TELKOM
NIKA
, Vol. 11, No. 9, September 20
13, pp.
5448
~54
5
4
ISSN: 2302-4
046
5448
Re
cei
v
ed Ma
rch 4, 2
013;
Re
vised J
une
15, 2013; Accepte
d
Ju
ne
25, 2013
A Wireless Greenhouse Monitoring System based on
Solar Energy
Liai Gao*, Man Che
ng, Juan Tang
Coll
eg
e of Mechan
ical a
nd El
ectrical En
gin
e
e
rin
g
, Agricultu
r
al Univ
ersit
y
o
f
Hebei, Bao
d
i
ng 07
10
00, He
bei,
Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
2910
492
21
@
qq.com
A
b
st
r
a
ct
To resolve t
h
e problem
s
of c
o
mplic
ated cabling
and costly
wired
network
in the current
system
,
w
e
desig
ned
a w
i
reless gr
e
enh
ous
e mon
i
torin
g
system
base
d
on Zi
g
B
ee a
nd GSM
techno
logy. T
h
e
system co
nsis
ts of tw
o parts: a w
i
reless sensor n
e
tw
ork and re
mote
control ter
m
i
nal. Accord
in
g
to
para
m
eter dist
ributi
on i
n
the
mo
nito
ri
ng r
egi
ona
l, a w
i
reles
s
transmissio
n
netw
o
rk w
a
s formed, a
ll of t
h
e
nod
es i
n
th
e n
e
tw
ork usin
g s
o
lar
pow
er. In
the re
mote
co
ntrol ter
m
i
n
a
l
, the stu
d
y d
e
vel
ope
d a
si
mp
lifi
e
d
expert
decis
ion system
, in
which the part
of greenh
ouse control
decision
adopts the fu
z
z
y
decouplin
g
control
alg
o
rith
m to re
al
i
z
e
th
e temper
ature
and
hu
mi
di
ty d
e
cou
p
li
ng c
ont
rol a
nd i
n
cre
a
s
e
the acc
u
racy
of
decisi
on-
makin
g
. Accordin
g to the exper
i
m
ental te
st, the mon
i
tori
ng s
ystem can ru
n w
e
ll und
er th
e
cond
itions in n
o
rthern Chi
na gree
nho
uses. I
t
can rea
l
i
z
e
r
eal-ti
m
e,
accur
a
te mon
i
torin
g
and c
o
ll
ectin
g
of
para
m
eters da
ta in the
gre
e
n
hous
e e
n
viro
n
m
e
n
t; the re
mote contro
l ter
m
i
nal c
an
give
effective dec
i
s
io
n
ma
na
ge
me
nt s
o
luti
ons. Our future w
o
rk w
ill
ma
inly
be s
o
l
a
r ph
otovolt
a
ic
pan
el serv
o s
ystem a
nd
i
m
a
g
e
transmissio
n
.
Ke
y
w
ords
:
wireless gr
eenhouse monitoring
system
, ZigBee network, expert decision sy
stem
, solar energy
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Chin
a is a m
a
jor
agri
c
ultu
ral country i
n
the wo
rld,
wit
h
ag
riculture
as it
s tra
d
itio
nal an
d
basi
c
i
ndu
stry. With cont
inuou
s im
pro
v
ement
an
d
pro
g
ress of
the b
a
si
c
con
d
ition
s
a
nd
techn
o
logy d
egre
e
, input level is gainin
g
con
s
t
ant in
cre
a
se. Ho
wever, agri
c
ult
u
ral devel
op
ment
still face
s ma
ny probl
ems
and
challe
ng
es. So impl
e
m
entation of
ecol
ogi
cal ag
ricultu
r
e in li
n
e
with nation
a
l con
d
ition
s
is
a necessa
ry way to prom
o
t
e China’
s ag
ricultu
r
al d
e
velopme
n
t.
With the dev
elopme
n
t of facilitie
s agri
c
ultu
re an
d expan
sion g
r
ee
nhou
se pl
anti
ng are
a
s,
it is very important to sh
ed the gre
e
nhou
se
envi
r
onment pa
ra
meters in re
al-time a
c
curate
measurement
and control. Traditio
nal e
n
vironm
ent
al
monitori
ng sy
stem is
usual
ly achieved
b
y
wire
d net
wo
rk, ma
king the
system
com
p
lex and
co
st
ly [1]; literature [2, 3] prop
o
s
ed th
e ide
o
l
ogy
of wirele
ss sensor net
wo
rks fo
r
data a
c
qui
sition. Ho
wever, ho
w to solve the p
r
oble
m
of system
power supply
effectively is rarely repo
rte
d
. If batte
ry p
o
we
r is u
s
ed,
the battery must be re
pla
c
ed
perio
dically a
nd a la
rge
nu
mber
of used
batterie
s
will
cau
s
e
enviro
n
mental p
o
llu
tion. Therefore,
the probl
em o
f
power
sup
p
l
y
must be sol
v
ed to ac
hiev
e a true sense of "wirele
ss" transmi
ssio
n.
In view of th
e ab
ove qu
e
s
tion
s, we de
velop a
wi
rel
e
ss g
r
ee
nho
use
monito
rin
g
sy
stem
based on
so
lar ene
rgy, combinin
g wit
h
the gre
e
n
hou
se enviro
n
mental cha
r
acteri
stics a
n
d
monitori
ng re
quire
ment
s. Wirel
e
ss se
n
s
or
net
wo
rks (WSN) a
r
e t
houg
ht prepo
nderant to
m
eet
the green
hou
se
req
u
ire
m
e
n
ts a
nd
repl
ace
the
wi
re
d conn
ection
s in
traditio
n
a
l sy
stem.
With
sola
r cell,
sol
a
r
e
nergy
wa
s colle
cted a
nd store
d
in l
i
thium battery
to provide p
o
we
r
sup
p
ly for
the system. In addition, th
e study devel
oped a
simp
li
fied expert d
e
ci
sion
syste
m
in the rem
o
te
control te
rmi
nal, in
whi
c
h
the
control
deci
s
io
n ad
o
p
ts fu
zzy
de
cou
p
ling
co
ntrol al
gorith
m
to
reali
z
e the te
mperature
an
d humidity de
cou
p
ling
c
ont
rol an
d in
cre
a
se th
e a
c
curacy of de
ci
si
on-
mak
i
ng in turn.
2. Sy
stem Descriptio
n
The sy
stem con
s
i
s
ts of two pa
rts: a
wirel
e
ss sen
s
or n
e
two
r
k and re
mote
control
terminal. Usi
ng the de
sig
n
con
c
e
p
t of terminal mo
nitoring n
ode
s and
sin
k
n
ode
s in wirel
e
ss
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Wirele
ss G
r
een
hou
se M
onitorin
g
System
based on
Solar Ene
r
g
y
(Liai Ga
o)
5449
sen
s
o
r
net
wo
rk, the
s
e
nod
es a
r
e fo
rme
d
a tre
e
net
work. Th
e m
a
in fun
c
tion
of the network is
data
colle
ctio
n. After fusi
o
n
processin
g
, the d
a
ta
a
r
e
se
nt to rem
o
te control
te
rminal
thro
ug
h
GSM netwo
rk in the form of short me
ssa
ge. And
at the same time,
the expert de
cisi
on sy
stem
o
f
remote
cont
rol terminal
gives the corre
s
po
ndin
g
de
cision a
c
co
rdi
ng to the re
ceived data. T
h
e
overall sy
ste
m
stru
cture is sho
w
n in Fig
u
re 1.
3. A Wireless Sensor Netw
ork
Wirel
e
ss
sen
s
or
network i
s
compo
s
e
d
of a
large
nu
mber of
che
a
p
micro-se
nsor no
de
s
whi
c
h a
r
e d
eployed in t
he monito
rin
g
are
a
. The
function
of terminal n
o
de is m
onito
ring
environ
menta
l
data colle
ction; sink n
o
d
e
is the
core
of the entire system ope
ration, which is
respon
sibl
e for e
s
tablishi
ng the entire wireless
sensor net
wo
rk, re
ceiving,
pro
c
e
ssi
ng
and
forwa
r
di
ng th
e data of terminal nod
e collectio
n [4, 5].
3.1. Hard
w
a
r
e
3.1.1. Terminal Node
Nod
e
mainly con
s
i
s
ts of a pro
c
e
s
sor mo
dule an
d wire
less com
m
un
ication mo
dul
e. This
desi
gn
uses the
CC243
0 chip, the
r
e
b
y simplifie
s the
circuit
desi
gn [6]. I
n
ad
dition to
the
compl
e
tion
of the data t
r
a
n
sceiver
,
th
e
terminal
no
de al
so
driv
e
s
the
co
nne
cted se
nsors f
o
r
data
colle
ctio
n, so
the
nod
e re
qui
re
s
se
nso
r
m
odul
e.
And all
of the
nod
es are p
o
we
red
by
so
lar
energy, node
stru
cture is
shown in Figu
re 2.
Figure 1. The
Structure Dia
g
ram of Ove
r
all
Sys
t
em
da
t
a
p
r
oc
e
s
s
i
ng
mo
d
l
e
wi
r
e
l
e
s
s
co
m
m
u
n
i
cat
i
o
n
m
odul
e
C
C
2
430
s
e
ns
or
A/
D c
o
n
v
e
r
s
i
o
n
s
o
l
a
r
-
p
o
w
er
ed
m
o
d
u
l
e
s
e
ns
or
m
o
d
u
l
e
Figure 2
.
Th
e Structu
r
e Di
agra
m
of Terminal
Nod
e
A. Introduction of CC243
0
The CC2
430
is a tru
e
S
y
stem-o
n-Chi
p
(So
C
) solution
specifi
c
ally
tailored for IEEE
802.15.4
and
ZigBee™
ap
plicatio
ns. It
enabl
es
ZigB
ee™ n
ode
s t
o
be
built wit
h
very lo
w to
tal
bill-of-m
ateri
a
l co
sts. Th
e
CC243
0 com
b
ine
s
the
ex
cellent pe
rformance of the
leadin
g
CC2
420
RF tra
n
sceiv
e
r
with an i
n
dustry
-
sta
nda
rd en
han
ce
d
8051 M
C
U, 3
2
/64/128 KB
flash m
e
mory
, 8
KB RAM and many othe
r powerful fe
ature
s
. It is
use
d
widely
in the wirel
e
ss temp
eratu
r
e
monitori
ng sy
stem.
B. Sensors
Fast respon
se time, low
power
con
s
u
m
ption an
d t
o
lera
nce ag
a
i
nst moi
s
ture
climate
made SHT
1
1
relative hum
idity and temperatu
r
e sen
s
or a pe
rfe
c
t solution for
the gree
nho
u
s
e
environ
ment.
Lumino
s
ity was m
e
a
s
ured
by ISL2901
0
,
which
conv
erts li
ght inte
nsity to volta
ge.
Un
stable o
u
tput sign
al is h
andle
d
by low-pa
ss filter to
get corre
c
t lu
minosity valu
es.
These two ki
nds
of se
nsor
s a
r
e in li
ne
with the
C
I
2
agre
e
ment, but
CC24
30 h
a
ven
’
t
C
I
2
bus interfa
c
e,
so
bu
s
clo
ck line
and
digit
a
l line
of ISL
2901
0 a
nd S
H
T11
could
b
e
si
mulated
b
y
P0.2 and P0.3.
C. Solar po
wer su
pply mo
dule
In ord
e
r to
so
lve the no
de
energy suppl
y pr
obl
em, we propo
se
d a
su
pply sy
ste
m
ba
sed
on sol
a
r en
ergy, which i
s
compo
s
ed by
sola
r mod
u
le
s, sola
r controller, and lithi
um battery [7].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 9, September 201
3: 544
8 – 5454
5450
The sol
a
r mo
dule is the
co
re of sola
r en
er
gy po
we
r supply system
,
which puts t
he su
n's
radiatio
n ene
rgy into elect
r
icity, send
s to ba
ttery to be stored up,
or pushe
s load wo
rk; so
lar
controlle
r is used to
co
ntrol the
wh
ole mo
dule
workin
g
con
d
ition; Lithiu
m battery i
s
an
emergen
cy system ene
rgy
source. Th
e stru
cture
po
wer su
pply mo
dule is
sho
w
n
in Figure 3.
(1) Solar cell matrix
Prelimina
r
y we cho
o
se a pi
ece of solar p
anel
s for 6V, 3Wp.
(2) Battery
c
a
pacity
The
cap
a
city
of the b
a
ttery is ve
ry im
por
tant fo
r
e
n
su
ring
c
onti
nuou
s power
su
pply.
Daily gen
era
t
ing cap
a
city
of the sola
r array
sh
ou
ld be sto
r
ed
in a stora
ge battery f
o
r
con
s
um
ption.
Therefo
r
e, th
e cap
a
city
cal
c
ulatio
n form
ula of the battery is:
Ah
Ah
c
C
T
L
N
L
Q
A
c
B
15
7
.
14
8
.
0
1
7
2
.
1
4
.
1
0
(1
)
So, we cho
o
se a battery model for 4.5V/
15AH.
3.1.2. Sink Node
Sink no
de i
s
the data ag
gregator
of the
ent
ire
system
. In addition to CC243
0, the nod
e
is also equip
ped with a
GSM module
(
i
TC
35
). It supports the comm
unication sta
ndards of
GSM7.07 an
d GSM7.05; provide
s
u
s
ers with
the sta
ndard AT co
mmand inte
rface [8]. CC2
430
have two UA
RT serial p
o
rts, which ca
n
conn
ect with
i
TC
35
by a UART
. Operatin
g voltage of
CC243
0 is 2.0-3.6 V, typical value is 3.0 V, and
the
typical value of serial ele
c
t
r
ic flat for
i
TC
35
is 2.65V. We
can
strin
g
a resi
stan
ce to
prote
c
t the se
rial
TXD0
end of
i
TC
35
when conn
ecti
ng.
The co
nne
cti
on of CC243
0 and
i
TC
35
is sho
w
n in Figu
re
4.
lo
a
d
lit
h
i
u
m
ba
t
t
e
r
y
+
ch
a
r
g
e
an
d
di
a
c
ha
r
g
e
co
n
t
r
o
l
l
e
r
so
l
a
r
pa
ne
l
s
+
_
_
Figure 3. Structure
Diag
ra
m of Solar-p
o
w
ered
Module
UA
R
T
0
P2
.0
RS
2
3
2
IG
T
S
I
M
car
d
TX
D
RX
D
T
C
35i
CC2
4
3
0
Figure 4. The
Conn
ectio
n
of CC2
430 a
nd
TC35i
3.2. Soft
w
a
r
e
ST
A
R
T
I
n
i
t
i
a
l
i
z
a
t
i
on pr
ot
oc
a
l
s
t
a
c
k a
n
d
h
a
r
d
w
a
r
e
s
t
a
r
t ne
t
w
or
ki
ng
ne
t
w
or
ki
ng
s
u
c
ces
s
£
¿
fo
rm
t
h
e
P
A
N
ID
al
l
o
w
t
h
e n
o
d
e
t
o
j
o
i
n
wh
e
t
h
e
r
t
h
e
nod
e
exi
t
£
¿
d
i
s
p
l
a
y t
h
e
nod
e
a
d
d
r
e
s
s
s
e
ns
o
r
da
ta
?
r
e
c
e
i
v
e
s
e
n
s
or
da
t
a
re
c
e
i
v
e
su
c
c
e
ssf
i
l
l
y
£
¿
upl
oa
d data
N
N
Y
Y
N
Figure 5. The
Software Flo
w
chart of Sin
k
Nod
e
ST
A
R
T
I
n
i
t
i
a
l
i
z
a
t
i
on p
r
ot
oc
a
l
s
t
ac
k and
ha
r
d
w
a
r
e
s
e
nd de
vi
c
e
addr
e
s
s
c
o
lle
c
t
d
a
t
a
Y
f
i
nd ne
t
w
or
k
?
N
Y
co
m
p
l
e
t
e
?
s
e
nd t
o
s
i
nki
n
g
n
ode
N
Figure 6. The
Software Flo
w
chart of Te
rminal
Nod
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Wirele
ss G
r
een
hou
se M
onitorin
g
System
based on
Solar Ene
r
g
y
(Liai Ga
o)
5451
In determinin
g
the ove
r
all
function
of th
e
net
work, we
focus
on progra
m
writing
of
si
nk
node
s and te
rminal no
de. The pro
c
e
s
s of sink no
de is
as follo
ws:
First of all, select a ch
ann
el
and Net
w
o
r
k PAN ID (Perso
nal Are
a
Network Iden
ti
ty), so as to establ
i
s
h the Network, and
timing interce
p
tion whethe
r internet
con
nectio
n
have
requ
est; Se
con
d
ly, if sink no
de
s re
ce
ive
terminal n
ode
s’ acce
ss req
uest, then jud
ge wh
ether
to
join the network a
c
co
rdin
g
to the reque
st,
if allowed to j
o
in, the sin
k
node tell
s the term
inal n
o
de a network addre
s
s as t
he only identi
t
y
identificatio
n; Finally, the
sin
k
no
de
se
nds to
ea
ch node rel
a
ted
cont
rol com
m
and at
re
g
u
lar
time[9].The software flo
w
chart of sin
k
n
ode is
sho
w
n
in Figure 5.
The main ta
sk of terminal
node is d
a
ta acq
u
isitio
n
and tran
sferring, after co
mpleting
initialization
p
r
otocol sta
c
k
and ha
rd
wa
re, t
he termin
al node
start
scannin
g
ch
annel, an
d th
e
n
sen
d
s the i
n
formatio
n of j
o
ining
the
ne
twork. If c
onfi
r
med, it
beg
a
n
to
colle
ct d
a
ta through
t
he
sen
s
o
r
s, and
then se
nd
s to
the sin
k
n
ode
th
ro
u
gh the
wi
rele
ss transmissio
n.
The software
flowchart of termin
al node
is sh
own in Figure 6.
4. Expert De
cision Sy
ste
m
The g
r
een
ho
use e
n
viro
nm
ental syst
em
is a
multi-va
ri
able, nonli
n
e
a
r, time-va
r
ying and
delayed
sy
stem the
r
e
are
co
uplin
g
rel
a
tionship
am
ong va
riabl
e
s
, it i
s
difficu
lt to e
s
tabli
s
h a
pre
c
ise math
ematical
mod
e
l [10]. Amon
g them, temp
eratu
r
e a
nd
h
u
midity is a
b
a
si
c fa
ctor. T
h
e
relation
shi
p
betwe
en the
temperature
and
humid
it
y in the g
r
e
enho
use env
ironm
ent is
not
fragme
n
ted,
but a
co
mple
x cou
p
ling
relationship. An
amo
unt of
chang
e
will aff
e
ct a
nothe
r.
This
study intro
d
u
c
e
s
a fuzzy control meth
o
d
in the
co
ntrol se
ction, e
s
tablish
e
s fu
zzy control m
o
del
of the gre
e
n
hou
se envi
r
o
n
ment, co
nfirms a
d
e
coup
ling
pa
ramet
e
rs between the
tempe
r
at
ure
and
humidity, and
a
c
hieve
s
d
e
coupli
n
g
co
ntrol
te
mp
eratu
r
e and
humidity,
so that
the co
ntrol
accuracy of the entire
syst
em
get the co
rre
sp
ondi
ng improvem
ent.
4.1. Regula
t
ed Mech
anis
m
In this study, the re
sea
r
ch obje
c
t of gre
enho
use is o
peratin
g the
sha
de an
d ventilating
the wi
ndo
w,
we
esta
blish
ed 4
inp
u
t an
d 2
output
fu
zzy
co
ntrolle
rs [11]. T
w
o
control
obje
c
ts in
combi
nation
with ea
ch
oth
e
r. The
s
e fo
u
r
kin
d
s
of con
t
rol metho
d
s
are
sho
w
n i
n
Table 1,
whe
r
e
1 indi
cate
s the a
c
tion i
s
open, 0 i
ndi
cate
s the o
p
e
ration i
s
off
;
↑
indi
cate
s an in
cre
a
se
,
↓
indicates a
decrease.
T
he two operations
can
achi
eve the purpose
of
controlling the
temperature
and humi
d
ity. But the mutual cou
p
ling re
lationship exi
s
ts in them, a
nd there i
s
al
so
the occu
rren
ce of
co
nflict
situation
s
, it
may
not m
a
ke th
e temp
e
r
ature an
d h
u
midity rea
c
h
a
suitabl
e ope
rating level at the same tim
e
.
4.2 Cons
tru
c
tion of Fu
zzy
Decou
p
ling Con
t
roller
4.2.1. Structure
A convention
a
l fuzzy cont
rol mea
n
s th
at it
compare
s
the setting
value of the control
amount
with the mea
s
u
r
ed
value of the time of t to obtain deviation
e
, and then co
me to the rat
e
of chan
ge d
e
viation
ec
. Through the di
gi
tal fuzzy, the
n
get fuzzy quantity
E
and
EC
. It us
es
Fuzzy cont
rol
rules
R, gets fuzzy control amount
U
,
Finally make
s the fuzzy control am
oun
t
defuzzificatio
n
, then be
co
me preci
s
e
a
m
ount
u
. Finally we
could
a
c
hieve fu
zzy control of the
controlled o
b
j
e
ct. This met
hod is mo
re
suit
able for the
control of g
r
e
enho
use envi
r
onm
ent.
From
Tabl
e
1, we
can
see that
openi
ng
sha
de m
a
y cau
s
e
tem
peratu
r
e
ri
sin
g
, whil
e
humidity drop
ping; op
ening
the sh
ade
m
a
y cau
s
e
th
e
cha
nge
s of t
e
mpe
r
ature a
nd humi
d
ity in
the sa
me di
rection. In
ord
e
r to a
c
hi
eve
effect
ive de
cou
p
ling
of tempe
r
ature a
nd hu
midity, we
sele
ct shad
e
operating a
s
main l
oop
of temper
ature co
ntrol, wi
ndo
ws
ope
ra
ting as
humi
d
ity
c
ontrol
c
i
rc
uit. At the s
a
me time
we tak
e
the
control
strate
gy whi
c
h i
s
given p
r
io
rity to
temperature,
and a
n
o
u
n
c
e of preventi
on for hum
i
d
i
t
y. Decou
p
lin
g co
ntrol
system diag
ram
is
s
h
ow
n
in
F
i
gu
r
e
7
,
0
T
and
0
H
is pre
-
set by expert de
cisi
on-m
a
ki
ng sy
stem whi
c
h i
s
suitable for
temperature
and hu
midity of cro
p
gro
w
th sta
ge,
T
e
is tempe
r
atu
r
e deviation,
H
e
is humi
d
ity
deviation,
T
ec
an
d
H
ec
is the rate of
chan
ge of ea
ch deviatio
n
over time.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 9, September 201
3: 544
8 – 5454
5452
fu
z
z
y
c
o
n
t
r
o
lle
r
f
u
zzy
c
ont
r
o
l
l
e
r
o
p
e
r
a
te
t
h
e s
h
ad
e
ve
n
t
i
l
a
t
e
t
h
e
w
i
nd
ow
cr
o
p
gr
ow
t
h
e
nvi
r
o
n
-m
e
n
t
g
r
een
h
o
u
s
e m
o
n
i
t
o
r
i
n
g
s
y
s
t
em
+
-
+
-
T
H
g
r
e
e
nh
ou
s
e
m
o
n
i
t
o
r
i
ng
s
y
s
t
e
m
T
ec
)
(
h
e
T
)
(
t
e
H
H
ec
0
T
0
H
T
e
H
e
T
1
H
1
H
T
t
U
h
U
Figure 7. Fuzzy De
cou
p
lin
g Control Dia
g
ram
The inte
racti
on between
temperature
and hu
midi
ty make a
big effect in
actual
gree
nho
use. In order to we
ake
n
the
co
u
p
ling
relati
on
ship, thi
s
syst
em intro
d
u
c
e
s
the
de
cou
p
l
i
ng
para
m
eter
T
an
d
H
, s
pec
ific
us
age is
as
follows
:
H
H
T
T
T
e
e
h
e
)
1
(
)
(
(2)
T
T
H
H
H
e
e
t
e
)
1
(
)
(
(3)
Throu
gh introdu
ction of d
e
co
upling
parameter
s an
d the fuzzy
con
t
rol system o
peratio
n,
we
ultimately get p
e
rfo
r
m
ope
ration
s
whi
c
h i
s
th
e
co
ncrete
co
nsid
erin
g te
mperature
a
nd
humidity affect each other.
4.2.2. Algorithm
W
hether
to cons
truc
t fuzzy c
ont
roller reasonably is r
e
lated to t
he pr
ec
is
ion
of fuzz
y
control
syste
m
, the st
ru
cture
of
fuzzy
logi
c control
l
er i
s
sho
w
n
in Fig
u
re
8.
The
rea
s
o
n
i
n
g
pro
c
e
ss i
s
di
vided into the following fo
ur step
s [
12]: Firstly, transform the amo
unt of input and
output into f
u
zzy set
s
, a
nd defin
e th
eir unive
rse,
and the
n
buil
d
a fuzzy ta
ble by the a
c
tual
cha
nge
s sco
pe of the input and out
put amount
,
Secondly, e
s
tabli
s
h the kno
w
le
dge b
a
se
throug
h the knowl
edge
an
d experie
nce of experts, an
d
form the fuzzy control ru
le table; Third
l
y,
use fu
zzy tab
l
e and fuzzy
control rul
e
table, ado
pt
offline indire
ct rea
s
oni
ng to
establi
s
h
con
t
rol
table, and
cal
c
ulate the
a
m
ount of the
corre
s
p
ondi
n
g
fuzzy
control; Finally, make fu
zzy
co
ntrol
amount defu
z
zificatio
n
for tran
sformi
ng i
n
to ultimate control pa
ram
e
ters.
Table 1. Rel
a
ted Ope
r
ation
to the Chang
es of
Tempe
r
atu
r
e and
Humidity
Oper
ate
the shade
Ventilate
the w
i
ndo
w
Temper
ature
Humidit
y
1 0
0
↑
↑
2 0
1
↓
↓
3 1
0
↑
↓
4 1
1
↑
↓
f
u
z
z
if
ic
a
t
io
n
fu
z
z
y
r
e
a
s
oni
ng
te
mpe
r
a
t
ur
e
h
u
m
id
it
y
f
u
z
z
if
ic
a
t
io
n
de
f
u
z
z
i
-
ca
t
i
o
n
out
p
u
t
T
ec
)
(
h
e
T
H
ec
)
(
t
e
H
K
now
l
e
dge
B
a
s
e
Figure 8. The
Structure of Fuzzy Logi
c
Controlle
r
5. Sy
stem Test
In ord
e
r to te
st the vali
dity of data
tra
n
s
missio
n a
n
d
the
rationalit
y deci
s
io
n of
expert
deci
s
io
n sy
stem, we
sele
cted a
n
ag
ri
culture
si
ght
seei
ng g
a
rd
e
n
located in
XuShui, He
bei
provin
ce
as the expe
rime
ntal ba
se. T
h
e ba
se
ha
s
10 g
r
ee
nho
u
s
e
s
with tom
a
to a
s
the
m
a
in
cro
p
s.
We
sel
e
cted
Ja
n. 5, 2013
as th
e test date,
a
n
d
that day wo
u
l
d be in th
e tomato blo
s
so
m
perio
d. The
test sy
stem
consi
s
ts
of fo
ur term
inal
n
ode
s an
d a
sin
k
no
de. T
he fou
r
termi
nal
node
s
we
re
deploye
d
to
one
gre
enh
o
u
se
blo
c
k to
gathe
r info
rmation in
cli
m
ate vari
abl
es
betwe
en lower and u
ppe
r flora. The air temperat
ure and humi
d
i
t
y senso
r
an
d light intensity
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Wirele
ss G
r
een
hou
se M
onitorin
g
System
based on
Solar Ene
r
g
y
(Liai Ga
o)
5453
sen
s
o
r
were l
o
cate
d on the
lifting lever of terminal nod
e. By changin
g
the lifting lever heig
h
t, the
system
can a
dapt to a vari
ety of crop
s. The spe
c
if
ic i
n
stallatio
n
po
sition
s of nod
es a
r
e: No
de
1
w
a
s
p
l
ac
ed
32
0
cm
cm a
w
ay
from the
sid
e
wall
of the g
r
een
hou
se
a
nd it was ha
nged i
n
1
0
0
cm
’s height. No
de 2 wa
s 16
0
cm
away from
the side wall
and it
was pl
ace
d
at the height of
123
cm
.Node 3
wa
s located a
bove No
de 2.
Distan
ce b
e
twee
n No
de 4
and No
de 1
wa
s 195
cm
.
5.1. Wireless
Transmissi
on Test
Thro
ugh
the
actual
de
ploy
ment, wh
en t
he
comm
uni
cation di
stan
ce of the
no
de
is
abo
ut
30m, the
system ca
n be
completed
in
setting u
p
th
e wi
rele
ss se
nso
r
n
e
two
r
k and all
termi
nal
node
s form
self-organi
zing
netwo
rks wit
h
in 30 seco
n
d
s. After data
sampli
ng, the terminal n
o
des
can
send d
a
ta within 30 seco
nd
s; after receivin
g the data, sink n
ode ca
n se
n
d
the data to the
mobile ph
one
within 2 minu
tes by SMS.
5.2. Tempera
t
ure an
d Hu
midit
y
Decision Effec
t
in 24 Hou
r
s of
Blossom Per
i
od
Duri
ng
the
d
a
y, farme
r
s e
n
tered
the
greenh
ou
se fo
r 6 time
s, the
time were 7,
9
,
11, 13,
and 1
5
, 17 o’
clo
ck
re
spe
c
ti
vely; at night they ent
ered
into the g
r
ee
nhou
se
4 tim
e
s, time
s were
23, 2 and 5
o’clo
ck
re
sp
ectively. Through the
d
e
c
isi
on-ma
king
system, 10
times de
cisi
on
scheme
were
given
(Tem
p
e
ratu
re i
s
a
b
b
r
eviated
as T, its unit
wa
s
C
,
while
rel
a
tive humi
d
ity is
abbreviated
as
H, its unit
wa
s
%
RH
).We
ca
n get th
e lin
e
ch
art
of Te
mperature
an
d hu
midity
within 24 h
o
u
r
s throug
h the deci
s
io
n re
sult data, as
sho
w
n in Fig
u
re 9 an
d Fig
u
re1
0
.
Figure 9. De
cision Te
mpe
r
ature in 24 h
o
u
rs of
Blos
som Period
Figure 10. De
cisi
on Humidi
ty in 24 Hours of
Blos
som Period
The followi
ng
con
c
lu
sion
s
can b
e
obtain
ed from the di
agra
m
:
1)
Since
nod
es
1 an
d n
ode
2 were
lo
cat
ed in
the l
o
wer
part
of the
den
se
foliag
e
of
tomato plant
s, the relative humidity mea
s
ured by the
s
e two no
de
s is a little high
er than n
ode
3
and no
de 4.
2)
The a
r
ea
ma
rked
green i
n
figure
10 i
s
wi
thin the o
p
timal growth
te
mperature
ra
nge
in tomato blo
s
som pe
riod.
We can see that deci
s
io
n-makin
g
in temperature i
s
alway
s
within
the
rang
e of o
p
timum g
r
o
w
th
durin
g the
da
y (7:00 a
m
to
18:00
); du
rin
g
the nig
h
t (p
m18:00 to
7:00
the next day), we can se
e
that
the decision
-
ma
king
temperature i
s
alway
s
in the app
rop
r
iat
e
temperature
range. In
Fig
u
r
e
11
wh
ere
marked
g
r
ee
n is for the
suitable
humid
ity rang
e, we
ca
n
also
see that
humidity sub
s
tantially e
n
sure th
e
a
ppro
p
riate
humidit
y throug
h the
de
cisi
on d
u
ri
ng
the day. Because there i
s
no corre
s
po
nding de
hum
idification eq
uipment du
ri
ng the night, the
moistu
re in
evitably bega
n t
o
in
cre
a
se a
s
the temp
erat
ure
de
cre
a
se
s. Althoug
h d
e
ci
sion
-ma
k
in
g
system give
s deci
s
ion scheme, but farme
r
s
d
o
n
o
t have eno
ugh exe
c
utive cap
ability for
humidity, so humidity is no
longer a
s
the
result of de
ci
sion d
a
ta in the night.
6. Conclusio
n
s and Fu
tur
e
w
o
rk
The sy
stem g
enerated by
sola
r cell po
wer
and
lithiu
m
battery en
ergy sto
r
ag
e device i
s
the devel
op
ment tre
nd
o
f
future e
n
e
r
gy su
pply de
vice of l
o
w-p
o
we
r
wireless
sen
s
o
r
; Zig
B
ee
wirel
e
ss net
work a
r
e u
s
ed
in data transmissio
n,
whi
c
h effectively
chang
e the traditional
wired
detectio
n
met
hod, avoidin
g
compli
cated
wirin
g
; In
the remote control terminal, the syste
m
se
ts
up expe
rt de
cisi
on sy
ste
m
s, usi
ng fu
zzy de
co
upli
ng algo
rithm
for enviro
n
m
ental control and
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 9, September 201
3: 544
8 – 5454
5454
reali
z
ing d
e
couplin
g cont
rol of tempera
t
ure and
hu
m
i
dity. And it g
r
eatly improv
ed the deci
s
i
on-
makin
g
effect
of thi
s
syste
m
. The
expe
ri
mental
re
sult
s
sho
w
t
hat
t
he
sy
stem
a
c
hieves auto
m
atic
real
-time mo
n
i
toring
of envi
r
onm
ental p
a
r
amete
r
s an
d
gives
co
rrect
de
cisio
n
pl
an
s, which
is of a
broa
d appli
c
a
t
ion pro
s
pe
ct.
With the a
p
p
licatio
n an
d
popul
ari
z
ati
on of
the
system an
d the devel
op
ment of
technology, this study will
also conduct
further resear
ch in the following areas:
First, because the angles of the sun are
changing, our followi
ng work will
take the
desi
gn of
sol
a
r photovoltai
c
p
anel
s’ se
rvo
syste
m
int
o
con
s
ide
r
ati
on, ma
kin
g
solar pan
els,
li
ke
sunflo
we
r, directly face the
sun at any time,
to keep the perpen
dicular an
gle of sun'
s rays an
d
solar panels t
o
improve the
utilization of solar energy.
Secon
d
, with
the popula
r
i
t
y of 3G network, the sy
stem will ta
ke 3G tech
nol
ogy into
accou
n
t, to realize the ima
ge and vide
o transmissio
n function in th
e future.
Ackn
o
w
l
e
dg
ments
This work
was
su
ppo
rted
by the
hig
h
scho
ol
scie
ntific an
d te
chn
o
logi
cal
rese
arch
guida
nce p
r
o
j
ect in
Hebe
i provin
ce
(No.Z20
112
71
& No.1
122
7179
) a
nd t
he
sci
en
ce
and
techn
o
logy re
sea
r
ch guid
a
n
ce p
r
oje
c
t in
Baoding (No.
12ZN022
)
Referen
ces
[1]
Jonas M, Marl
and G, W
i
ni
w
a
rter W
.
W
h
ite
T
,
N
ahorski
Z, Bun R, Nilsson S.
Milfried
. Benefits of
dea
lin
g
w
i
t
h
u
n
certai
nt
y in
gr
een
ho
use gas inve
ntories:
Int
r
oducti
on.
C
l
i
m
atic Ch
an
ge
. 2
010; 10
3(1):
3-18.
[2]
F
i
tch M, Nek
o
vee M, K
a
w
a
d
e
S, Bri
ggs K,
MacK
e
n
zie
R
.
Wireless s
e
r
v
ices
provis
ion
in T
V
w
h
ite
space
w
i
th co
gnitiv
e
rad
i
o t
e
chn
o
lo
g
y
: A
telecom
oper
a
t
ors persp
ecti
ve an
d e
x
peri
ence.
IEEE
Co
mmun
icati
o
ns Maga
z
i
ne
. 2
011; 49(
3): 64-
73.
[3]
Dae-H
e
o
n
Par
k
, Beom-Jin k
ang, K
y
u
ng-R
y
o
ng C
ho. A
Stud
y
on Gre
enh
ous
e Auto
matic Contro
l
S
y
stem B
a
sed
on W
i
rel
e
ss S
ensor
Net
w
ork
.
W
i
reless Per
s
ona
l Co
mmu
nicati
ons
. 20
1
1
; 56(1): 1
17-
130.
[4]
W
a
tte
y
n
e T
,
Molin
aro A, R
i
c
hichi MG, Do
hler
M. F
r
om
MANET
T
o
IET
F
ROLL Standar
dizati
on:A
Parad
i
gm S
h
ift
in
W
S
N R
outi
ng Pr
otoco
l
s.
IEEE Communications
Surv
ey
s Tutorials
. 2
0
11; 1
3
(4):
68
8-
707.
[5]
Sifuentes E, C
a
sas O, Pall
a
s
-Are
y
R. W
i
reless Ma
gn
eti
c
Sensor N
o
d
e
for Vehic
l
e
Detectio
n
w
i
t
h
Optical Wake-
U
p.
IEEE Sensors Journal
. 20
11; 11(8): 1
669
-167
6.
[6]
Sabri N, A
lju
ni
d SA, Ahmad
RB, Yah
y
a A,
Kama
ru
ddm R,
Salim MS. W
i
reless s
ensor
actor net
w
o
r
k
base
d
on fuzz
y inferenc
e s
y
st
em for green
h
ouse clim
ate control So
urce.
Journ
a
l of Appl
ied Sci
ences
.
201
1; 11(1
7
): 3104-
311
6.
[7]
Pan
w
ar NL, K
aushik SC, Kothari S. Solar gr
een
ho
use
an opti
on for
rene
w
a
b
l
e a
n
d
sustaina
bl
e
farming.
Re
ne
w
able an
d Sus
t
aina
ble E
nerg
y
Review
s
. 201
1; 15(8): 39
34-
394
5.
[8]
Okundam
i
y
a M
S
, Nzeako AN.
Model for opti
m
al sizi
n
g
of a w
i
nd
ener
g
y
c
o
nversi
on s
y
ste
m
for green-
mobil
e
ap
plic
at
ions.
Internati
o
nal Jo
urna
l of Green Ener
gy
. 201
3; 10(2) : 2
05-2
18.
[9]
Yu Ksel E, Nie
lson HR, Ni
els
on FA. Secure
Ke
y
Estab
lish
m
ent Protocol
for Z
i
gBee W
i
r
e
less Se
nso
r
Net
w
orks.
C
o
mputer Jour
na
l
. 201
1; 54(4): 58
9-60
1.
[10]
Sabri
N, Al
ju
ni
d SA, A
h
mad
RB, Mal
e
k MF
, Yah
y
a
A, K
a
m
a
rud
d
in
R, S
a
li
m MS. Smart
Prolo
ng F
u
zz
y
W
i
reless
Sens
or-Actor N
e
t
w
ork for A
g
ric
u
ltural
App
lic
ati
on.
Jo
urn
a
l of
Infor
m
atio
n Scienc
e and
Engi
neer
in
g
. 2012; 28(
2): 295
-316.
[11]
Her-T
erng Y, Chie
h-L
i
C. F
u
zz
y
s
lid
in
g m
ode c
ontrol
l
er
desi
gn for ma
xim
u
m po
w
e
r
poi
nt tracki
n
g
control of a so
lar ener
g
y
s
y
st
em.
T
r
ansactio
n
s of the Institute
of Measur
ement an
d Co
ntrol
. 201
2;
34(5): 55
7-5
6
5
.
[12]
Ehret D
a
vid
L
,
Hill
Ber
nard
D, He
lmer T
o
m,
Ed
w
a
rds
Dia
ne
R. N
eura
l
n
e
t
w
ork
mod
e
li
ng
o
f
gree
nho
use to
mato
yie
l
d, gro
w
t
h
an
d
w
a
ter
use from a
u
to
mated cro
p
mo
nitori
ng d
a
ta.
C
o
mputers a
n
d
Electron
ics in
Agricult
ure
. 20
11; 79(1): 8
2
-8
9.
Evaluation Warning : The document was created with Spire.PDF for Python.