn
ow
polluta
nts in
cludi
ng wa
ste
water, wa
ste
ga
s an
d
solid wa
ste.
A
singl
e pollut
ant as "bad
" output will cau
s
e som
e
errors, an
d thus may
mislead p
o
licy
recomme
ndat
ions. T
herefo
r
e, this
articl
e took
36 in
dustri
e
s as the re
se
arch
obje
c
t and t
h
e
energy a
s
a
n
input, while
sele
cting
co
mpre
hen
sive
pollutant e
m
i
ssi
on
s a
s
"b
a
d
" output fo
r
TFP
and environg
ment reg
u
lati
on co
st studi
es.
2. Rese
arch
Metho
d
2.1. En
v
i
ron
m
ental Tec
h
nolog
y
In ord
e
r to
integrate
envi
r
onm
ental
co
nsid
er
atio
ns
into the fra
m
ewo
r
k of effi
cien
cy
analysi
s
, you
first need to
con
s
tru
c
t a p
o
ssibilit
y set
contai
ning "g
ood" outp
u
t and "bad" o
u
tput
of the prod
u
c
tion. Fare [11] contai
ne
d the st
ru
ctu
r
al rel
a
tion
sh
ip betwe
en the "bad" out
put,
inclu
d
ing
out
put and fa
ct
or resource
s into as
en
vironme
n
tal tech
nolo
g
y. First d
e
fine
x
x
,x
,…,
x
∈R
as a set of i
nput vecto
r
s,
y
y
,y
…,y
∈R
is a prod
uction of "good
"
output vector,
b
b
,b
,…,b
∈R
as the "bad" output vector
(such as wa
ste water,
waste
gas, solid wa
ste). Simulati
ng enviro
n
me
nt te
chnol
ogy
through the
output set of p (x).
p
x
y,
b
:
x
c
a
n
pr
oduc
e
y,
b
x∈R
(1)
p
x
provide
s
a
d
e
scriptio
n of
all tech
nologi
cally fea
s
ible
relation
shi
p
s betwe
en in
p
u
ts
and output
s. p (x) need to meet three a
s
sumption
s:
(1) "Bad" outputs joint wea
k
dispo
s
ability,
i
f
y,
b
∈p
x
a
nd
0
θ
1
,
then
θ
y,
θ
b
∈p
x
. This fe
ature
is con
s
ide
r
ed "bad"
pro
duct
s
redu
ce
the n
eed to i
n
vest
re
sou
r
ces a
nd facilitie
s
t
o
co
ntrol
poll
u
tion, re
sultin
g in redu
ctio
n of
norm
a
l outp
u
t
beca
u
se of
a re
ductio
n
i
n
investme
nt
in produ
ctio
n. This
sh
ows that the
r
e i
s
a
co
st red
u
ctio
n of pollutio
n
, and thu
s
the idea
of
environ
menta
l
regul
ation i
n
clu
ded in t
he
analysi
s
fram
ewo
r
k. (2
) Input and "goo
d" output strong dispo
s
ab
ility, if
x
x
,
then
px
⊇
px
; If
y
,b
∈
p
x
and
y
y
, then
y
,b
∈
p
x
. This feat
ure i
s
that "
good" o
u
tput
s a
r
e
freely disp
osable, and "ba
d
" outputs re
main un
cha
n
ged. (3
) "Go
od" output a
nd "bad" out
puts
null-joint. If
y,
b
∈p
x
and
b0
,
then
y0
. That is to say
if there are
no "bad" p
r
o
duct
s
,
there would b
e
no "good" p
r
odu
cts.
2.2. Directio
nal Dista
n
ce
Function
The
stru
ctu
r
e of e
n
viron
m
ental te
chn
o
logy
is
c
o
nduc
ive to the interpretation of the
con
c
e
p
t, but
not contri
buti
ng to the cal
c
ulatio
n, so a new fun
c
tion cam
e
out
. DDF wa
s first
prop
osed by
Cham
be
rs
(1
996) [1
2] as
prom
otion
of Luen
berger (1992
)
profit
functio
n
. Fare,
etc
.
(200
1) [13] a
c
cordi
ng to L
uenb
erg
e
r
sh
ortage fun
c
tio
n
ideolo
g
ical
con
s
tru
c
t DDF:
D
y
,x
,b
;g
s
u
p
β
:
y
,b
β
g
∈
p
x
(2)
In the expression (2
),
g
g
,g
expresse
s the direction of
expansi
on of output vector,
the choi
ce of
is not unique, accordi
n
g to the
different ch
oice
of
the
, we can con
s
id
er
different
ca
se
of enviro
n
m
ental control.
g
x,
y
,
b
, says y i
s
prop
ortio
nal t
o
the in
crea
se,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Industri
e
s T
F
P and Enviro
nm
ental Reg
u
lation Cost
Analysis
Usi
n
g Malm
quist
… (Ch
unla
n
Liu)
6513
inputs an
d b is pro
portio
nal
to the decre
ase.
β
is maxi
mum feasibl
e
redu
ction in numbe
r of x,
y,
b.
In produ
ction
process,
we
see
k
maximum profit. But
at the
s
a
me t
i
me, we have to tak
e
input into
a
c
count; the
pro
ducers
ca
nno
t be i
n
finite
ly
large
inve
stm
ent of
re
sou
r
ce
s in
o
r
de
r t
o
maximize the
"good" outpu
t, so this pap
er uses
DDF for the input h
a
ve a certai
n con
s
trai
nts.
Suppo
se t =
1,
⋯
, T perio
ds,
1
,⋯,
produ
ce
rs usin
g a vecto
r
of n = 1,. . .,N inputs
to obtain a vector
of m =
1,. . .,M desirable out
p
u
ts
and a ve
ctor
of j = 1,. . .,J
unde
sirable
s
.
Linea
r pro
g
ra
mming probl
em of produ
cer
k
′
x
,
′
,y
,
′
,b
,
′
unde
r no
environme
n
tal regul
ation
and stri
ct env
ironm
ental re
gulation a
r
e a
s
followed:
No environm
ental reg
u
lati
on
D
y
,
′
,x
,
′
,b
,
′
;
x
,
′
,
y
,
′
,
b
,
′
M
a
x
β
s.
t.
z
y
1
β
y
′
,
m
1
,…,M
z
x
1
β
x
′
, n
1,
…
,
N
z
0
,
k
1,
…
,
K
3
Strict environ
mental re
gula
t
ion
D
y
,
′
,x
,
′
,b
,
′
;
x
,
′
,
y
,
′
,
b
,
′
M
a
x
β
s.
t.
z
y
1
β
y
′
,
m
1
,…,M
z
b
1
β
b
′
,
j
1
,…,J
z
x
1
β
x
′
,
n
1
,…,N
z
0
,
k
1
,
…
,
K
4
2.3. En
v
i
ron
m
ental Re
gu
lation Cos
t
Und
e
r e
n
viro
nmental
regu
lation, the produ
cers
n
e
e
d
t
o
put
so
m
e
re
sou
r
ce
s t
o
co
nt
rol
the enviro
n
m
ental poll
u
tio
n
, whi
c
h i
s
boun
d to red
u
ce th
e outp
u
t in the e
c
o
nomy, red
u
ci
ng
eco
nomi
c
o
u
t
put is the
cost of environm
ental
r
egul
ation. Its val
ue
can
get
thro
u
gh m
odel
(3
)
and
model (4) u
s
i
ng the index that Doma
zli
c
ky and Webe
r (20
04) [14]
con
s
tru
c
t.
Cost
,
′
,
,
′
,
,
′
;
,
′
,
,
′
,
,
′
,
′
,
,
′
,
,
′
;
,
′
,
,
′
,
,
′
1
(5)
2.4 Malmquist-Luenb
erg
e
r Produc
tiv
i
t
y
Index
Based
on th
e DDF an
d modele
d
M Index, Chu
n
g
et al.
()
1997
made the
followin
g
definition
s
for Malmqui
st-L
uenb
erg
e
r (M
L) index ba
se
d on peri
od t and t +1:
,
,
;
,
,
;
,
,
;
,
,
;
/
(6)
ML index ca
n be decom
posed into two pa
rts,
on
e for mea
s
uring efficien
cy
chan
ge
s
(MLEFF
CH),
the othe
r for
measuri
ng te
chni
cal
pro
g
ress (M
LTECH), d
e
compo
s
ed
expre
s
si
on is
as
follows
:
(7)
,
,
;
,
,
;
(8)
,
,
;
,
,
;
,
,
;
,
,
;
(9)
和
gre
a
ter t
han
(le
ss th
an)
1 repre
s
ent p
r
o
d
u
c
tivity
gro
w
th (decli
ne), efficie
n
cy improveme
n
t (det
e
r
ioration) a
nd
cutting-e
dge te
chnical progre
ss
(re
gre
s
s).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
11 – 651
8
6514
3. Empirical Rese
arch
This p
ape
r to
ok 36
Chin
ese indu
strie
s
i
n
2001
-20
10
as the resea
r
ch obj
ect fro
m
"China
Statistical Y
earb
o
o
k
". Howeve
r, som
e
data
of
“Mining of
O
t
her Ore
s
”, “Man
ufactu
re
of
Measuri
ng In
strum
ents a
n
d
Machi
nery for Cultu
r
al
A
c
tivity and Office Wo
rk”, a
nd “Ma
nufa
c
ture
of Artwork an
d Other Ma
n
u
facturi
ng Re
cyclin
g and
Dispo
s
al of Wa
ste” a
r
e
missi
ng, in order to
maintain the
industry cl
assificatio
n
con
s
i
s
ten
c
y and continui
ty in the “energy inde
x,
environ
menta
l
indicators a
nd e
c
on
omi
c
indicators
”, th
e sa
mple
dat
a to be
re
mo
ved, eventual
ly
identified 36 i
ndu
strie
s
. In this p
ape
r, the
indu
st
rial
we
re the e
n
terprise
s ab
ove d
e
sig
nated
si
ze,
indu
stry dat
a were
fro
m
the "
C
hi
na Statisti
ca
l Yearboo
k
"and "Envir
o
n
ment Statistical
Ye
a
r
bo
ok
".
3.1. Data a
n
d Variables
(1) Capital in
put: ch
oo
se t
he a
nnual
av
erag
e b
a
lan
c
e of n
e
t fixed
asset
s
a
s
th
e capital
input. For p
r
i
c
e deflato
r, we u
s
ed p
r
ice index
for i
n
vestment in
fixed asset
s
and ch
ose base
perio
d is
200
1. (2)
Lab
or
input: labo
r i
nput is
gen
erally measure
d
by the lab
o
r time o
r
la
bor
numbe
r. Due
to the labor time is difficu
lt
to obtain and no co
rrespondi
ng inde
x data in "China
Statistical
Ye
arbo
ok", so we cho
s
e
the
above
-
sc
ale
indu
strie
s
A
nnual Ave
r
ag
e the n
u
mbe
r
of
labor a
s
lab
o
r input. (3
)
Energy inp
u
t: indust
r
ial e
n
terp
rises, e
c
on
omic a
c
ti
vities can
not
do
without
certai
n ene
rgy. Th
e pap
er
cho
s
e in
du
st
ry's total ene
rgy con
s
um
ptio
n as
a resou
r
ce
input of ea
ch
indust
r
y. (4)"Good" outp
u
t: The choi
ce
of "good" o
u
tput indicato
rs h
a
ve alwa
ys
been
of g
r
ea
t cont
roversy
,
and
som
e
schola
r
s cho
s
e th
e total i
ndu
strial
out
put value,
so
me
cho
s
e th
e in
dustri
a
l a
dde
d value, b
u
t most
schola
r
s tend
to
cho
s
e the
ind
u
st
rial a
dde
d va
lue.
Ho
wever,
ind
u
strial
a
dded
value in
20
09
-201
0,
can
not
obtain
in
"Ch
i
na Statisti
cal
Yearboo
k",
so
it took total industri
a
l outpu
t value to calculat
e the g
o
od output. (5
) "Bad" output: The choi
ce
of
"bad" o
u
tput
indi
cators i
s
mo
re
num
erou
s th
an t
he "go
od"
o
u
tput indi
cat
o
rs.
Fo
r a
more
comp
re
hen
si
ve and m
o
re integ
r
ated
asse
ss
men
t
of the economi
c
pe
rf
orma
nce un
der
environ
menta
l
regul
ation, choo
se comp
rehen
sive
e
n
vironm
ental in
dicato
rs. T
h
e
total discha
rge
of indu
strial
wa
stewater, i
ndu
st
rial
sulf
ur dioxid
e e
m
issi
on
s an
d
emission
s o
f
industri
a
l solid
wa
ste wa
s "Bad" output.
3.2. Empiric
a
l Results a
nd Analy
s
is
Acco
rdi
ng to
the rese
arch method
s a
nd dat
a processing a
bove
,
estimated e
c
on
omic
and
enviro
n
m
ental in
dicato
rs re
sult
s u
n
d
e
r
envir
o
n
me
ntal regulatio
n an
d
without
environme
n
tal
regul
ation through Matla
b
7.0 softwa
r
e
prog
ram
m
ing
.
Based
on
the
enviro
n
ment
al technical e
fficiency
(ET
E
), the ind
u
st
ries a
r
e divid
ed into
three types:
highly coo
r
di
nated indu
stry, more
coo
r
dinated an
d uncoordinat
e
d
indust
r
y se
ctors.
36 indu
strie
s
data re
sults a
r
e su
mma
rize
d in Tabl
e 1 b
e
low v acco
rd
ing to these t
h
ree type
s:
Table 1. The
Average Ann
ual ML Index, Co
mpo
s
ition
De
comp
ositio
n and Enviro
nmental
Reg
u
lation Cost
Ty
p
e
Under e
n
v
i
ro
nm
ental re
gula
t
io
n
W
i
tho
u
t e
n
v
i
ro
n
m
en
tal reg
u
lati
on
COS
T
ML MLEFC
H
MLTEC
H
ETE M
MEFC
H
MTEC
H
TE
Highl
y
coordi
nat
e
d
indu
str
y
1.06
5
1.016
1.071
0.90
2
1.33
2
1.010
1.367
0.81
9
0.119
More co
ordin
a
t
e
d in
dus
tr
y
1.07
2
1.016
1.062
0.73
3
1.20
1
1.009
1.213
0.70
4
0.042
Unco
ordi
nate
d i
ndus
tr
y
1.06
2
1.014
1.044
0.63
5
1.12
8
1.010
1.138
0.62
3
0.017
Total
1.06
7
1.015
1.060
0.75
7
1.22
1
1.009
1.239
0.71
7
0.059
(1) Ove
r
all, a
fter con
s
ide
r
i
ng the unde
si
rable
o
u
tput "bad" pro
d
u
c
ts, that is, con
s
ide
r
ing
environ
menta
l
re
gulation,
the TFP
de
cre
a
se
d, wh
ich can sho
w
th
at the
tra
d
itional
mea
s
u
r
em
en
t
method
s ove
r
estim
a
te TF
P. It also sh
ows, wi
tho
u
t con
s
id
erin
g
the environm
ental regulati
on,
comp
anie
s
d
on't ne
ed to
put pa
rt of
re
sou
r
ces (l
abo
r an
d
capital
)
into e
n
viron
m
ental
reg
u
la
tion
input a
s
to
re
duce envi
r
on
mental p
o
lluti
on. Inste
ad, compani
es ca
n invest th
ese pa
rt re
so
urce
s
in the prod
uct
i
on pro
c
e
s
s, resultin
g in more "go
od" ou
tput.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Industri
e
s T
F
P
and Enviro
nm
ental Reg
u
lation Cost
Analysis
Usi
n
g Malm
quist
… (Ch
u
nla
n
Liu)
6515
(2) In the ca
se of environ
mental reg
u
l
a
ti
on, the overall average
TFP index was 1.067,
indicating tha
t
the vario
u
s
se
ctors of th
e av
erage
an
nual T
F
P gro
w
th rate
wa
s 6.7%. From
an
averag
e
sen
s
e, thi
s
p
r
o
d
u
ctivity gro
w
t
h
of 6.7%
,
1.5% of
whi
c
h
tech
nical eff
i
cien
cy p
r
om
ote,
6.0% of which techn
o
logi
cal prog
re
ss p
r
omote. Th
i
s
sho
w
s that our indu
st
ry efficien
cy impro
v
es
and te
chn
o
lo
gy prog
re
ss is the mai
n
driver of
produ
ctivity growth
. This pa
pe
r furthe
r an
alyzed
from the time point of view, shown in Figure 1.
TFP
cha
nge
was
mainly due to
comp
reh
e
n
s
ive
techni
cal
efficien
cy chan
ge an
d tech
nologi
cal p
r
o
g
re
ss th
e joi
n
t action. In
the pro
d
u
c
tion
pro
c
e
ss, th
e
con
s
trai
nts
o
f
environ
men
t
al reg
u
lation
, com
p
anie
s
strive to
improve e
c
on
omi
c
developm
ent and try to find a balan
ce.
Figure 1. Industry Averag
e TFP and
Comp
one
nt De
comp
ositio
n of ML in 2001-2
010
Figure 2. Co
mpari
s
o
n
Sample ch
ang
e
s
in
Period T
w
o S
t
ages
(
3
) F
r
o
m
th
e in
d
u
s
t
r
y
pe
rs
p
e
c
t
ive
,
a
fter
co
ns
id
er
in
g th
e
en
vir
o
nme
n
ta
l
r
e
gu
la
tio
n
,
ML
didn't d
e
sce
n
d
a
s
the
pe
rforman
c
e
of
indu
stry
coo
r
dination.
On
the
cont
rary
, ML of m
o
re
coo
r
din
a
tion
indu
stry i
s
th
e la
rge
s
t. Th
is p
hen
omen
on
sho
w
s
an
d no
n
e
cessary
con
n
e
c
tion
betwe
en TFP
and the indu
stry co
ordi
nat
ion. Mean
wh
il
e, the pape
r also fou
nd th
at TFP are q
u
ite
different bet
wee
n
Chi
n
e
s
e indu
strial
sectors. Of
wh
ic
h
10
in
d
u
s
t
r
i
es
sh
ow
ed
a
d
e
c
r
ea
se
in
prod
uctivity. In these
10
indu
strie
s
, in
cludi
ng
two
highly coordi
nated in
dust
r
ies, four
mo
re
coo
r
din
a
ted i
ndu
strie
s
and
four un
co
ord
i
nated
co
ordi
nation i
ndu
stries. T
h
re
e i
n
dustri
e
s
sho
w
e
d
"efficiency
ch
ange" a
nd "tech
n
ical pro
g
re
ss" "d
oubl
e low" of the
10 indu
strie
s
, re
spe
c
tivel
y
,
“Man
ufactu
re
of Textile”, “Manufa
c
ture
of P
aper and Paper
P
r
od
u
c
ts”
and “Ma
nufactu
re
of Non
-
metallic Mi
neral Products” for all
these three i
ndustries in
order
t
o
improve factor
productivity,
need
to int
r
o
duce a
pprop
riate te
chn
o
l
ogy o
r
p
e
rfo
r
m
ce
rtain te
chn
o
logi
cal
i
nnovation, th
us
prom
ote tech
nologi
cal
pro
g
re
ss. M
ean
while, they
must
in an approp
riate way
to
u
s
e
t
h
ese
techn
o
logie
s
to improve
techni
cal ef
ficien
cy. The
remaini
ng
seven in
du
stries
all sho
w
ed
reg
r
e
ssi
on te
chni
que
s, an
d a n
u
mbe
r
o
f
them are
m
onop
oly indu
strie
s
a
nd tra
d
itional in
du
stries,
su
ch a
s
“Mi
n
ing and
Wa
shing of Coal”, “Mini
ng a
n
d
Proce
s
sing
of Ferrou
s M
e
tal Ore
s
”
an
d
“Prod
u
ctio
n a
nd Supply of Electric Po
wer and H
eat Powe
r”. The
s
e indust
r
ie
s will face som
e
difficulties
on
techn
o
logi
cal innovatio
n
.
M
ean
while,
they have
been fo
r o
u
r enviro
n
ment
al
regul
ation difficult and fo
cu
s (See a
ppe
n
d
ix Table 1).
(4) T
h
is
stud
y sample tim
e
spa
n
s
Chin
a two impo
rtant peri
ods
- "Fifteen- Ye
ar Plan"
and "Eleve
nth Five-Y
ear
Plan", so
this pap
er wa
s d
i
vided into
two pe
riod’
s interval: 2
001
-2
005
and 20
06
-20
10, the re
sult
s sho
w
n in Fi
gure
2. From
the figure
we
can
se
e that in the "Eleven
t
h
Five-Yea
r Pla
n
" perio
d, TF
P had imp
r
ov
ed, tech
nolog
ical p
r
og
re
ss
has im
prove
d
,
and ho
weve
r,
techni
cal effi
cien
cy wa
s
pre
s
ente
d
as worse.
In the "Eleventh Five-Yea
r Plan" peri
od, TFP
gro
w
th ca
n be con
s
id
ere
d
mainly dri
v
en by
technologi
cal pro
g
re
ss. In the
backgroun
d
o
f
"Eleventh Five-Yea
r Plan",
facing
env
iro
n
mental
reg
u
l
a
tion, the ind
u
st
r
i
es
in
tr
o
d
u
c
ed
a
s
e
r
i
es o
f
advan
ced
te
chn
o
logy
an
d eq
uipme
n
t and
cond
u
c
ted
a
se
rie
s
of
tech
nol
ogical in
nov
ation
activities. Ho
wever, in
the
pro
c
e
s
s of e
c
on
omic dev
elopme
n
t
introdu
ced adva
n
ce
d
technol
ogy
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
11 – 651
8
6516
can
not me
et the
con
d
itio
ns
of thei
r e
c
on
om
ic dev
elopme
n
t, re
sulting
in
re
duced m
a
tch
i
ng
techni
cal
skil
l
s, also le
d
to the deterio
ration
of
techni
cal e
fficiency. Fro
m
the indu
stry
perspe
c
tive, the in
du
strie
s
of TFP h
ad i
n
cre
a
sed
we
re
abo
ut 77.8%
of the i
ndu
stry in the
pe
rio
d
2006
-20
10. T
F
P of five in
dustri
e
s am
o
ng the
a
bove
-
mentio
ned
ten in
du
strie
s
in th
e "Elev
enth
Five-Yea
r Pl
an" p
e
rio
d
, h
ad b
een
imp
r
oved, na
mely
“Ma
nufa
c
ture of T
e
xtile”,
“Man
ufactu
re
of
Paper an
d P
aper Pro
d
u
c
ts”,
“Man
ufact
u
re
of No
n
-
m
e
tallic Mi
nera
l
Prod
uct
s
”,
“Produ
ction
a
n
d
Supply of Electri
c
Power
and Heat Po
wer”. Althoug
h these i
ndu
strie
s
TFP is low, but in the
"Eleventh Five-Yea
r Plan" perio
d, has
a
certai
n deg
re
e of improve
m
ent.
(5) F
r
om env
ironm
ental re
gulation cost
analysis, en
vironme
n
tal regulatio
n can
cau
s
e
some lo
ss of prod
uctivity seen from Ta
b
l
e 1,
i.e., environm
ental re
gulation h
a
s
a co
st to so
me
extent. Environmental regul
ation co
st ha
ve some
diffe
ren
c
e
s
betwe
en the indu
stries, the top five
indu
strie
s
(at
the co
st
of r
egulatio
n d
e
scen
ding
orde
r)
we
re:
“Mini
ng a
nd P
r
o
c
essing
of
No
n-
Ferrou
s M
e
ta
l Ores”,”
Mini
ng a
nd P
r
o
c
e
ssi
ng
of Fe
rr
ous
Metal
Or
es”,
“Ex
t
ra
ction of P
e
trole
u
m
and Natural Gas”
an
d
“Ex
t
raction of
Petroleum
and
Natural Ga
s”. The environ
mental regula
t
ion
co
st of “M
an
ufacture of P
aper an
d Pa
per P
r
od
uc
t
s
” as
a on
e of
the mo
st co
n
c
erns ind
u
stri
es
ran
k
ed
sixth.
Thu
s
ind
u
st
ries
with mu
ch envir
onme
n
tal re
gulatio
ns
co
st foun
d are al
so th
ose
monop
olie
s a
nd heavy ind
u
strie
s
. Thi
s
will be an im
portant an
d d
i
fficult for our environm
ent
al
regul
ation. F
r
om Fi
gure
2, we find
that in
the
"Eleventh Fi
ve-Year Pla
n
" peri
od, t
h
e
environ
menta
l
reg
u
lation
cost h
a
s
a
ce
rtain d
egree
of red
u
ctio
n,
whi
c
h m
ean
s enviro
n
ment
al
regul
ation is
effective.
4. Conclusio
n
This p
ape
r
use
d
Malm
q
u
ist-L
uen
be
rg
er ind
e
x whi
c
h b
a
sed o
n
dire
ctional
distan
ce
function to estimate the total factor prod
uctivi
ty and environm
ental regul
ation co
st of Chine
s
e
36
indu
strial. In
this m
odel
we too
k
ene
rg
y con
s
u
m
ptio
n a
s
an i
npu
t and
comp
rehen
sive "th
r
ee
wa
stes"
emi
s
sion
s
as the
"bad" o
u
tput, ma
king
the i
nput a
n
d
out
put mo
re
in l
i
ne
with a
c
tu
al
prod
uctio
n
proce
s
s.
Re
sea
r
ch
sh
owe
d
that th
e overall ave
r
age
TFP in
d
e
x wa
s 1.0
6
7
,
the average
annu
al
TFP in va
rio
u
s i
ndu
strie
s
wa
s
6.7%, driven
by
1.5
%
techni
cal
efficien
cy, 6.0% tech
nolo
g
ical
prog
re
ss, technolo
g
ical
progre
s
s a
s
th
e pro
d
u
c
tivi
ty gro
w
th mai
n
driving fo
rce
.
Also found t
hat
after
con
s
ide
r
ation enviro
n
mental reg
u
lation,
TFP
red
u
ced a
n
d
there was a ce
rtain
cost.
Cla
ssifie
d
by the enviro
n
m
ental tech
nology
effici
ency, we found the
r
e i
s
no ne
ce
ssary
con
n
e
c
tion b
e
twee
n TFP and the indu
stry coo
r
din
a
t
ion; the exponential g
r
o
w
th of total
factor
prod
uctivity was q
u
ite different between
Chin
ese i
ndu
strial. 10 i
ndu
strie
s
sho
w
e
d
a de
crea
se
in
prod
uctivity, the e
n
viron
m
ental
regul
ation fo
cu
s
“Mi
n
ing
and
Wa
shin
g of
Co
a
l
”, “Mi
n
ing
a
n
d
Processin
g
of
Ferrou
s
Met
a
l O
r
es”,
“Pro
ductio
n
a
nd
Supply of Ele
c
tri
c
Po
wer a
nd
Heat Po
wer”
and “othe
r
m
onop
olisti
c st
rong
and
hea
vy industrie
s”
. In the "Eleventh Five-Ye
a
r Plan"
peri
od,
total factor
p
r
odu
ctivity index
had i
m
proved, so
as
the tech
nolo
g
ical
pro
g
ress, and
ho
we
ver,
techni
cal efficiency wa
s
p
r
e
s
ente
d
a
s
wo
rse. T
he
main
rea
s
o
n
wa
s the introdu
ctio
n of adva
n
ce
d
techn
o
logy or equipme
n
t was in
comp
atible with
bu
sin
e
ss develo
p
m
ent at the econ
omic level
.
Ackn
o
w
l
e
dg
ements
This
wo
rk
wa
s supp
orted i
n
part by the
F
unda
menta
l
Re
sea
r
ch F
und
s for the
Central
Universitie
s
(RW201
3-0
2
)
Referen
ces
[1]
Hail
u A, V
eem
an T
S
. Environ
m
ental
l
y
Se
nsit
ive Pro
ductiv
i
t
y
Anal
ys
is
of th
e Ca
na
dia
n
P
u
lp a
n
d
Pap
e
r
Industr
y
,
1
959-
199
4: An Input
Distance F
unc
tion Appr
oach.
Jo
u
r
na
l
o
f
En
viro
nm
en
ta
l
Econ
om
i
cs a
n
d
Mana
ge
me
nt
. 200
0; 40: 251-
274.
[2]
Murt
y
S, R
u
ss
ell
R. On mod
e
lin
g p
o
l
l
utio
n
gen
eratin
g tec
hno
log
i
es.
W
o
r
k
ing P
a
p
e
r Ser
i
es
. 20
02; 2-
14.
[3]
Chu
ng Y, R Fä
re, S Grosskop
f. Productivit
y
and
Und
e
sir
abl
e Outputs: A Di
rection
a
l D
i
sta
n
ce Functi
o
n
Appro
a
ch.
Envi
ron
m
e
n
tal Man
age
ment
. 199
7
;
229–2
40.
[4]
Lun
dgre
n
T
,
Marklun
d
P,
S
a
makov
lis E,
Z
hou W
.
C
a
rb
on
prices
a
n
d
inc
entives
for
techn
o
l
ogic
a
l
deve
l
opm
ent.
CERE W
o
rkin
g
Paper
. 20
13; 4: 1-29.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Industri
e
s T
F
P and Enviro
nm
ental Reg
u
lation Cost
Analysis
Usi
n
g Malm
quist
… (Ch
unla
n
Liu)
6517
[5]
W
ang Bi
ng, W
u
Yanr
ui, Yan
Pengfe
i
. Enviro
nmenta
l
Re
gul
ation
and T
o
tal
F
a
ctor Produc
tivit
y
Gro
w
t
h
:
An Empiric
a
l S
t
ud
y
of the APEC Econom
ies
.
Econo
mic Re
search Jo
urna
l
. 2008; (5): 19
-32.
[6]
W
ang Bi
ng,
W
ang L
i
. An
Empirica
l St
ud
y o
n
Ind
u
str
y
T
e
chnic
a
l
Efficienc
y a
n
d
T
o
tal F
a
ctor
Productiv
i
t
y
a
n
d
Its Determin
ants un
der En
vironme
n
tal C
onstrai
nt in Ch
ina'
s Re
gio
n
a
l
Economi
e
s.
South Ch
in
a Journ
a
l of Econ
omics
. 201
0; (11): 3-19.
[7]
YE Xi
angs
on
g
,
PENG Liang
ya
n. Rese
arch
on Reg
u
l
a
tio
n
Efficienc
y a
nd T
F
P of Enviro
nmenta
l
Reg
u
lati
on i
n
Chin
a from 19
99 to 20
08.
F
i
n
ance & T
r
ade
Econo
mics
. 20
11; (2): 102-1
0
9
, 137.
[8]
SHEN Ke-tin
g, GONG Jian-jia
n. Environm
ent
al Poll
utio
n, T
e
chnic
a
l Progr
e
ss, and Produc
tivit
y
Gro
w
t
h
of Ener
g
y
-inte
n
s
ive In
dustries
in C
h
i
na_Em
p
i
r
ical Stu
d
y
B
a
s
ed
on ET
F
P
.
Chin
a Ind
u
stria
l
Econo
mics
.
201
1; (12): 25-
34.
[9]
W
A
NG Xi-p
in
g
,
JIANG Ye. Stud
y o
n
T
o
tal F
a
ctor
Ener
g
y
E
fficienc
y a
nd It
s Influenc
in
g F
a
ctors un
der
the Constra
i
nt of Carbo
n
Dio
xide Emissi
on.
Soft Science.
2
012; 26(
2): 73-
78.
[10]
Chai Zh
i
x
i
an.
Utilizi
ng For
e
ig
n Investme
nt,
Environm
e
n
tal C
onstrai
n
t
and T
F
P Gro
w
t
h
Ch
in
a's
Industr
y
:
Com
parativ
e R
e
se
arch B
a
se
d o
n
Ma
lmqu
ist Inde
x a
nd M
a
l
m
quist
–Lu
en
berg
e
r In
de
x.
T
e
chno
logy Ec
ono
mics
. 201
3; 32(1): 64-7
0
.
[11]
R F
ä
re, S Gro
sskopf, CA Pasurka. Enviro
n
m
ent
al pr
oduct
i
on functi
ons a
nd env
ironm
en
tal directi
ona
l
distanc
e functi
ons.
Energy
. 2
007; 32(
7): 105
5-10
66.
[12]
Rob
e
rt G. Chambers. B
enefit
and dista
n
ce functions.
Jour
nal of eco
n
o
m
i
c
theory
. 1996
; (70): 407
-
419.
[13]
F
a
re R, Grosskopf S, Pas
u
rka C. Acco
untin
g for air
poll
u
tio
n
emi
ssions i
n
me
asuri
ng sta
t
e
manufactur
i
ng prod
uctivit
y
gro
w
t
h
.
Jo
urna
l of Regi
on
al Sci
e
n
c
e
. 2001; (4
1): 381-
409.
[14]
Domazl
ick
y
,
W
eber
W
.
Does
Envir
onme
n
ta
l Protecti
on
Le
ad to
Slo
w
e
r
Productiv
i
t
y
Gro
w
t
h
in t
h
e
Chemical Industry
?
.
En
vi
ro
nm
en
ta
l
an
d
Reso
u
r
ce
Econ
nom
i
c
s
. 20
04; 28
: 301-32
4.
Appe
ndix
Table 1. Nati
onal 36 in
du
stry average M
L
index,
com
positio
n de
co
mpositio
n an
d environ
men
t
al
regul
ation co
sts
ML
ML-
EFCH
ML-
TECH
ETE M
M-
EFCH
M-
TECH
TE COST
Mining
an
d
W
a
s
h
ing of Coal
0.966
1.022
0.959
0.636
1.117
1.016
1.120
0.613
0.037
Extracti
on o
f
Petrole
u
m a
n
d
Natural Gas
1.099
1.020
1.092
0.822
1.114
1.003
1.196
0.726
0.139
Mining a
nd Pr
ocessi
ng o
f
Ferrous Metal O
r
es
0.899
1.012
0.926
0.855
1.066
1.015
1.072
0.632
0.353
Mining a
nd Pr
ocessi
ng o
f
Non
-
Ferro
us Me
tal Ore
s
1.065
1.017
1.073
0.963
1.101
1.007
1.117
0.649
0.495
Mining a
nd Pr
ocessi
ng o
f
Non
m
etal
Ores
0.996
1.017
0.989
0.587
1.033
1.014
1.028
0.579
0.014
Processin
g
of
Food fr
om
A
g
r
i
cul
t
ural Pr
o
duct
s
0.946
1.014
0.968
0.746
1.260
1.013
1.291
0.732
0.020
Manuf
act
ure o
f
Foo
ds
1.044
1.015
1.051
0.703
1.240
1.014
1.249
0.696
0.010
Manuf
act
ure o
f
Be
v
e
rage
s
0.901
1.005
0.919
0.696
1.281
1.004
1.309
0.687
0.013
Manuf
act
ure o
f
Toba
cco
1.127
1.015
1.111
0.982
1.708
1.016
1.692
0.982
0.000
Manuf
act
ure o
f
Textile
0.932
0.976
0.971
0.745
1.071
0.974
1.116
0.738
0.010
Manuf
act
ure
of
Tex
t
ile
W
earing A
p
p
a
rel,Foo
t
w
are
,
and C
a
ps
1.162
1.025
1.154
0.734
1.374
1.022
1.367
0.728
0.008
Manuf
act
ure o
f
Leat
her,
Fur, Feat
her and Rela
ted
Produc
ts
1.085
1.034
1.070
0.810
1.416
1.033
1.407
0.801
0.012
Processin
g
of
Timb
er,Man
ufac
ture of
W
ood,B
a
m
b
o
o
,
R
atta
n,Pal
m
,
1.160
1.014
1.106
0.613
1.113
1.014
1.116
0.612
0.002
Manuf
act
ure o
f
Furni
ture
1.159
1.063
1.093
0.740
1.470
1.029
1.445
0.685
0.084
Manuf
act
ure o
f
Paper
an
d
Paper Prod
ucts
0.939
0.982
0.954
0.739
1.060
0.987
1.091
0.659
0.113
Printin
g
,Re
p
rod
u
ctio
n of
Recordi
ng M
e
di
a
1.164
1.026
1.150
0.725
1.282
1.017
1.241
0.641
0.138
Manuf
act
ure o
f
A
r
ticles
F
o
r
Cult
ure, Ed
u
catio
n an
d
Sport A
c
ti
v
i
t
y
1.157
1.045
1.154
0.775
1.307
1.019
1.324
0.711
0.088
Processin
g
o
f
Petroleu
m,
Cokin
g
, Proc
essing
of
1.070
1.022
1.065
0.978
1.021
1.008
1.076
0.971
0.007
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
11 – 651
8
6518
Nuclear Fuel
Manuf
act
ure
of
R
a
w
Chemi
cal Mat
e
rials and
Chemi
cal Pro
d
u
c
ts
1.048
0.979
1.076
0.711
0.995
0.982
1.029
0.695
0.022
Manuf
act
ure o
f
Medicine
s
1.083
1.002
1.095
0.695
1.291
1.002
1.307
0.689
0.009
Manuf
act
ure o
f
Che
m
ical
Fibers
0.964
1.022
0.963
0.726
1.127
1.021
1.130
0.710
0.022
Manuf
act
ure o
f
Rub
b
er
1.179
1.010
1.055
0.700
1.144
1.011
1.156
0.698
0.003
Manuf
act
ure o
f
Plastics
1.179
1.018
1.069
0.682
1.149
1.004
1.163
0.642
0.060
Manufacture of Non
-
me
tallic
Mineral Pro
duc
t
s
0.982
0.998
0.992
0.617
1.004
0.998
1.015
0.606
0.018
Smelti
ng
a
nd Pressing of
Ferrous Metals
1.062
1.018
1.054
0.783
1.021
1.013
1.031
0.744
0.052
Smelti
ng
a
nd Pressing of
Non
-ferro
us Me
tals
1.009
1.014
1.013
0.734
1.062
1.014
1.072
0.718
0.024
Manuf
act
ure
of Me
tal
Produc
ts
1.156
1.028
1.137
0.679
1.127
1.017
1.142
0.677
0.004
Manuf
act
ure of Gener
a
l
Purpose Machi
n
er
y
1.161
1.020
1.147
0.722
1.269
1.004
1.295
0.705
0.025
Manuf
act
ure of
Spe
c
ial
Purpose Machi
n
er
y
1.149
1.028
1.124
0.714
1.333
1.009
1.351
0.703
0.015
Manuf
act
ure of
Transp
ort
Equip
m
en
t
1.072
1.022
1.059
0.842
1.570
1.007
1.564
0.824
0.022
Manuf
act
ure o
f
Electrical
Machiner
y
an
d Equip
m
en
t
1.112
1.014
1.128
0.918
1.502
1.013
1.545
0.829
0.108
Manuf
act
ure
of
C
o
mm
un
i
c
a
t
io
n
Equip
m
en
t,C
o
m
puters a
n
d
Ot
her
1.179
1.000
1.188
0.984
1.616
0.993
1.640
0.970
0.015
Manuf
act
ure o
f
Measuri
ng
Instru
me
nts a
n
d Machi
n
er
y
for Cu
ltural
1.170
1.021
1.152
0.831
1.465
1.006
1.511
0.803
0.035
Produc
tio
n
a
n
d
Distri
but
ion
of Ele
c
tric P
o
w
e
r and
He
at
Po
w
e
r
0.839
1.002
0.915
0.933
1.076
1.005
1.218
0.826
0.129
Produc
tio
n
a
n
d
Distri
but
ion
of Gas
1.141
1.029
1.117
0.598
1.116
1.027
1.121
0.591
0.011
Produc
tio
n
a
n
d
Distri
but
ion
of W
a
ter
1.057
1.005
1.058
0.542
1.053
1.002
1.059
0.538
0.007
Total
1.067
1.015
1.060
0.757
1.221
1.009
1.239
0.717
0.059
Evaluation Warning : The document was created with Spire.PDF for Python.