Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 1,
April 201
6, pp. 96 ~ 106
DOI: 10.115
9
1
/ijeecs.v2.i1.pp96
-10
6
96
Re
cei
v
ed
Jan
uary 29, 201
6
;
Revi
sed Ma
rch 1
7
, 2016;
Acce
pted Ma
rch 2
9
, 2016
Improved Performance of Four Switch Three Phase
with SEPIC-Bas
e
d Inverter
Prabu B*
1
, Murugan M
2
Dep
a
rtment of Electrical
and
Electron
ic Engi
neer
ing, K.S.Rang
asam
y
Co
ll
ege of T
e
chnol
og
y,
T
i
ruchengo
de
*Corres
p
o
ndi
n
g
author, em
ail
:
prabub
al
u90
@gmai
l
.com
1
, marimurugan81@gmail.com
2
A
b
st
r
a
ct
T
he pr
op
osed
nov
el f
our-sw
i
tch thre
e-p
h
a
s
e (F
ST
P) inv
e
rter is
to
des
ign
to r
educ
e
the rat
e
,
difficulty, mass
, and sw
itchin
g
losses of the
DC-AC co
nver
sion syste
m
. H
e
re the o
u
tput l
i
ne vo
ltag
e can
not
excee
d
ha
lf the inp
u
t voltag
e
in the out-d
at
ed F
S
T
P
invert
er and
it oper
a
t
es at
half the
DC in
put volta
ge.
Single-Ended Primary-Inductance Conv
erter (SEPIC) is a
novel des
ign for
the FSTP inverter proposed in
this pap
er. In this pro
pose
d
topo
logy th
e ne
cessity of
outp
u
t filters is not neces
s
a
ry for the pur
e sinus
o
i
da
l
output voltage. Relate
d to out
-dated FSTP inverter, the proposed
FSTP SEPIC inverter r
a
ises the voltage
utili
z
a
ti
on as
pe
ct of the input
DC s
upp
ly, where the su
gg
ested top
o
lo
gy
deliv
ers the h
i
gh
er outp
u
t li
ne
voltag
e w
h
ich can be exte
nd
ed up to the full val
ue of
the
DC input vo
ltage. In t
he pro
pose
d
topo
log
y
a
control us
ed ca
lled th
e inte
gra
l
slidi
ng-
mo
de (
I
SM) contro
l an
d this contro
l is
used to e
nha
n
c
e its dyna
mic
s
and t
o
e
n
sure
strength
of the
system
dur
i
n
g
different
op
er
ating c
o
n
d
itio
n
s
.
Simulati
on
mo
de
l a
nd res
u
lt
s
are us
ed to
a
u
thoris
e the
p
r
opos
ed c
onc
ept an
d
si
mul
a
tions r
e
sults
show
the effe
ctiveness
of th
e
prop
osed i
n
ver
t
er.
Ke
y
w
ords
: SEPIC converter, Integral Sliding m
o
de control, FSTP
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The conventi
onal six
-
swit
ch three-pha
se (
SSTP
)
voltage sou
r
ce inverter
shown in
Figure 1 has
found
well-k
nown indus
trial tenders in di
fferent
forms
s
u
c
h
as
lift, c
r
anes
,
conveyo
r
s,
motor d
r
ives,
rene
wa
ble energy
co
nversi
on
syste
m
s, and
acti
ve powe
r
filters.
Ho
wever, in
some lo
w po
wer
ran
ge ap
plicatio
ns, re
duced switch
count invert
er topolo
g
ie
s are
con
s
id
ere
d
to
alleviate the
volume, lo
sses, a
nd
co
st. Some resea
r
ch
efforts
hav
e be
en di
re
ct
ed
to develop in
verter top
o
lo
gies that
can
achieve
th
e
afore
s
aid
go
al. By the results
obtaine
d it
sho
w
s that it has a
po
ssi
bi
lity to implement a th
re
e-p
hase inverte
r
with the u
s
a
ge of only fo
ur
Switche
s
[1]. In four- swit
ch thre
e-p
h
a
s
e (FST
P
)
inverter, two of the output load pha
se
s
are
su
staine
d fro
m
the t
w
o i
n
verter l
e
g
s
,
while
the
mi
ddle
point
of
the DC-link o
f
a
split-cap
a
c
itor
ban
k is
conn
ected to the t
h
ird lo
ad ph
a
s
e. Re
ce
nt
ly, the FSTP inverter
ha
s att
r
acte
d features
like its pe
rformance, cont
rol,
and appli
c
ations [2- 4] e
t
c.
Comp
ared to
the out-d
ate
d
SSTP inverter,
the FST
P
inverter h
a
s
vario
u
s
be
nefits
su
ch
as
r
e
d
u
ct
ion
in
c
o
s
t
and
reli
abili
ty increa
sed
due
to th
e
redu
ction
in
the nu
mbe
r
of
swit
che
s
,
co
ndu
ct
ion a
n
d
s
w
it
chi
ng lo
ss
es
is
re
du
ced
by 1/3,
whe
r
e
one
complete l
eg
is
omitted, and compa
c
t numbe
r of interface ci
rcuits to sup
p
ly PWM sig
nal
s for the switch
es.
The FSTP in
verter
can
also be op
erate
d
in fault
tole
rant control to solve the
o
pen/short
circuit
fault of the
SSTP inverter [2]. On the other
h
a
nd, there are some d
r
a
w
ba
cks of the
conve
n
tional
FSTP inverte
r
which shoul
d be ta
ken
in
to con
s
id
erati
on. Similar to
the traditio
n
a
l
SSTP inverter, the FSTP inverter a
c
hi
e
v
es only bu
ck DC-A
C
conv
ersi
on.
Ho
wever,
this add
s
majo
r
difficulty and
hard
w
a
r
e
to t
he p
o
wer con
v
ersio
n
syste
m
an
d
wa
ste the merits of the redu
ce
d switch coun
t. Also, the FST
P
inverter topology is no
t
symmetri
c
al;
while th
e two
inverter l
e
g
s
are
dire
ctly con
n
e
c
ted to
the two lo
a
d
-ph
a
ses, th
e
cente
r
tap
of split DC-lin
k cap
a
cito
rs i
s
conn
ec
te
d
to the third l
oad-pha
se
s.
This fo
rces the
curre
n
t of the third p
hase to flow through t
he
DC-link
ca
pa
cito
rs, he
nce a
fluctuation
wi
ll
predi
ctably
seem in the t
w
o
cap
a
cito
rs’ volt
age
s, whi
c
h corre
s
pondi
ngly
ch
ange
s
the ou
tput
voltage [4]. Additionally, if the DC-lin
k split-c
ap
aci
t
ors
have n
o
t
equal valu
es, the
r
e i
s
a
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 96 – 106
97
oppo
rtunity of
over-mod
ula
t
ion of the p
u
l
se-width
mo
dulation
pro
c
ess in o
r
d
e
r t
o
co
mpe
n
sat
e
this
diffic
u
lty [5].
This pa
per p
r
opo
se
s a novel desig
n of the
FSTP inverter topol
ogy based on the
single
-
ended primary inductance DC-DC
converter (SEPIC). The SEPIC c
onverter
is a fourth-order
nonlin
ear
sy
stem that is widely u
s
e
d
in step
-d
o
w
n o
r
ste
p
-up DC-DC switchi
ng ci
rcuits,
photovoltai
c
maximum po
wer
point tra
c
king [6], and
pow
er fa
ctor
corre
c
tion
circuits [7,8, 9] due
to its e
n
couraging
feature
s
a
s
th
e n
on-invert
ing
outp
u
t voltage
bu
ck-bo
o
st
ca
p
ability and
lo
wer
input
current
ripple content
. Based on the abov
e-mentioned advant
ages,
SEPIC converter has
been recently rese
arch
ed b
y
schol
ars
in variou
s topol
ogie
s
in man
y
diversified studies [10, 11
].
Figure 1. Con
v
entional FS
TP voltage so
urce inverte
r
Although the proposed F
S
TP SEPIC i
n
verter
has not a voltage boost com
p
etency, it
can
produ
ce
an outp
u
t voltage hi
ghe
r than that
of
the convent
ional FSTP
voltage sou
r
ce
inverter by two facto
r
s. i) The voltage utilizati
on fa
ctor of the input DC supply
will increa
se
. ii)
Another attractive feature
is t
hat the output voltage of the pr
oposed SEPIC inverter is a pure
sine
wave, therefo
r
e the filtering
requi
re
ments is
red
u
cin
g
at the
output sid
e
. Also, there i
s
no
dynamic ne
e
d
to i
n
se
rt
a de
ad
-ban
d
between
th
e
same
-leg
swit
che
s
, wh
ich expressively
redu
ce
s the o
u
tput waveform distortio
n
a
nd gain n
on-li
nearity.
2. The Principle of Operation
of Proposed FSTP SEPIC In
v
e
rter
Two SEPIC
c
onverters
are pres
ent in
the
propos
e
d FSTP SEPI
C invert
er, and it c
an
attain DC–A
C
conve
r
sion
as
sho
w
n
in
Figu
re
2a
a
nd b
respe
c
tively. Whe
r
e t
he two
pha
se
s of
the three-phas
e load is
c
o
nnec
t
ed to the output
of a two DC–DC
SEPIC c
onverters
whic
h
are
sinu
soi
dally modulate.
While the input
DC sou
r
ce
third ph
ase is dire
ctly conn
ected to the i
nput
DC s
o
urc
e
. Both
SEPIC
DC-DC c
onv
erters
prod
uce a DC-biased s
i
ne wave output, so
that
each conve
r
t
e
r produ
ce
s a unipola
r
voltage. The
si
nusoidal mo
d
u
lation of ea
ch converte
r is
120°
shifted to gen
erate th
ree
-
ph
ase ba
lanced lo
ad v
o
ltage a
nd th
e DC-bia
s is
exactly equ
al
to
the input DC
voltage. Since the DC inp
u
t supply
an
d
load is
con
n
e
cted diffe
ren
t
ially acro
ss the
two converte
rs an
d thu
s
where
a
s
a DC bias
appe
ar
s at ea
ch
en
d of the load
with re
sp
ect
to
grou
nd, the d
i
fferential DC voltage acro
ss the lo
ad
is zero a
nd the
bipolar volta
ge is gen
erate
ac
ross
the load, whic
h requires
the DC–DC SEPIC
c
onverters
to be c
u
rrent
bi-direc
tional. The
bi-di
r
ectional
SEPIC DC–DC
converter is shown in
Figure
3, while the
confi
guration of the
proposed FS
TP SEPIC DC-A
C
inverter is
s
h
own in Figure 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Improv
ed Performanc
e of
F
our S
w
itc
h
Three Phase with SEPIC-B
a
s
e
d Inv
e
rter
(Prab
u
B)
98
(a)
(b)
Figure 2. A bas
ic
approach to ac
hieve
DC-AC
c
onvers
i
on with four sw
itc
h
es
us
ing two SEPIC
DC-DC conv
erters (a) refe
ren
c
e outp
u
t voltage of
the first conve
r
te
r, (b) referen
c
e output
voltage of the second
conv
erter
As shown in
Figure 3, the bi-di
r
ectional
SEPIC converter incl
udes
DC input voltage
dc
V
,
input indu
ct
or
1
L
, two compl
e
me
nta
r
y powe
r
swit
che
s
1
'
1
,
S
S
,
trans
fer c
a
pac
i
tor
0
2
1
1
1
'
1
,
R
C
C
L
S
S
, output inductor
2
L
and outp
u
t capa
citor
2
C
feeding a lo
a
d
resi
stan
ce
0
R
.
Figure 3. Bi-direc
tional SEPIC c
onverter
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 96 – 106
99
Figure 4. Proposed FS
TP SEPIC inverter
SEPIC operation core implies charging the inductors
1
L
and
2
L
duri
n
g the ON
state
of the switch
ing pe
riod ta
king th
e ene
rgy re
sp
ec
tiv
e
ly from the
input source and from t
he
trans
fer c
a
pac
i
tor
0
2
1
1
1
'
1
,
R
C
C
L
S
S
, and di
scha
rgin
g the
m
sim
u
ltane
o
u
sly into
the
l
oad th
ro
ugh
the
swit
ch
'
1
S
durin
g the OFF st
ate of the swi
t
ching p
e
rio
d
. Depe
nd up
o
n
the duty cycle the outp
u
t
voltage of the SEPIC DC-DC
converte
r
may be l
e
ss
or m
o
re than
the input voltage. Output and
input voltage
relation i
s
explaine
d in the
equation a
s
follows.
in
V
D
D
V
1
0
(1)
Whe
r
e
D is the duty cycl
e, while
0
V
and
in
V
are the outp
u
t and input
voltage of the
conve
r
ter
re
spectively. Th
e referen
c
e
voltage of
e
a
ch
conve
r
te
r with respe
c
t to the grou
n
d
implies that t
he sinusoidal
modulation of each
SEPIC converter. T
he refe
rence
voltage of each
conve
r
ter
with respe
c
t to the gro
und i
s
given by
)
3
2
sin(
)
(
)
sin(
)
(
0
0
t
V
V
V
V
t
V
t
V
V
V
V
t
V
L
mL
DC
cref
DC
C
L
mL
DC
bref
DC
B
(2)
Whe
r
e
is the desi
r
e
d
rad
i
an freq
uen
cy
, while
L
mL
V
peak
of the desi
r
e
d
line to line
output voltag
e. Thu
s
, esta
blish
ed o
n
Kirchh
off’s vo
lta
ge la
w in Fi
g
u
re
4, the out
put line volta
ges
across the lo
ad are give
n by:
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Improv
ed Performanc
e of
F
our S
w
itc
h
Three Phase with SEPIC-B
a
s
e
d Inv
e
rter
(Prab
u
B)
100
)
sin(
)]
sin(
[
)
(
t
V
t
V
V
V
t
V
L
mL
L
mL
DC
DC
AB
3
2
sin
)
sin(
)
(
t
V
t
V
V
t
V
L
mL
L
mL
DC
BC
3
2
sin
)
3
2
sin(
)
(
t
V
V
t
V
V
t
V
L
mL
DC
L
mL
DC
CA
(3)
Although the
FSTP SEPIC inverter
can
give an
output line voltage
up to
a value equals
the voltage o
f
the input
so
urce
DC
V
as in
dicated by eq
ua
tion (2
). To a
v
oid ope
ratin
g
at ze
ro
duty it is
re
co
mmend
ed to
define
L
mL
V
lower
than the
valu
e of the
inp
u
t DC (i.e.
mini
mum d
u
ty
cycle i
s
sel
e
cted to be slig
htly higher th
an ze
ro
).
Ac
c
u
rate
s
e
lec
t
ion of pass
ive element
s
of
SEPIC c
o
nverter is
nec
e
s
s
ary for
s
u
cc
es
s
f
ul
DC-AC
conv
ersi
on an
d requires info
rmation of
the instanta
n
e
ous
cap
a
cito
rs voltag
es
and
indu
ctors cu
rrents. Th
e volt
age acro
ss
the output ca
pacito
r
s
h
a
s
been given b
y
equation (2
).
Bas
ed
on the bas
i
cs
conc
ept of DC-DC SEPIC
conv
erter, input DC voltag
e is
equal to the
averag
e volta
ge a
c
ross th
e
co
upling
cap
a
citor,
wh
il
e t
he
curre
n
t through
the o
u
tp
ut indu
ctor an
d
output load
current is to be
equal.
The load p
h
a
s
e current
s are given by eq
uation (4
),
2
sin
)
(
6
5
sin
)
(
6
sin
)
(
t
I
t
i
t
I
t
i
t
I
t
i
m
C
m
B
m
A
(4)
W
h
er
e
m
I
is th
e
pea
k value
o
f
load
current
, and
is th
e
pha
se
of the
l
oad i
m
pe
dan
ce
(
Z
L
). T
he i
n
put inductor
current for both SEPIC c
onv
erters
can be achieved
by
applying energy
balan
ce
rule
for ea
ch SEP
IC co
nverte
r. Assu
mi
ng i
d
eal converte
rs, the inp
u
t indu
ctor
cu
rre
nts
for both converters a
r
e given by,
DC
L
mL
DC
C
DC
CO
C
C
L
V
t
V
V
t
i
V
t
V
t
i
t
i
)
3
2
sin(
)
(
)
(
)
(
)
(
1
DC
L
mL
DC
B
DC
BO
B
B
L
V
t
V
V
t
i
V
t
V
t
i
t
i
)
sin(
)
(
)
(
)
(
)
(
1
(5)
From e
quatio
n (5
), it sho
w
s that the av
erag
e value
s
of both input
indu
ctor
currents a
r
e
equal
only at
a pu
re
re
sisti
v
e load
(u
nity po
wer fa
cto
r
), in thi
s
eve
n
t, same
amo
unt of p
o
wer
to
the load
side will
be t
r
ansf
err
ed by
the both
SEPIC conv
erter. Otherwi
s
e,
the
average currents
will be unequal (according to equation (5)), i.e. SEPI
C converters
will transf
er different amoun
t
of powe
r
to the load si
de.
The
pro
p
o
s
e
d
inve
rter top
o
logy of
DC i
nput
cu
rre
nt
)
(
t
i
DC
is e
qual
to th
e
su
mmation
o
f
the load
current dra
w
n b
y
phase A
)
(
t
i
A
, and the input inductors
currents of both SEPIC
conve
r
ters
)
(
1
t
i
B
L
and
)
(
1
t
i
C
L
as
follows.
)
(
t
i
DC
=
)
(
t
i
A
+
)
(
1
t
i
C
L
+
)
(
1
t
i
B
L
DC
L
mL
DC
C
DC
L
mL
DC
B
A
V
t
V
V
t
i
V
t
V
V
t
i
t
i
)
3
2
sin(
)
(
)
sin(
)
(
)
(
(6)
W
h
er
e
)
(
t
i
A
is the
load
current
of pha
se
A a
s
d
e
scribed
i
n
eq
uation
(4
), which i
s
d
r
awn
dire
ctly from the DC in
put sour
ce, Substit
u
ting equatio
n (4) into
(7
), the DC suppl
y current coul
d
be given in th
e followin
g
form:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 96 – 106
101
)
2
sin(
2
3
)
(
DC
m
L
mL
DC
V
I
V
t
i
(7)
Equation (7
) sho
w
s
that
th
e
DC sup
p
ly curre
n
t drawn
by the p
r
op
o
s
ed
inverte
r
t
opolo
g
y
is con
s
tant. For line
-
to-li
ne
voltage pe
ak
of 86.66%
of
the DC input
voltage, the n
o
rmali
z
e
d
loa
d
curre
n
t dra
w
n by pha
se A
m
A
l
t
i
)
(
, normali
zed
input inductor cu
rrent for each SEPIC
converter
m
B
L
l
t
i
)
(
1
, and
m
c
L
l
t
i
)
(
1
the normalize
d
DC
i
nput cu
rre
nt
m
DC
l
t
i
)
(
are different
load
po
we
r
f
a
ct
or
s.
(a)
(b)
Figure 5. SEPIC equivalent circuit for
(a) switch
ON
and (b) switch OFF
The input c
u
rrents
of both
SEPIC c
onverters
ar
e s
y
mmetrical in unity power fac
t
or with
the sam
e
av
erage value.
At lagging/leading po
wer
factors, the i
nput current
s of both SEPIC
conve
r
ters h
a
ve different
waveforms
with un
equ
al averag
e val
ue for la
ggin
g
/leadin
g
po
we
r
factors. Th
e
conve
r
ter is
controlled
through
two
co
mpleme
ntary
switch
es,
h
a
ving the
co
ntrol
sign
al as it
s
duty cycle, a
nd is a
s
sum
ed to
ope
rat
e
in co
ntinuo
us
cond
uctio
n
mode
(CCM).
Hen
c
e, th
ere
are
two
state
sp
ace
rep
r
e
s
entatio
ns
du
ring
both
O
N
and
OFF
stat
e of the
swit
ch.
The equival
e
nt circuits of the
SEPIC converter during
ON and OFF states are shown in Figure
5a and b resp
ectively.
3. Contr
o
l Strategy
To drive the propos
e
d FSTP SEPIC
inverter a robus
t
c
ontrol s
t
ra
tegy is
required. This
is
due to
the fa
ct that the
in
put DC volta
ge i
s
e
qual t
o
the volta
g
e
of on
e of th
e thre
e-outpu
t
pha
se
s with
resp
ect to th
e
comm
on p
o
in
t. Thus,
any
a
bnormality in
the output vol
t
age of the t
w
o
SEPIC DC-DC converters
f
r
om
the des
i
red
DC-bias
e
d s
i
ne-wa
ve
referenc
e leads
t
o
an
importa
nt unb
alan
ce in the
three
-
ph
ase output line vo
ltages.
3.1. Sliding
Mode Co
ntr
o
l
Sliding-m
ode
control (SM
C
) is
a no
n-li
ne
ar
cont
rol the
o
ry which covers the p
r
op
e
r
ties
of
hystere
s
i
s
co
ntrol to multi
v
ariable
environm
ents.
It is able to
co
nstrai
n the system statu
s
to
follow traj
ect
o
rie
s
which li
e on a
suita
b
l
e
su
rfa
c
e
in t
he state
sp
ace (the
s
lidin
g surfa
c
e
)
[12, 13,
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Improv
ed Performanc
e of
F
our S
w
itc
h
Three Phase with SEPIC-B
a
s
e
d Inv
e
rter
(Prab
u
B)
102
14]. The m
a
i
n
advanta
g
e
s
of SM
C are the fa
st
dynamic in respon
se a
nd t
he gu
ara
n
tee
of
stability and
robu
stne
ss fo
r larg
e differe
nce
s
of
syste
m
paramete
r
s an
d ag
ain
s
t perturbation
s
.
Additionally,
given its flexi
b
ility in term
s of
sy
nthe
si
s, SMC i
s
re
latively easy
to apply
whe
n
comp
ared to
other type
s of non-li
nea
r co
ntrol.
Th
ough, its
ap
plicatio
n to p
o
we
r conve
r
ters
sho
u
ld be
co
nsid
ere
d
for
each co
nvert
e
r severally. As a co
ntrol
method, SMC has be
en ap
plied
to basi
c
DC-DC a
nd com
p
lex conve
r
te
rs. Althoug
h most autho
rs discuss the
gene
rali
zatio
n
o
f
their develo
p
ed method
s t
o
other hig
h
-orde
r
conv
ert
e
rs, thi
s
doe
s not imply to all conve
r
ters
becau
se the
differen
c
e in
circuit topol
o
g
y totally
cha
nge
s the
syst
em’s p
e
rf
o
r
m
ance even if i
t
is
of the same o
r
de
r.
3.2. Sliding
Surface
While
the
out
put voltage
2
C
V
of eac
h
SEPIC
c
onverter is the fi
nal control target, it will be
incredibl
e for the
clo
s
ed
lo
op
controlled
syste
m
to
re
ach
sta
b
le m
o
tion o
n
the
slidin
g
surfa
c
e if
2
C
V
is only sel
e
ct
ed to be the d
i
rect
control target, thu
s
the other vari
ab
les shoul
d be
cho
s
en.
Then, it is propo
sed to up
turn the num
ber of
state v
a
riabl
es a
s
lo
w as p
o
ssibl
e
in the
slidin
g surfa
c
e. To avoi
d a
large
num
be
r of tuni
ng
gai
ns, a
su
rfa
c
e
contai
ning th
e output volta
g
e
in addition to
the input cu
rrent coul
d be
cho
s
e
n
as giv
en by (8).
2
2
1
1
2
1
,
e
e
V
i
S
C
L
(8)
Whe
r
e
1
coefficient
s and
2
are gains, while
1
e
and
2
e
are the feedba
ck errors of the state
variable
s
1
L
i
and
2
C
V
resp
ectively, and given by
(9).
2
2
2
1
1
1
C
ref
C
L
ref
L
V
V
e
i
i
e
(9)
T
h
e
r
e
as
on
fo
r
c
h
oo
s
i
n
g
1
L
i
inste
ad of
2
L
i
i
s
to
allow th
e sli
d
ing
su
rf
ace
to di
re
ctly
control the
in
put of e
a
ch
conve
r
ter in
addition
to
it
s o
u
tput, whi
c
h i
s
stea
die
r
than
the
other
ca
se
s. At an extremely high switchin
g freque
ncy,
the sliding
-
mo
d
e
controller
will ensure that
both input in
ducto
r curren
t and output
cap
a
cito
r voltage a
r
e
cont
rolled to follo
w exa
c
tly their
sud
den references
ref
L
i
1
and
ref
C
V
2
respe
c
tively. Ho
wever, in t
he case of fixed frequ
en
cy or
finite freque
n
c
y slidi
ng-mo
de controll
ers, the cont
rol i
s
un
sati
sfact
o
ry, whe
r
e
st
eady-state e
r
rors
occur at both
indu
ctor
cu
rrent
and
outp
u
t cap
a
cito
r v
o
ltage. To i
n
trodu
ce
an
ad
ditional inte
gral
term of the
state vari
abl
es i
s
the
go
od meth
od f
o
r
con
que
rin
g
the
s
e e
r
rors into th
e
sli
d
ing
surfa
c
e. T
h
e
r
efore, a
n
inte
gral te
rm of t
hese er
ro
rs is introdu
ce
d in
to the slidi
n
g
-
mode
cont
roll
er
as a
n
additio
nal co
ntroll
ed
state-va
riabl
e to red
u
ce these ste
ady-state erro
rs.
This i
s
comm
only
kno
w
n a
s
integral
slidin
g-mode control
(ISMC)
sh
o
w
n in figure
6 and the sli
d
ing su
rfa
c
e
is
sele
cted a
s
specifie
d by equation (10
)
:
3
3
2
2
1
1
e
e
e
s
(10
)
Whe
r
e
1
,
2
an
d
3
rep
r
e
s
ent
the d
e
si
red
co
ntrol
pa
rameters
den
oted
sliding
coeffici
ents, while
1
e
,
2
e
are gi
ven in above
sliding
surfa
c
e and
3
e
are expre
s
sed a
s
:
dt
e
e
e
)
(
2
1
3
(11
)
To obtain the dynamic
model
s
u
bs
tituting th
e SEPIC
s
t
ate-s
p
ace models under CCM into the
time derivative.
Whe
r
e the three-state erro
rs
time derivat
ive given by:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 96 – 106
103
dt
i
i
d
dt
de
L
ref
L
1
1
1
dt
V
V
d
dt
de
C
ref
C
2
2
2
2
1
3
e
e
dt
de
(12
)
Figure 6. Integral sli
d
ing-m
ode
controll
er for SEPIC converter
3.3. Double-I
n
tegr
al Sliding-Mod
e
Co
ntrol
To upturn the effectivene
ss of the inte
gral sli
d
ing
-
m
ode control,
an addition
al
double-
integral term of the state variabl
es e
r
ror could be
p
r
e
s
ente
d
in the slidin
g su
rface. This is the so-
calle
d do
uble
-
integ
r
al
slidi
ng-m
ode
(DI
S
M) controll
e
r
a
s
sho
w
n i
n
figure 7. T
hus, the
DIS
M
controlle
r ha
s the following
slidin
g su
rface:
4
4
3
3
2
2
1
1
e
e
e
e
s
(13
)
While
1
e
,
2
e
,
3
e
a
re gi
ven in th
e a
b
o
ve sli
d
ing
surface
and
4
e
are
exp
r
esse
d as: Wh
e
r
e
the stator e
r
ror is defin
ed
as:
dt
e
e
e
)
(
2
1
4
(14
)
d
t
de
1
,
d
t
de
2
,
d
t
de
3
is d
e
rived i
n
above eq
ua
tion
Subs
tituting the SEPIC s
t
ate-s
p
ac
e
models
unde
r CCM i
n
to the time derivative of (1
4) gi
ves the d
y
namical m
o
del of the system as:
dt
e
e
dt
de
2
1
4
(15
)
Figure 7. Dou
b
le-inte
g
ral sl
iding-
mode
controlle
r for S
EPIC convert
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Improv
ed Performanc
e of
F
our S
w
itc
h
Three Phase with SEPIC-B
a
s
e
d Inv
e
rter
(Prab
u
B)
104
4. Simulation Resul
t
s
Duri
ng different conditions
the performance
of the proposed FSTP
SEPIC inverter using
the slidi
n
g
-
m
ode
cont
rol
strategy ha
s b
een inve
stiga
t
ed. The
sim
u
lation
re
sult
s a
r
e
sho
w
n
in
Figure 8 and
9.
Figure 8 sh
o
w
s that the in
vert
er pe
rformance du
ring
normal
o
p
e
r
ating co
nditio
n
s, wh
ere
Figure 8
a
sh
ows the
both
conve
r
te
rs
ou
tput ca
pa
citor voltage,
whil
e Fig
u
re
8b
shows th
e th
re
e
phase output line voltages of the
inverter. In Figure 8c,
the both
SEPIC converters input induct
or
curre
n
t is illu
strated. T
he i
nput cu
rrent
of t
he DC
su
pply is sho
w
n
in Figure 8d.
Figure
9 sh
o
w
s
the step
re
sp
onse of the i
n
verter
, whe
r
e
Figure 9a
exh
i
bits the e
n
a
c
tment of the i
n
verter
und
er a
step
cha
nge i
n
the loa
d
referen
c
e
voltag
e from 5
0
to
100% with
do
ubled f
r
equ
en
cy, while
Figu
re
9b.
(a)
(b)
(c
)
(d)
Figure 8. Performance of the FSTP SEPI
C inve
rter under normal o
perating c
o
nditions
,
(a) Output c
a
pac
itor voltage of both SEPIC c
onv
erters
, (b) Three phas
e output line voltages
,
(c) Input inductor
current of both SEPI
C
converters, (d) DC
supply current
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 1, April 2016 : 96 – 106
105
(a)
(b)
Figure 9. Step respon
se of
the FSTP SEPIC in
verter,
(a) L
oad volta
ge and lo
ad current for a
step chan
ge
of the refere
n
c
e loa
d
voltage from 50 to
100% with d
ouble
d
frequ
e
n
cy,
(b) L
oad volta
ge and lo
ad current for a lo
ad step
cha
n
ge from 50 to
100%
5. Conclusio
n
s
A DC-AC four-s
wit
c
h three-phas
e
SEPIC-based
inverter is
proposed in this
paper. The
prop
osed inv
e
rter i
m
prove
s
the o
peratio
n of the DC b
u
s by a t
w
o
f
a
ctor wh
en it
comp
ared to t
h
e
conve
n
tional
four-switch th
ree
-
ph
ase vol
t
age source
inverter. T
hen
, without ne
e
d
for a
n
outp
u
t
filter, it can prod
uce a p
u
re
sinu
soid
a
l
thr
ee-pha
se
output voltage. Un
li
ke convention
a
l
four-
swit
ch th
ree
-
pha
se inve
rte
r
, the p
r
opo
sed invert
er d
oes
not suffe
r from th
e p
r
oblem
s of vol
t
age
fluctuation
a
c
ro
ss th
e
DC
link
split-ca
p
a
c
itors
and wit
hout circulati
on
in
any pa
ssive comp
on
ent
the third p
h
a
s
e load
cu
rre
n
t
is dire
ctly drawn fr
om the
DC
so
urce. A sliding
-
mo
de
controller
wa
s
desi
gned and appli
ed to
the re
duced second- order
model
of
t
he SEPIC
DC-DC converter.
Simulation re
sults ve
rified the perfo
rma
n
c
e of the prop
ose
d
inverte
r
.
Referen
ces
[1]
Broeck HW
VD,
W
y
k JDV. A c
o
mpar
ative i
n
v
e
stigat
i
on
of a
three-p
has
e in
ductio
n
mach
in
e driv
e
w
i
t
h
a compo
n
e
n
t minimiz
ed vo
ltage-fe
d inv
e
rte
r
under
differe
nt control o
p
tio
n
s.
IEEE Trans. Ind. Appl
.
198
4; IA-20(2):
309–
32
0.
[2]
De MB, Corre
a
R, Jacobi
na C
B
, da Silva E
R
C, Li
ma AMN.
A gener
al PW
M strateg
y
for
four-s
w
i
tch
three-p
has
e in
verters.
IEEE Trans. Power Electron
. 200
6; 2
1
(3): 161
8-1
6
2
7
.
[3]
Hoa
ng K
D
, Z
h
u Z
Q, F
o
ster MP. Influenc
e
an
d com
pens
atio
n of
inverter
vo
ltage
dro
p
i
n
di
rect torqu
e
-
control
l
ed four
-s
w
i
tc
h three
phas
e PM bru
s
hless AC dri
v
es
. IEEE Tra
n
s. Power Electron.
2011
;
26(8): 23
43-
23
57.
[4]
W
ang
R, Z
h
a
o
J, Li
u Y.
D
C
-
link c
a
p
a
citor
volt
ag
e fl
uctua
t
ion
an
al
ysis
o
f
four-s
w
i
tch
three-
phas
e
inverter
. in Conf. Rec. IECON.
2011; 1
276
–1
281
.
[5]
Lin CT
, Hung CW
, and Liu C
W
. Position se
nsor less co
ntrol for four-s
w
i
tc
h three-p
has
e brush
l
ess D
C
motor drives.
IEEE Trans. Power Electron.
2008; 23(
3): 438
-444.
[6]
Dasg
upta S, M
oha
n SN, S
a
h
oo SK, P
and
a
SK. A
ppl
icatio
n
of F
our-S
w
i
tc
h
-
Based T
h
ree-
Phase
Grid-
Con
necte
d Inverter to Con
n
e
c
t Rene
w
a
b
l
e
Energ
y
S
ource
to a Genera
l
i
z
ed Un
ba
lanc
e
d
Microgr
i
d
Sy
s
t
e
m
.
IEEE Trans. Ind.Elec
tron.
2013; 6
0
(
3
): 1204-
12
15.
[7]
Veerac
har
y
M.
Po
w
e
r track
i
ng for
nonlinear
PV s
ources
w
i
th c
o
upled
inductor SEPI
C converter
.
IEEE Trans. A
e
rosp. Electron.
2005; 41(
3): 1019-
102
9.
[8]
Sarank
umar.V, Murugan M, Ja
y
a
bharat
h R. Implementation of
BLSEPIC Conv
erter Fed BLDC Mot
o
r
Drive
w
i
th P
o
w
e
r Factor
Rectificati
on.
Internatio
na
l Journ
a
l of A
d
vanc
ed Infor
m
ati
on a
n
d
Co
mmun
icati
o
n T
e
chno
lo
gy.
201
5; 1(11); 84
6 -850.
[9]
Murug
an M, J
e
yab
harat
h R,
and S
a
ra
nkum
ar V.
An Ap
proach
of PF
C i
n
BLD
C
Motor
Drives us
in
g
BLSEPIC Converter.
T
E
LKOMNIKA Indo
ne
sian J
our
nal
of
Electrica
l
E
ngi
neer
ing
.
20
15;
14(
2): 21
5-
221.
[10]
Mahdavi M
Farz
anehfar
d H. Bridgeless
SEPIC PFC r
e
ctifier
w
i
t
h
r
educ
ed c
o
mponents and
cond
uctio
n
los
s
es.
IEEE Trans. Ind. Electron
. 2011; 58(
9): 4153-
416
0.
[11]
Balam
u
rug
an
R,
Haripr
asath
S, Nith
y
a R.
P
o
w
e
r F
a
ctor C
o
rrectio
n usi
n
g
Valle
y-F
i
ll SE
PIC T
opolo
g
y
w
i
t
h
F
u
zz
y
Log
ic Contro
l.
T
E
LKOMNIKA Indones
ian J
ourn
a
l of Electrica
l
Engi
neer
in
g
. 2014; 12(
11);
Evaluation Warning : The document was created with Spire.PDF for Python.