TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 2, Februa
ry 20
15, pp. 305 ~ 313
DOI: 10.115
9
1
/telkomni
ka.
v
13i2.698
3
305
Re
cei
v
ed
No
vem
ber 6, 20
14; Re
vised
De
cem
ber 3
0
,
2014; Accep
t
ed Jan
uary 1
6
, 2015
Analysis and Estimation of Harmonics Using Wavelet
Technique
V. Thiy
a
garajan*
1
, Dr.N.P.Subramaniam
2
1
Departme
n
t of EEE, Sath
y
a
b
a
ma Un
iversit
y
, Chenn
ai, T
a
milna
du, Indi
a
2
Departme
n
t of EEE, Pondich
err
y
En
gi
neer
in
g Coll
eg
e, Pud
u
cherr
y
, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: vtrajanjtj@
g
mail.com
1
, nps
subb
u@p
e
c.ed
u
2
A
b
st
r
a
ct
T
he pa
per d
e
v
e
lo
ps an
ap
pro
a
ch b
a
sed
on
w
a
velet techn
i
que for th
e eva
l
uati
on a
nd
esti
mati
on
of
har
m
o
nic contents of power
system
waveform
. The pr
oposed algor
ithm
decomposes t
h
e signal wavef
o
rm
s
into the un
ifor
m frequ
ency s
ub-b
ands c
o
rrespo
ndi
ng
to the od
d har
mo
nic co
mp
one
nt
s of the signal.
T
he
prop
osed i
m
pl
ementati
on of
alg
o
rith
m det
ermi
nes the freq
uency b
a
n
d
s o
f
harmonics w
h
ich reta
in b
o
th th
e
time
an
d freq
uency r
e
lati
on
ship
of the o
r
igin
al w
a
vefor
m
s a
nd
uses
a metho
d
to
suppr
ess tho
s
e
har
mo
nics.T
h
e
w
aveletal
gorit
h
m
is s
e
l
e
cted
to obtai
n co
mpatib
le o
u
tput
ban
ds w
i
th the
har
mo
nic gr
o
ups
defin
ed
in th
e
standar
ds for
p
o
w
e
r-supp
ly sy
stems. A c
o
mp
arative
an
alysi
s w
ill b
e
d
one
w
i
th the in
put
and
the resu
lts obt
ain
ed fro
m
th
e
w
a
velet transf
o
rm (W
T
)
for
different
me
as
urin
g con
d
iti
o
n
s
and S
i
mul
a
ti
on
results are given.
Ke
y
w
ords
:
ha
rmo
n
ic dist
ortio
n
, electric pow
er qua
lity, mu
lt
i
resoluti
on a
nal
ysis, w
a
velets, sign
al an
d no
is
e
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The g
r
o
w
ing
use
of po
wer ele
c
troni
cs sy
stem
s in
power
sup
p
l
y
networks n
o
wa
days
pre
s
ent
s an
increa
sing i
m
porta
nce o
f
harmoni
c
studies. A po
wer
quality probl
em can
be
descri
bed
as
any variation
in the ele
c
tri
c
al po
we
r
se
rv
ice, such a
s
voltage dip
s
and flu
c
tuatio
ns,
momenta
r
y
i
n
terruption
s
, harm
oni
cs an
d
tran
sie
n
ts, resulting
i
n
misop
e
ration or
failu
re of end-
use
equip
m
e
n
t. The prese
n
ce
of harmo
nic di
stort
s
th
e sh
ape of th
e voltage an
d
curre
n
t whi
c
h in
turn
create
s
many p
r
obl
e
m
s. T
r
aditio
n
a
lly, the di
sc
re
te
F
o
u
r
ier
tra
n
s
for
m
(D
FT
)
is
pr
op
os
ed
fo
r
harm
oni
c ana
lysis and it gives the frequ
ency inform
at
ion of the signal, which mean
s that it tell
s
us ho
w mu
ch
of each freq
uen
cy exists in the si
gnal,
but it does not tell us whe
n
in time these
freque
ncy co
mpone
nts exist
[1].
The
r
ef
ore, DFT
i
s
not a
suitabl
e techniqu
e f
o
r n
on-statio
nary
sign
al.
A new
app
roach called
Wavelet te
ch
nique i
s
a
p
p
lied he
re fo
r harm
oni
c
studie
s
to
overcome th
e limitations
in the conve
n
tional
meth
ods a
nd give
s an imp
r
ove
d
power qu
al
ity.
Wavelet
s
are
a set of function
s that
can b
e
u
s
ed
effectively ina num
ber
of situation
s
, to
rep
r
e
s
ent
nat
ural,
highly transi
ent p
hen
omena
that
re
sult f
r
om
a
dilation
and
shift of the
ori
g
inal
waveform. Wavelet Tran
sform re
pre
s
e
n
t
s a powe
r
ful
signal proce
ssi
ng with a wide vari
ety
of
appli
c
ation
s
that is parti
cul
a
rly useful fo
r
the analysi
s
of non-
stationary sig
nal
s [2].
In wavelet analys
i
s
,
the
wavelet func
tion is
comp
are
d
to a sectio
n of the si
gn
al und
er
study, obtaini
ng a
set of coefficient
s th
at rep
r
e
s
ent
how
clo
s
ely the wavelet function
co
rrela
t
es
with the si
gn
al. Wavelet
Tran
sfo
r
m (WT) i
s
de
sig
ned to give
good time
re
solutio
n
and
poor
freque
ncy resolution at hig
h
frequ
en
cie
s
and go
od fre
quen
cy re
sol
u
tion and
poo
r time re
soluti
on
at low freq
ue
ncie
s. Thi
s
a
ppro
a
ch ma
kes sen
s
e e
s
p
e
cially when
the sign
al ha
s high frequ
e
n
cy
comp
one
nts f
o
r short d
u
ra
tions an
d lo
w freque
ncy
compon
ents f
o
r lon
g
du
rati
ons. Fin
a
lly, this
pape
r compa
r
es th
e pe
rformance of the
results o
b
tain
ed usi
ng p
r
op
ose
d
wavel
e
t transfo
rm
(WT)
for different condition
s such as statio
nary,
non-station
a
ry sign
als a
nd Noi
s
e
sign
als.
2. Wav
e
lets
Wavelet
s
are oscillating
waveform
s of
short du
ration
with am
plitude decaying
quickly to
zero at both
end
s. In WT,
the wavel
e
t is dilate
d
an
d
shifted to va
ry the freq
ue
ncy of o
scill
a
t
ion
and time
lo
cation, an
d a
r
e supe
rimp
o
s
ed
onto
the
sig
nal
unde
r analy
s
is. T
h
ese
dilating
and
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 305 – 313
306
shifting m
e
chani
sms are
more de
sira
ble for analy
z
ing
wavefo
rms
contai
nin
g
non
-station
ary
events than t
hat of traditional me
thod
s
su
ch a
s
discrete Fouri
e
r transfo
rm (DF
T
) and
sho
r
t time
Fouri
e
r tran
sform (ST
FT).
Wavelet te
ch
nique
analyses the
sig
nal
at different frequ
en
cie
s
with
different re
so
lutions. Wave
lets have imp
o
rtant pr
ope
rt
ies suitable f
o
r an
alysi
s
of non-station
a
r
y
wav
e
for
m
s.
The
filterin
g pro
c
e
ss sh
o
w
n
in Figu
re 1
is
t
he
de
si
gn metho
d
of
most of the
pra
c
tically
relevant di
screte wavelet transfo
rm
s (DWT) a
nd t
he f
i
rst compo
n
e
n
t to multiresolution an
alysis is
ve
c
t
o
r
s
p
a
c
es
[3
]. F
o
r
ea
ch
ve
c
t
or
s
p
ace
,
th
e
r
e is
an
other ve
cto
r
space of
highe
r resolution
u
n
til
you get to th
e final signal.
Also, each vector
spa
c
e
contain
s
all vector spa
c
e
s
that are of lowe
r
resolution. T
he ba
si
s of e
a
ch
of these
vector
spa
c
e
s
is th
e scale
function fo
r the wavelet a
n
d
rep
r
e
s
ent
s the detaile
d versio
n of the high
-f
re
q
uen
cy comp
onent
s of the sign
al and
the
approximatio
n versio
n of
the l
o
w-freq
uen
cy
comp
onent
s a
nd t
he
re
con
s
tru
c
tion
process o
f
wavelet tran
sform sh
own in Figure 2.
Figure 1. Filtering Pro
c
e
ss
The lowpa
s
s filtering, A and high pass f
iltering
,
D remove
s the high frequ
en
cy
informatio
n and low fre
q
u
ency informat
ion re
spe
c
tively, but leaves the scale
unchan
ged. Only
the sub
s
am
pl
ing pro
c
e
s
s cha
nge
s the scale. Re
sol
u
tion, on the other hand,
is relate
d to the
amount of informatio
n in the sign
al, and
therefo
r
e,
it is affected by the filtering op
eration
s
.
Figure 2. Wa
velet Recon
s
tructio
n
Half ban
d lowpass filtering
remove
s half
of t
he freque
ncie
s, whi
c
h
can b
e
interp
reted a
s
losin
g
half of the informatio
n. Therefo
r
e,
the reso
lutio
n
is halved af
ter the filterin
g operation [
4
].
Ho
wever, the
sub
s
am
pling
operation aft
e
r filterin
g
do
es n
o
t affect the re
sol
u
tion,
sin
c
e removi
ng
half of the sp
ectral
com
p
o
nents from th
e sign
al
ma
kes half the n
u
mbe
r
of sa
mples
red
u
n
dant
anyway. Half the sampl
e
s
can b
e
disca
r
ded witho
u
t any loss of informatio
n. The authors (in
[5])
prop
ose a method to co
mpen
sate th
e imperfe
ct re
sp
on
se of the filters u
s
e
d
in the wavelet-
trans
form filter bank
s
.
The n
e
w im
p
r
oved
app
roa
c
h
Wavelet T
r
an
sform
(WT) was imple
m
ented to
overcom
e
the di
sadva
n
tage
s of
co
nventional
meth
ods. In
th
e
WT, the
deta
ils a
r
e
furthe
r de
com
posed
to
prod
uce ne
w coeffici
ents, this way enab
ling a frequ
e
n
cy de
comp
o
s
ition of the input sig
nal to
be
obtaine
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis a
nd
Estim
a
tion of
Harm
oni
cs Using
Wa
velet
Tech
niqu
e (V
. Thiyaga
raj
a
n)
307
3. Proposed
Algorithm
The al
gorith
m
pro
p
o
s
ed
in t
h
is
pape
r i
s
wavelet tran
sform (WT
)
wh
ich i
s
com
pati
b
le with
the frequ
en
cy band
s of the differe
nt harm
oni
c gr
o
ups
and
use
s
the
Dau
b
e
c
hie
s
2
0
a
s
the
wavelet fun
c
tion and the fi
lter ban
k with
three level
s
of deco
m
po
si
tion sho
w
n in
Figure 3. Th
e
sampli
ng f
r
eq
uen
cy sele
cte
d
is 1.6
kHz
with fun
dame
n
tal freq
uen
cy of 50
Hz.Th
e
de
com
p
o
s
ition
pro
c
e
ss
can
be iterated, so that one signal i
s
bro
k
en d
o
wn
into many
lowe
r-re
soluti
on
comp
one
nts and high
er-re
solutio
n
com
pone
nts re
sp
ec
tively a
s
sh
own
in Fi
gu
re
3 a
nd th
e o
u
t
put
freque
ncy
ba
nds
of wavel
e
t tran
sform
sho
w
n i
n
Fig
u
re
4. The
ou
tput of the filter b
a
n
k
is
divide
d
into freque
ncy bands (co
e
fficients of d1
to d4) wh
i
c
h
offers inform
ation abo
ut harmo
n
ic g
r
ou
ps
pre
s
ent
s in t
he input
sign
al [6-7]. The
flowchart fo
r the pro
c
e
s
s
of wavelet transfo
rm
s whi
c
h i
s
sho
w
n in Fig
u
re5.
Figure 3. Three level Wav
e
let De
comp
osition T
r
ee
Each tran
sform coeffici
ent
rep
r
e
s
ent
s a
meas
ure of the correlatio
n betwe
en th
e sign
al
and the b
a
s
is fu
nction.
Larg
e
co
ef
ficients
rep
r
ese
n
t good
correlatio
n; conve
r
sely small
coeffici
ents repre
s
e
n
t
po
or correlatio
n.
By
analyzing the
com
pone
nts of
harm
oni
cs i
n
the
terminal outp
u
t bands, the
suitable met
hod of thresh
old will be ap
plied to those
output band
s by
retainin
g the coeffici
ents
which p
r
e
s
e
r
ve
s origi
nal si
g
n
al. The wavelet algorith
m
keep
s only the
signifi
cant co
efficients, rep
r
esenting the
signal
b
a
sed
on non-li
nea
r thre
shol
ding
. It discard
s the
coeffici
ents t
hat fall belo
w
a given ma
g
n
itude. A
fter
adju
s
ting the
coeffici
ents, t
he de
com
p
o
s
ed
comp
one
nts
coul
d be a
s
sembled b
a
ck
into the origin
al sign
al with
no loss of informatio
n.
Figure 4. Output Freq
uen
cy bands of Wavelet De
com
p
ositio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 305 – 313
308
The filterin
g
part of th
e re
con
s
tru
c
tion
pro
c
e
s
s
is th
e choice of fi
lters th
at is cruci
a
l in
achi
eving pe
rfect recon
s
tructio
n
of th
e orig
i
nal
si
gnal [6]. Th
e re
con
s
tructed detail
s
and
approximatio
ns a
r
e t
r
ue
constitue
n
ts of
the or
i
g
inal
sign
al. The
RMS ma
gnit
ude of i
nput
and
output sig
nal
s are obtai
n
ed by usi
n
g
the squ
a
re
root of the
mean
squ
a
re of the wa
vele
t
coeffici
ents. It is important
to note that
the
down
s
a
m
pling of the signal co
mpo
n
ents pe
rform
ed
durin
g the
d
e
com
p
o
s
ition
pha
se i
n
tro
duces
a di
st
ortion
call
ed
aliasi
ng. It turn
s o
u
t that
by
car
e
f
u
lly
cho
o
sin
g
f
ilt
ers
f
o
r t
he de
co
mposit
io
n an
d re
con
s
tru
c
t
i
on pha
se
s that are
clo
s
ely
related
(but n
o
t identical
); we can
can
c
e
l
out the effects of aliasin
g
.
Figure 5. Flowchart for
Wavelet Tran
sf
orm
Gene
rally, it is ne
ce
ssary to ensure m
a
xi
mum flat pass ban
d ch
ara
c
teri
stics
and go
od
freque
ncy
se
paratio
n. Thi
s
way,
wavelet
functio
n
s
wit
h
a l
a
rg
e n
u
m
ber of
coeff
i
cient
s h
a
ve l
e
ss
distortio
n
th
an
wavelets with fe
we
r co
efficient
s and
acco
rding to [8],
the fre
que
ncy
cha
r
a
c
teri
stics of Daub
ech
i
es wavel
e
t functio
n
is an
appro
p
riate
wavelet filter ban
k for power-
quality monit
o
ring. In o
r
d
e
r to mea
s
u
r
e highe
r ran
ge of harmo
nic o
r
de
rs
(g
reate
r
than
15
th
order), the
sampling freq
uency and level of the decomposition
will be increased in
Figure 1
according to the harmoni
c
con
d
ition
s
[7].
4. Simulation Resul
t
s
The Wavel
e
t Tran
sfo
r
m (WT) te
chni
qu
e for analyzi
ng the harmo
nics wa
s imp
l
emented
by using the
software package of MATLAB. In this
section, a com
parative
anal
ysis will be done
with the input
and the re
su
lts obtaine
d from the wavelet transfo
rm (WT
) for di
fferent mea
s
uring
con
d
ition
s
, stationary si
gn
al with harmo
nic compo
n
e
n
ts, non
-stati
onary si
gnal
s and noi
se si
gnal.
4.1. Station
a
r
y
c
onditions
Con
s
id
er
th
e
station
a
ry signal sho
w
n
in
Fi
gu
re 6(a) whi
c
h co
ntains
third
harm
oni
c
comp
one
nt in fundam
ent
al com
pon
en
t signal
of
50
Hz
and it
s correspon
ding
FFT analy
s
i
s
is
s
h
ow
n
in
F
i
gu
r
e
6(
b
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis a
nd
Estim
a
tion of
Harm
oni
cs Using
Wa
velet
Tech
niqu
e (V
. Thiyaga
raj
a
n)
309
(a)
(b)
Figure 6. (a) I
nput Third ha
rmoni
c si
gnal
, (b) FFT an
al
ysis
In this ca
se, one do
es n
o
t need to kn
o
w
at what times fre
que
n
c
y com
pone
n
t
s exist,
sin
c
e all freq
uen
cy comp
o
nents exist at
all time
s.By
analyzi
ng the
compo
nent
s of harmoni
cs in
the input
sig
n
a
l (Fig
ure 6
(
a
)) a
nd
su
ppre
s
sed u
s
in
g
Wavelet Tra
n
sf
orm
(WT) te
chniqu
e, then t
h
e
output si
gnal
wa
s obtai
ned
as
sho
w
n i
n
Figure 7(a). T
hen, the
RMS
value of the i
nput si
gnal
a
nd
the results of prop
osed techniqu
e and its co
rre
sp
ondi
ng spe
c
trum, whi
c
h is obtai
ned by applyi
ng
the FFT anal
ysis on a
rect
angul
ar wi
nd
ow, is sho
w
n
in Figure 7(b
)
were
com
pared.
(a)
(b)
Figure 7. (a)
Output sig
nal
, (b) FFT an
al
ysis
Table 1. RMS
Values of Th
e Input and O
u
tput
for the Harmoni
c si
g
nal usi
ng the
db20
Wavelet
Functio
n
s
In the sam
e
way, the Wavelet Tra
n
sfo
r
m (WT) te
ch
nique
wa
s ap
plied to u
p
to
15
th
ord
e
r
harm
oni
c wit
h
fundam
ent
al sign
al and
the re
sults
of
output sig
nal
were co
mpa
r
edby
cal
c
ula
t
ing
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 305 – 313
310
RMS value o
f
the signal, whi
c
h is
sho
w
n in Tabl
e 1. In this case, the erro
r
with third ha
rmoni
c
comp
one
nt of propo
se
d techniqu
e ha
s o
n
ly 1.38% usi
ng db2
0 wav
e
let function.\
4.2. Non
-
Sta
t
ion
a
r
y
signals
Signals
who
s
e freque
ncy
conte
n
t varie
s
with time are call
ed No
n
-
Stationary si
gnal
s. A
Fluctuatin
g
si
gnal i
s
n
o
t a
com
p
lete int
e
rrupt
ion of power and
v
o
ltage sag
s
are pro
bably
the
most si
gnifica
nt power q
ual
ity (P
Q) probl
em facin
g
ind
u
strial
cu
sto
m
ers today, a
nd they ca
n b
e
a
signifi
cant problem for la
rg
e comm
ercial
custo
m
ers a
s
well.
(a)
(b)
Figure 8. (a) I
nput Fluctu
ating
harmoni
c
sign
al, (b) FF
T analysi
s
Figure 8
(
a)
sho
w
s the
case
of the f
undam
ent
al
sign
al with t
h
ird
harmoni
c that i
s
fluctuating from magnitu
d
e
of 1 to 0.5 and Fi
g
u
re
8(b
)
sh
ows the co
rre
sp
ondin
g
sp
ect
r
um
obtaine
d by applying the FFT analysi
s
on a re
ct
ang
ular wi
ndo
w. The ch
ang
e in the magnit
ude
of the signal
occurs after
0.3 perio
ds o
f
the
third ha
rmoni
c si
gnal
. The input h
a
rmo
n
ic
sign
al
(Figu
r
e 8
(
a
)
) wa
s analy
z
ed and th
e
harm
onics
whi
c
h p
r
e
s
e
n
ts in the i
nput si
gnal
wa
s
sup
p
re
ssed u
s
ing
Wavelet
Tran
sform (WT) te
c
hni
qu
e, then the output
signal
wa
s obtaine
d
as
sho
w
n in Fig
u
re 9
(
a). Th
en, the RMS
value of
the input signal
and the re
sults of prop
o
s
ed
techni
que
an
d its corre
s
po
nding
sp
ectru
m
, whi
c
h i
s
o
b
tained
by ap
plying the FF
T analysi
s
on
a
recta
ngul
ar
windo
w, is sh
o
w
n in Figu
re
9(b
)
we
re co
mpared.
(a)
(b)
Figure 9. (a)
Output sig
nal
, (b) FFT an
al
ysis
Table 2
sho
w
s the compa
r
ative analysi
s
of t
he input signal an
d the
results o
b
tain
ed from
the wavel
e
t tran
sform
(WT) for
differe
nt measuri
n
g
c
o
nditions
. In this
c
a
s
e
, the error with
third
harm
oni
c co
mpone
nt of propo
se
d tech
nique h
a
s o
n
l
y
0.45% usin
g db20
wavel
e
t function.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis a
nd
Estim
a
tion of
Harm
oni
cs Using
Wa
velet
Tech
niqu
e (V
. Thiyaga
raj
a
n)
311
Table 2. RMS
Values of Th
e Input and O
u
tput
for the Harmoni
c si
g
nal usi
ng the
db20
Wavelet
Functio
n
s
5.
Noise Signal
for Analy
s
is
Noi
s
e ge
ne
ra
ted by elect
r
onic
device
s
varies
gre
a
tly, as it can
be
prod
uced by
several
different effe
cts. Signal
-to
-
noi
se
ratio (often abb
revi
ated SNR o
r
S/N) is
a m
easure
used
in
sci
en
ce an
d engin
eeri
ng that com
pares the level
of
a desi
r
ed
sig
nal to the level of backg
ro
un
d
noise. It is defined as the ratio of signal
power to the noise po
wer.
(a)
(b)
Figure 10. (a
) Input Noise signal, (b
) FFT
analysi
s
(a)
(b)
Figure 11. (a
) Output sign
a
l
. (b) FFT an
a
l
ysis
In Input sig
n
a
l (Fig
ure
10
(a)), the si
gn
al to noi
se ra
tio amount of
20 (G
au
ssi
a
n
noi
se)
wa
s add
ed t
o
the sig
nal
for analy
z
ing
purp
o
se
an
d the co
rrespondi
ng FFT
analysi
s
whi
c
h is
sho
w
n in Fig
u
re 10
(b
). Th
en, the Figure 11(a
)
shows the output
sign
al
obtain
ed by using
WT
techni
que a
n
d
Figure 11(b) shows the
corre
s
po
ndi
ng sp
ect
r
um
obtaine
d by applying the
FFT
analysi
s
on a
recta
ngul
ar
windo
w.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 305 – 313
312
By
the
same
toke
n,
the
Wavelet Tra
n
s
form
(WT
)
t
e
ch
niqu
e wa
s applie
d to upto 15th
orde
r ha
rmo
n
ic with fund
amental si
gn
al and t
he result
s of output signal
were compa
r
e
d
by
cal
c
ulating RMS value of the si
gnal,
whi
c
h i
s
shown
i
n
Table III. In
this case, the error with
noise
sign
al com
p
o
nent of prop
o
s
ed te
chni
qu
e has o
n
ly 0.19% usin
g db
20 wavel
e
t function.
Table 3. RMS
Values of Th
e Input and O
u
tput
for the Harmoni
c si
g
nal usi
ng the
db20
Wavelet
Functio
n
s
6. Conclusio
n
This pap
er h
a
s
prese
n
ted
a n
e
w meth
od of
wavel
e
t tech
niqu
e b
a
se
d al
gorith
m
for t
h
e
analysi
s
of
h
a
rmo
n
ics u
s
i
ng db
20
wav
e
let functio
n
. Several
ca
se-stu
die
s
, rel
a
ted to the
most
comm
on dist
urbances
in electri
c
al
power quality analysi
s
, hav
e shown the
suitability of
the
method. Th
e
perfo
rman
ce
of the propo
sed meth
od
h
a
s b
een
co
m
pare
d
with
th
e input
sign
al
by
cal
c
ulatin
g RMS
value of
the sign
al
f
o
r diffe
rent measurement
co
ndition
s a
nd sho
w
in
g
t
he
wavelet techn
i
que an
alysis
as an alte
rnat
ive pr
ocessin
g
tool for the harm
oni
c esti
mation.
Ackn
o
w
l
e
dg
ements
The auth
o
rs
woul
d like to
thank th
e of
ficials
of Sathyabama
Uni
v
ersity, Che
n
nai, and
Tamilnadu, India for providi
ng the
facilities to carry
out this work.
Referen
ces
[1]
Hsiun
g
Ch
en
g Lin
. Inter-Har
monic Ide
n
tificati
on Usi
ng Grou
p-Har
m
o
n
ic W
e
ig
hting A
ppro
a
ch Base
d
o
n
th
e
FFT.
IEEE
Transactions on Power Electronics
. 20
08; 23
(3)
.
[2]
QU Wei, JIA Xin,
PEI Shibing, WU Jie.
No
n
-
stationary S
i
g
nal
Nois
e Su
p
p
ressi
on B
a
se
d on
W
a
vel
e
t
Analys
is. Cong
ress on Image
and Si
gn
al Pro
c
essin
g
.
200
8; 4.
[3]
Sur
y
a Santoso, Ed
w
a
rd J
Pow
e
rs
, W Mack Grady
,
Peter
Hofmann.
Pow
e
r Qual
ity ass
e
ssment vi
a
Wavelet Transf
o
rm
Analys
is. IEEE Transaction on Power Delivery.
1
996; 1
1
(2).
[4]
Kit
Po
w
o
ng, Van Lon
g
P
h
am.
An
al
ysi
ng Po
we
r System
w
a
vef
o
rms
usin
g W
a
v
e
l
e
t T
r
ansfor
m
Appro
a
ch.
Pro
c
eed
ings
of the 5
th
Internatio
nal C
onfer
enc
e on Adv
ance
s
in Pow
e
r System C
ontrol
,
oper a
nd Ma
na
ge
me
nt.
2000;
2.
[5]
VL Pham, KP
W
ong.
Antid
i
stortion
met
hod f
o
r w
a
velet tran
sf
orm filter
ban
ks and n
on-sta
t
ionary
pow
e
r
system w
a
vefo
rm har
monic
a
nalysis. Proc. In
st. Electr. Eng. Gener. Transm. Distrib.
, 2
001; 14
8(2):
117
–1
22.
[6] T
o
masz
T
a
ra
siuk.
Hybri
d
W
a
velet–F
o
uri
e
r Method fo
r Harmonics
and H
a
r
m
on
ic
Subgro
u
p
s
Measur
em
ent
Case Study. IEEE Transactions on Power Delivery.
2
007; 2
2
(1).
[7]
Enran
g
Z
h
e
ng, Z
heng
ya
n Li
u,
Lin
g
kum
M
a
.
Stu
d
y
on
Ha
rm
on
ic
De
te
ction
Me
tho
d
Ba
se
d
on
FFT a
n
d
Wavelet Transf
o
rm
. 2
nd
International Confer
ence on Si
gnal
Processing Sy
stem
s (ICSPS)
.
, 2010; 3.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis a
nd
Estim
a
tion of
Harm
oni
cs Using
Wa
velet
Tech
niqu
e (V
. Thiyaga
raj
a
n)
313
[8]
Z
HU Sh
ou-
xi
a
nd
Liu
H
u
i.
Si
mu
lati
on stu
d
y
of p
o
w
e
r h
a
r
m
o
n
ic
bas
ed
on
Dau
bec
hie
s
W
a
vel
e
t. E-
Product E-Serv
ice an
d E-Ente
rtain
m
e
n
t (ICEEE), Internatio
nal C
onfere
n
ce
.
, 2010.
[9]
Julio Barros,
Ramón I Diego.
Analysis of Har
m
onics
in Power
Systems Using the W
a
velet-Packet
T
r
ansform. IEE
E
T
r
ans. On In
strume
ntatio
n and Me
asur
ement.
200
8; 57(1
)
: 63-69.
[10]
Mudath
i
r F
uns
ho Ak
ore
de,
N
i
geri
a
, Jam
e
s
Katend
e.
W
a
v
e
let T
r
a
n
sfor
m Base
d A
l
gor
ithm for
Hig
h
-
Impe
da
nce F
a
ults Detecti
on
i
n
Distri
butio
n
F
eeders. E
u
ro
pea
n J. of Sci
entific R
e
se
arc
h
. 20
10; 4
1
(2):
238-
248.
[11]
Reza Esl
a
mi,
Hossei
n
Askar
i
an A
b
yan
eh,
Abdo
lla
h ma
h
m
udi
. A N
e
w
Method for M
easur
e
m
ent of
Har
m
on
ic Gro
u
p
s Usi
n
g
Wave
let-Packet-Tra
n
sform. J
our
na
l of A
m
erica
n
Scienc
e
03/.
20
12; 8(
2): 5
46-
550.
[12]
Kumar GS, Sa
rma DVS, Ve
n
k
atesh C.
W
a
v
e
let tra
n
sfor
m
base
d
h
a
r
m
on
i
c
an
alysis
an
d
real
pow
er
me
asur
e
m
ent.
Pow
e
r Electro
n
ics (IICPE), Indi
a Intern
atio
nal
Conf
erenc
e
. 201
1: 1 -
6
Print ISBN:97
8
-
1-42
44-7
8
8
3
-5
IEEE
Evaluation Warning : The document was created with Spire.PDF for Python.