TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 2, May 2015, pp. 250 ~ 26
5
DOI: 10.115
9
1
/telkomni
ka.
v
14i2.736
1
250
Re
cei
v
ed
Jan
uary 20, 201
5
;
Revi
sed Ap
ril 14, 2015; Accepted Ap
ril 28, 2015
Thermal Behavior of an Integrated Square Spiral Micro
Coil
Y. Benhadd
a
*
1
, A. Ham
i
d
1
, T. Lebe
y
2
,
A.
Allaoui
1
, M. Derkaoui
1
, R. Melati
1
1
Universit
y
of S
c
ienc
es an
d T
e
chno
log
y
of Oran (UST
O- MB) 3100
0, Alger
i
a
2
Universit
y
of P
aul Sa
bati
e
r, L
APLACE La
bor
ator
y
,
T
oulous
e, F
r
ance
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: benh
ad
da_
yamin
a
@
y
a
hoo.
fr
A
b
st
r
a
ct
W
e
present in
this paper a
study
on the ther
mal b
e
h
a
vi
or of a
square
micro coi
l
tha
t
w
ill be
integr
ated i
n
a
DC-DC
micr
o
converter. T
h
e first, w
e
calculate th
e val
u
e
of ind
u
ctance.
T
he seco
nd,
w
e
descri
p
t our
micr
o co
il; d
i
me
nsi
oni
ng, e
l
ectrical
mo
d
e
l,
an
d for
m
u
l
a
of loss. A
buc
k micro c
onve
r
ter
sche
m
atic si
mulati
on co
upl
ed
w
i
th ideal
an
d integr
at
ed
micr
o coil w
a
s pr
es
ented. T
h
is c
o
nceptu
a
l
mo
de
l
of
the buck
is bes
t understo
od
in
terms of th
e re
latio
n
bet
w
e
e
n
current a
nd vo
l
t
age of th
e in
d
u
ctor. F
i
nely, w
e
deter
mi
nate a
math
e
m
atic
al
express
i
on
givi
ng the ev
ol
utio
n of temper
atu
r
es in a
n
inte
g
r
ated
micro c
o
il
usin
g the s
e
p
a
r
ation
of vari
ab
les
meth
od
an
d a v
i
sua
l
i
z
a
t
i
o
n of the
ther
mal b
e
h
a
vior
is
deter
mi
ned
in
2D
and 3
D
spac
e di
me
nsio
n usi
n
g the finite e
l
e
m
e
n
t met
hod.
Ke
y
w
ords
:
mi
cro coil, inte
gra
t
ed, micro
c
onv
erter DC-DC, temper
ature
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In Powe
r el
ectro
n
ics, m
odelin
g of p
a
ssive comp
onent
s con
s
titute a part
i
cula
rly
importa
nt issue. Indeed, the magn
etic
comp
one
nts, indu
ctors and
transfo
rme
r
s are mainly u
s
ed
to transmit or sto
r
e en
erg
y
. The passi
ve element
s
volume re
du
ction lea
d
s t
o
a mou
n
ted
in
operating fre
quen
cy, but this in
cre
a
se in freque
nc
y causes a
n
increase in losse
s
. If the behavior
of som
e
com
pone
nts i
s
rel
a
tively insen
s
itive to te
mpe
r
ature chan
g
e
s, it is not th
e sa
me thin
g
for
magneti
c
co
mpone
nts wh
ose
cha
r
a
c
te
ristics de
pen
d st
ron
g
ly on
the tem
p
e
r
a
t
ure. T
he l
o
sse
s
freed in the form of heat are be
com
e
a major con
c
ern du
e to the redu
ction o
f
trade with the
outsid
e
su
rfa
c
e
s
a
nd i
n
cre
a
sin
g
the
de
nsity of
l
o
sse
s
. Unde
r th
ese conditio
n
s,
the in
clu
s
ion
of
temperature
and its influe
nce o
n
the magneti
c
and e
l
ectri
c
al cha
r
acteri
stics of
the comp
one
nt is
essential. In this
regard, seve
ral
studie
s
were
con
d
u
c
ted, first by th
e devel
opme
n
t of a
co
mp
act
model fo
r th
e dete
r
minati
on of the int
egrate
d
com
pone
nt temp
eratu
r
e [1], the stu
d
y of
the
thermal
mod
e
l of integ
r
ate
d
pa
ssive
co
mpone
nt
ba
sed on
the m
e
thod no
de [2]
,
the study of
the
thermal
beh
a
v
ior in a bil
a
yer mate
rial
s b
y
the met
hod
of sep
a
ration
of variable
s
[
3
], the study
of
the the
r
mal
model
of a
n
integ
r
ated
circuit
by th
e meth
od
of Green
[4]
and fin
a
lly the
determi
nation
of the
ope
rating temp
erature
of t
he
integrate
d
by
a the
r
mal
a
nalytical m
o
d
e
l
passive
com
pone
nt (Cau
er m
odel
) [
5
]. The p
u
rpose of thi
s
wo
rk is th
e de
sign
a
nd
manufa
c
turi
n
g
of a mi
cro coil for a
micro
conve
r
ter.
In
ope
ration, thi
s
reel i
s
the
seat of heat l
o
ss
that we mu
st
quantified to
ensur
e prop
er
op
eration. Beyond
a ce
rtain tempe
r
at
ure, this
micro
coil m
a
y dete
r
iorate a
nd af
fect the
ope
ration of mi
cro
inverte
r
. Thi
s
led u
s
to
tackle th
e p
r
obl
e
m
of thermal
m
odelin
g of a
squ
a
re
spiral
coil mi
cro pl
ane.
We h
a
ve implem
ent
ed the lite
r
at
ure
pro
c
e
s
ses fo
r the desi
gn o
f
our micro
coil and
cal
c
ul
ation of losse
s
that are different from th
e
heat. We h
a
ve al
so d
e
velo
ped m
a
them
atical m
odel
s that allo
wed
us to dete
r
m
i
ne the t
herm
a
l
behavio
r of our co
mpon
ent
. The Solving of mathemat
ical equ
ation
s
by the method of sepa
ratio
n
of variable
s
[5] and the finite element
method
ha
s allowed u
s
to see the e
v
olution of the
temperature i
n
the different
parts that ma
ke up the mi
cro coil in 2
D
a
nd 3D.
2. Presentati
on of the Mi
cro Conv
erter
We h
a
ve cho
s
en
a Buck
micro convert
e
r c
ontinu
o
u
s
-co
n
tinuo
us step-do
wn (Fi
gure 1)
[6-9]. The micro
coil to integrate will t
hus be
dim
e
nsio
ned for t
h
is type of application. Input
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Therm
a
l Beh
a
vio
r
of an Integrate
d
S
qua
re Spiral Mi
cro Coil (Y. Benhad
da)
251
voltage,
Volt
V
in
3
. O
u
tput voltage
,
Volt
V
out
5
.
1
. Maximum current
A
I
L
65
.
0
max
. Output
power,
W
P
out
6
.
0
. Freq
uen
cy of operation,
MHz
f
1
.
Figure 1. Buck co
nverte
r
The average
output cu
rren
t
out
I
is cal
c
ul
ate
d
by formula (1):
out
out
out
V
P
I
(1)
A
I
out
4
.
0
,
c
L
out
I
L
I
,
0
c
I
,
L
out
I
I
. The pe
ak
amplitud
e
of the
curre
n
t throu
gh th
e
micro coil i
s
calcul
ated by formul
a (2
):
min
max
L
L
L
I
I
I
(2)
The average
curre
n
t
L
I
is expre
s
sed a
s
follows (3
):
2
min
max
L
L
L
I
I
I
(3)
Whe
r
e,
max
min
2
L
out
L
I
I
I
,
A
I
L
016
.
0
min
,
A
I
L
96
.
0
and
5
.
0
in
out
V
V
.
The cu
rrent which flo
w
s through the mi
cro coil in
cre
a
ses a
c
cordi
ng
to relation (4):
f
L
V
I
in
L
.
).
1
.(
(4)
We can calcu
l
ate the value
of the induc
t
ance L [9] according to rel
a
tion (5
):
f
I
V
L
l
in
.
).
1
.(
(5)
The maximu
m energy stored in the micr
o coil is give
n
by relation (6
):
2
2
1
out
LI
W
(6)
The volumetri
c
ene
rgy den
sity of the ferrite is given by the equation
(7):
r
B
W
v
0
2
max
max
2
(7)
max
B
: The maximu
m magneti
c
indu
ction sup
ported by the
ferrite
r
: The relative perm
eability
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 250 – 265
252
0
: The magneti
c
permea
b
ility of the free space
The volume o
f
the ferrite is given by relat
i
on (8
):
max
v
W
W
Vol
(8)
The f
e
r
r
it
e’s t
h
ic
kne
s
s is t
Sub
=97µm, thus the volume
will be
3
97
2100
2100
m
.
3. Dimensio
ning of Integ
r
ated Indu
ctor
The g
eomet
ry param
eters cha
r
a
c
teri
zin
g
the integ
r
a
t
ed micro
coi
l
(Figu
r
e
2)
are th
e
numbe
r of tu
rns
n
,
the wi
dth
of the
co
ndu
ctor
w
, thickne
s
s of t
he
cond
ucto
r
t
, the
sp
aci
n
g
betwe
en con
ducto
r
s
, leng
th of the cond
uctor
l
, the ou
ter diamete
r
d
out
and input
diameter
d
in
.
Figure 2. Geo
m
etry of integr
ated squa
re
spiral indu
cto
r
We find in th
e literature several form
ul
as which
allo
w us to calculate the nu
mber of turn
s n
according to the value of in
ducta
nce L, we cho
s
e the
Weele
r
’s [10
-
11] form
ula (9).
2
2
0
1
1
k
d
n
K
L
avg
mw
(9)
Whe
r
e, we
define the a
v
erage di
am
eter as
2
/
)
(
in
out
avg
d
d
d
[12].
m
A
the factor’s form
defined a
s
in
out
in
out
m
d
d
d
d
A
/
. The coeffic
i
ents
k
1
a
nd
k
2
are d
e
fined f
o
r ea
ch
geo
metry.
For a squa
re
micro coil
spiral, k
1
=2.34 a
n
d
k
2
=2.
7
5.
The sp
aci
ng
betwe
en con
ducto
rs i
s
expre
s
sed a
s
follows (10
)
:
)
1
(
2
2
n
wn
d
d
s
in
out
(10)
The length of
the trace is e
x
presse
d as f
o
llows (1
1)
s
nw
s
n
d
n
l
out
]
)
1
(
[
4
(1
1)
The skin thickness is d
e
fine
d as (1
2)
f
(12)
Whe
r
e
ρ
rep
r
ese
n
t the re
sistivity of the
cond
ucto
r,
1
.
7
1
0
Ω
.
and
μ
its magnetic
perm
eability.So that the current fl
ows in the entire
con
d
u
c
tor, it
is ne
ce
ssary
that one of the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Therm
a
l Beh
a
vio
r
of an Integrate
d
S
qua
re Spiral Mi
cro Coil (Y. Benhad
da)
253
following conditions i
s
filled,
2
w
or
2
t
,
µm
65
.
65
. Table
1 contai
ns th
e spe
c
ificatio
ns
and the de
sig
n
results of th
e squ
a
re
spi
r
al integrate
d
micro coil.
Table 1. De
si
gn re
sults of t
he spi
r
al ind
u
c
tor
Parameter Value
Inductance, L (µ
H)
1.15
Output diamet
er,
d
out
(mm)
2
Input diameter,
d
in
(mm)
0.4
Number of
turns,
n
2
Thickness of the conductor, t (µm)
40
Width of the conductor,
w
(µm
)
120
Spacing between
conductor, s (µ
m)
280
Length of the co
nductor, l (m)
0.0116
4. Electrical Model
The equival
e
nt electri
c
al
model of the integrate
d
micro coil [13
-
1
8
] is sho
w
n in F
i
gure 3.
Figure 3. Equivalent electri
c
al mod
e
l
The se
rie
s
re
sist
a
n
c
e
R
s
, can be ap
proxi
m
ated as
(13
)
:
wt
l
R
s
(13)
The pa
ra
sitic
cap
a
citive ca
n be model
ed
as C
s
(14):
s
l
tl
C
s
0
(14)
Whe
r
e,
ε
0
is the permittivity of free spa
c
e,
.
10
.
854187
.
8
1
12
0
Mm
The sub
s
trat
e ca
pa
citan
c
e C
sub
and resi
stan
ce R
sub
are a
pproximately pro
p
o
r
tional to
the area o
c
cu
pied by the in
tegrated mi
cro
coil an
d ca
n be expre
ssed as (15
)
, (1
6).
sub
t
lw
C
r
sub
0
2
1
(15)
lw
t
R
sub
sub
sub
2
(16)
C
ox
oxide capacitan
ce SiO
2
can be exp
r
e
s
sed a
s
(17
)
:
ox
ox
ox
t
lw
C
0
(17)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 250 – 265
254
Whe
r
e
sub
r
,
rep
r
e
s
ent re
spe
c
tively the relative permi
ttivity
and the resi
st
ivity of subst
r
ate and
ox
t
the oxide thickne
s
s. In our
ca
se,
10
r
,
m
sub
6
10
.
45
and
µm
t
ox
10
. The geo
metry
of
a squ
a
re
spi
r
al integrate
d
micro coil o
n
sub
s
trate [19
-
20] is sh
own in Figure 4.
(a)
(b)
Figure 4. Geo
m
etry of integrated
squa
re
spiral indu
cto
r
on su
bst
r
ate
,
(a) 3D vie
w
, (a) 2
D
view
The efficien
cy of integrated micro coil i
s
calc
ulated [2
1-22] a
c
cordi
ng by relation
(18):
energie
dissipated
energie
stocked
2
Q
(18)
Table 2 p
r
e
s
e
n
ts ele
c
trical para
m
eter
s o
f
the integrate
d
micro coil.
Table 2. Elect
r
ical
s pa
ram
e
ters of t
he int
egrate
d
sq
ua
re spi
r
al in
du
ctor
Electricals param
eters
Values
)
(
s
R
0.04
)
(
sub
R
0.006
)
(
pF
C
s
0.014
)
(
pF
C
ox
4.79
)
(
pF
C
sub
0.76
Q
98.57
5. Loss De
te
rmination
The loss in th
e con
d
u
c
tor [23-2
6
] can b
e
expresse
d a
s
(19
)
:
2
2
.
.
L
AC
s
c
I
R
I
R
P
(19)
Whe
r
e,
AC
R
is the resi
stan
ce at
alternative cu
rre
nt (20
)
.
)
1
(
)
(
t
AC
e
l
R
(20)
6. Simulation of the o
f
th
e Micro Con
v
erter
In this simula
tion, the circuit of Figure 5
contain
s
a
n
ideal micro
coil and the Figure 6
sho
w
s the waveform of the output voltage and
cu
rr
ent of the Buck mi
cro con
v
erter. Wh
en
the
swit
ch is
closed, the voltage across the i
ndu
ctor is V
L
=V
in
-V
out
. The current thro
u
gh the indu
ctor
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Therm
a
l Beh
a
vio
r
of an Integrate
d
S
qua
re Spiral Mi
cro Coil (Y. Benhad
da)
255
rise
s linea
rly. As th
e di
ode
is
reve
rse-biase
d
by th
e v
o
ltage
so
urce
, no
cu
rre
nt flows th
roug
h i
t.
Whe
n
the
switch i
s
op
ene
d, the dio
de
is forwa
r
d
bi
ase
d
. The
vo
ltage a
c
ross
the indu
cto
r
i
s
V
L
= -V
out
. The Current thro
ugh ind
u
cto
r
decrea
s
e
s
.
Figure 5. Sch
e
matic of bu
ck micro conv
erter
cou
p
led
with ideal micro
co
il
Figure 6. Wa
veforms of vo
ltage and
current of
buck micro
converte
r co
up
led with ide
a
l
micr
o coil
Figure 7 sho
w
s th
e sche
matic of micro co
nv
erter simulate
d
co
upled with
in
tegrated
micro coil. T
he simul
a
ted
result
s are i
ndicated in
Figure 8. We
observe the same result with
ideal an
d reel
inducto
r.
Figure 7. Sch
e
matic of bu
ck micro conv
erter
cou
p
led
with integrate
d
micro coil
Figure 8. Wa
veforms of vo
ltage and
current of
buck micro
converte
r co
up
led with integ
r
ated
micr
o coil
The results
we obtain
ed (F
igure
6, Figu
re 8)
we
re
co
mpared
with those from th
e literatu
r
e [2
7].
We noti
c
e the
same evoluti
ons the
r
efo
r
e
quite accept
able an
d in very good a
g
reement.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 250 – 265
256
7. Thermal Modeling of Integra
t
ed Ind
u
ctor
In this section we
will predict the evol
ution
of the temperature i
n
an integrated square
spiral micro coil usin
g:
a)
Mathemati
c
al
model ba
sed
of the s
epa
ra
tion of variabl
es metho
d
[28-30].
b)
Visuali
z
ation
of the thermal
behavior b
a
sed of the finite element me
thod [31-3
4
].
We
pre
s
e
n
t
an inte
grate
d
micro
coil
in the
air, with
thick
n
ess
L an
d h
eat
source
q
(Figu
r
e
9).
We co
nsi
d
e
r
al
so a
n
integ
r
at
ed squa
re
spi
r
al mi
cro coil
on sub
s
trate.
1
k
,
2
k
and
3
k
be the
therm
a
l condu
ctivities fo
r the
first layer in
1
0
L
y
,
se
con
d
in
2
1
L
y
L
an
d
third in
3
2
L
y
L
.
q
is the he
at source. Initiall
y, t
he three l
a
yers
are at tempe
r
ature
0
T
. The
bo
und
ary
surfa
c
e
at y=0 is kept at tempe
r
ature
0
T
and the b
oun
dary at
3
2
1
L
L
L
y
, dissi
pate heat by
conve
c
tion
wi
th h con
s
tant (Figu
r
e 10
).
Figure 9. Tra
n
sversal
cup
of an integrat
ed
micro coil in t
he air
Figure 10. Transve
rsal
cu
p of an integrated
micr
o coil o
n
sub
s
t
r
at
e
Our
comp
on
ent con
s
i
s
ts
of four doma
i
ns. The do
m
a
in of air su
rroun
ding o
u
r squa
re
spiral mi
cro
coil. Th
e
co
pper is
the
con
d
u
c
tor
m
a
terial, the
substrate i
s
i
n
NiF
e
, an
d
the
diele
c
tric i
s
in
oxide SiO
2
.
The thermal chara
c
te
risti
c
s of materials
are sho
w
n in
Table 3.
Table 3. The
r
mals Cha
r
a
c
teristi
cs of the
Material
s
Element Materiel
Characteristics
Conductor
Copper
(Cu
)
Thermal conducti
vity
: k= 400W/m.
K
Heat capacit
y
:
C
p
=385J/K.kg
Densit
y
:
r
h0
=870
0kg/m
3
Substrate
Ferrite
(NiFe
)
Thermal conducti
vity
: k=30 W/m.K
Heat capacit
y
:
C
p
=700J/K.kg
Densit
y
:
r
h0
=400
0kg/m
3
Oxide
Silicon dioxide (S
iO
2
)
Thermal conducti
vity
: k=1.4 W/m.
K
Heat capacit
y
:
C
p
=350J/K.kg
Densit
y
:
r
h0
=200
0kg/m
3
Dielectric
Air
Thermal conducti
vity
: k=0.03 W/m
.
K
Heat capacit
y
:
C
p
=1000J/K.kg
Densit
y
:
r
h0
=1.2k
g
/m
3
7.1. Mathem
atical Model
The mathe
m
atical form
ula
t
ion of an inte
grated
sq
uare spi
r
al mi
cro
coil in the ai
r is given
as (2
1):
t
T
q
k
y
T
1
1
2
2
(21)
For
solve thi
s
e
quation,
we
can
dete
r
minate the
solution a
nalytical fo
r h
o
mo
gene
ou
s
probl
em
)
,
(
t
y
T
h
, and the solution
of steady-st
a
te probl
em
)
(
y
T
s
. The solutio
n
for the ori
g
inal
probl
em (2
1)
is determine
d
from:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Therm
a
l Beh
a
vio
r
of an Integrate
d
S
qua
re Spiral Mi
cro Coil (Y. Benhad
da)
257
)
(
)
,
(
)
,
(
y
T
t
y
T
t
y
T
s
h
(22)
To solve the
homog
ene
ou
s p
r
obl
em,
we u
s
e th
e
se
paratio
n of v
a
riabl
e of
eq
uation
)
,
(
t
y
T
h
into
a spa
c
e a
nd time.
)
(
.
)
(
)
,
(
y
Y
t
t
y
T
h
(23)
The fun
c
tion
)
(
y
Y
become (24):
0
)
(
)
(
2
2
1
2
y
Y
dy
x
Y
d
(24)
The sol
u
tion for
)
(
t
is given as (25
)
:
t
-
2
)
(
e
t
(25
)
The sol
u
tion for
)
,
(
t
y
T
h
is given as (26):
)
,
(
.
)
,
(
1
t
-
2
y
Y
e
c
t
y
T
m
n
m
h
(26)
For t=0, eq
ua
tion (26
)
be
co
mes (27):
)²
,
(
.
1
0
y
Y
c
T
m
t
m
m
(27)
With,
L
y
m
m
m
dy
T
y
Y
N
c
0
'
0
'
'
).
,
(
.
)
(
1
(28)
)
,
(
)
(
0
2
dy
y
Y
N
L
m
m
(29)
The analytica
l
solution 1
D
for equ
ation (21) is give
n a
s
(30
)
:
L
y
m
m
m
m
t
h
dy
T
y
Y
y
Y
N
e
t
y
T
0
'
0
'
1
.
-
'
2
n
).
,
(
).
,
(
.
)
(
)
,
(
(30)
With,
y
y
Y
m
m
sin
)
,
(
,
L
N
m
2
)
(
1
and
0
sin
y
m
.
…
1,2,3,
=
,
m
a
m
m
)
(
y
T
s
is the sol
u
tion
of the steady-state.
The mathe
m
atical form
ula
t
ion of an integrate
d
sq
ua
re spiral mi
cro coil on
sub
s
trate i
s
given as (31
)
, for i=1, 2, 3.
t
T
k
q
y
T
i
i
i
i
1
2
2
(31)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 250 – 265
258
For
solve thi
s
e
quation,
we
can
dete
r
minate the
solution a
nalytical fo
r h
o
mo
gene
ou
s
probl
em
)
,
(
t
y
i
, and the sol
u
tion
of steady-sta
te probl
em
)
(
y
T
i
.
We u
s
e the
Gree
n'
s funct
i
on of
heat co
ndu
cti
on pro
b
lem
s
with heat sou
r
ce. Th
e sol
u
tion is dete
r
mi
ned from
(32
)
.
)
(
)
,
(
)
,
(
y
T
t
y
t
y
T
i
i
i
(32)
The tempe
r
at
ure bo
und
ary
conditio
n
s a
r
e determi
ned
from (3
3).
3
2
1
3
3
3
1
1
1
1
:
,
2
,
1
,
interface
at
,
0
:
,
0
L
L
L
y
at
h
y
i
y
y
y
at
i
i
i
i
i
i
(33)
h rep
r
e
s
ent the co
nvective
heat tran
sfer c
oefficie
n
t. The initial co
nd
ition is (34
)
.
0
i
)
,
(
T
t
y
(34)
Whe
r
e
)
,
(
t
y
i
, is the temperatu
r
e
of the layer i.
For obtai
n the analytic sol
u
tion of each layer, we u
s
e
the solution
by sepa
ration
of variables
(35)
)
(
).
(
)
,
(
y
t
t
y
i
i
i
(35)
W
e
d
e
t
er
mina
te
)
,
(
t
y
i
with equ
a
t
ion (36
)
.
n
i
n
in
i
n
in
t
-
i
C
.
cos
.
sin
,
2
n
y
B
y
A
e
t
y
(36)
The tempe
r
at
ure di
strib
u
tio
n
(36
)
must
satisfy the initial con
d
ition (37).
y
.
C
T
in
i
n
0
(37)
By applying the ope
rato
r
1
+
i
i
y
y
ir
i
i
.
:
to the both sid
e
s of equ
atio
n (37
)
, we fin
d
(38
)
.
y
d
.
.
C
.
(y).T
n
M
1
i
y
y
in
ir
i
n
M
1
i
y
y
0
ir
i
i
1
+
i
i
1
+
i
i
i
dy
(38
)
Whe
r
e, M is the numb
e
r of
layer (M
=3).
r
=
n
N
r
n
0
y
d
.
.
n
y
y
ir
in
M
1
=
i
i
i
1
+
i
i
(39)
The N
n
an
d C
n
expression
s are define
d
, respe
c
tively,
as
follows
(40), (41).
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Therm
a
l Beh
a
vio
r
of an Integrate
d
S
qua
re Spiral Mi
cro Coil (Y. Benhad
da)
259
M
1
=
j
y
y
2
jn
j
i
n
1
+
i
i
dy
.
N
(40
)
dy
T
N
C
y
y
in
n
.
.
.
.
1
1
+
i
i
0
M
1
=
i
i
i
n
(41)
Finally, the temperature ex
pre
ssi
on is n
o
w (4
2).
y
d
T
N
e
t
y
M
i
y
y
in
n
i
t
.
.
.
.
.
)
,
(
1
0
i
i
in
1
n
.
-
i
1
+
i
i
2
n
(42)
We repla
c
e
in
by its expressi
on, we will have (43).
G
y
B
y
A
e
N
t
y
i
n
in
i
n
in
t
n
n
i
n
)
.
cos
.
sin
(
1
)
,
(
.
1
2
(43)
The sol
u
tion
)
(
y
T
s
is determine
d
from (44
)
.
0
0
).
(
).
(
)
(
T
y
T
y
y
T
i
i
s
(44
)
The fun
c
tion
s
)
(
y
i
and
)
(
y
i
are
th
e solution
s
o
f
the ste
ady-state. Th
e
so
lution of th
e
heat
equatio
n with
heat sou
r
ce is given by Green'
s functio
n
)
,
'
,
(
x
t
y
G
ij
[35-41]
(45
)
.
M
j
y
y
j
j
ij
t
y
y
ij
i
dy
q
k
y
t
y
G
y
d
dy
T
y
t
y
G
y
t
y
T
i
j
j
j
1
0
0
0
'
)
,
'
,
(
'
.
'
)
,
'
,
'
)
,
(
1
1
(45)
7.2. Results
In this se
ctio
n, we presen
t the temperatur
e p
r
ofile
of our integ
r
ated micro
coil. These
results relate
the variation
and tempe
r
a
t
ure di
stribut
i
on in ea
ch la
yer, con
d
u
c
to
r, diele
c
tric a
nd
sub
s
trate. Fig
u
re 11
sho
w
s the temperat
ure p
r
ofile in
an integrated
micro coil o
n
the air.
Figure 11. Te
mperature p
r
ofile in
an integrate
d
indu
ctor on the air
In Figu
re
12(a), (b)
and
(c), we
ob
se
rv
e t
he
evoluti
on of tem
p
e
r
ature i
n
a
n
in
tegrated
micro coil o
n
su
bst
r
ate
in a cond
uctor, diel
e
c
tri
c
and
in a sub
s
trate, re
spe
c
tively.
The
0
5
10
15
20
25
30
35
40
24
24
.
2
24
.
4
24
.
6
24
.
8
25
25
.
2
25
.
4
25
.
6
25
.
8
26
y (
µ
m
)
T
e
m
p
et
at
ure
(°
C
)
Evaluation Warning : The document was created with Spire.PDF for Python.