I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
p
u
t
er
Science
Vo
l.
10
,
No
.
2
,
May
201
8
,
p
p
.
7
0
4
~7
1
2
I
SS
N:
2502
-
4752
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ee
cs
.
v
1
0
.
i2
.
p
p
704
-
7
1
2
704
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijeec
s
Ada
ptive Int
erfe
r
ence Mitiga
tion w
ith
Use
r
G
ro
upin
g
f
o
r F
a
st
Tra
ns
m
iss
io
n in
Cellula
r Ne
tw
o
rk
s
H
a
dh
ra
m
i A
b.
G
ha
ni
*
1
,
Azla
n Abd Az
iz
2
,
Aziz
ul
Aziz
a
n
3
,
Sa
lw
a
ni
M
o
hd
Da
ud
4
1,
2
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
M
u
lt
im
e
d
ia Un
iv
e
rsit
y
,
M
a
lay
sia
3,
4
A
d
v
a
n
c
e
d
In
f
o
rm
a
ti
c
s S
c
h
o
o
l,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
3
W
irele
ss
Co
m
m
u
n
ica
ti
o
n
Ce
n
tr
e
,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
si
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
N
ov
23
,
2
0
1
7
R
ev
i
s
ed
J
an
2
8
,
2
0
1
8
A
cc
ep
ted
F
eb
2
2
,
2
0
1
8
De
sig
n
in
g
u
p
li
n
k
sy
ste
m
s
w
h
ic
h
g
ro
u
p
u
se
rs
w
it
h
a
d
a
p
ti
v
e
in
terf
e
r
e
n
c
e
m
it
ig
a
ti
o
n
tec
h
n
iq
u
e
s
is
th
e
o
b
j
e
c
ti
v
e
o
f
th
is
re
se
a
r
c
h
.
Re
d
u
c
ti
o
n
in
e
rro
r
ra
tes
a
n
d
im
p
ro
v
e
m
e
n
t
in
th
e
e
n
e
rg
y
e
ff
ici
e
n
c
y
is
e
x
p
e
c
ted
w
it
h
th
is
a
p
p
ro
a
c
h
i
n
a
d
d
it
io
n
to
s
p
e
c
tral
e
ff
ici
e
n
c
y
.
T
h
is
p
a
p
e
r
re
p
o
rts
a
stu
d
y
o
n
in
terf
e
re
n
c
e
m
it
ig
a
ti
o
n
a
n
d
tran
sm
is
sio
n
d
e
sig
n
s
f
o
r
g
ro
u
p
s
o
f
u
se
rs
in
th
e
u
p
li
n
k
s.
Ne
w
f
o
r
m
u
latio
n
s
f
o
r
th
e
in
terf
e
re
n
c
e
m
it
ig
a
ti
o
n
a
re
p
ro
d
u
c
e
d
b
a
se
d
o
n
t
h
e
m
in
im
u
m
m
e
a
n
sq
u
a
re
e
rro
r
a
n
d
s
u
c
c
e
ss
iv
e
in
ter
f
e
re
n
c
e
c
a
n
c
e
ll
a
ti
o
n
a
p
p
ro
a
c
h
.
By
re
d
u
c
in
g
th
e
i
n
t
e
rfe
re
n
c
e
,
th
e
e
n
e
rg
y
e
ff
i
c
ien
c
y
c
a
n
b
e
m
a
in
tain
e
d
a
n
d
im
p
ro
v
e
d
a
lt
h
o
u
g
h
th
e
n
u
m
b
e
r
o
f
u
se
rs
p
e
r
g
ro
u
p
in
c
re
a
se
s.
T
h
e
m
e
a
su
re
d
e
rro
r
ra
tes
o
f
th
is
a
p
p
ro
a
c
h
w
it
h
u
se
r
g
ro
u
p
i
n
g
a
c
h
iev
e
g
a
in
s
b
e
tw
e
e
n
1
to
3
d
B
a
g
a
in
st
t
h
a
t
o
f
th
e
e
x
isti
n
g
a
p
p
ro
a
c
h
.
W
it
h
re
d
u
c
e
d
c
o
m
p
lex
it
y
,
th
e
p
ro
p
o
se
d
sc
h
e
m
e
sh
o
u
l
d
b
e
v
iab
le f
o
r
p
ra
c
ti
c
a
l
d
e
p
l
o
y
m
e
n
t.
K
ey
w
o
r
d
s
:
E
n
er
g
y
e
f
f
icie
n
c
y
E
r
r
o
r
r
ate
r
ed
u
ctio
n
Fas
t tr
an
s
m
is
s
io
n
I
n
ter
f
er
en
ce
m
it
ig
at
io
n
User
g
r
o
u
p
in
g
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Had
h
r
a
m
i
A
b
.
Gh
a
n
i,
Facu
lt
y
o
f
E
n
g
i
n
ee
r
i
n
g
a
n
d
T
e
ch
n
o
lo
g
y
,
Mu
lti
m
ed
ia
U
n
iv
er
s
it
y
,
J
alan
Ay
er
Ker
o
h
L
a
m
a,
7
5
4
5
0
B
u
k
it B
er
u
an
g
,
Me
lak
a,
Ma
l
a
y
s
ia.
E
m
ail:
h
ad
h
r
a
m
i.a
b
d
g
h
a
n
i
@
m
m
u
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
s
p
ee
d
y
in
cr
ea
s
e
in
th
e
a
ch
iev
ab
le
d
ata
r
ate
s
o
f
th
e
l
atest
ce
ll
u
lar
n
et
w
o
r
k
tec
h
n
o
lo
g
ies
h
as
r
esu
lted
i
n
s
i
g
n
i
f
ican
t
ad
v
an
ta
g
es
to
all
I
n
ter
n
et
u
s
er
s
,
in
c
lu
d
in
g
b
o
th
h
o
m
e
an
d
b
u
s
i
n
ess
u
s
er
s
.
W
it
h
o
u
t
t
h
i
s
o
u
ts
ta
n
d
in
g
d
ata
r
ates
o
f
f
er
e
d
b
y
th
e
ce
llu
lar
n
et
w
o
r
k
p
r
o
v
id
er
s
,
th
e
v
ar
io
u
s
s
m
ar
t
p
h
o
n
es
o
r
d
ev
ice
s
m
an
u
f
ac
t
u
r
ed
f
o
r
b
illi
o
n
s
o
f
p
eo
p
le
o
n
th
e
p
lan
et
w
ill
b
e
in
v
ai
n
.
Ho
w
e
v
er
,
th
e
g
r
o
w
i
n
g
tr
e
n
d
in
t
h
e
ac
h
iev
ab
le
d
ata
r
ates
h
as
f
u
r
th
er
s
p
ar
k
ed
th
e
in
cr
ea
s
in
g
d
e
m
an
d
f
o
r
h
i
g
h
er
s
p
ee
d
ce
llu
lar
d
ata
s
er
v
ic
es
w
h
ic
h
w
il
l
b
e
s
er
v
ed
at
th
e
p
r
ice
o
f
b
etter
o
r
h
ig
h
er
en
er
g
y
a
n
d
s
p
ec
tr
al
ef
f
icien
c
y
.
T
h
e
m
aj
o
r
l
i
m
itat
io
n
o
f
en
er
g
y
an
d
s
p
ec
tr
al
ef
f
ic
ien
c
y
is
th
e
in
ter
f
er
e
n
ce
b
et
w
ee
n
s
y
m
b
o
ls
,
ca
r
r
ier
s
an
d
u
s
er
s
[
1
-
3
]
.
A
lt
h
o
u
g
h
s
p
ec
tr
all
y
ef
f
icien
t
Or
th
o
g
o
n
al
Fre
q
u
en
c
y
Di
v
is
io
n
Mu
ltip
lex
in
g
(
O
FDM)
s
y
s
te
m
s
ar
e
ap
p
lied
in
cu
r
r
en
t
ce
ll
u
lar
n
et
w
o
r
k
s
s
u
c
h
as
lo
n
g
ter
m
ev
o
lu
tio
n
(
L
T
E
)
-
A
d
v
an
ce
d
n
et
w
o
r
k
s
[
4
-
5
]
,
in
ter
-
ca
r
r
ie
r
in
ter
f
er
en
ce
m
a
y
in
cr
ea
s
e
d
u
e
to
s
e
v
er
al
d
eg
r
a
d
in
g
f
ac
to
r
s
i
n
cl
u
d
in
g
Do
p
p
le
r
ef
f
ec
ts
.
He
n
ce
,
to
e
f
f
icien
tl
y
u
tili
ze
t
h
e
ca
r
r
ier
b
an
d
w
id
t
h
[
6
-
7
]
,
in
ter
f
er
e
n
ce
m
iti
g
atio
n
s
c
h
e
m
e
s
s
h
o
u
ld
b
e
i
m
p
le
m
en
ted
at
t
h
e
r
ec
eiv
i
n
g
en
d
.
W
ith
in
ter
f
er
en
ce
ca
n
ce
lla
tio
n
,
th
e
s
h
ar
ed
ca
r
r
ier
b
an
d
w
id
th
a
m
o
n
g
s
t
th
e
s
i
n
g
le
-
a
n
te
n
n
a
u
s
er
s
in
a
v
ir
tu
a
l
m
u
ltip
le
i
n
p
u
t
m
u
ltip
le
o
u
tp
u
t
(
MI
MO
)
s
ce
n
ar
io
,
as
p
r
o
p
o
s
ed
in
(
e.
g
.
[
8
,
9
]
)
f
u
r
th
er
in
cr
ea
s
e
s
th
e
s
p
ec
tr
al
ef
f
ic
ien
c
y
.
I
n
ter
f
er
e
n
ce
ca
n
ce
llatio
n
s
c
h
e
m
es
s
u
ch
as
s
u
cc
e
s
s
i
v
e
in
ter
f
er
en
ce
ca
n
ce
llatio
n
(
SIC)
an
d
p
ar
allel
in
ter
f
er
en
ce
ca
n
ce
llat
io
n
(
P
I
C
)
s
ch
e
m
e
s
ar
e
tr
ad
iti
o
n
all
y
d
esig
n
ed
w
i
th
co
d
i
n
g
an
d
/o
r
eq
u
aliza
tio
n
tech
n
iq
u
es
s
u
c
h
a
s
m
i
n
i
m
u
m
m
ea
n
s
q
u
ar
e
er
r
o
r
(
MM
SE)
to
r
e
m
o
v
e
i
n
ter
f
er
e
n
ce
[
1
,
2
]
.
Mu
ltip
le
-
f
ee
d
b
ac
k
(
MF)
SIC
is
a
ls
o
p
r
o
p
o
s
ed
to
m
iti
g
ate
i
n
ter
f
er
en
ce
u
s
i
n
g
m
u
ltip
le
f
ee
d
b
ac
k
s
at
t
h
e
r
ec
eiv
er
.
A
lt
h
o
u
g
h
th
e
co
n
v
e
n
tio
n
al
M
MSE
-
SIC
a
n
d
p
o
w
er
allo
ca
tio
n
i
m
p
r
o
v
e
th
e
en
er
g
y
e
f
f
icie
n
c
y
[
1
0
-
1
2
]
,
th
e
in
cu
r
r
ed
co
m
p
u
tatio
n
al
co
m
p
le
x
it
y
ten
d
s
to
in
cr
ea
s
e
w
h
en
t
h
e
n
u
m
b
er
o
f
u
s
er
s
in
cr
ea
s
e
s
.
T
h
e
MF
-
SIC
s
c
h
e
m
e
o
f
f
er
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
d
a
p
tive
I
n
terf
eren
ce
Mit
ig
a
ti
o
n
w
ith
User
Gro
u
p
in
g
fo
r
…
(
Ha
d
h
r
a
mi
A
b
.
Gh
a
n
i
)
705
lo
w
er
co
m
p
u
ta
tio
n
al
co
m
p
le
x
it
y
as
co
m
p
ar
ed
to
th
e
MM
SE
-
SIC
s
ch
e
m
e.
Ho
w
ev
er
t
h
e
in
cr
ea
s
in
g
n
u
m
b
er
o
f
m
u
ltip
le
f
ee
d
b
ac
k
s
r
ec
eiv
ed
d
u
r
in
g
t
h
e
d
etec
tio
n
p
r
o
ce
s
s
w
i
ll
also
in
cr
ea
s
e
t
h
e
co
m
p
u
tati
o
n
al
co
m
p
lex
i
t
y
.
A
m
u
lticas
t
co
m
m
u
n
icatio
n
ap
p
r
o
ac
h
[
1
3
]
h
as
b
ee
n
p
r
o
p
o
s
ed
to
r
ed
u
ce
th
e
co
m
p
lex
it
y
b
u
t
n
o
s
p
ec
if
ic
s
o
lu
tio
n
s
o
n
o
th
er
co
m
m
u
n
icati
o
n
m
o
d
e
s
ar
e
g
iv
e
n
.
I
n
th
is
p
ap
er
,
a
n
e
w
s
i
m
p
li
f
i
ed
MM
SE
-
SIC
r
ec
eiv
er
s
c
h
e
m
e
f
o
r
h
i
g
h
s
p
ee
d
tr
an
s
m
i
s
s
i
o
n
s
y
s
te
m
s
lik
e
L
T
E
-
Av
an
ce
d
s
y
s
te
m
s
i
s
p
r
o
p
o
s
ed
to
d
etec
t
g
r
o
u
p
s
o
f
u
s
er
s
i
n
m
u
lti
-
u
s
er
MI
MO
OF
DM
s
y
s
te
m
s
w
h
ic
h
ar
e
w
id
el
y
u
s
ed
i
n
th
e
c
u
r
r
en
t
an
d
f
u
tu
r
e
ce
ll
u
lar
n
et
w
o
r
k
s
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
C
o
n
s
id
er
a
h
ig
h
-
s
p
ee
d
MI
MO
OFDM
m
o
d
el
w
it
h
u
s
er
s
,
ea
ch
w
it
h
a
s
i
n
g
le
an
te
n
n
a
an
d
co
m
m
u
n
icate
s
o
v
er
t
h
e
u
p
li
n
k
s
w
ith
t
h
e
b
ase
s
tatio
n
h
a
v
i
n
g
an
ten
n
as
an
d
f
r
eq
u
en
c
y
s
u
b
-
ca
r
r
i
er
s
.
T
h
e
b
lo
ck
d
iag
r
a
m
f
o
r
th
e
co
r
r
esp
o
n
d
in
g
tr
an
s
m
itter
a
n
d
r
ec
eiv
er
m
o
d
els
is
s
h
o
w
n
in
Fi
g
u
r
e
1
.
T
h
e
f
o
cu
s
o
f
t
h
i
s
p
ap
er
is
at
th
e
r
ec
eiv
i
n
g
p
ar
t,
w
h
ic
h
is
i
n
d
icate
d
in
t
h
e
d
ia
g
r
a
m
u
s
i
n
g
i
ta
lic
f
o
n
ts
,
w
h
ic
h
a
r
e
th
e
ad
ap
tiv
e
SIC
w
it
h
g
r
o
u
p
i
n
g
.
B
ef
o
r
e
ex
p
lain
in
g
ab
o
u
t
th
i
s
p
r
o
p
o
s
ed
m
et
h
o
d
,
th
e
d
etails
o
f
th
e
ce
llu
la
r
n
et
w
o
r
k
s
et
u
p
ar
e
g
iv
e
n
in
t
h
is
s
ec
tio
n
.
T
h
e
n
et
w
o
r
k
is
is
o
m
etr
ic,
w
h
ic
h
m
e
an
s
th
at
all
u
s
er
s
ar
e
eq
u
all
y
d
is
tan
t
to
t
h
e
b
a
s
e
s
tatio
n
a
n
d
th
e
ch
a
n
n
el
s
tate
i
n
f
o
r
m
atio
n
(
C
SI)
is
n
o
t
av
ai
la
b
le
at
th
e
r
ec
eiv
in
g
s
id
e.
T
h
e
OFDM
s
y
m
b
o
ls
ar
e
g
en
er
ated
u
s
i
n
g
-
I
DFT
,
as
s
ee
n
in
Fig
u
r
e
1
,
w
h
er
e
=
2048
h
as
b
ee
n
w
id
el
y
u
s
ed
f
o
r
L
T
E
s
y
s
te
m
s
.
W
ith
u
s
er
s
p
er
g
r
o
u
p
,
th
e
n
u
m
b
e
r
o
f
g
r
o
u
p
s
is
=
/
w
h
er
e
th
e
p
-
t
h
u
s
er
o
f
t
h
e
j
-
t
h
g
r
o
u
p
is
r
ep
r
esen
ted
as
u
(
j,
p
)
,
w
it
h
=
1
,
2
,
⋯
,
a
n
d
=
1
,
2
,
…
,
.
T
h
e
r
ec
eiv
ed
v
ec
to
r
∈
ℂ
×
1
f
o
r
g
r
o
u
p
is
=
[
(
,
1
)
⋮
(
,
)
]
+
[
1
⋮
]
,
(
1
)
w
it
h
∈
ℂ
×
as
th
e
m
a
tr
ix
f
o
r
m
ap
p
in
g
t
h
e
f
r
eq
u
e
n
c
y
ca
r
r
ier
s
to
t
h
e
u
s
er
s
i
n
g
r
o
u
p
j
f
o
r
∀
=
1
,
2
,
⋯
,
.
T
h
e
n
o
is
e
v
ec
to
r
is
r
ep
r
esen
ted
as
∈
ℂ
×
1
.
Ma
tr
ix
∈
ℂ
×
r
ep
r
esen
ts
th
e
r
ec
eiv
e
d
ch
an
n
el
g
ai
n
s
o
f
g
r
o
u
p
j
w
h
e
r
e
≜
[
,
1
⋯
,
]
.
Ma
tr
ix
,
∈
ℂ
×
is
t
h
en
d
e
f
i
n
ed
as
th
e
r
ec
ei
v
ed
ch
an
n
el
m
atr
i
x
o
f
t
h
e
p
-
th
u
s
er
f
r
o
m
t
h
e
j
-
th
g
r
o
u
p
,
w
h
i
ch
is
n
o
t
k
n
o
w
n
at
t
h
e
r
ec
ei
v
in
g
e
n
d
.
Af
ter
t
h
e
m
o
d
u
latio
n
an
d
co
d
in
g
p
r
o
ce
s
s
,
th
e
d
ata
v
ec
to
r
(
,
)
∈
ℂ
×
1
f
r
o
m
u
s
e
r
p
o
f
g
r
o
u
p
j
is
m
ap
p
ed
to
th
e
f
r
eq
u
en
c
y
d
o
m
a
in
v
ia
th
e
Fo
u
r
ier
T
r
an
s
f
o
r
m
o
p
er
atio
n
.
I
n
o
r
d
er
to
r
em
o
v
e
t
h
e
i
n
ter
s
y
m
b
o
l
in
ter
f
er
e
n
ce
,
t
h
e
c
y
clic
p
r
ef
i
x
o
p
er
atio
n
is
also
p
er
f
o
r
m
ed
b
ef
o
r
e
tr
an
s
m
is
s
io
n
an
d
af
ter
th
e
d
ata
v
ec
to
r
is
r
ec
eiv
ed
.
Fig
u
r
e
1
: T
h
e
T
r
an
s
m
it
ter
an
d
R
ec
eiv
er
Mo
d
el
.
W
h
en
t
h
e
tr
an
s
m
itted
s
i
g
n
al
o
f
ea
ch
u
s
er
h
as
an
eq
u
al
p
o
w
e
r
s
p
ec
tr
al
d
en
s
it
y
,
,
(
,
)
2
,
co
r
r
u
p
ted
b
y
ad
d
itiv
e
w
h
i
te
Gau
s
s
ia
n
n
o
is
e
w
it
h
a
s
p
ec
tr
al
d
en
s
it
y
,
,
(
,
)
2
,
th
e
in
p
u
t
s
ig
n
al
-
to
-
n
o
i
s
e
r
atio
(
SNR
)
ca
n
b
e
r
ep
r
esen
ted
as
(
,
)
=
,
(
,
)
2
/
,
(
,
)
2
.
B
y
u
s
i
n
g
th
e
MM
SE
ap
p
r
o
ac
h
,
a
d
etec
ti
o
n
m
atr
i
x
[9
]
,
,
∈
ℂ
×
,
f
o
r
r
ec
o
v
er
in
g
th
e
r
ec
ei
v
ed
s
ig
n
a
l c
an
b
e
d
er
iv
ed
to
p
r
o
d
u
c
e
th
e
f
o
llo
w
i
n
g
ex
p
r
ess
io
n
,
=
,
,
(
+
(
,
)
−
1
)
−
1
,
(
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
Ma
y
2
0
1
8
:
7
0
4
–
7
1
2
706
w
h
er
e
,
=
1
,
(
,
)
2
.
T
h
e
in
ter
f
er
en
ce
m
i
tig
a
tio
n
te
ch
n
iq
u
e
p
r
o
p
o
s
ed
in
th
i
s
p
ap
er
is
b
ased
o
n
th
e
s
u
cc
e
s
s
i
v
e
i
n
ter
f
er
en
ce
ca
n
ce
llatio
n
m
et
h
o
d
.
B
y
u
p
d
atin
g
th
e
ef
f
ec
ti
v
e
a
m
o
u
n
t
o
f
in
ter
f
er
en
ce
ex
p
er
ie
n
ce
d
b
y
t
h
e
cu
r
r
en
t
u
s
er
r
ec
eiv
ed
d
ata
to
b
e
d
etec
te
d
,
E
q
u
atio
n
(
2
)
w
h
ic
h
r
ep
r
esen
t
s
th
e
i
n
v
er
s
e
co
v
ar
ia
n
c
e
m
atr
ix
m
u
s
t
b
e
r
ec
alcu
lated
w
h
en
e
v
er
a
r
ec
e
iv
ed
d
ata
v
ec
to
r
i
s
s
u
cc
es
s
f
u
ll
y
d
etec
ted
i
n
o
r
d
er
to
ex
cl
u
d
e
th
e
a
m
o
u
n
t
o
f
in
ter
f
er
e
n
ce
co
n
tr
ib
u
ted
b
y
t
h
e
r
ec
eiv
ed
d
ata
w
h
ic
h
h
a
v
e
b
ee
n
s
u
cc
es
s
f
u
ll
y
r
ec
o
v
er
ed
.
T
h
is
u
p
d
ated
in
v
er
s
e
m
atr
i
x
,
,
∈
ℝ
×
,
c
an
b
e
ex
p
r
ess
ed
as f
o
llo
w
s
,
=
(
,
1
,
1
+
⋯
+
,
,
+
(
,
)
−
1
)
−
1
,
(
3
)
w
h
er
e
d
en
o
tes
th
e
p
-
th
u
s
er
o
f
t
h
e
j
-
th
g
r
o
u
p
.
T
h
e
r
ec
eiv
ed
ch
an
n
el
m
atr
ices
(
e
g
.
,
,
)
r
ef
er
to
th
o
s
e
u
s
er
s
1
,
2
u
n
til
,
w
h
ich
w
ill
b
e
d
etec
ted
,
ex
clu
d
i
n
g
t
h
e
u
s
er
s
w
h
ic
h
h
av
e
b
ee
n
s
u
cc
e
s
s
f
u
ll
y
d
ete
cted
.
Hen
ce
,
a
n
e
w
m
atr
i
x
w
h
ic
h
is
u
s
ed
to
p
er
f
o
r
m
i
n
ter
f
er
en
ce
m
iti
g
atio
n
f
o
r
d
etec
tin
g
t
h
e
u
s
er
s
ca
n
b
e
w
r
itte
n
as
,
=
,
,
,
,
(
4
)
T
h
e
m
atr
i
x
in
E
q
u
atio
n
(
4
)
c
an
b
e
u
s
ed
to
d
etec
t
th
e
d
ata
v
ec
to
r
r
ec
eiv
ed
f
r
o
m
u
s
er
,
w
h
ic
h
is
ex
p
r
ess
ed
as
̂
(
,
)
=
,
̂
,
,
w
h
er
e
v
ec
to
r
̂
,
co
n
tai
n
s
i
n
ter
f
er
e
n
ce
o
n
l
y
f
r
o
m
th
e
later
u
s
er
s
w
h
ic
h
h
a
v
e
n
o
t b
ee
n
d
etec
ted
,
an
d
is
ca
lcu
lated
as sh
o
w
n
b
elo
w
[
1
4
]
̂
,
−
1
=
̂
,
−
,
̂
(
,
)
,
(
5
)
I
n
th
i
s
p
ap
er
,
a
n
e
w
f
o
r
m
u
l
atio
n
is
p
r
o
d
u
ce
d
b
ased
o
n
t
h
e
s
u
cc
ess
iv
e
i
n
ter
f
er
e
n
ce
c
a
n
ce
llatio
n
ap
p
r
o
ac
h
to
p
r
o
d
u
ce
a
co
m
p
u
tatio
n
a
ll
y
lo
w
er
tr
an
s
m
is
s
io
n
m
o
d
el.
T
h
e
m
ai
n
co
m
p
u
ta
t
io
n
s
ar
e
in
v
o
lv
ed
i
n
d
eter
m
in
i
n
g
m
atr
i
x
,
o
f
E
q
u
atio
n
(
3
)
,
w
h
ic
h
is
th
e
in
v
er
s
e
co
v
ar
ian
ce
m
a
tr
ix
.
Fo
r
n
o
tatio
n
a
l
co
n
v
en
ie
n
ce
,
th
e
e
n
tr
y
o
f
t
h
is
m
atr
i
x
at
r
o
w
x
a
n
d
co
lu
m
n
y
i
s
ex
p
r
es
s
e
d
as
,
=
[
,
]
,
,
w
h
ic
h
i
s
f
u
r
t
h
er
d
etaile
d
as
f
o
llo
w
s
[
1
4
]
,
=
{
[
,
,
−
1
]
+
1
,
+
1
,
if
−
−
=
1
0
,
e
l
s
e
whe
r
e
(
6
)
w
it
h
=
−
=
−
f
o
r
=
1
,
⋯
,
an
d
,
=
0
,
1
,
⋯
,
−
1
.
I
n
th
e
r
ec
eiv
ed
ch
an
n
el
m
a
tr
ix
,
th
e
en
tr
y
i
s
r
ep
r
esen
ted
as,
,
,
=
[
]
,
.
Hen
c
e
th
e
co
v
ar
ian
ce
m
atr
i
x
is
r
e
wr
itten
as b
elo
w
[
1
4
]
,
,
=
[
,
,
(
)
⋯
,
,
+
(
)
⋮
⋱
⋮
,
+
,
(
)
⋯
,
+
,
+
(
)
]
(
7
)
w
h
er
e
,
,
(
)
=
∑
,
,
,
,
∗
+
−
1
=
1
(
,
)
,
=
,
,
(
−
1
)
+
,
,
+
(
−
1
)
,
,
+
(
−
1
)
.
∗
w
it
h
(
,
)
v
alu
e
is
u
n
it
y
w
h
en
=
an
d
ze
r
o
o
th
er
w
i
s
e.
T
h
e
s
u
cc
es
s
iv
e
i
n
ter
f
er
e
n
ce
ca
n
ce
l
latio
n
o
p
er
atio
n
is
s
tar
ted
f
r
o
m
t
h
e
-
t
h
u
s
er
,
w
h
ic
h
is
i
n
ter
f
er
ed
b
y
tr
a
n
s
m
itted
d
ata
f
r
o
m
all
u
s
er
s
.
He
n
ce
th
e
d
etec
tio
n
o
f
t
h
is
u
s
er
,
w
h
ic
h
i
s
in
d
icate
d
as
=
,
is
s
i
m
ilar
to
th
e
MM
SE
d
etec
tio
n
p
r
o
ce
s
s
,
wh
ich
is
al
s
o
s
i
m
p
li
f
ied
a
n
d
p
r
esen
ted
in
th
i
s
p
ap
er
.
T
o
co
m
p
lete
th
e
in
ter
f
er
en
ce
m
i
tig
at
io
n
p
r
o
ce
s
s
a
f
t
er
d
etec
tin
g
t
h
e
-
th
u
s
er
,
t
h
e
i
n
ter
f
er
e
n
ce
ca
u
s
e
d
b
y
th
i
s
n
e
w
l
y
d
etec
ted
u
s
er
is
r
e
m
o
v
ed
an
d
t
h
e
n
ex
t
u
s
er
i.e
.
u
s
er
−
1
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
d
a
p
tive
I
n
terf
eren
ce
Mit
ig
a
ti
o
n
w
ith
User
Gro
u
p
in
g
fo
r
…
(
Ha
d
h
r
a
mi
A
b
.
Gh
a
n
i
)
707
th
en
d
etec
ted
.
T
h
e
s
a
m
e
p
r
o
ce
s
s
co
n
ti
n
u
es
f
o
r
all
u
s
er
s
.
Hen
ce
,
th
e
e
n
tr
ies
o
f
th
e
i
n
te
r
f
er
en
ce
m
iti
g
atio
n
m
atr
i
x
,
f
o
r
r
ec
o
v
er
in
g
th
e
r
ec
e
iv
ed
d
ata
is
w
r
i
tten
a
s
,
,
+
=
1
2
,
,
∗
∑
,
+
,
+
∗
,
+
,
+
−
1
=
0
w
h
er
e
,
,
+
=
[
,
]
,
+
,
,
,
=
[
]
,
f
o
r
=
0
,
1
,
…
,
an
d
=
of
f
s
e
t
+
1
,
…
,
of
f
s
e
t
+
.
I
n
th
e
n
e
x
t
s
ec
tio
n
,
a
b
r
ief
an
a
l
y
s
is
o
n
t
h
e
s
p
ec
tr
al
a
n
d
e
n
er
g
y
ef
f
icie
n
c
y
i
s
ca
r
r
ied
o
u
t
to
m
ea
s
u
r
e
p
er
f
o
r
m
an
ce
o
f
th
e
u
s
er
s
i
n
t
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
.
2
.
1
.
E
nerg
y
a
nd
Sp
ec
t
ra
l Eff
iciency
T
h
e
en
er
g
y
e
f
f
icien
c
y
i
s
d
eter
m
i
n
ed
as
f
o
llo
w
s
=
∑
10
l
o
g
(
1
+
o
,
(
,
)
)
(
T
+
SC
)
,
(
8
)
w
h
er
e
o
,
(
,
)
is
th
e
u
n
b
ia
s
ed
s
ig
n
al
-
to
-
in
ter
f
er
en
ce
a
n
d
n
o
i
s
e
r
atio
(
SIN
R
)
[
8
]
g
iv
e
n
b
y
o
,
(
,
)
=
2
,
(
,
)
,
,
,
1
−
2
,
(
,
)
,
,
,
,
w
h
er
e
,
is
th
e
-
t
h
co
l
u
m
n
o
f
,
in
d
ex
is
g
i
v
en
a
s
=
+
(
−
1
)
an
d
is
th
e
f
r
eq
u
en
c
y
ca
r
r
ier
o
f
f
s
et,
T
is
th
e
tr
a
n
s
m
it
p
o
w
er
an
d
SC
is
t
h
e
lo
ad
-
in
d
ep
en
d
en
t
cir
c
u
it
p
o
w
er
.
An
o
th
er
i
m
p
o
r
tan
t
m
ea
s
u
r
e
m
e
n
t p
ar
a
m
eter
is
th
e
b
an
d
w
id
t
h
ef
f
icie
n
c
y
,
w
r
i
tten
a
s
=
∑
10
l
o
g
(
1
+
o
,
(
,
)
)
,
(
9
)
w
h
er
e
W
is
t
h
e
b
an
d
w
id
th
al
lo
ca
te
d
to
ea
ch
g
r
o
u
p
.
I
n
th
e
n
ex
t
s
ec
tio
n
,
a
b
r
ief
an
al
y
s
is
o
n
t
h
e
ad
ap
tiv
e
in
ter
f
er
er
n
ce
m
i
tig
a
tio
n
al
g
o
r
ith
m
w
it
h
u
s
er
g
r
o
u
p
in
g
i
s
p
r
esen
ted
.
2
.
2
.
Ada
ptiv
e
I
nte
rf
er
ence
M
it
i
g
a
t
io
n Alg
o
rit
h
m
w
it
h User
G
ro
u
pin
g
SIC
i
m
p
le
m
e
n
tat
io
n
i
s
e
f
f
ec
ti
v
e
f
o
r
s
u
cc
e
s
s
i
v
el
y
r
e
m
o
v
i
n
g
in
ter
f
er
en
ce
o
v
er
a
n
u
m
b
er
o
f
s
i
g
n
als
,
w
h
er
e
ea
ch
s
i
g
n
a
l
b
elo
n
g
s
to
o
n
e
s
p
ec
if
ic
u
s
er
,
p
r
o
v
id
ed
th
at
th
e
f
ir
s
t
s
ig
n
al
i
s
s
u
cc
e
s
s
f
u
ll
y
d
etec
ted
.
W
h
en
d
etec
tin
g
th
e
n
e
x
t
s
i
g
n
a
l,
th
e
s
u
cc
e
s
s
f
u
ll
y
d
etec
ted
s
i
g
n
al
w
ill
b
e
ta
k
en
as
th
e
‘
i
n
ter
f
er
in
g
s
i
g
n
a
l’
to
b
e
m
iti
g
ated
.
Ho
w
e
v
er
,
w
h
e
n
t
h
e
f
ir
s
t
s
i
g
n
al
i
s
f
ailed
to
b
e
d
ete
cted
,
in
ter
f
er
e
n
ce
m
iti
g
atio
n
is
n
o
t
p
o
s
s
ib
le
to
b
e
ca
r
r
ied
o
u
t
f
o
r
th
e
s
ec
o
n
d
s
i
g
n
al
d
etec
tio
n
.
T
h
e
s
a
m
e
p
r
o
b
le
m
h
ap
p
en
s
w
h
e
n
an
y
s
ig
n
al,
n
o
t
n
ec
e
s
s
ar
il
y
t
h
e
f
ir
s
t
s
i
g
n
a
l,
is
f
ailed
to
b
e
d
et
ec
ted
,
th
e
n
e
x
t
s
i
g
n
a
l
is
i
m
p
o
s
s
ib
le
to
b
e
d
etec
ted
v
ia
in
ter
f
er
en
ce
m
it
ig
at
io
n
m
et
h
o
d
.
I
n
o
r
d
er
t
o
im
p
r
o
v
e
p
er
f
o
r
m
a
n
ce
o
f
th
i
s
in
ter
f
er
en
ce
ca
n
ce
llatio
n
p
r
o
ce
s
s
,
an
ad
ap
tiv
e
ap
p
r
o
ac
h
is
in
tr
o
d
u
ce
d
s
u
ch
t
h
at
w
h
e
n
an
y
s
i
g
n
al
o
th
er
t
h
a
n
th
e
last
s
i
g
n
al
is
f
ailed
to
b
e
d
etec
ted
,
th
at
t
h
e
al
g
o
r
ith
m
ch
o
o
s
es
an
o
t
h
er
s
i
g
n
a
l,
w
h
ic
h
is
y
et
to
b
e
d
etec
ted
,
to
p
e
r
f
o
r
m
i
n
ter
f
er
en
ce
m
iti
g
atio
n
o
p
er
atio
n
an
d
d
etec
t
th
e
s
ig
n
al
.
I
f
th
e
f
ai
led
s
i
g
n
al
is
t
h
e
f
ir
s
t
s
i
g
n
al,
t
h
e
n
t
h
e
al
g
o
r
ith
m
w
ill
ch
o
o
s
e
a
n
o
t
h
er
s
i
g
n
al
to
b
e
d
etec
ted
as th
e
f
ir
s
t s
ig
n
al.
T
h
is
al
g
o
r
ith
m
i
s
s
u
m
m
ar
ized
i
n
Fi
g
u
r
e
2.
Fig
u
r
e
2
: A
d
ap
ti
v
e
Su
cc
e
s
s
i
v
e
I
n
ter
f
er
en
ce
C
an
ce
llatio
n
w
i
t
h
User
Gr
o
u
p
in
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
Ma
y
2
0
1
8
:
7
0
4
–
7
1
2
708
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
Sev
er
al
test
s
h
a
v
e
b
ee
n
ca
r
r
ied
o
u
t
to
o
b
s
er
v
e
p
er
f
o
r
m
an
ce
o
f
th
e
p
r
o
p
o
s
ed
m
o
d
els.
T
h
e
m
ea
s
u
r
e
m
e
n
t
p
ar
a
m
eter
s
ar
e
th
e
e
n
er
g
y
e
f
f
icie
n
c
y
,
s
p
ec
tr
al
ef
f
icie
n
c
y
a
n
d
u
s
er
e
n
er
g
y
ef
f
icie
n
c
y
.
T
h
e
p
h
y
s
ical
c
h
a
n
n
el
p
r
o
p
ag
atio
n
p
ar
a
m
eter
s
f
o
llo
w
th
e
s
ta
n
d
ar
d
3
GPP
L
T
E
s
p
ec
if
icat
io
n
s
f
o
r
P
ed
estrian
A
ch
an
n
el
m
o
d
el,
w
h
ic
h
is
s
p
ec
if
ied
in
t
h
e
s
a
m
e
m
a
n
n
er
p
r
esen
ted
in
[
1
3
-
1
4
]
,
w
h
er
e
P
_
SC
=1
3
0
W
,
W
=1
0
MH
z,
〖
N
〗
_o=
-
1
7
4
d
B
m
/Hz.
T
h
e
n
u
m
b
er
N_
u
o
f
u
s
er
s
p
er
g
r
o
u
p
r
an
g
es
b
et
w
ee
n
o
n
e
to
f
o
u
r
an
d
th
e
n
u
m
b
er
N_
r
o
f
r
ec
eiv
in
g
a
n
te
n
n
a
s
is
f
o
u
r
.
T
h
e
r
ad
io
ce
lls
ar
e
is
o
m
etr
ic,
ass
u
m
i
n
g
all
u
s
er
s
ar
e
at
th
e
s
a
m
e
d
is
tan
ce
f
r
o
m
t
h
e
b
ase
s
tatio
n
.
I
n
Fig
u
r
e
3
an
d
Fi
g
u
r
e
4
,
th
e
b
it
er
r
o
r
r
ate
(
B
E
R
)
an
d
th
e
p
ac
k
et
er
r
o
r
r
ate
(
P
E
R
)
r
esu
lts
ar
e
p
lo
tted
af
ter
r
u
n
n
i
n
g
th
e
p
r
o
p
o
s
ed
s
ch
e
m
e,
w
h
ic
h
is
I
m
AC
SI
C
-
G
to
b
e
co
m
p
ar
ed
w
it
h
th
e
o
th
er
t
w
o
ex
is
ti
n
g
s
ch
e
m
es,
w
h
ic
h
ar
e
J
o
in
t
SIC
-
G
[
8
]
an
d
AC
SIC
-
G
[
1
3
]
.
E
ac
h
o
f
t
h
ese
t
h
r
ee
s
ch
e
m
e
s
is
s
ep
ar
atel
y
r
u
n
b
y
s
etti
n
g
N_
u
u
s
er
s
to
tr
an
s
m
it
r
an
d
o
m
l
y
g
e
n
er
ated
s
y
m
b
o
ls
in
b
lo
ck
s
o
f
1
2
s
y
m
b
o
ls
ea
ch
o
v
er
th
e
u
p
li
n
k
d
ir
ec
tio
n
.
W
h
en
th
e
s
y
m
b
o
ls
ar
e
r
ec
eiv
ed
,
th
e
B
E
R
an
d
P
E
R
ar
e
m
ea
s
u
r
ed
at
th
e
r
ec
eiv
i
n
g
a
n
te
n
n
a
s
b
y
co
m
p
u
ti
n
g
t
h
e
n
u
m
b
er
o
f
s
u
cc
ess
f
u
l
l
y
d
etec
ted
b
its
o
v
er
th
e
to
tal
n
u
m
b
er
o
f
b
its
tr
an
s
m
itted
w
it
h
in
al
l
tr
an
s
m
itted
s
y
m
b
o
ls
,
w
h
er
e
e
ac
h
s
y
m
b
o
l
co
n
s
is
ts
o
f
t
w
o
b
i
ts
.
T
h
e
in
p
u
t
SNR
is
s
et
in
t
h
e
r
an
g
e
b
et
w
ee
n
-
2
d
B
to
3
d
B
.
I
t
ca
n
b
e
o
b
s
er
v
ed
f
r
o
m
Fi
g
u
r
e
3
an
d
Fig
u
r
e
4
th
at
th
e
p
r
o
p
o
s
e
d
I
m
AC
SIC
-
G
s
ch
e
m
e
p
er
f
o
r
m
ed
b
etter
th
an
t
h
e
t
w
o
ex
i
s
ti
n
g
m
eth
o
d
s
,
w
h
er
e
t
h
e
r
ec
o
r
d
ed
B
E
R
an
d
P
E
R
ar
e
ab
o
u
t 1
d
B
lo
w
er
t
h
an
t
h
o
s
e
o
f
t
h
e
ex
is
t
in
g
m
et
h
o
d
s
w
h
e
n
ac
h
iev
in
g
B
E
R
s
b
et
w
ee
n
〖
10
〗
^(
-
1
)
to
〖
10
〗
^(
-
3
)
.
A
s
th
is
B
E
R
an
d
P
E
R
r
ed
u
ctio
n
s
ar
e
o
b
s
er
v
ed
at
lo
w
i
n
p
u
t
SN
R
s
,
it
ca
n
b
e
co
n
s
id
er
ed
as
u
s
ef
u
l
an
d
s
ig
n
i
f
ica
n
t
s
in
ce
m
o
b
ile
tr
an
s
m
i
s
s
io
n
is
n
ee
d
ed
at
lo
w
in
p
u
t SN
R
s
d
u
e
to
ce
r
tain
cir
cu
m
s
ta
n
ce
s
s
u
c
h
as th
e
lo
w
b
atter
y
le
v
el.
Fig
u
r
e
3
.
B
E
R
v
er
s
u
s
I
n
p
u
t
S
NR
Fig
u
r
e
.
5
s
h
o
w
s
t
h
e
i
n
d
iv
id
u
al
u
s
er
P
E
R
o
b
s
er
v
ed
w
h
e
n
t
h
e
test
is
r
u
n
o
n
th
e
p
r
o
p
o
s
ed
I
m
AC
SI
C
-
G
s
ch
e
m
e
a
n
d
t
h
e
e
x
is
t
in
g
J
o
in
t
SIC
-
G.
T
h
er
e
ar
e
f
o
u
r
u
s
er
s
d
iv
id
ed
in
to
t
w
o
g
r
o
u
p
s
,
ea
c
h
w
it
h
t
w
o
u
s
er
s
.
T
h
e
last
t
w
o
d
i
g
its
o
n
t
h
e
n
a
m
e
o
f
th
e
s
ch
e
m
e
s
,
li
k
e
J
o
in
t
SI
C
-
G1
2
f
o
r
in
s
tan
ce
,
r
e
f
er
s
to
t
h
e
g
r
o
u
p
a
n
d
th
e
u
s
er
,
w
h
ic
h
in
t
h
i
s
ca
s
e
r
ef
er
s
to
g
r
o
u
p
1
an
d
u
s
er
2
.
I
t
is
clea
r
th
at
t
h
e
u
s
er
P
E
R
s
o
f
th
e
I
m
A
C
SIC
-
G
s
c
h
e
m
e
is
lo
w
er
th
a
n
t
h
o
s
e
o
f
t
h
e
J
o
in
t S
I
C
-
G
w
i
th
g
ai
n
s
b
et
w
ee
n
0
.
5
to
2
d
B
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
d
a
p
tive
I
n
terf
eren
ce
Mit
ig
a
ti
o
n
w
ith
User
Gro
u
p
in
g
fo
r
…
(
Ha
d
h
r
a
mi
A
b
.
Gh
a
n
i
)
709
Fig
u
r
e
4
.
P
E
R
v
er
s
u
s
I
n
p
u
t
S
NR
.
I
n
o
r
d
er
to
en
s
u
r
e
t
h
at
t
h
e
e
n
e
r
g
y
e
f
f
icie
n
c
y
in
cr
ea
s
e
s
,
t
h
e
i
n
ter
f
er
e
n
ce
m
iti
g
atio
n
m
o
d
el
i
s
p
r
o
p
o
s
ed
in
t
h
i
s
p
ap
er
b
ased
o
n
t
h
e
SIC
ap
p
r
o
ac
h
to
i
n
cr
ea
s
e
t
h
e
a
ch
iev
ab
le
ca
p
ac
it
y
w
h
ils
t
r
ed
u
cin
g
th
e
in
c
u
r
r
ed
co
m
p
u
tatio
n
al
co
m
p
le
x
it
y
.
I
t
ca
n
b
e
s
ee
n
th
a
t
th
e
p
r
o
p
o
s
ed
in
ter
f
er
e
n
ce
m
iti
g
atio
n
m
o
d
el
h
as
a
g
ai
n
o
f
ab
o
u
t
2
d
B
t
o
3
d
B
w
h
e
n
a
tar
g
et
en
er
g
y
ef
f
ic
ien
c
y
o
f
0
.
3
Mb
p
s
/J
o
u
le,
b
et
w
ee
n
Fig
u
r
e
3
an
d
Fig
u
r
e
4
.
A
p
ar
t
f
r
o
m
f
i
x
in
g
th
e
n
u
m
b
er
o
f
u
s
er
s
p
er
g
r
o
u
p
,
a
n
o
th
er
test
is
r
u
n
to
o
b
s
er
v
e
t
h
e
b
est
g
r
o
u
p
in
g
f
o
r
a
g
iv
e
n
to
tal
n
u
m
b
er
o
f
u
s
er
s
.
I
n
th
i
s
test
,
a
to
tal
o
f
f
o
u
r
u
s
er
s
ar
e
as
s
u
m
ed
in
t
h
e
r
ad
io
ce
ll
an
d
ea
ch
g
r
o
u
p
is
allo
w
ed
to
h
av
e
a
d
if
f
er
e
n
t n
u
m
b
er
o
f
u
s
er
s
.
Fig
u
r
e
5
.
User
P
E
R
v
er
s
u
s
in
p
u
t SN
R
.
T
h
e
to
tal
en
er
g
y
e
f
f
ic
ien
c
y
,
te
r
m
ed
as
u
s
er
e
n
er
g
y
e
f
f
ic
ien
c
y
,
is
th
e
n
ca
lc
u
lated
u
s
i
n
g
E
q
u
atio
n
(
1
0
)
.
Ba
s
ed
o
n
th
e
r
es
u
lt
s
s
h
o
w
n
in
Fig
u
r
e
6
,
it is
o
b
s
er
v
ed
th
at
th
e
h
i
g
h
e
s
t
u
s
er
e
n
er
g
y
ef
f
ic
ien
c
y
is
o
b
tai
n
ed
w
h
e
n
ea
ch
g
r
o
u
p
i
s
eq
u
all
y
allo
ca
t
ed
w
it
h
t
w
o
u
s
er
s
.
T
h
e
lo
w
e
s
t
u
s
er
e
n
er
g
y
ef
f
icie
n
c
y
is
wh
en
n
o
g
r
o
u
p
i
n
g
is
d
o
n
e.
T
h
e
m
a
x
i
m
u
m
n
u
m
b
er
o
f
g
r
o
u
p
s
i
n
th
i
s
test
i
s
t
wo
,
to
av
o
id
an
y
f
u
r
t
h
er
in
cr
e
ase
in
t
h
e
s
p
ec
tr
al
ef
f
icien
c
y
o
f
t
h
e
s
y
s
te
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
Ma
y
2
0
1
8
:
7
0
4
–
7
1
2
710
Fig
u
r
e
6
.
E
n
er
g
y
E
f
f
icie
n
c
y
v
er
s
u
s
I
n
p
u
t
SN
R
.
Fig
u
r
e
6
a
n
d
7
s
h
o
w
s
th
e
e
n
er
g
y
a
n
d
s
p
ec
tr
al
e
f
f
icie
n
c
y
m
ea
s
u
r
ed
u
s
i
n
g
E
q
u
at
io
n
(
8
)
an
d
(
9
)
r
esp
ec
tiv
el
y
.
T
h
e
ef
f
icie
n
c
y
v
alu
es
ar
e
m
ea
s
u
r
ed
f
o
r
a
r
an
g
e
o
f
in
p
u
t
SNR
s
f
r
o
m
0
to
6
0
d
B
.
Fro
m
th
e
t
w
o
f
i
g
u
r
es,
it
i
s
o
b
s
er
v
ed
t
h
at
t
h
e
p
r
o
p
o
s
ed
I
m
A
C
SIC
-
G
s
c
h
e
m
e
h
av
e
b
etter
g
ai
n
s
o
f
1
to
3
d
B
.
T
h
is
i
s
m
ain
l
y
co
n
tr
ib
u
ted
b
y
th
e
ad
ap
tiv
e
i
n
ter
f
er
e
n
ce
m
iti
g
atio
n
o
p
er
atio
n
i
m
p
le
m
e
n
ted
w
h
ic
h
r
ed
u
c
es
t
h
e
i
n
ter
f
er
e
n
ce
h
en
ce
i
n
cr
ea
s
i
n
g
th
e
SIN
R
an
d
b
o
th
th
e
en
er
g
y
ef
f
ic
ien
c
y
a
s
w
e
ll a
s
s
p
ec
tr
al
e
f
f
ic
ien
c
y
.
Fig
u
r
e
7
.
Sp
ec
tr
al
E
f
f
i
cie
n
c
y
v
er
s
u
s
I
n
p
u
t
SN
R
.
4.
CO
NCLU
SI
O
N
T
h
e
n
e
w
r
ec
ei
v
er
m
o
d
els d
esi
g
n
ed
b
ased
o
n
th
e
p
r
o
p
o
s
ed
ad
ap
tiv
e
in
ter
f
er
en
ce
m
iti
g
atio
n
m
et
h
o
d
h
av
e
b
ee
n
d
e
m
o
n
s
tr
ated
in
t
h
i
s
p
ap
er
to
r
e
d
u
ce
b
it a
n
d
p
ac
k
et
er
r
o
r
r
ates e
s
p
ec
iall
y
at
lo
w
SNR
s
w
h
e
n
t
h
e
a
m
o
u
n
t i
n
ter
f
er
e
n
ce
is
co
n
s
id
e
r
ab
ly
h
i
g
h
.
F
u
r
t
h
er
m
o
r
e,
th
e
e
n
er
g
y
ef
f
icie
n
c
y
is
al
s
o
i
m
p
r
o
v
ed
w
h
e
n
th
e
in
ter
f
er
e
n
ce
m
iti
g
atio
n
s
ch
e
m
e
is
in
p
lace
,
w
h
i
ls
t i
n
cr
ea
s
i
n
g
th
e
s
p
ec
tr
al
ef
f
icie
n
c
y
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
A
s
p
ec
ial
t
h
a
n
k
s
to
th
e
Mi
n
i
s
tr
y
o
f
Hi
g
h
er
E
d
u
ca
tio
n
,
Ma
la
y
s
ia,
f
o
r
f
u
n
d
i
n
g
t
h
is
p
r
o
j
ec
t
an
d
Mr
.
L
u
q
m
a
n
Hak
e
m
f
o
r
r
u
n
n
i
n
g
s
ev
er
al
s
i
m
u
latio
n
s
o
f
t
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
p
r
esen
ted
in
t
h
is
p
ap
er
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
d
a
p
tive
I
n
terf
eren
ce
Mit
ig
a
ti
o
n
w
ith
User
Gro
u
p
in
g
fo
r
…
(
Ha
d
h
r
a
mi
A
b
.
Gh
a
n
i
)
711
RE
F
E
R
E
NC
E
S
[1
]
M
.
Ch
u
a
n
,
e
t
a
l
,
“
On
th
e
p
e
rf
o
r
m
a
n
c
e
o
f
in
terf
e
r
e
n
c
e
c
a
n
c
e
latio
n
in
D2
D
-
e
n
a
b
le
d
c
e
ll
u
lar
n
e
tw
o
rk
s,”
W
ire
le
ss
Co
mm
u
n
ica
ti
o
n
s &
M
o
b
il
e
Co
mp
u
ti
n
g
,
v
o
l
.
1
6
,
n
o
.
1
6
,
p
p
.
2
6
1
9
–
2
6
3
5
,
2
0
1
6
.
[2
]
A
.
Id
rissa
,
e
t
a
l.
,
“
In
terfe
re
n
c
e
a
n
d
El
e
c
tro
m
a
g
n
e
ti
c
Co
m
p
a
ti
b
il
it
y
Ch
a
ll
e
n
g
e
s
in
5
G
W
ir
e
les
s
N
e
t
w
o
rk
De
p
lo
y
m
e
n
ts”
,
In
d
o
n
e
sia
n
J
o
u
r
n
a
l
o
f
E
lec
trica
l
En
g
in
e
e
rin
g
a
n
d
Co
mp
u
ter
S
c
ien
c
e
(
IJ
EE
CS
)
,
v
o
l.
5
,
n
o
.
3
,
p
p
.
612
-
6
2
1
,
M
a
r
2
0
1
7
.
[3
]
I.
Isk
a
n
d
a
r,
e
t
a
l.
,
“
In
ter
-
c
e
ll
In
terf
e
r
e
n
c
e
M
a
n
a
g
e
m
e
n
t
T
e
c
h
n
iq
u
e
f
o
r
M
u
lt
i
-
Ce
ll
L
T
E
-
A
Ne
t
w
o
rk
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
t
e
r E
n
g
i
n
e
e
rin
g
(
IJ
ECE
)
,
v
o
l.
7
,
n
o
.
5
,
p
p
.
2
6
9
6
-
2
7
0
5
,
A
p
r
2
0
1
7
.
[4
]
Y.
Ba
lb
o
u
l
a
n
d
E.
I.
Na
ji
b
a
El
Am
r
a
n
i,
“
In
ter
-
c
e
ll
In
terf
e
re
n
c
e
M
it
ig
a
ti
o
n
th
r
o
u
g
h
F
lex
ib
le
Re
so
u
rc
e
Re
u
se
,
L
P
-
OFDM
a
n
d
Co
o
r
d
i
n
a
ti
o
n
tec
h
n
i
q
u
e
s
f
o
r
LT
E
A
d
v
a
n
c
e
d
in
De
n
se
Urb
a
n
A
re
a
”
,
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
(
I
J
EE
CS
)
,
v
o
l.
3
,
n
o
.
3
,
p
p
.
5
2
7
-
5
3
3
,
S
e
p
2
0
1
6
.
[5
]
R.
Zak
h
o
u
r
a
n
d
D.
G
e
sb
e
rt,
“
O
p
ti
m
ize
d
d
a
ta
sh
a
rin
g
in
m
u
lt
ice
ll
M
IM
O
w
it
h
f
in
it
e
b
a
c
k
h
a
u
l
c
a
p
a
c
it
y
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
S
i
g
n
a
l
Pr
o
c
e
ss
in
g
,
v
o
l.
5
9
,
n
o
.
1
2
,
p
p
.
6
1
0
2
-
6
1
1
1
,
2
0
1
1
.
[6
]
J.
Ho
y
d
is
,
e
t
a
l
,
“
Op
ti
m
a
l
c
h
a
n
n
e
l
train
i
n
g
in
u
p
li
n
k
n
e
tw
o
rk
M
IM
O
sy
ste
m
s,”
IEE
E
T
ra
n
s
a
c
ti
o
n
s
o
n
S
i
g
n
a
l
Pro
c
e
ss
in
g
,
v
o
l
.
5
9
,
n
o
.
6
,
p
p
.
2
8
2
4
-
2
8
3
3
,
2
0
1
1
.
[7
]
C.
P
a
rk
,
Y.
-
P
.
W
a
n
g
,
G
.
Jo
n
g
re
n
,
D.
Ha
m
m
a
r
wa
ll
,
“
Ev
o
lu
ti
o
n
o
f
u
p
li
n
k
M
IM
O
f
o
r
L
T
E
-
a
d
v
a
n
c
e
d
,
”
IEE
E
Co
mm
u
n
ica
ti
o
n
s M
a
g
a
z
in
e
,
v
o
l.
4
9
,
n
o
.
2
,
p
p
.
1
1
2
-
1
2
1
,
2
0
1
1
.
[8
]
M
.
A
.
Ru
d
e
r
,
e
t
a
l
,
“
Jo
in
t
u
se
r
g
r
o
u
p
in
g
a
n
d
f
re
q
u
e
n
c
y
a
ll
o
c
a
ti
o
n
f
o
r
m
u
lt
iu
se
r
S
C
-
F
DMA
tran
s
m
i
ss
io
n
,
”
El
se
v
ier
Ph
y
sic
a
l
Co
mm
u
n
ica
ti
o
n
,
v
o
l
.
8
,
p
p
.
9
1
-
1
0
3
,
2
0
1
3
.
[9
]
Y.
Zh
o
u
,
e
t
a
l
,
“
S
p
e
c
tral
-
a
n
d
e
n
e
rg
y
-
e
ff
i
c
ien
t
tw
o
-
sta
g
e
c
o
o
p
e
ra
ti
v
e
m
u
lt
ica
st
f
o
r
LT
E
-
a
d
v
a
n
c
e
d
a
n
d
b
e
y
o
n
d
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
W
ire
les
s C
o
mm
u
n
ic
a
ti
o
n
s
,
v
o
l
.
2
1
,
n
o
.
2
p
p
.
3
4
-
4
1
,
2
0
1
4
.
[1
0
]
L
.
X
u
e
d
o
n
g
,
e
t
a
l
,
“
Co
o
p
e
ra
ti
v
e
c
o
m
m
u
n
ica
ti
o
n
s
w
it
h
re
la
y
se
l
e
c
ti
o
n
f
o
r
w
irele
s
s
n
e
t
w
o
rk
s:
d
e
s
ig
n
issu
e
s
a
n
d
a
p
p
li
c
a
ti
o
n
s,”
W
ire
les
s Co
mm
u
n
i
c
a
ti
o
n
s
&
M
o
b
il
e
Co
mp
u
ti
n
g
,
v
o
l
.
1
3
,
n
o
.
8
,
p
p
.
7
4
5
-
7
5
9
,
2
0
1
3
.
[1
1
]
Y.
Ru
i
,
et
a
l
,
“
M
o
d
e
se
lec
ti
o
n
a
n
d
p
o
w
e
r
o
p
ti
m
iza
ti
o
n
f
o
r
e
n
e
rg
y
e
ff
ici
e
n
c
y
in
u
p
li
n
k
v
irt
u
a
l
m
i
m
o
s
y
ste
m
s,”
IEE
E
J
o
u
rn
a
l
o
n
S
e
lec
ted
Are
a
s in
Co
mm
u
n
ica
ti
o
n
s
,
v
o
l.
3
1
,
n
o
.
5
,
p
p
.
926
-
9
3
6
,
2
0
1
3
.
[1
2
]
S
.
R
S
e
a
rle,
M
a
trix A
lg
e
b
r
a
Us
e
fu
l
f
o
r S
t
a
ti
stics
,
J
o
h
n
W
il
e
y
a
n
d
S
o
n
s,
1
9
8
2
.
[1
3
]
J.
Jia
n
g
,
et
a
l
,
“
E
n
e
rg
y
-
e
ff
icie
n
c
y
a
n
a
l
y
sis
a
n
d
o
p
ti
m
iza
ti
o
n
f
o
r
v
irt
u
a
l
-
M
IM
O
sy
ste
m
s,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Veh
icu
la
r
T
e
c
h
n
o
lo
g
y
,
v
o
l
.
6
3
,
n
o
.
5
,
p
p
.
2
2
7
2
-
2
2
8
3
,
2
0
1
4
.
[1
4
]
H.
A
b
G
h
a
n
i
,
et
a
l
,
”
A
n
t
Co
lo
n
y
A
lg
o
rit
h
m
w
it
h
In
terf
e
re
n
c
e
C
a
n
c
e
ll
a
ti
o
n
f
o
r
Co
o
p
e
ra
ti
v
e
T
ra
n
s
m
issio
n
”
,
IE
T
S
ig
n
a
l
Pro
c
e
ss
in
g
,
v
o
l.
1
0
,
n
o
.
6
,
p
p
.
6
0
3
–
6
1
0
,
2
0
1
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
10
,
No
.
2
,
Ma
y
2
0
1
8
:
7
0
4
–
7
1
2
712
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
(
1
0
P
T
)
Ha
d
h
ra
m
i
A
b
G
h
a
n
i
re
c
e
iv
e
d
h
i
s
b
a
c
h
e
lo
r
d
e
g
re
e
in
e
lec
tro
n
ics
e
n
g
in
e
e
rin
g
f
ro
m
M
u
lt
im
e
d
ia
Un
iv
e
rsit
y
M
a
la
y
sia
(M
M
U)
,
M
e
lak
a
in
2
0
0
2
.
I
n
2
0
0
4
,
h
e
c
o
m
p
lete
d
h
is
m
a
ste
rs
d
e
g
re
e
in
T
e
le
c
o
m
m
u
n
ica
ti
o
n
En
g
in
e
e
rin
g
a
t
T
h
e
Un
iv
e
r
sit
y
o
f
M
e
lb
o
u
r
n
e
.
He
th
e
n
p
u
rsu
e
d
h
is
P
h
.
D.
a
t
Im
p
e
rial
Co
ll
e
g
e
L
o
n
d
o
n
in
t
h
e
sa
m
e
stu
d
y
a
r
e
a
a
n
d
c
o
m
p
lete
d
h
is
P
h
.
D.
re
se
a
rc
h
in
2
0
1
1
.
His
re
se
a
rc
h
a
re
a
o
f
in
tere
sts
in
c
lu
d
e
w
irele
ss
c
o
m
m
u
n
ica
ti
o
n
,
sig
n
a
l
p
ro
c
e
ss
in
g
,
m
a
c
h
in
e
v
isio
n
a
n
d
a
rti
f
icia
l
in
telli
g
e
n
c
e
.
Cu
rre
n
tl
y
h
e
se
rv
e
s
as
a
se
n
io
r
lec
tu
re
r
a
t
M
M
U.
A
z
l
a
n
A
b
d
Az
iz re
c
e
iv
e
d
th
e
B.
S
.
d
e
g
re
e
in
e
lec
tri
c
a
l
a
n
d
c
o
m
p
u
ter en
g
in
e
e
rin
g
f
ro
m
Oh
io
S
tate
Un
iv
e
rsit
y
,
Co
lu
m
b
u
s,
Oh
i
o
,
US
A
in
1
9
9
8
,
t
h
e
M
.
S
.
d
e
g
re
e
in
c
o
m
m
u
n
ica
ti
o
n
e
n
g
in
e
e
rin
g
f
ro
m
th
e
Un
iv
e
rsit
y
o
f
M
a
n
c
h
e
ste
r,
U
K
in
2
0
0
4
a
n
d
t
h
e
P
h
.
D.
d
e
g
re
e
in
c
o
m
m
u
n
ica
ti
o
n
e
n
g
in
e
e
rin
g
f
ro
m
Na
g
o
y
a
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
,
Ja
p
a
n
in
2
0
1
2
.
He
h
a
s
m
a
n
y
y
e
a
r
s
o
f
tele
c
o
m
m
u
n
ica
ti
o
n
in
d
u
strial
e
x
p
e
rien
c
e
in
v
a
rio
u
s
f
ield
s
a
n
d
d
iv
isio
n
s
.
He
is
c
u
rr
e
n
tl
y
a
tt
a
c
h
e
d
to
M
u
lt
im
e
d
ia
Un
iv
e
rsit
y
,
M
e
lak
a
in
th
e
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
a
n
d
Tec
h
n
o
lo
g
y
.
His
r
e
se
a
r
c
h
in
tere
sts
a
re
in
th
e
a
re
a
s
o
f
c
o
m
m
u
n
ica
ti
o
n
t
h
e
o
ry
,
in
f
o
rm
a
ti
o
n
t
h
e
o
ry
,
a
n
d
n
e
t
w
o
rk
in
g
.
His
c
u
rre
n
t
re
se
a
rc
h
f
o
c
u
se
s o
n
se
c
u
rit
y
in
w
irele
s
s a
n
d
v
e
h
icu
lar ad
-
h
o
c
n
e
tw
o
rk
s
.
A
z
i
z
u
l
A
z
iz
a
n
o
b
tai
n
e
d
h
is
P
h
D
q
u
a
li
f
ica
ti
o
n
(
2
0
0
9
),
f
ro
m
Un
iv
e
r
sity
o
f
S
u
rre
y
re
se
a
r
c
h
in
g
o
n
3
.
5
G
p
h
y
sic
a
l
la
y
e
r
a
d
a
p
tatio
n
f
o
r
sa
telli
te
s
y
ste
m
s.
He
late
r
jo
in
e
d
t
h
e
M
a
lay
sia
n
Co
m
m
u
n
ica
ti
o
n
a
n
d
M
u
lt
im
e
d
ia
Co
m
m
issio
n
f
o
r
m
o
re
th
a
n
6
y
e
a
rs
o
v
e
rse
e
in
g
sp
e
c
tru
m
a
n
d
n
u
m
b
e
rin
g
p
o
l
icie
s
a
n
d
re
so
u
rc
e
m
a
n
a
g
e
m
e
n
t.
He
is
c
u
rre
n
tl
y
w
it
h
A
d
v
a
n
c
e
d
In
f
o
r
m
a
ti
c
s
S
c
h
o
o
l
(A
IS
),
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
si
a
Ku
a
la
L
u
m
p
u
r
w
h
e
re
h
is
re
se
a
rc
h
a
re
a
s
in
c
lu
d
e
s
T
e
le
c
o
m
m
u
n
ica
ti
o
n
s,
C
y
b
e
rp
h
y
si
c
a
l
S
y
ste
m
s
(in
c
Io
T
),
Bu
sin
e
ss
In
telli
g
e
n
c
e
a
n
d
En
g
in
e
e
rin
g
E
d
u
c
a
ti
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.