TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5709 ~ 5719
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.620
6
5709
Re
cei
v
ed Ma
rch 5, 2
013;
Re
vised
Ma
y 3, 2014; Acce
pted May 2
5
, 2014
Analysis of T-Source Inverter with PWM Technique
for High Voltage Gain Application
K.Es
w
a
ri, M
s
R.Dh
any
a
Dep
a
rtment of Electrical & El
e
c
tronics Eng
i
n
eer
i
ng, Karp
ag
am Univ
ersit
y
,
Coimb
a
tore, In
dia
Corresp
on
din
g
author, e-mai
l
: eshjasm
i
ne
@
g
mail.c
o
m, dha
n
y
a.el
ectrical
@gmai
l
.com
A
b
st
r
a
ct
T
h
is pap
er de
als w
i
th Analy
s
is of T
-
Source inverter w
i
th
PW
M
T
e
chniq
ue for hig
h
vol
t
age ga
i
n
app
licati
on. T
h
e T
-
source i
m
ped
anc
e
netw
o
rk is new
ly i
n
troduc
ed to ov
e
r
come the
pro
b
le
ms of Z
-
sou
r
c
e
inverter. This T-source inverter is
similar to Z
-
source inverter except
the us
e of hig
h
frequ
ency low
le
aka
g
e
ind
u
ctanc
e transformer. It ha
s low
reactive
compo
nents
i
n
compar
e w
i
th conve
n
tio
nal Z
S
I. T
h
is T
-
source
inverter h
a
s an abil
i
ty to perform dc to ac pow
er
convers
i
on a
nd it prov
ides
b
u
ck -boo
st operatio
n in
a
singl
e sta
ge. T
he tra
d
itio
nal
i
n
verters
ca
nn
o
t
provid
e suc
h
feature. Oper
at
ing princ
i
p
l
e of
T
-
source
i
n
vert
er
is al
most sa
me
as that of Z
S
I. All trad
ition
a
l
PW
M
meth
ods
can b
e
us
ed t
o
contro
l T
-
sou
r
ce inv
e
rter. T
h
e
utili
z
a
ti
on of s
hoot-thro
u
g
h
sw
itchi
ng state is enh
anc
ed in
T
-
source inve
rter w
h
ich hel
ps in the u
n
iq
u
e
usag
e of b
u
ck-
boost fe
ature t
o
the i
n
verter. I
t
is reco
mme
n
ded th
at to
mai
n
tain th
e co
nstant volta
ge
in t
h
e
inp
u
t side to ge
t the appro
p
riat
e output vo
ltag
e.
Ke
y
w
ords
:
Z
-
source i
n
verter
, T
-
Source inve
rter, voltage
b
o
o
st, PW
M control,
shoot-thro
u
gh contro
l.
Co
p
y
rig
h
t
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Inverters a
r
e
the d
c
to
a
c
co
nverte
rs.
The in
put d
c
su
pply i
s
eit
her
in
the
form
of
voltage or
curre
n
t is converted in
to vari
able
output ac voltage [1-4]. The output
ac
voltage
can
be
cont
rolled
by varying
i
nput d
c
s
u
p
p
ly or
by v
a
rying th
e gai
n of the i
n
verter
.There
are two types
of tra
d
itional i
n
verters
ba
se
d
on in
put
so
urce
use
d
i
n
ind
u
stri
es
for
variable
spe
ed d
r
ive
an
d ma
ny oth
e
r
a
ppli
c
at
ion
s
; tho
s
e
are
a
)
Voltag
e-sou
r
ce
inve
rter
and
b)Current
-so
u
rce inve
rter. Tradition
all
y
in most
o
f
indust
r
ie
s
these volta
g
e
-
so
urce i
n
vert
er
and
current-sou
rce i
n
verter a
r
e
u
s
e
d
in
a
d
just
able
sp
eed
drives.
But t
hese tra
d
itio
nal
inverters hav
e many limitations [4].
The ne
w imp
edan
ce
sou
r
ce power inve
rter ha
s b
een
invented, eli
m
inates
all problem
s
of the traditional V-source
and I-sou
r
ce inverters
[4]. This imp
edan
ce net
work called a
s
Z so
urce
inverter. The
impedan
ce
netwo
rk
con
s
ist
s
of
two inducto
rs an
d two capa
citors conne
ct
ed
to each oth
e
r [4]. In this desi
gn, ZSI provide
s
a si
n
g
le-stage volt
age bu
ck-boo
st ope
ration. I
t
is
being u
s
e
d
in
ac/dc
po
wer
conve
r
si
on a
pplication
s
. Howeve
r in so
me appli
c
atio
ns the effici
e
n
cy
of Z-sou
r
ce i
n
verter
ca
n b
e
wo
rse tha
n
these
of co
nventional t
w
o-stage
bu
ck-b
oost system
s
[3].
Other di
sadv
antage of Z-sou
r
ce invert
er is its se
nsitivity to parasitic
indu
ctan
ce
s of galvanic
con
n
e
c
tion
s and ca
pa
cito
rs of LC imp
edan
ce
net
work. Th
ese indu
ctan
ce
s cause signifi
cant
over voltag
es duri
ng
switch
es
com
m
utati
on. Hen
c
e
ov
er
sizi
ng
of switch
es is typ
i
cally u
s
ed
in
Z-
sou
r
ce inve
rt
ers de
sig
n
.
Applicatio
n o
f
addition
al
clampi
ng
(sn
ubbe
r) ci
rcuits in
Z-so
urce
inverters is necessary as well.
Another in
co
nvenien
ce o
f
Z-sou
r
ce topology
is la
ck of commo
n
point of groundin
g
of primary so
urce, LC net
work and transi
s
tor
b
r
id
ge that is imp
o
rtant due to generated
EMI
disturban
ce
s.
Finally an inco
nveni
ent i
n
som
e
appli
c
ation
s
featu
r
e
of Z-so
urce inverter i
s
the
discontin
uou
s inp
u
t
curre
n
t an
d
high
value
s
of di/
d
t that impo
se the
ne
ce
ssi
ty of appli
c
ati
o
n
of input L
C
filter. The
aim
of pre
s
e
n
t pa
per i
s
to
sho
w
the p
o
ssibil
ity of realization of bu
ck-bo
o
st
inver
t
er
s
i
milar
to Z-s
o
ur
ce inver
t
er
but w
i
th
use of
high freq
uen
cy (HF
)
tran
sformer
with small
leakage i
ndu
ctan
ce. Th
e
new i
m
pe
dan
ce-so
u
rce
po
wer inverte
r
has
bee
n re
cently invent
ed,
eliminate
s
all probl
em
s of the ZSI. This impeda
nce ne
twork called a
s
T-sou
r
ce in
verter [3].
The TSI topo
logy re
quires a very lo
w le
ak
a
ge in
du
ctance tra
n
sfo
r
mer
whi
c
h
sh
ould b
e
made
with hi
gh preci
s
io
n
[3]. In such
a way, the
numbe
r of p
a
ssive elem
e
n
ts is
re
du
ced
becau
se only
the transfo
rmer an
d the cap
a
cito
r
are
neede
d. By
utilizing t
he T
-
so
urce inve
rter,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 570
9 –
5719
5710
the num
ber
of switchin
g
comp
one
nts
and the
total
volume of t
he
system
can be
minimi
zed.
Thus, the
overall
cost of the sy
stem
is minimi
zed. T-source
inverter i
s
ut
ilized to
real
ize
inversi
on a
n
d
boo
st functio
n
in one
sin
g
l
e
stag
e.
As with a co
nventional ZSI, the
TSI can h
and
le
sho
o
t throug
h states whe
n
both swit
ch
es in the sa
me pha
se le
g are turn
ed
on [5-13]. Th
e T-
netwo
rk is used in
stead
of
the
L
C
-network for
boo
sti
ng the
out
put
voltage by i
n
se
rting
sh
o
o
t
throug
h state
s
in the PWM. T-Source
Inverter
ope
rating prin
cipl
e same a
s
that of conventional
ZSI. TSI ope
rate in
Shoot t
h
rou
g
h
mod
e
and
Non
sh
oot throug
h
mode. In
sho
o
t-thro
ugh
m
ode
of operatio
n, the output voltage is b
o
o
s
te
d [13].
2. Z Source Inv
e
rter
2.1. General
Description
The n
e
w imp
edan
ce
-sou
rce po
we
r inve
rter
ha
s
be
e
n
re
ce
ntly in
vented, elimi
nates all
probl
em
s of t
he tra
d
itional
V-source
an
d I-sou
r
ce
in
verters [4]. It is bei
ng
used
in a
c
/dc po
wer
conve
r
si
on a
pplication
s
. Figure 1
sho
w
s the gene
ra
l
Z-so
urce co
nverter
stru
cture. The po
wer
sou
r
ce ca
n b
e
either volta
ge so
ur
ce o
r
cur
r
e
n
t
so
urce [2, 4].
Figure 1. Z-S
ource Inverte
r
Structu
r
e
Figure 2. Ne
w type T – Source inverte
r
ZSI provide
s
a single
-
sta
ge voltage
buck-
boo
st o
peratio
n. Uni
que L
C
imp
edan
ce
netwo
rk
sig
n
i
f
icantly impro
v
es the
p
e
rfo
r
man
c
e
of the inverte
r
. It allows
sho
o
t-thro
ugh
stat
es
of the
inve
rter leg
s
du
ri
ng
boo
st
op
eration
a
s
well o
pen
circuits
of inve
rter leg
s
du
ri
ng
norm
a
l (bu
ck) ope
ration. In steady stat
e, the
capa
ci
tor voltage, the d.
c.-li
n
k v
o
ltage an
d the
output a.c. pe
ak ph
ase voltage of
the ZSI are given by [4]:
Vc
=
V
in/ (1-Do)
(1)
Vi=
B
.Vin=
V
in/ (1-2Do)
(2)
M.
M
.
B
(3)
Whe
r
e,
Do
=T
o/Ts
is the ST duty ratio, To is the ST time per the
switchi
ng pe
rio
d
Ts
B=1/
(1
-2D
o
)
B= Boost Fa
ctor
M= Mod
u
latio
n
Index
From
(3), the
peak
a.c o
u
tput pha
se
vo
ltage ca
n
be co
ntrolle
d both by a
d
justin
g
the mo
dulati
on in
dex o
r
ST time, and
it can
be
larger th
an th
e i
nput d
c
V
o
ltage
by adj
u
s
t
the ST Time. This is th
e main Advantag
e of the ZSI [4].
2.2. Dra
w
b
a
c
ks of ZSI Ne
tw
o
r
k
The u
n
ique
o
peratio
n p
r
in
ciple
ma
ke
s the o
s
ses eva
l
uation of the
ZSI is compl
e
x and
different from
that of the
V
S
I, and different ST b
o
o
s
t
control
meth
ods have
a
great influe
nce
on
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of T
-
Source Invert
er with PWM Tech
ni
qu
e for High Voltage
Gain Applica
t
ion (K.Eswa
r
i)
5711
the losses ev
aluation [3]. Whe
n
The Z
S
I is oper
atin
g in buck mo
de, it operate
s
like a VSI
and
the losse
s
of the IGBTs a
nd the free
whe
e
ling
dio
des
(FWDs)
are calcul
ate
d
in the same
way as the
VSI. Going into the boo
st
mode, the S
T
states
are
requi
re
d to b
oost the in
put
voltage.
Duri
ng th
e
ST state
all
six IGBT
s (f
or
simple, m
a
ximum and
consta
nt maxi
mum ST
boo
st control method
s) o
r
two IGBTs (for modi
fied
space vector
modulatio
n ST boost co
ntrol
method
) are
con
d
u
c
ting si
multaneo
usly
and the d.c.-link is
sho
r
t ci
rcuite
d.
Above features en
su
re robu
st
ne
ss o
f
the in
verter durin
g inco
rrect turn on of
transi
s
to
rs o
r
durin
g app
eara
n
ce of external
EMI
disturb
a
n
c
e
s
. Moreover Z
-
so
urce inve
rter
cha
r
a
c
teri
ze
s attenuating o
f
common
mo
de and
differe
ntial distu
r
ba
nce
s
on
DC side (d
epe
ndin
g
on co
upling
o
f
inductors wit
h
in the imped
ance network).
Ho
wever in
some a
pplications th
e effici
ency of Z
-
so
urce inve
rter can
be
wo
rse tha
n
these
of conv
entional two-stage
bu
ck-b
oost
system
s. Other di
sa
dvant
age
of Z-source inve
rter is
its sen
s
itivity to parasiti
c
in
ducta
nces of
galv
ani
c con
nectio
n
s
an
d cap
a
cito
rs
of LC
im
ped
an
ce
netwo
rk.
The
s
e in
du
ctan
ces
cau
s
e
si
gnifica
nt ov
e
r
voltage
s d
u
ring
switche
s
comm
utation.
Hen
c
e ove
r
sizi
ng of swit
che
s
is typically used
in
Z-source inv
e
rters de
sign
. Application
of
addition
al cla
m
ping (sn
ubb
er)
circuits in
Z-
source inve
rters is ne
ce
ssary a
s
well.
Another in
co
nvenien
ce of
Z-so
urce to
pology
is l
a
ck of common
point of gro
undin
g
of primary sou
r
ce, LC
netwo
rk a
n
d
transi
s
tor b
r
idge that is importa
nt due to generated
EMI disturba
nce
s
.
Finally an in
conve
n
ient i
n
som
e
ap
p
lication
s
feat
ure of Z
-
so
urce inverte
r
is the
discontin
uou
s in
put
cu
rre
n
t a
nd
high
values of
di
/dt that impo
se
the
ne
ce
ssity of a
ppli
c
ati
on
of inp
u
t L
C
filter. The
ai
m of p
r
e
s
ent
pape
r i
s
to
show the
po
ssibility of
re
alizatio
n of
b
u
ck-
boo
st inverte
r
simil
a
r to
Z-source i
n
verter
but
wit
h
use of hig
h
frequ
en
cy (HF) t
r
an
sformer
with sm
all leaka
ge ind
u
ct
ance. For mi
nimizatio
n
of the negative i
m
pact of tran
sform
e
r lea
k
age
indu
ctan
ce o
n
the inverter performan
ce
two clam
pin
g
circuit
s
are
prop
osed: a
n
active sn
ub
ber
and a pa
ssive snu
bbe
r [3].
3. T-
SOUR
CE N
e
t
w
ork
3.1. General
Description
The
New type T -
so
urce
inverter
(TSI
) over
co
me t
he limitation
of traditional
voltage
sou
r
ce inve
rt
er a
nd
cu
rren
t sou
r
ce inve
rter [3].
With
u
s
e
of TSI, the
inversion
an
d al
so th
e b
o
o
st
function i
s
a
c
compli
sh
ed in
a singl
e stag
e. TSI has fe
wer
com
pon
e
n
ts. Due to th
ese
rea
s
o
n
, the
efficien
cy ap
pre
c
iably i
n
crease. Unlike
the tradi
tio
nal
inverte
r
, TSI utilize
s
a u
n
i
que im
ped
an
ce
netwo
rk that l
i
nks the inverter main ci
rcu
i
t with
the DC source. The
TSI topology requi
re
s a ver
y
low le
akage i
ndu
ctan
ce tra
n
sformer whi
c
h
sho
u
ld
b
e
made
with hi
gh p
r
e
c
isio
n.
In su
ch a
way,
the numb
e
r
o
f
passive ele
m
ents i
s
redu
ced
be
ca
u
s
e
only the tra
n
sformer and
th
e ca
pa
citor
are
need
ed [1, 3].
The DC voltage is fed as input to th
e impedan
ce
network of TSI which he
lps to
achi
eve volt
age
bu
ck
an
d
boo
st
pro
pertie
s
. Th
en
the
outp
u
t o
f
the
imp
e
d
ance
network
is
applie
d to
t
he i
n
verte
r
main
ci
rcuit
whi
c
h
con
s
ists of
fou
r
switch
es.
The
voltage
bo
o
s
t
capability of TSI
is facilitated by tu
rning
ON both the switches in the same phase l
eg
simultan
eou
sl
y. Voltage boost capa
bility of TSI
is
due the ene
rgy tran
sfer f
r
om capa
cito
rs
to indu
ctors, durin
g the shoot
thro
ugh
state. Since
,
the cap
a
cito
rs m
a
y be ch
arge
d to hig
h
e
r
voltages th
an
the so
urce v
o
ltage, the di
ode ‘
D
’
preve
n
ts di
schargi
ng of
capa
cit
o
rs thro
ugh t
h
e
s
o
urce [13].
The features
of T – Source
inverter are as follo
ws:
a)
Low rea
c
tive comp
one
nts i
n
comp
are
wi
th conventio
n
a
l Z-source in
verter.
b)
Use of a com
m
on voltage
sou
r
ce
of the passive arra
n
gement.
c)
Minimize the numbe
r of switching d
e
vice
s.
d)
No ne
ed
s of dead time.
e)
Inducto
r de
creases the in
rush
curre
n
t and harmoni
cs in the inrush curre
n
t.
3.2. Principle of Oper
ati
on
As with a
convention
a
l ZSI, the TSI c
an h
andl
e
sho
o
t throu
gh state
s
when bot
h
swit
che
s
in th
e sam
e
pha
se leg are turn
ed on. T
he T
-
netwo
rk i
s
u
s
ed inste
ad of
the LC-net
wo
rk
for
b
o
o
s
ting the
outp
u
t
voltage by
in
serting sh
oot
throug
h
state
s
in
the P
W
M. T –
Sou
r
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 570
9 –
5719
5712
Inverter op
erating prin
cipl
e same a
s
th
at of
conventi
onal ZSI [2].
The T-netwo
rk is u
s
ed in
st
ead
of the LC-n
etwork fo
r b
o
o
sting th
e o
u
tput voltage
b
y
in
se
r
t
in
g s
h
oo
t th
r
oug
h
s
t
a
t
es
in
th
e
PWM. TSI operate in two
mode
s: a) Sh
oot throug
h, b) No
n sh
oot throug
h mod
e
a) Shoot thro
ugh mod
e
:
Figure 3
sho
w
s th
e eq
uivalent ci
rcuit
of T
– Sou
r
ce Inverter i
n
Shoot thro
ug
h mode
operation. Th
is sh
oot thro
u
gh ze
ro
state
prohibite
d in
traditional vo
ltage so
urce i
n
verter. It can
be obtain
ed
in three different
ways
such a
s
sho
o
t throug
h via any one
phase leg
or
combi
nation
of two
pha
se leg.
Du
rin
g
this mo
de,
Diod
e i
s
reverse
bia
s
e
d
,
se
pa
rating
DC
link
from the AC line.
A desi
r
ed vol
t
age can b
e
maintaine
d
at
the output b
y
controlling t
h
e interval
of sho
o
t
through state. Thus the T
– Source
inverter highly
improves t
he
reliability of the inverter
sin
c
e
sh
ort
circuit a
c
ross any ph
ase le
g is
a
llo
wed
and it
ca
nn
ot dest
r
oy th
e switch
es in
the
inverter [13, 14].
Figure 3. Shoot through M
ode
Figur
e 4. Non
Shoot throug
h Mode
b) No
n – sh
o
o
t through m
ode:
Fig 4 sh
ows
the equivale
nt circuit of TSI
in Non – shoot thro
ugh
mode op
erat
ion. In
this mo
de, the invert
er
bridg
e
op
era
t
e in one
of
traditional
acti
ve states, th
us a
c
ting
as a
curre
n
t sou
r
ce whe
n
viewe
d
from T –
so
urce ci
rcui
t. During
active
state, the voltage imp
r
e
s
sed
across lo
ad.
The dio
de
co
ndu
ct and
ca
rry current
dif
f
eren
ce b
e
tween the i
ndu
ctor
cu
rre
nt a
nd
input DC cu
rre
nt. Note that
both the i
ndu
ctors hav
e an ide
n
tical
curre
n
t beca
u
se of
coupl
e
d
indu
ctors.
3.3. Design
of T – Sourc
e In
v
e
rter
Duri
ng the d
e
s
ign of TSI the most challe
nging i
s
the e
s
timation of value
s
of the reactive
comp
one
nts
of the imp
e
d
ance n
e
two
r
k. The
co
mp
onent val
u
es sh
ould
be
e
v
aluated fo
r
the
minimum in
p
u
t voltage of the co
nverte
r, where the
b
oost fa
ctor a
nd the curren
t stresse
s
of
the
comp
one
nts become
maxi
mal.
Calculati
on of the average current
o
f
an inducto
r
[13, 14].
L
DC
P
I
V
(1)
The
maximu
m
cu
rre
nt th
roug
h
the
in
duc
to
r
occu
rs wh
en
the
ma
ximum shoot
-throug
h
happ
en
s, whi
c
h
cau
s
e
s
maximum
ri
p
p
le
current.
In o
u
r de
sig
n
,
60%
p
e
a
k
-to-pea
k
cu
rren
t
ripple thro
u
gh the Z-so
urce indu
ctor du
ri
ng m
a
ximum power o
peratio
n was ch
o
s
en.
Therefore,
th
e
allo
wed
ri
pple cu
rrent
i
s
∆
I
L
, and
th
e m
a
ximum
curre
n
t th
rou
gh
the
in
ductor
is
I
Lm
a
x
:
max
LL
L
II
I
mi
n
LL
L
II
I
ma
x
m
i
n
LL
L
II
I
(2)
The boo
st factor of the inpu
t voltage is:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of T
-
Source Invert
er with PWM Tech
ni
qu
e for High Voltage
Gain Applica
t
ion (K.Eswa
r
i)
5713
1
12
Z
B
D
(3)
Whe
r
e
D
0
i
s
the sh
oot-th
r
o
ugh duty cycl
e:
1
2
z
B
D
B
(4)
Cal
c
ulation of
requi
red in
du
ctan
ce of Z-source ind
u
cto
r
s:
.
OC
L
TV
L
I
(5)
Whe
r
e,
T
0
- is the shoot
-through p
e
rio
d
p
e
r switchi
ng cycle.
Cal
c
ulation of
requi
red
cap
a
citan
c
e of Z-sou
r
ce ca
pa
citors:
.
L
z
C
I
T
C
V
(6)
4. Pulse Width Modula
t
io
n Techniqu
e
With the introdu
ction and
wide accep
t
ance
of TSI as an altern
ative for traditional
voltage sou
r
ce and cu
rrent
source inve
rters
(VSI/CSI
), the modified switchi
ng scheme
s
fro
m
the tra
d
ition
a
l
scheme
s
has rea
c
he
d
the
poi
nt
where
the fu
rt
her i
m
prove
m
ents i
n
firi
n
g
the
swit
che
s
and
in
se
rting
th
e
sho
o
t th
ro
ugh
state
s
b
r
ing
cru
c
ial
b
enefits [1
4]. In ad
dition to
the
six a
c
tive switching
state
s
for the
VSI, ZSI
ha
s se
ven shoot-th
r
ough
ze
ro
st
ates,
whe
n
the
positive a
nd
negative
swit
che
s
of a
sa
me pha
se
l
e
g
are
simulta
n
eou
sly switch
ed on. Thi
s
shoot-
throug
h
state
is
harmful i
n
VSI/CSI and
can
re
su
l
t
sho
r
t ci
rcui
ting an
d da
maging
of e
n
tire
appli
c
ation.
Due to the
ca
pability of buck-bo
ost a
nd
wide
ra
n
ge of
operating poi
nts, TSI is suitable
for th
e a
ppli
c
ation
s
with
un
stable
p
o
w
er supply
such
a
s
fu
el
cell, win
d
p
o
wer, ph
otovolta
ic
etc. Same p
u
lse
width m
odulatio
n (P
WM) l
ogi
cs
a
nd metho
d
s
of VSIs can
be ad
apted t
o
a
swit
ch a
TSI with a
slight
modificatio
n
s.
The
di
stri
but
ion of the
sh
oot-t
hroug
h i
n
the
swit
chi
ng
waveforms of
the traditional PWM con
c
ept is
the key factor to control the TSI. The DC link
voltage boo
st
(diag
onal
cap
a
citor volta
g
e
)
, cont
rollabl
e
range of
ac outp
u
t voltage, voltage
stre
ss across the switchi
n
g device
s
an
d harmoni
c
profile of the ac
output param
eters are
purely ba
se
d [14].
4.1. T
y
pes of PWM Techn
i
ques
There a
r
e n
u
m
ber
of control metho
d
s
h
a
ve bee
n p
r
e
s
ente
d
in
re
cent years that
inclu
d
e
sinu
soi
dal pul
se that incl
ud
e [16]:
a)
Sinusoi
dal Pu
lse Wi
dth Mo
dulation (SP
W
M) T
e
chniq
ues
b)
Modified Spac
e Vec
t
or Modulation (MSVPWM) Tec
h
niques
.
The vario
u
s
PWM co
ntrol
algorith
m
s a
r
e:
a)
Simple Boost
Control
(SBC)
b)
Maximum Boost Control (MBC)
c)
Maximum Co
nstant Boo
s
t Control (M
CB
C)
d)
Traditional Space Ve
ctor Modulation
(T
SVPWM)
e)
Modified Spac
e Vec
t
or Modulation (MSVPWM) [16]
5. Exitsting
Method
In this perfo
rmance analy
s
is a
nd si
mul
a
tion
of maximum co
nsta
nt boost
cont
rol with
third harmoni
c injection method
s for the Z-s
ource inverter,
whi
c
h can obtain maximum
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 570
9 –
5719
5714
voltage boo
st for a fixed modulatio
n in
dex [4]. The
Z-source i
n
ve
rter i
s
very ad
vantageo
us o
v
er
traditional inv
e
rters an
d it can b
e
empl
oyed in
all ac and dc p
o
wer conversio
n
application
s
. All
traditional P
W
M meth
od
s can
be u
s
e
d
to cont
rol Z
-
sou
r
ce inve
rter. Maximum
con
s
tant
bo
ost
control metho
d
s elimin
ates the low-freq
uen
cy rippl
e
s
in
the inductor cu
rrent and capa
cit
o
r
voltage by
maintainin
g the shoot through dut
y cycle con
s
tan
t, and minimize the voltage
st
re
s
s
e
s
of
swit
chin
g de
v
i
ces
at
t
he
same
tim
e
. The Maximu
m boo
st co
ntrol meth
od
is
suitabl
e for relatively high output frequ
ency onl
y, bu
t in the maximum co
nsta
nt boost control
method the
Z-source
net
work d
e
si
gn i
s
ind
epe
nde
nt of the out
put frequ
en
cy and dete
r
m
i
ned
only by the switchi
ng freq
uen
cy [4].
5.1. Maximum Constant
Boos
t PWM
w
i
th
Third Harmonic in Control Me
tho
d
The
maximu
m con
s
tant
boo
st
control
a
c
hieve
s
th
e maxim
u
m
voltage
gai
n
while
alway
s
kee
p
i
ng the sho
o
t-thro
ugh dut
y ratio con
s
tant [4]. Maximum Con
s
ta
nt boost co
n
t
rol
with third ha
rmoni
c inj
e
ct
ion meth
od
is devi
s
ed
to produ
ce t
he maximu
m
con
s
tant b
o
o
s
t
while mini
mizing the voltag
e stre
ss. Shoot-thro
ugh
p
u
l
se
s are g
ene
rated a
s
sh
o
w
n in Figu
re
5.
These shoot-throug
h pul
ses can b
e
g
enerated by
usin
g trian
g
u
l
ar waveform
gene
rator
a
n
d
comp
arator. Shoot-throug
h time is
de
cide
d by the two referen
c
e level
s
call
ed sh
oot-th
r
o
ugh
level.
When
trian
gula
r
carri
er
wave
excee
d
s a
b
o
v
e up
pe
r
sh
oot-throug
h l
e
vel o
r
bel
o
w
lowe
r sho
o
t-t
h
rou
gh level a shoot-th
r
o
ugh pul
se is generate
d
[4].
Figure 5. Shoot-throug
h Pulse
s
[4]
Figur
e 6. Maximum co
nsta
nt boost control
with third ha
rmonic inj
e
ctio
n-PWM
waveform [4]
Figure 5 sh
ows third h
a
r
moni
c inje
ct
ed PWM
with sho
o
t-thro
ugh an
d the
control
method
i
s
re
ferre
d
as m
a
ximum
con
s
tant bo
ost
control
with t
h
ird
h
a
rm
oni
c
inje
ction.
The
third and
hig
her ha
rmo
n
ic comp
onent
can b
e
inje
cted into fund
amental to redu
ce ha
rmo
n
ic
distortio
n
in the output
wa
veform. The t
h
ird h
a
rm
onic comp
one
nt with 16.6% of
the fundame
n
tal
comp
one
nt is injected into
the modulatin
g sign
als [10,
11].
As
sho
w
n
in
Figu
re
6, at
an
an
gle
of
π
/3
of m
o
d
u
lating
si
gna
l the thi
r
d
ha
rmoni
c
comp
one
nt crosse
s zero and then in
crea
se
s towards ne
gative pea
k [4]. Therefo
r
e at
π
/3
Va reache
s its peak value (
√
3/2
)
M
while Vb is
at its minimum value -(
√
3
/
2
)
M
.
I
n
t
h
i
s
method only
two strai
g
h
t
lines are
need
ed to
control the
shoot-th
r
ou
gh
time with the
third harm
oni
c injectio
n [4, 11].
The
com
pon
ent value
s
o
f
Z-source
in
verter
dep
en
ds
on
swit
ch
ing fre
que
ncy only.
These comp
onent value
s
are L1
= L2
= 4mH
and
C1 =
C2
= 1000
uF. The
purp
o
se of the
system i
s
to
p
r
odu
ce
23
0Vrms lin
e to lin
e
voltage.
Fo
r PWM
gen
e
r
ation th
e
ca
rrie
r
frequ
en
c
y
is set to 1
0
KHz an
d
modulating
refere
nce signal freq
ue
ncy is set to 50Hz. The
modulatio
n in
dex is 0.8 and the input DC voltage is 188V [4].
5.2. Results and Output
Wav
e
forms
Input dc voltage applie
d to Z-source inve
rter is 1
88V [4]. The capacitor voltag
e is the
averag
e d
c
li
nk voltag
e re
mains almo
st
con
s
tant
ab
out 337V
a
s
sho
w
n i
n
Figure 8
Th
us
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of T
-
Source Invert
er with PWM Tech
ni
qu
e for High Voltage
Gain Applica
t
ion (K.Eswa
r
i)
5715
the input voltage (18
8
V)
is booste
d (337V
) and
applie
d as dc link volta
ge. The pea
k
value of this dc lin
k voltag
e appe
ars as
input
voltage
across the m
a
in inverte
r
ci
rcuit.
Figure 7. Input DC Voltag
e = 188V [4]
Fi
gure 8. Cap
a
citor Volta
g
e
= 337V [4]
The output
dc link vol
t
age acro
ss Inverter Bridge app
ea
rs as
sho
w
n
in the
Figure 9 Th
e pea
k d
c
link voltage
remain
s
almo
st co
nsta
nt a
bout 48
0V. It
is ob
se
rved t
hat
durin
g
sho
o
t-throug
h
state
dc lin
k volta
ge b
e
come
s
zero
sin
c
e
all
devices in
m
a
in inve
rter a
r
e
swit
che
d
on simultaneo
usly
, short ci
rcuiting the dc lin
k.
Figure 10 sh
ows the simulation an
d exper
imen
tal results o
f
diode voltage and
indu
ctor cu
rrent. The diode is reverse bi
ased by capa
citor volta
ge duri
ng sho
o
t-thro
ugh
wh
en
all the
six
switche
s
are tu
rned
on,
blo
cki
ng
the
r
e
v
e
r
s
e
f
l
o
w
o
f
c
u
r
r
e
n
t
.
A
l
s
o
,
w
e
c
a
n
s
e
e
that durin
g the sh
oot-th
r
ough p
e
ri
od,
the cap
a
cito
r voltage becomes
equ
al to the indu
ctor
voltage. The
cap
a
cito
r
ch
arge
s th
e in
ducto
r
so th
at the indu
ct
or
curre
n
t in
cre
a
ses du
ri
ng
this time and relea
s
e
s
its ene
rgy du
ri
ng active stat
e [4].
Figure 9. Peak dc Li
nk Volt
age a
c
ro
ss Inverter
Bridge
= 480
V [4]
Figure 10. Di
ode Voltage
and Indu
ctor
Curre
n
t
[4]
6. Proposed
Metho
d
In this pa
pe
r
pe
rform
a
n
c
e
an
alysis
and
simul
a
tion
of Simpl
e
Boo
s
t
Con
t
rol m
e
thod
for the T-so
urce inverte
r
[14]. The T-sou
r
ce
invert
er is very a
d
vantage
ou
s over Z-sou
r
ce
inverter
an
d it can
b
e
empl
oyed
in a
ll
ac a
nd d
c
p
o
wer
conve
r
sion
appli
c
ation
s
.
All
traditional P
W
M meth
od
s can b
e
use
d
to co
ntrol T
-
source inve
rter.
The
simple
b
oost
control metho
d
is simpl
e
to control T-sou
r
ce im
ped
an
ce netwo
rk.
6.1. Simple
Boos
t Co
ntr
o
l
In sim
p
le
bo
ost
control,
t
he
shoot-th
r
ough
pe
riod
s
are
fabri
c
ate
d
by two
straig
ht line
s
whi
c
h are eq
ual or g
r
eate
r
than the (m
aximum and
minimum
)
pe
ak value
s
of the modulati
o
n
referen
c
e si
nusoidal si
g
nal. Figure 1
1
sho
w
s
the compl
e
te imp
l
ementation b
l
ock diag
ram
of
the SBC tech
nique. S
hoot
throug
h
switching
pul
se
s a
r
e
gen
erate
d
by co
mpa
r
ing
the
dc si
gna
l
(with e
qual
o
r
greater tha
n
the pe
ak
o
f
tri
angula
r
si
gnal)
with th
e high f
r
equ
ency tri
angu
lar
c
a
rrier s
i
gnal.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 570
9 –
5719
5716
Figure 11. Block Dia
g
ra
m of Simple Boost Co
ntrol
Major exp
r
e
s
sion
s of SBC method a
r
e o
u
tlined he
re,
Modulation index:
Vca
r
ref
V
M
Shoot through duty
ratio:
M
1
O
D
Gain fac
t
or:
O
2D
1
M
G
Boos
t
fac
t
or:
M
G
B
In orde
r to
prod
uce the
output voltag
e t
hat req
u
ires a hi
gh v
o
ltage gai
n, a small
modulatio
n in
dex ha
s to
b
e
u
s
ed.
Ho
wever,
sma
ll
m
odulatio
n in
d
e
xes
re
sult i
n
greater volta
g
e
stre
ss on th
e
device
s
.
Usi
ng this control metho
d
, t
he voltage
st
ress
acro
ss
the switche
s
is
quite hi
gh,
which
will
restri
ct th
e
obtai
nable
vo
ltag
e
gain
b
e
ca
use
of th
e lim
itation of d
e
vice
voltage ratin
g
. [14]
Figure 12. Simple Boo
s
t Control Meth
od
Waveform
s [16]
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of T
-
Source Invert
er with PWM Tech
ni
qu
e for High Voltage
Gain Applica
t
ion (K.Eswa
r
i)
5717
This meth
od,
use
s
two
straight line
s
eq
ual to or gre
a
ter than th
e peak valu
e of th
e
three ph
ase referen
c
e
s
to
control the ST duty ratio
in a tradition
al sinu
soid
al PWM,as
sho
w
n
in Figure 12 Whe
n
the triangul
ar wave
form is grea
ter than the upper lin
e, Vp, or lowe
r than
the bottom line Vn, the circuit turn
s into ST
state. Otherwi
se it operat
e
s
just as tradition
al
carrie
r ba
se
d
PWM. Thi
s
method i
s
ve
ry strai
ght
forward ho
weve
r, the re
sultin
g voltage
stress
across the
switche
s
is rel
a
tively high becaus
e som
e
traditional
zero
states a
r
e no
t utilized
[16].
6.2. Simulation Diagram
Figure 13. Simulation Di
ag
ram of Prop
o
s
ed System
7. Experimental Re
sults
Figure14. Inp
u
t and Output
Waveform
Figure15. Inp
u
t Pulses of T
S
I
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 570
9 –
5719
5718
Simulation m
odel for si
ngl
e pha
se T-so
urce inverte
r
wa
s de
signe
d by using M
A
TLAB/
SIMULINK. F
i
gure
14
sho
w
s the
output
voltage
and
cu
rre
n
t waveform
of T-so
urce i
n
verte
r
wi
th
simple
b
oost
control te
ch
ni
que.
He
re, th
e inp
u
t voltag
e is 1
00V. Th
e outp
u
t volt
age i
s
boo
ste
d
up to 220V b
y
shoot throu
gh duty ratio.
Figure 16. Motor Outp
ut
Figure 16 shows the mot
o
r output and it
consist of
auxiliary current,
main windi
ng
curre
n
t, torqu
e
and spee
d variation.
8. Conclusio
n
This the
s
is d
eals
with the Analysis of T-
source inv
e
rter
with PWM techniqu
e for hig
h
voltage gai
n
appli
c
ation. T
he T
-
source
inverte
r
ov
ercome
s th
e
pro
b
lem
s
of
the Z
-
sou
r
ce
inverter
and
p
r
ovide
s
b
u
ck-b
oo
st o
p
e
ration
in
a
singl
e
stage.
The
T-so
ur
ce inve
rter sy
stem
can
pro
d
u
c
e
a
n
output
voltage
g
r
e
a
ter
than
th
e
dc in
put
voltage
by
controlling
t
he
sho
o
t-throug
h duty ratio, which is impossibl
e
for the traditional voltage
-so
u
rce inve
rter
and cu
rrent-sou
rce invert
er. The T-so
urce invert
e
r
has lo
w re
active compon
e
n
ts in com
p
a
r
e
with ZSI. All
tradition
al PWM method
s can be u
s
ed to
control T-source inve
rte
r
. In this paper
Simple boo
st control me
thod is u
s
ed
to contro
l the T-so
urce i
n
verter. Th
e output of the T-
sou
r
ce inve
rt
er i
s
give
n to
the ind
u
ctio
n
motor.
The
o
u
tput voltage
can
be
varie
d
by varying
the
DC in
put voltage.
Referen
ces
[1]
W
e
i Qian, F
a
n
g
Z
hen
g Pe
ng
, Honn
yo
n
g
C
ha. T
r
ans- Z
-
Source Inv
e
rters.
IEEE Transactions o
n
Power Electronics
. 2011; 2
6
(1
2).
[2]
Fang Zhen
g
Peng, Se
nior
Mem
ber, IEEE. Z-Source Inverter.
IEEE T
r
ansaction
s on Industry
Appl
icatio
ns
. 2
003; 39(
2).
[3]
R
y
sz
ard Strzel
ecki, Marek Ad
amo
w
icz, N
a
tal
i
a Strzeleck
a
.
New
T
y
pe T
-
Source Inverter
.
Procee
din
g
s
on Com
patib
ilit
y a
nd Po
w
e
r El
ectronics 6th In
ter
natio
nal C
o
n
f
erence-W
o
rks
hop. 20
09; 19
1
-
195.
[4]
Amol R
Sutar,
Sat
y
a
w
a
n
R
Jagtap, J
a
kirh
usen T
a
mb
o
li.
Performanc
e A
nal
ysis
of Z
-
so
urce Inv
e
rter
F
ed Inductio
n
Motor Drive.
Internati
o
n
a
l Jo
urna
l of Sci
ent
ific & Engine
er
ing Res
earc
h
. 201
2; 3(5).
ISSN 2229-
55
18
[5]
Cursin
o Br
an
d
ao J
a
co
bin
a
, A
n
toni
o Marc
us
Nog
ueir
a
Lima.
Curr
ent C
ontr
o
l for
Ind
u
ction
Motor
Drive
s
Using R
a
n
dom
PW
M.
IEEE Transacti
ons o
n
Industri
a
l Electr
onics
. 19
98; 45
(5): 704-7
12.
[6]
Fizatul Aini Pat
a
kor, Marizan
Sula
iman, Zulk
ifilie
Ibra
him. C
o
mparis
on Perf
ormanc
e of Induction Moto
r
Using SVPW
M and H
y
ster
esis Curr
ent
Contro
ller.
Jo
u
r
nal of T
h
e
o
re
tical an
d Ap
pli
ed Infor
m
ati
o
n
T
e
chno
logy
. 2
011; 30(
1): 10-
17.
[7]
Marian P K
a
z
m
ierko
w
sk
i, L
u
igi M
a
les
a
n
i
. Current C
ont
rol T
e
chniq
u
e
s
for
T
h
ree-Phase V
o
ltag
e-
Source PW
M
Conv
erters: A Surve
y
.
IEEE Transactio
n
s o
n
Industri
a
l El
ectronics
. 1
9
9
8
; 45(5): 6
91-
701.
[8]
Omar Ell
abb
a
n
, Joer
i V
an
Mierlo,
Phi
lip
p
e
L
a
tair
e.
Co
mp
ariso
n
betw
een
Differe
nt PW
M
Contro
l
Methods
for
Different Z
S
ource I
n
verter
T
opol
og
ies.
Proceedings
on IEEE Conference
Rec
ent
Photovo
l
taic sp
ec., 2008.
Evaluation Warning : The document was created with Spire.PDF for Python.