TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 80
9
8
~ 810
3
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.68
84
8098
Re
cei
v
ed Ma
y 29, 201
4; Revi
sed O
c
tob
e
r 18, 201
4; Acce
pted No
vem
ber 6, 20
14
Modeling and Simulation of Grid Interfaced
Synchronous Generator with Controller
S.Sugan
y
a*
1
, N.Manonm
ani
2
Dep
a
rtment of Electrical
and
Electron
ics En
gin
eeri
ng,
Sri Krishn
a Col
l
eg
e of Engin
eer
in
g and T
e
chno
l
o
g
y
,
Coimb
a
tore, T
a
miln
ad
u, India
-
641
001
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: sugan
ya
s.sri
dhar
an@
gmai
l.com
1
, manonm
ani@skc
et.ac.i
n
2
A
b
st
r
a
ct
T
he i
n
creas
in
g d
e
m
an
d
of
electric
pow
er
nec
e
ssitates
the esta
blis
h
m
ent of
new
g
ener
atin
g
stations. Wind
ener
gy conv
ersion syste
m
(WECS) is mor
e
attractive du
e to its mature
and cle
an as
p
e
cts.
During last dec
ades the var
i
able s
peed wind turbine concept has been
increasingly r
e
ceiving attention
due
to the fact that it is more con
t
rolla
ble a
nd ef
fi
cient, and h
a
s
good p
o
w
e
r qua
lity. T
he w
i
nd turbi
ne driv
en
w
i
th perman
e
n
t
mag
net synch
rono
us ge
ner
ator (PMSG)
feeds ac pow
er to
utility gri
d
. For this purp
o
se tw
o
voltag
e so
urce
conv
erters ar
e co
nnect
ed
b
a
ck to
back
be
tw
een rotor t
e
rmi
nals
a
nd
gri
d
vi
a co
mmon
d
c
l
i
n
k. In
o
r
d
e
r
to
sa
ti
sfy th
e g
r
i
d
cod
e
re
qu
i
r
em
en
ts su
ch
a
s
g
r
i
d
sta
b
i
l
i
t
y,
p
o
w
e
r
qu
a
l
i
t
y im
p
r
o
v
eme
n
t, and
pow
er control
this mac
h
i
ne i
s
usual
ly use
d
. In th
is pap
er the compl
e
te math
e
m
atic
al mod
e
ll
ing a
n
d
simulati
on
of wind turb
in
e driv
en PMSG has
bee
n do
ne. T
h
e stator an
d rotor of PM
SG is conn
ected to t
h
e
grid thr
o
u
gh
b
a
ck to b
a
ck c
onn
ected tw
o
voltag
e so
urce
converters
w
i
th a c
o
mmon
DC li
nk. T
he t
o
tal
system
is
m
odeled and s
i
m
u
lated for
better power
qualit
y and is
capable of harne
ssing maxim
u
m
power at
vario
u
s w
i
nd
spee
ds. A ne
w
control strategy kn
ow
n
as
perturb
an
d
observ
a
tion (P
&O) controll
er
is
introduced in WECS
for
m
a
ximum
power
point tracking
(MPPT) to im
prove the system
oper
ation. T
he
simulati
on is d
one i
n
MAT
L
AB Simu
li
nk env
iron
me
nt.
Ke
y
w
ords
: b
a
ck to back pw
m conv
erters, gr
id, PMSG, W
E
CS, wind turbine
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Ren
e
wable
e
nergy
in
cludi
ng all
the
sou
r
ce
s such a
s
sola
r,
wind,
g
eothermal, tid
a
l etc.,
is sustai
nabl
e, environ
m
entally friend
ly, r
eusable
and
clea
n. Due to i
n
crea
sing
pollu
tion
probl
em
s and
shorta
ge in fossil fuels re
n
e
wa
ble ene
rg
y source be
come an impo
rtant source [1
].
Among all the energie
s
wi
nd ene
rgy is most prom
isi
ng and faste
s
t growin
g sou
r
ce. By the end
of year 20
10
wo
rld
w
ide
cumulative in
stalled
ca
p
a
cit
y
rea
c
h
ed
19
9,520
MW. I
n
India, t
he t
o
tal
installe
d cap
a
city of wi
nd
energy po
we
r gene
ratio
n
is 8754
MW in
the year
200
8. By the end
of
2013 th
e total install
ed
capa
city is ex
pecte
d to re
ach
12G
W a
c
cordi
ng to t
he Mini
stry
of
rene
wa
ble en
ergy in India [2].
WECS can b
e
run ha
s
va
riable sp
eed
s
in
wh
i
c
h th
e
machi
ne i
s
operating at
varying
spe
e
d
s
. In
WECS the
ma
chine
sp
eed
varie
s
in
a
c
co
rdan
ce
to th
e
win
d
spe
ed.
In fixed
spe
e
d
WECS the
efficien
cy is fou
nd to be ve
ry low, to
impro
v
e the efficie
n
cy the te
chn
o
logy is
shift
ed
from fixed sp
eed to variabl
e spe
ed [3-6].
This
pap
er completely d
e
v
elops the m
a
themat
ical
model
of wi
n
d
turbi
ne, P
M
SG an
d
control
circui
ts in d
e
tail. And al
so it
prop
oses the
cont
rol m
e
chani
sm for
maximum p
o
w
er
extraction. It also di
scu
ss
about re
al an
d rea
c
tive po
wer
cont
rol b
a
se
d on re
ctifier sid
e
[6-9].
2. Wind Turb
i
ne
The
kineti
c
e
nergy
pre
s
e
n
t in the flo
w
in
g ai
r capture
d
by wi
nd tu
rbine
can
be
e
x
presse
d
as:
(1)
Whe
r
e P
m
is the win
d
power,
is the po
wer co
-effici
ent
,
is the air d
e
nsity kg/m
3
, A is the area
of blad
es,
v i
s
the
wind
ve
locity in
m\se
c. Th
e d
e
finition fo
r p
o
wer
coeffici
ent i
s
output p
o
wer of
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Sim
u
lation of Grid Interfa
c
ed Syn
c
h
r
on
ous G
ene
rato
r with Co
ntroll
er (S.Suga
nya)
8099
the wind turbi
ne to the available po
we
r in the wi
nd. At a given wind
spee
d the “m
aximum” po
wer
absorb
ed
by
the wi
nd tu
rbi
ne fro
m
the
a
v
ailabl
e
wind
power
ca
n b
e
determined
from th
e a
bove
c
oeffic
i
ent.
Powe
r coeffi
cient is ba
se
d on tip-spe
e
d
ratio (
λ
) and
the blade pitch angle (
). Pitc
h
controlle
r is u
s
ed to control
the blade pit
c
h an
gle an
d tip-sp
eed
rati
o is given a
s
:
λ
⍵
/
(2)
Whe
r
e
λ
is ge
nerato
r
rotati
onal spee
d a
nd R is
rotor
blade radiu
s
.
Figure 1. Model of turbine
3. Driv
e Train
The m
o
st
co
mmon
way to
model
the
drive trai
n i
s
by co
nsi
deri
ng
a num
be
r of
discre
t
e
masse
s
co
nn
ected tog
e
the
r
by spri
ng
s a
r
e def
ine
d
by stiffness and
dampin
g
co
efficients.
Figure 2. Tra
n
smi
ssi
on mo
del of
N masses conn
ecte
d
together
For
th
e studi
es ba
sed on intera
ction be
tween
win
d
e
nergy and
AC
g
r
id
s,
on
e lumpe
d
mass model
drive train can be
con
s
idere
d
for
the sa
ke of time efficien
cy and accept
abl
e
pre
c
isi
on. Th
e above ap
proximation is
con
s
id
ere
d
for this present
study and it is explain
ed i
n
the followin
g
equatio
n:
\
_
\
.
\
(3)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8098 – 81
03
8100
Whe
r
e sub-i
ndex
is the generator
side,
re
pre
s
ents me
cha
n
ical an
gula
r
spe
ed of
gene
rato
r,
is ele
c
trom
e
c
ha
nical torque,
_
rep
r
e
s
ent
s ae
rod
y
namic torq
ue. This
aero
d
ynami
c
torque i
s
e
q
u
a
l to the torq
ue produ
ce
d
i
n
the roto
r
si
de du
e to the
absen
ce of g
ear
box and rotati
onal ine
r
tia is denoted by
is
derived from:
\
(4)
Whe
r
e
and
are the rotor
ro
tational inerti
a and ge
nera
t
or,
is gea
r ra
tio, and is eq
ual to 1.
The drive trai
n model is im
plemente
d
in simulin
k is
sh
own in Fig
u
re
3.
Figure 3. Model of Drive T
r
ain
4. Permanen
t Magne
t Sy
nchrono
us
Gener
a
tor
PMSG ca
n b
e
op
erate
d
wi
th low
win
d
speed
s fo
r tha
t
it requi
re
s h
i
gh nu
mbe
r
o
f
pole
s
.
The
rotor
i
s
provide
d
with
perm
ane
nt magnet
s
thu
s
ele
c
tri
c
al
d
c
excitatio
n
i
s
not
req
u
ire
d
.
Becau
s
e
of
equally di
stri
buted
su
rface mou
n
t
ed
magnet
s a
n
d
perm
eability
of the mag
netic
material i
s
a
s
big as th
e ai
r gap
perm
e
a
b
ility the r
eactance in
d- a
nd q-
axis differs
only by few
percent [3], thus the surfa
c
e mounted P
M
SGs a
r
e co
nsid
ere
d
as
round rotor m
a
chi
n
e
s
.
Figure 4.Salient Pole Synchrono
us M
a
chin
e with d-q and
axis
The
wind
turbine b
a
sed P
M
SG are
sho
w
n in
the
Fig
u
re
1
called
the
wind tu
rbi
ne an
d
perm
ane
nt sy
nch
r
on
ou
s ge
nerato
r
syste
m
. The ba
ck t
o
ba
ck P
W
M
conve
r
ter i
s
d
i
vided into two
comp
one
nts:
the roto
r sid
e
conve
r
ter a
n
d
the gri
d
si
d
e
co
nverte
r. Both rotor
sid
e
and g
r
id
si
de
conve
r
ters a
r
e voltage
sou
r
ce
co
nverte
rs in o
r
de
r to
synthe
size a
n
AC voltage
from DC volt
age
sou
r
ce force
d
comm
utated
power
elect
r
o
n
ic d
e
vice
s a
r
e u
s
e
d
. A DC lin
k
capa
cit
o
r a
c
ts
as a
DC
voltage so
urce [10].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Sim
u
lation of Grid Interfa
c
ed Syn
c
h
r
on
ous G
ene
rato
r with Co
ntroll
er (S.Suga
nya)
8101
Figure 5. Win
d
Turbi
ne Dri
v
en with PMSG
The thre
e ph
ase
stator wi
nding a
r
e directly
con
n
e
c
ted to the grid
. And the three pha
se
rotor
win
d
ing
are
co
nne
ct
ed to the
gri
d
thro
ugh A
C
\DC\AC
co
nverter. T
he
PMSG gen
erates
electri
c
al p
o
w
er by conv
erting the m
e
ch
ani
cal po
wer
captu
r
ed
by the wind turbine an
d
it is
transmitted to the grid by st
ator and
rotor windin
g
s.
5. Mathema
t
i
cal Modeling
of PMSG
Und
e
r va
rio
u
s o
perating
con
d
ition
s
and diffe
rent
cont
rol
strategie
s
a
si
mplified
mathemati
c
al
model i
s
u
s
ed to
an
alyse the
be
ha
vior of any
compl
e
x sy
stem. For PM
SG
mathemati
c
al
model is d
e
rived in term
s of dire
ct a
n
d
quad
ratu
re
axes (d
q ax
es)
qua
ntities in
synchro
nou
s
referen
c
e fra
m
e.The related expre
s
sio
n
s to this mo
del are give
n by [1, 2]:
\
1\
(5)
\
1
\
(6)
Whe
r
e
is th
e stato
r
resi
stance [
Ω
],
and
are the
i
ndu
ctan
ce
s [H] of the g
e
n
e
rato
r,
and
are the leakage ind
u
ctance
s
[H] of the gene
rato
r,
e is the elect
r
ical
rotating
spe
ed of
the generator,
f
is the
permanent mag
netic flux.The elec
trical rotating spee
d of the genera
t
or
can b
e
define
d
by:
e
= p
(
7
)
Whe
r
e p represe
n
t the pol
e pairs of the gene
rato
r.
The
resultant
of the PMS
G
mathe
m
ati
c
al m
odel
i
s
t
he d
r
iving fo
rce,
which i
s
descri
bed
by the followi
ng ele
c
trom
a
gnetic torque
equatio
n [3].
e
= 1.5p((
(8)
The PMSG m
odelling h
a
s
been
simulat
ed in Simulin
k is sho
w
n in
Figure 6.
Figure 6. Simulink Mo
del o
f
PMSG
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8098 – 81
03
8102
The ba
sic p
a
rameters u
s
ed
for modellin
g
PMSG are gi
ven in Table
1.
Table 1
Parameter
S
y
mbol
Value
Unit
Power
2 [MW]
Phase Voltage
3000
[V]
Rated curr
ent
400 [A]
Rated speed
25 [rpm]
Stator resistance
0.08 [
Ω
]
S
y
nchrono
us inductance
0.334
[H]
S
y
nchrono
us inductance
0.217
[H]
Permanent ma
gn
et flux linkage
0.4832
[Wb]
Rotor mome
nt of
inertia
J
0.3 [mKgm
2
]
Nr.of pole pairs
npp
3 -
6. Results a
nd Discu
ssi
on
The
study i
s
ca
rri
ed
out f
o
r
wind
spe
e
d
12
m/s.
Th
e outp
u
t torq
ue of t
he tu
rbine i
s
sho
w
n in Fig
u
re 7. The tu
rbine works at
rated
conditi
ons
whe
n
is
operating at wind
spe
ed o
f
12
m\s. Beyond
the rate
d val
ue pit
c
h
angl
e me
cha
n
is
m
is
activated,
so th
at the
p
o
we
r a
nd
sp
eed
are limited to
their rate
d values.
Figure 7. Output Wavefo
rm of Wind Tu
rbine
Figure 8. Output Wavefo
rm of
voltages and cu
rrent
of generator
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g and
Sim
u
lation of Grid Interfa
c
ed Syn
c
h
r
on
ous G
ene
rato
r with Co
ntroll
er (S.Suga
nya)
8103
7. Conclusio
n
This p
ape
r p
r
ese
n
ted the
compl
e
te mat
hematical mo
del of win
d
turbin
e ba
se
d
PMSG
and
also it a
nalyze
d
that i
f
the wi
nd
sp
eed
de
cr
e
a
ses
belo
w
th
e
rate
d value
of the
gen
erator
spe
ed,
cu
rre
nt and
voltag
e de
crea
se
s
but a
s
th
e
wi
nd
spe
ed i
n
creases beyo
n
d
the
rate
d v
a
lue
the control
m
e
ch
ani
sm li
ke
pitch
angl
e
mech
ani
sm
i
s
a
c
tivated th
us it limit
s th
e po
we
r a
nd
the
spe
ed to th
eir rated
value
s
and
also
the
observation
i
s
d
one th
at there
is no
variation i
n
volt
age
and
cu
rre
nt a
t
the gen
erat
or terminal.
Here a
co
ntrol strategy fo
r varia
b
le
sp
eed
wind
en
ergy
system i
s
propo
sed
whi
c
h allows the
PMSG to
op
erate at diffe
rent wi
nd sp
eed
s to gen
e
r
ate
maximum po
wer from the
wind tu
rbine
and al
so u
s
e
d
for real
and
rea
c
tive power control. Th
us
by usi
ng n
e
w
control
strategy kno
w
n
as pe
rtur
b
a
nd
o
b
servati
on controller better re
sults
are
proved
in
sy
stem sta
b
ility. In future
this
pape
r i
s
extended
for MP
PT usi
ng
hyb
r
id
optimization
techni
que.
Referen
ces
[1] C
Krause.
Ana
l
ysis of electric
mac
h
i
nery
. 2n
d Editio
n. Unite
d
States
of America: W
ille
y, 2
002.
[2] I
Boldea.
Sync
hron
ous Gen
e
r
a
tors
. United S
t
ates of America:
T
a
y
l
or and F
r
ancis, 20
06.
[3]
Bind
er A, Schn
eid
e
r T
.
Perma
nent ma
gn
et
synchro
nous ge
nerator
for r
e
g
ener
ative e
ner
gy conv
ersio
n
a survey.
Eur
opean c
onference on Po
w
e
r
Electroni
cs and Applic
ations, EPE, Dresden, Germany,
200
5.
[4]
Alej
andr
o R
o
la
n, Alvaro
Lu
n
a
, Gerardo
Va
zquez,
D
ani
el Agui
lar,
Gusta
v
o
Azeve
do. Mode
lli
ng of
Varia
b
le S
p
e
e
d
W
i
nd T
u
rbin
e
w
i
th a P
e
rm
ane
nt Magn
et
S
y
nc
hro
n
o
u
s Generator.
IEEE Interational
Symp
osi
u
m on
Industrial El
ec
tronics (ISIE 2009)
Se
ou
l Ol
ympic Parktel, S
eou
l, Korea. 20
09.
[5] Z
Lubosn
y
.
W
i
nd T
u
rbi
ne Op
eratio
n in El
ectric Pow
e
r Systems.
Berl
in: Sp
ring
er, 200
3.
[6] T
Ackermann
. Wind power in
power system
s
. Ne
w
Y
o
rk: John W
ile
y & So
ns, 2005.
[7]
G Ramtharan
and N Je
nki
n
s
.
Modell
i
ng a
n
d
Cont
ro
l of Sync
hro
nous G
ener
ators for W
i
de-Ra
ng
e
Varia
b
le-s
pe
ed
W
i
nd T
u
rbines
.
W
i
nd Energy,
W
iley Interscie
n
ce
. 200
7; 10: 231-
246.
[8]
Khan BH, No
n-
Conv
entio
na
l Energ
y
R
e
sourc
e
s.
T
a
ta Mcgraw
-
H
il Pu
blis
her
s, 2
nd
Edition, 2009.
[9]
Poli
nder
H, d
e
Ha
an SW
H,
Dub
o
is M
R
,
Sloot
w
e
g J. B
a
sic Oper
atio
n
Princi
ples
a
n
d Electric
al
Conv
ersio
n
S
ystems of W
i
nd
T
u
rbine. NOR
P
IE
/ 2004, N
o
rdic W
o
rks
h
o
p
on P
o
w
e
r a
nd Ind
u
stria
l
Electron
ics, Paper 06
9, T
r
ondheim, Nor
w
a
y
. 200
4.
[10]
Bo
yle G. Rene
w
a
bl
e Ener
g
y
,
OXF
O
RD univ
e
rsit
y
pr
ess, 20
04.
Evaluation Warning : The document was created with Spire.PDF for Python.