TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 3, Dece
mbe
r
2
015, pp. 431
~ 438
DOI: 10.115
9
1
/telkomni
ka.
v
16i3.911
3
431
Re
cei
v
ed
Jul
y
27, 201
5; Revi
sed O
c
tob
e
r 26, 201
5; Acce
pted No
vem
ber 1
4
, 2015
Cost Analysis o
f
Hybrid Restructuration for Distribution
System to Improve Voltage an
d Minimize Losses
Firas M. F. Flaih*
1
, Lin Xia
ngning
2
, Samir M. Da
w
o
ud
3
, Mohammed R. Almallah
4
1,2,
3
School of El
ectrical a
nd El
ectronics En
gi
neer
ing,
Hu
azh
ong U
n
ivers
i
t
y
of Science a
n
d
T
e
chnol
og
y,
W
uhan 4
3
0
074
, Hubei, Ch
ina
1
General D
i
rect
orate of North
Distributi
on El
e
c
tricit
y
,
Ministr
y
of Electricit
y,
Iraq
4
General D
i
rect
orate of Electri
c
it
y
T
r
ansmissi
on,
Norther
n, Ministr
y
of Elec
tricit
y
,
Iraq
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: firas_flai
h@h
u
st.edu.cn
A
b
st
r
a
ct
Current s
i
tuati
on i
n
Iraq
had
l
ed to ext
ensiv
e
bl
ackouts w
h
ich n
eeds
an
e
x
pans
ion
in
ge
nerati
o
n
capac
ity. On the other h
a
n
d
the
govern
m
ent has red
u
c
ed the bu
dg
et
allocat
ed for ener
gy resour
ce
d
e
v
el
o
p
me
n
t
an
d
i
t
se
em
s thi
s
si
tu
a
t
io
n
wi
ll su
sta
i
n fo
r the
com
i
n
g
ye
a
r
s. So
th
e
ful
f
i
l
m
e
n
t
o
f
th
e l
oad
de
ma
nd is th
e
bigg
est cha
lle
nge for th
e mi
nistry of elec
tri
c
ity, Iraq w
i
th limited b
u
d
get. In this pap
er th
e
authors
have
p
r
opos
ed a
method to r
educ
e the p
o
w
e
r losse
s and th
erefore
improve th
e v
o
ltag
e profi
l
e f
o
r
low
voltag
e (L
V) distributi
o
n
system
that
results in r
e
d
u
ction of b
l
ac
kouts. The method i
n
vo
lves
the
repos
ition
i
n
g
o
f
the
distrib
u
tio
n
transfor
m
er
(DT
R
) fr
o
m
th
e ex
isting
l
o
ca
tion
an
dthe
re
plac
e
m
ent
of t
h
e
overh
ead co
nd
uctor cross section are
a
for an
existi
ng low
voltag
e distrib
u
ti
on system (LV
D
S).This meth
o
d
has b
een
app
li
ed to a 2
0
-n
od
e low
voltag
e r
adi
al distri
buti
o
n netw
o
rk in t
he g
ener
al d
i
r
e
ctorate of n
o
r
t
h
distrib
u
tion
ele
c
tricity (GDNDE), Ir
aq, w
here voltag
e profi
l
e
and
losses
ar
e uns
atisfactor
y. The simul
a
ti
o
n
has be
en perf
o
rmed usi
ng the Matla
b
envi
r
on
me
nt and
the results d
e
monstrate
the ef
fectiveness of
th
e
proposed
method als
o
in ter
m
s of t
he econom
ic feasibility. It is observ
ed t
hat thesystem
average voltage
profil
e is impr
oved by 1
5
%,
tail end vo
lta
ge en
ha
nced
by 19.7% a
n
d
losses are re
duce
d
by 78%
for
existin
g
the LV
DS.
Ke
y
w
ords
:
low voltage distribution syst
em
(
L
VDS),
power loss
es, distribution tr
ansfor
m
er (
D
TR),
avera
ge volt
ag
e
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The po
we
r o
u
tage
cri
s
is i
n
Iraq a
r
e
expecte
d
to la
st long be
ca
u
s
e of a
n
extraordi
na
ry
gro
w
ing l
oad
dema
nd d
u
e
to incre
a
se
d pop
ulati
on
and e
s
spe
c
ia
lly conversio
n
of ag
ricultu
r
al
land to residential land. Despite
of the subsi
d
ized electri
c
ity tari
ff,
some
consumers increase the
financi
a
l bu
rd
en on
the
go
vernme
nt by
not paying
th
e utilities, a
n
d
this
distu
r
b
s
the
mini
stry
budg
et furthe
r leadin
g
to crisis. The im
p
o
rt of the high
powe
r
ele
c
tri
c
al ap
plian
c
e
s
more wo
rse
n
s
the crises.
F
u
rthe
rmo
r
e th
e ele
c
tri
c
ity theft puts
more bu
rde
n
o
n
the di
stributio
n net
work
al
so
leadin
g
to
wards
bla
c
kout.
The
be
st sol
u
tion to
this
probl
em i
s
th
e expa
nsi
on i
n
the
ge
neration
cap
a
city but the cu
rre
nt go
vernme
nt’s p
o
licy is
neg
ating this expa
nsio
n. Another sol
u
tion is to
redu
ce
the p
o
we
r lo
sse
s
whi
c
h
will im
prove th
e voltage p
r
ofile
an
d cut
do
wn th
e overhea
d cost
s
[1]. Therefore in current
sce
nari
o
the ener
gy sa
ving sch
eme
is better than the energy
gene
ration.A
n
electri
c
po
wer syste
m
co
nsi
s
ts of
thre
e major segm
ents, gen
erati
on, transmission
and di
strib
u
tion [2]. The el
ectri
c
ity distri
bution i
s
t
he final
stag
e
in the
delivery (before
retail
) of
electri
c
ity to end u
s
e
r
s [
3
]. The dist
ri
bution n
e
tw
o
r
ks a
r
e typically of two types, ra
dial
or
interconn
ecte
d.The radial
netwo
rk l
eav
es the
st
ation
and p
a
sse
s
t
h
rou
gh the
n
e
twork a
r
e
a
with
no norm
a
l co
nne
ction to any other sup
p
l
y, and this is
typical with lo
ng rural lines
to isolated lo
ad
areas [3]. The major responsi
b
ilit
y of the di
stribution systemwo
uld be proper elect
r
ic
power
distrib
u
tion
a
nd g
u
a
r
ante
e
ing
users’
norm
a
l p
o
we
r
con
s
um
ptio
n [4]. Op
era
t
ing current
in
distrib
u
tion system is mu
ch more tha
n
that in
transmissi
on sy
ste
m
s, and he
n
c
e, larg
er p
o
w
er
los
s
(re
si
st
iv
e) i
n
di
st
rib
u
t
ion sy
st
em
s
as
comp
are
d
t
o
t
r
an
smi
ssi
on
sy
st
e
m
s [
9
]
.
Wit
h
t
h
e
increased loading
and expl
oitation of the existing
power
structure, t
he pr
obability of occurrence
of voltage collap
s
e is
si
gnifica
ntly incre
a
si
ng in
t
he dist
ributio
n system [1
0]. In distrib
u
tion
system an
d in rural a
r
ea
s,
normally the
services
try to minimize
wire’
s
cro
ss
se
ction area and
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 431 – 438
432
numbe
r of p
o
l
es al
so th
ey install three p
hase DT
R
of
large
ca
pa
cities o
n
the m
a
i
n
roa
d
closert
o
MV line
s
which
lea
d
s to u
s
e
of lo
ng LV
line
s
, that main
co
ntributin
g
facto
r
of li
ne
losse
s
sub
s
eq
uently voltag
e drop. Elect
r
ical
ene
rgy
l
o
sse
s
that af
fect ele
c
tri
c
ity utilities ca
n
be
cla
ssifie
d
into
two
catego
ri
es. Th
ey are
i) Te
chni
cal l
o
sse
s
-L
osse
s due to
physi
cal a
s
p
e
ct
s a
nd
ii) Non
-
Te
ch
nical lo
sse
s
-Due to un
au
thorized line
tapping o
r
m
e
ter bypa
ssing [11]. Several
studie
s
[5-8] introdu
ce
d HVDS con
c
ept
with small
ca
pacity distri
b
u
tion tran
sformers to minimize
techni
cal
an
d
non
-techni
ca
l po
wer lo
sse
s
a
nd im
prov
e voltage
of radial
di
stri
buti
on system.
S.
A.
Sampath Ku
mar
et al. [
3
] simul
a
ted
HVDS
sy
stem of Kovu
r SSandK. A
m
are
s
h
et al
. [5]
introdu
ce
d HVDS with sm
all capa
city distributio
n
tra
n
sformers. M
d
Sarwar et al. [6] presen
ted
HV
DS
t
o
re
d
u
ce t
he t
e
ch
nical p
o
w
e
r l
o
s
s
in
di
strib
u
tion syste
m
s also sho
w
e
d
the econo
mic
viability of the method. P
Ravi Babu et
al. [7]
di
scussed method f
o
r
re
duci
ng t
he non-techni
cal
losse
s
. K. Spanda
na an
d
Varsha Redd
y [8] present
ed
re
stru
ctu
r
i
ng of existing
LVDS to HV
DS
in agri
c
ultu
ra
l field. But unfortunately
all t
he above
mentione
d rese
arch la
cks the e
c
on
o
m
ic
impact
s
. In th
is pa
per the a
u
thors h
a
ve p
r
opo
se
d a
no
vel method to
enha
nce voltage p
r
ofile
an
d
minimize po
wer lo
sses by
rest
ru
cturin
g
the LV di
stri
b
u
tion syste
m
and repo
si
tio
n
of distrib
u
tion
transfo
rme
r
(DTR) fro
m
th
e existing lo
cation to anot
h
e
r that give
s
minimum p
o
w
er l
o
sse
s
. In
this
pape
r the aut
hors have p
r
opo
sed a
co
nce
p
t to cho
o
se the
be
st scena
rio in t
e
rm
s of red
u
cing
financi
a
l burd
ens for
elect
r
i
c
ity secto
r
in the publi
c
bu
d
get.
.
.
.
.
.
.
.
∆
.
.
.
.
∆
.
.
.
&
.
.
.
.
.
.
.
.
,
∆
.
,
∆
.
.
.
&
.
2. Load Flo
w
for Radial Net
w
o
r
k
Powe
r flow is a useful tool in ope
ra
ti
on, plannin
g
and optimi
z
ation of a
system.
Distri
bution
systems, gen
e
r
ally, refers to the powe
r
sy
stem network conn
ecte
d to loads at lower
operating volt
age [12]. In this pa
pe
r, the load fl
o
w
calcul
ation wa
s don
e by u
s
ing re
ctan
gul
ar
coo
r
din
a
tes a
l
gorithm. It is assum
ed th
at the 3-
pha
se ra
dial di
stri
bution n
e
two
r
k a
r
e b
a
lan
c
ed
and
rep
r
e
s
en
ted by thei
r si
ngle lin
e rep
r
ese
n
tation.
Consi
deri
ng
a
20-n
ode
practical radial
ru
ral
distrib
u
tion sy
stem in G
D
NDE, Iraq wh
o
s
e si
ngle line
diagram is
sh
own in Fig
u
re
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Co
st Analy
s
is
of Hyb
r
id Re
stru
ct
uration for Di
strib
u
tio
n
System
to
Im
prove
…
(Firas M. F. Flaih
)
433
Figure 1. Single line diag
ram of 20 nod
e LVDS syste
m
2.1. Po
w
e
r L
o
ss of
Radia
l
Distributio
n Net
w
o
r
k
The A
C
po
wer flo
w
s are
cal
c
ulate
d
by
the
follo
wing
set of
re
cu
rsive equatio
ns derive
d
from the single-lin
e diagram in Figure
2, the volta
ges at node
s
and
1
are
and
,
respe
c
tively. The
cu
rrent
from no
de
to
node
1
is given by:
(1)
(2)
.
(3)
From (1), (2
)
and (3
), the voltage mag
n
itude of
at nod
e
1
is given by:
.
.
|
|
.
.
|
|
(
4
)
Whe
r
e nod
e
has
voltage
and load
, the bran
ch th
at is conne
ct
ed betwee
n
nod
e
and
1
, is havin
g a re
si
stan
ce
and in
du
ctive rea
c
tan
c
e
.The voltage
s and
current
s sho
u
ld
be in their pe
rmitted rang
e.
;
1
,
2
,…,
0
;
1
,
2
,…,
Figure 2. Simple distri
butio
n feeder
Her
e
,
and
repre
s
e
n
t the total real and
reactive po
wers at the n
ode
1
. The rea
l
power lo
ss in
the bran
ch
from node
to node
1
is given by:
,
.
|
|
(
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 431 – 438
434
By summin
g
up the
lo
sses of all
branch
e
s
and
ad
din
g
tra
n
sfo
r
me
r load
an
d n
o
load l
o
ss, tot
a
l
real po
we
r lo
ss b
e
fore a
n
d
after the rest
ructu
r
in
g ca
n be determine
d as:
∑
,
∑
(
6
)
∑
,
∑
(
7
)
By subtra
ctin
g total real po
wer lo
ss befo
r
e and
afte
r restru
ctu
r
ing, the differen
c
e
is given:
∆
(
8
)
2.2. Cost
An
aly
s
is Calculation for
RDN
Co
st analy
s
is cal
c
ulatio
n f
o
r
radial
di
stribut
ion n
e
two
r
k t
r
ie
s to fin
d
out the
e
c
onomi
c
viability of the pro
p
o
s
ed
method. Th
e
impleme
n
ta
tion of metho
d
req
u
ires th
e investme
nt on
con
d
u
c
tors, tran
sform
e
rs,
low voltage
a
nd high volta
ge pole
s
, the
total cost
ca
lculatio
n befo
r
e
and after rest
ructu
r
in
g is gi
ven by:
∑
∑
∑
.
.
.
(9)
∑
∑
∑
.
.
.
(10
)
By subtra
ctin
g total cost af
ter and befo
r
e
rest
ru
cturin
g, the differen
c
e is give
n:
∆
(
1
1
)
2.3. Av
erage Voltage Con
cept
It is difficult to
deal with ma
ny node voltages to de
cide
whethe
r there has be
en a voltage
improvem
ent in distrib
u
tion
system or n
o
t, becau
se so
me times imp
r
oveme
n
t hap
pene
d in som
e
node
s an
d did not happ
e
ned on the o
t
hers, even i
n
some
ca
se
s voltage get
s wo
rse. In this
pape
r, the au
thors
have p
r
opo
sed t
he
concept of Averag
e Voltag
e to deal
with
all node
s in t
h
e
system. The f
o
llowin
g
equ
a
t
ions are average
voltage b
e
fore an
d after re
structu
r
i
ng:
∑
(
1
2
)
∑
(
1
3
)
∆
(
1
4
)
2.4. Dete
rmination of Po
w
e
r
Los
ses i
n
KWh
Equation
s
of
power l
o
sse
s
in di
stri
buti
on
line
s
a
n
d
distri
bution t
r
an
sform
e
rs i
n
KWh
before a
nd af
ter re
stru
cture are given b
y
:
(
1
5
)
.
1
.
(
1
6
)
.
∑
,
.
(
1
7
)
.
∑
,
.
(
1
8
)
.
∑
.
(
1
9
)
.
∑
.
(
2
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Co
st Analy
s
is
of Hyb
r
id Re
stru
ct
uration for Di
strib
u
tio
n
System
to
Im
prove
…
(Firas M. F. Flaih
)
435
Total po
we
r losse
s
in
KWh in
di
stribution
po
wer
system
a
r
e the
sum
m
ation of
distrib
u
tion lin
es lo
sses in
KWh with di
st
ributi
on tran
sforme
rs lo
sse
s
in KWh i
s
gi
ven by:
(
2
1
)
(
2
2
)
∆
(
2
3
)
2.5. Pa
y
b
ack Cost
& Pa
y
b
ack Period
Payback
co
st
is th
e
differe
nce
bet
wee
n
total po
we
r l
o
sse
s
in
kil
o
watt ho
ur bef
ore
and
after re
stru
ct
uring in e
quat
ions (21
)
and
(22
)
multiplie
d by price of
one unit a
s
shown:
∆
.
(
2
4
)
Payback p
e
ri
od is the
rat
i
o
between
the differen
c
e
s
in total
co
st after
and
before
rest
ru
cturin
g
in Equation
(11) to
payba
ck
co
st, it
is
importa
nt to kno
w
afte
r h
o
w m
any da
ys,
months o
r
ye
ars the
re
stru
ct
urin
g cov
e
r
it
s ex
pen
se
s.
∆
(
2
5
)
3. Case Stud
y
A case study
was m
ade b
y
given an existing
dist
rib
u
tion syste
m
of 416V in Fi
gure
1.
The lo
w volta
ge di
stributio
n system
whi
c
h
woul
d
ru
n up
to
the cu
stomer
a
r
e re
structu
r
ed by:
(I)
the length of
a low voltag
e
line are re
pl
ace
d
by
low
voltage line
with cro
ss
se
ction a
r
ea l
a
rger
than the initial case. (II)
Reloca
tion in position of
distribution
t
r
ansformer (11/0.416). (III)
By
taking b
e
st of
case1 an
d b
e
st of ca
se 2.
T
he details o
f
the LVDS are sho
w
n in T
able 1.
Table 1. Deta
ils of the LVDS
No. Par
t
icular
s
Remar
ks
1
Number of
trans
formers (1
1/0.41
6)
1
2
Capacit
y
of transformer
250 KVA
3
Nature of loa
d
on
transforme
r
under loaded
4
Length of the
LT
lines
950 m
5
Number of con
n
e
c
ted loads
8
6
Sum of connecte
d loads
237KVA
7
Distance betwee
n
t
w
o poles
50 m
8
Number of
LV p
o
les
20
9
Number of
LV br
anches
19
10
Resistance of each branches
0.028
Ω
11
Initial cost
13108 USD
12
Cost of KWh
0.025USD
13
Aluminum
w
i
re r
e
sistivity
2
.
8
10
8
14
Cost of LV pole.
416 USD
15
Cost 250 KVA Tr.
3333 USD
The voltage
profile, the av
erag
e voltage
of 20 no
de
s, total power l
o
sse
s
in K
W
, co
st i
n
USDollar and payback
period before rest
ruc
t
uration are given in Table 2 in a c
o
lumn of CASE0.
3.1. Scenari
o
1
In the followin
g
LVDS, the cro
s
s se
ction
area
of low v
o
ltage line
s
condu
ctor i
s
converted
to value large
r
than the initial lines
con
d
u
ctor
size. Changi
ng in cross se
ction a
r
ea will le
ad to a
cha
nge i
n
re
sista
n
ce of b
r
an
che
s
th
us the voltage
drop
will
de
crea
se
and
en
han
cing volta
ge
profile then
minimizi
ng in
powe
r
losse
s
. The condu
ctor
cro
s
s se
ction area th
at give reaso
nable
cost (Equilibri
um Point) is
chosen.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 431 – 438
436
3.2. Scenari
o
2
Relo
catio
n
of distrib
u
tion t
r
an
sform
e
r in
to
each nod
e
in the syste
m
and in
stall
a
tion of
new net
wo
rk
con
s
id
erin
g e
x
isting LV
po
les
and
ex
ch
angin
g
spe
c
if
ic of
LV
pole
s
with
ne
w
HV
pole
s
in
clu
d
i
ng its exten
s
ions.
The
tra
n
sformer relo
cation
cost
d
epen
ds on
th
e ne
w
po
sition.
DTR
rep
o
sitio
ned at every 20 nod
es a
n
d
position of m
i
nimum po
we
r losse
s
is
ch
ose
n
.
3.3. Scenari
o
3
To give the result of case
2 additional i
m
provem
ent in voltage profile to reach
and
extra mini
mizing in
po
we
r l
o
sse
s
, hyb
r
id
ca
se
i
s
p
r
op
ose
d
by
takin
g
the
be
st p
o
i
n
t in
ca
se1
a
n
d
adde
d to best
location in
ca
se2.
4. Simulation Resul
t
s an
d Discus
s
io
n
The foll
owin
g results
we
re
obtaine
d
with the
p
r
o
posed
metho
d
on
LV
distributio
n
netwo
rk, the voltages rang
es area
0.
9pu374V
0
.
95pu
395V
1
pu416V
, s
i
mulation
res
u
lt
s
can b
e
cla
ssif
i
e
d
in
t
o
t
h
ree c
a
se
s:
4.1. Case
1
By restru
cturi
ng the cro
s
s sectio
n are
a
of
condu
cto
r
for each bra
n
ch from 50
to 120
mm
2
the co
n
ducto
r resi
sta
n
ce
cha
nge
a
l
so fro
m
0.02
8 to 0.011
Ω
, the sy
stem av
erag
e voltage
is
enha
nced fro
m
351.03 to 392.92 Volt, the total pow
er losse
s
mi
nimize
d from
51.39 to 18.14
KW. The av
erag
e voltag
e enha
nced
by 12% and
the loss re
d
u
ce
d by 64.
7%, but the co
st
increa
sed by
15.44%. Therefore it is not wise to ta
ke the be
st voltage whil
e the cost is very hig
h
,
for thi
s
rea
s
o
n
the
autho
rs
took th
e volta
ge at
equili
bri
u
m poi
nt at
7
0
mm
2
cro
s
s
section
area th
at
give 373.54V
averag
e voltage, 32.28K
W total po
we
r lo
sse
s
. As shown in Tabl
e 2 in a col
u
mn of
CASE1. Where base cost i
s
22333 US
D, bas
e TPL is
52 KW and base voltage is 416V.
Figure 3. Cro
ss
se
ction area of Alum. Condu
ct
or
with
Power L
o
ss, Avg. Voltage and Cost
4.2. Case
2
The 250 KVA DTR located in the main road ne
ar to
medium voltage (MV) li
nes atnode1
as
sho
w
n i
n
Figure 1. Th
e
y
used l
ong l
o
w voltag
e (L
V) line
s
that l
ead
s voltage
drop
and
po
wer
losse
s
. In case 2 the autho
rs trie
d to find at wh
ich n
o
d
e
can relo
cat
e
the DTR th
at give minimum
power lo
sse
s
. The rel
o
cation of DT
R le
ads
also to restru
ctu
r
e in
some
LV pol
es a
nd
chan
g
e
to
HV pol
es, th
e co
st
wa
s calcul
ated fo
r
each repo
si
tion s
t
ep. From s
i
mulation res
u
lts
,
the
bes
t
positio
n that give minimu
m powe
r
losses is in nod
e 5 that is 14.78 KW, the relocatio
n
of DT
R to
node
5 co
nsi
derin
g re
stru
cturin
g
of
4 L
V
pole
s
to
HV pole
s
pl
us
installatio
n
of
4
HV b
r
an
ch
es,
co
st of that restru
ctu
r
ing
w
as
14
775
US
D and the p
o
w
er lo
sse
s
were minim
u
m.
In this ca
se,
all
node voltage
s is above 0.9 PU and only voltage of
six nodes is l
e
ss than 0.95 pu (
) as
s
h
own in Table 2 in a c
o
lumn of CASE2.
4.3. Case
3
For
more
enh
ancement
in
voltage p
r
ofil
e an
d fu
rt
he
rminimization i
n
po
we
r l
o
sses, in
thi
s
case the aut
hors took the best position in case2 with
result of case 1 at Equilibrium Point that
mean
repositi
onof the
250
KVA DTR int
o
node 5 cons
idering restructuri
ng
of 4
LV poles to
HV
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Co
st Analy
s
is
of Hyb
r
id Re
stru
ct
uration for Di
strib
u
tio
n
System
to
Im
prove
…
(Firas M. F. Flaih
)
437
pole
s
pl
us in
stallation
of
4 HV
bran
ch
es
and
al
so r
e
st
ru
ct
u
r
ing
wire
cro
s
s se
ct
ion ar
ea of
LV
lines. In this ca
se the voltage of all nod
es is
ab
ove 0.95 PU, TPL is 11.27 KW, averag
e voltage
of all
system
nod
es is 40
4 volts, a
nd
tail end
volta
ge at
nod
e 1
9
imp
r
oved
u
p
to 19.7%.Th
e
res
u
lt
s of
3-
ca
se
s
wit
h
r
e
f
e
ren
c
e ca
s
e
are
shown
in Tabl
e 2.
Figure 4
showi
ng volta
g
e
magnitud
e
co
mpari
s
o
n
of study case
.
Table 2. Re
sults of three
-
case
s with reffren
ce case
CA
S
E
0
CA
S
E
1
CA
S
E
2
CA
S
E
3
V1
416.00
416.00
401.37
405.66
V2
398.99
404.84
403.82
407.39
V3
382.04
393.70
406.27
409.12
V4
366.59
383.60
410.11
411.83
V5
353.47
375.08
416.00
416.00
V6
340.39
366.57
405.17
408.40
V7
335.24
363.21
400.90
405.41
V8
332.17
361.24
398.38
403.65
V9
329.11
359.26
395.86
401.89
V10
326.05
357.28
393.34
400.12
V11
322.99
355.30
390.82
398.36
V12
319.94
353.33
388.30
396.60
V13
380.56
392.68
404.89
408.14
V14
379.09
391.66
403.50
407.16
V15
334.69
362.89
400.48
405.13
V16
329.01
359.22
395.80
401.86
V17
323.33
355.55
391.12
398.59
V18
320.24
353.56
388.59
396.82
V19
317.16
351.58
386.06
395.05
V20
413.63
414.31
398.92
403.94
351.03
373.54
398.98
404.06
51.39
32.28
14.78
11.27
13108
13683
14775
15350
∆
- 22.51
47.95
53.03
∆
- 19.11
36.61
40.12
∆
- 575
1666
2241
- 5.04
7.50
9.32
Figure 4. Voltage mag
n
itud
e comp
ari
s
o
n
of 20-nod
e system
Table 3. Loa
d
Data
Load
No.
Pole No.
P in KW
Q in
KV
A
R
Load
in KV
A
Load 1
20
29.75
18.43
35
Load 2
4
25.50
15.80
30
Load 3
6
22.95
14.22
27
Load 4
7
21.25
13.17
25
Load 5
12
29.75
18.43
35
Load 6
14
17.00
10.53
20
Load 7
17
25.50
15.80
30
Load 8
19
29.75
18.43
35
Table 4. Loa
d
Particula
r
s of
Tran
sform
e
rs (11/0.
4) Lo
sse
s
No.
KV
A
r
a
tin
g
Tr. no l
o
ad
loss
es KW
Tr. load
losse
s
KW
1 30
0.10
0.60
2 50
0.13
0.87
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 431 – 438
438
3 63
0.15
1.04
4 80
0.18
1.25
5 100
0.20
1.50
6 125
0.24
1.80
7 160
0.28
2.20
8 200
0.34
2.60
9 250
0.40
3.05
5. Conclusio
n
Based
on
the
ca
se
study
result
s, voltag
e prof
ile of
ca
se3
for
all no
des is
more t
han 0.
95
PU an
d m
u
ch mo
re
effici
ent than
the
other ca
ses. In the lig
ht of ab
ove re
duced fin
a
n
c
ial
allocation
s, the pro
p
o
s
ed
case3 en
ha
nce
d
sy
stem averag
e voltage profile b
y
15%, redu
ce
thepo
werl
osses
of LVDS
by 78% an
d
improv
e
d
the
tail end
voltage by
19.7
%
. The payb
a
ck
perio
d fo
r
cu
rre
nt meth
od
is ab
out 9
months
o
n
ly. The
p
r
op
osed m
e
thod,
enha
nces vol
t
age
profile and
con
s
e
que
ntly
enh
an
cesth
e
sy
stem
p
e
rform
a
n
c
e.
Since l
o
sse
s
are
re
du
ce
d
con
s
id
era
b
ly, powe
r
can
be su
pplie
d to additional
loads
witho
u
t any furthe
r expen
diture
in
gene
ration
se
ctor. Moreov
er applyin
g
this metho
d
can red
u
ce fuel cost, whi
c
h also contrib
u
tes
to redu
cin
g
CO2 emi
s
sion
s. This meth
od
can
also
be
applie
d to oth
e
r di
strib
u
tion
system
s to g
e
t
same b
enefit
s.
Ackn
o
w
l
e
dg
ements
The
autho
rs
gratefully tha
n
k th
e
staff of
Sch
ool of
Electri
c
al &
Ele
c
troni
cs En
gi
neeri
ng /
Hua
z
h
ong
University of Scien
c
e & Te
chnolo
g
y and
peopl
e wh
o assiste
d
in this wo
rk. Spe
c
ial
thanks to
G
e
neral
Dire
cto
r
ate
of
North
Di
strib
u
tion
Electri
c
ity /Min
istry
of Ele
c
tricity / Ira
q
f
o
r
their su
ppo
rt.
Referen
ces
[1]
Djosso
u Ad
e
y
e
m
i Amon. A Modifi
ed Bat Al
g
o
rithm for Po
w
e
r Loss R
educt
i
on i
n
Electric
al
Distributi
o
n
Sy
s
t
e
m
.
T
E
LK
OMNIKA Indon
esia
n Journ
a
l o
f
Electrical Eng
i
ne
erin
g
. 201
5; 14(1): 55-6
1
.
[2]
Dr P Ravi Ba
b
u
, Sushma B.
Operatio
n an
d
Contro
l
of Elec
trical Distri
buti
on S
y
stem
w
i
th
Extra Vo
ltag
e
to minimize the Losses.
Pow
e
r, Energy and
Contro
l (ICPEC).
2013: 16
5-
169.
[3]
SA Sampath
Kumar, V Vas
udav
en, J Ant
o
n
y
, Ma
d
hu S
udh
an
a Ra
ju,
L Ram
e
sh. Mi
nimizati
on
of
Po
w
e
r
Loss
e
s
in
Distrib
ution
S
y
stem
T
h
rough HV
DS C
o
n
c
epts.
Sustai
n
abl
e En
ergy
a
nd Inte
lli
gen
t
System
s (SEIS
C
ON)
. 2011: 8
6
-90.
[4]
F
eng
Xi
aok
e,
Shen
W
e
i
w
e
i
,
Don
g
C
h
u
n
y
u, Z
eng J
i
a
n
li
ang, S
h
i J
i
do
ng, W
a
n
g
D
o
ngj
u.
Study
on
F
undam
enta
l
Princip
l
es
and
Method
olo
g
i
e
s of
Distributi
o
n Net
w
or
k Re
config
uratio
n.
TEL
K
OMNIKA
Indon
esi
an Jou
r
nal of Electric
alEn
gin
eeri
n
g
.
201
4; 12(3): 16
95-1
700.
[5]
K Amaresh, S Sivan
agar
aj
u, V Sankar. Mini
mizatio
n
of Los
ses in Ra
dia
l
Distributi
on S
ystem b
y
us
i
n
g
HVDS.
Pow
e
r Electron
ics, Dri
v
es and En
erg
y
Systems (PEDES)
. 2006: 1-
5.
[6]
Md Sar
w
ar, A
n
w
a
r Sh
ahz
ad
Siddi
qui, Z
a
i
nul A Jaffer
y
,
Imran Ahma
d Quadri.
T
e
c
hno-Ec
on
omic
Feasib
ility of HVDS Co
ncep
t for Distri
bution Feed
er Po
w
e
r Loss Mini
mis
a
tio
n
. Po
w
e
r Electronic
s
(IICPE). India. 201
2: 1-4.
[7]
P Ravi Babu,
Sushma B, As
h
w
in K
u
mar B
.
HVDS appr
o
a
ch for red
u
ci
ng the T
e
c
hni
cal an
d No
n-
technic
a
l l
o
ss
es to en
ha
nc
e the El
ectr
ic
al Distri
buti
o
n
System p
e
rformanc
e
. Po
w
e
r Electronics
(IICPE). India. 201
2: 1-5.
[8]
K Spa
nda
na, V
a
rsha
Re
dd
y A
.
Restructurin
g
of a L
o
w
Volta
ge D
i
stri
bu
ti
o
n
Syste
m
i
n
to
a
H
i
g
h
Vol
t
age
Distributi
on Sy
stem for an I
m
prov
e
d
Volta
g
e
and P
o
w
e
r L
o
ss Profile
. Green En
erg
y
for
Sustaina
bl
e
Devel
opm
ent (ICUE). 201
4: 1-7.
[9]
S Nav
een,
K S
a
thish
Kum
a
r,
K Ra
jal
a
kshmi.
Distrib
utio
n s
ystem reco
nfig
u
r
ation
for l
o
ss
minimiz
a
tio
n
usin
g mo
difie
d
bacter
i
al
forag
i
ng
optim
izatio
n al
gor
ithm
.
El
ectrical P
o
w
e
r
and
Ener
gy Sy
stems
. 20
15;
69: 90-9
7
.
[10]
A Moham
ed
Imran, M Ko
wsal
ya. A
ne
w po
w
e
r
s
y
ste
m
reconfi
gur
ation sc
hem
e f
o
r po
w
e
r
loss
minimiz
a
tio
n
a
nd volta
ge pr
ofile e
n
h
ancem
e
n
t using F
i
r
e
w
o
rks Algorithm.
Electrical P
o
w
e
r and E
nerg
y
System
s.
20
14
; 62: 312-3
22.
[11]
GB Dabre, AA Dutta, AN Kadu.
Perfor
man
c
e Evalu
a
tio
n
of Distr
ibuti
on Netw
ork
and Red
u
ction
i
n
T
e
chnic
a
l & N
on-T
e
ch
nica
l L
o
sses by Usi
n
g Energy Effici
ent Equ
i
p
m
e
n
t and C
o
st Ben
e
f
it Analysis i
n
T
he Pow
e
r Sector
. Po
w
e
r, Automatio
n
an
d Commun
i
cati
o
n
(INPAC). 201
4: 6-11.
[12]
Dina
Kh
ani
ya
,
Anura
g
K. Sriv
astava, N
oel
N
Schu
lz.
Distrib
ution
Pow
e
r Fl
ow
for Multip
h
a
se M
e
she
d
or Rad
i
al Syste
m
s, Pow
e
r Symp
osi
u
m
. NAP
S
'
08. 40th Nor
t
h American. 2
008: 1-5.
Evaluation Warning : The document was created with Spire.PDF for Python.