TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 1, April 2015, pp. 62 ~ 71
DOI: 10.115
9
1
/telkomni
ka.
v
14i1.764
6
62
Re
cei
v
ed
De
cem
ber 2
7
, 2014; Re
vi
sed
Mach 3, 20
15
; Accepte
d
March 16, 201
5
Capacitor Bank Voltage Equilibrium for MPPT in Single-
Phase Single-Stage Five-Level Invert
e
r for PV-Grid
Application
L. Heru Pratomo*
1
, F. Danang Wija
y
a
2
, Eka Firma
n
s
y
ah
3
1,2,
3
Department
of Electrical E
ngi
neer
in
g and
Information T
e
chno
log
y
, Gad
j
ah Mad
a
Univ
e
r
sit
y
1
Departme
n
t of Electrical En
gi
neer
ing, So
egi
j
apra
nata C
a
th
olic Un
iversit
y
,
Jl. Grafika No 2. Kampus UG
M, Yog
y
akarta,
5528
1, Indon
e
s
ia, T
e
lp/F
ax: (027
4) 54
750
6, 510
98
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: heru.s3te1
2
@
mail.u
g
m.ac.id
A
b
st
r
a
ct
Single-phas
e single-
stage P
V
-Grid system using
a five-
l
ev
el inv
e
rter has
been investigated.
Some of inte
gratio
n syste
m
s us
ed tw
o-stage co
nvert
e
rs, w
h
ile oth
e
rs used s
i
ng
le-stag
e
conv
erter.
How
e
ver, tw
o-stage c
onvert
e
rs ha
d a
very c
o
mplic
ated
pro
b
le
m. T
h
e first
converter
acte
d as
a
max
i
mu
m
pow
er poi
nt tracker to maxi
mi
z
e
pow
er g
e
nerate
d
by su
nlig
ht en
ergy to electric p
o
w
e
r, imple
m
ente
d
b
y
PV. T
he sec
o
n
d
stag
e w
a
s u
s
ed
as a
n
i
n
ter
f
ace to th
e gr
i
d
. In sin
g
l
e
sta
ge-co
nverter w
a
s very s
i
mpl
e
in
w
h
ich an
inv
e
r
t
er w
a
s used f
o
r a
max
i
mu
m pow
er p
o
int tr
acker a
nd
inte
rface to the
gri
d
. T
h
is p
aper
i
s
desi
gne
d to de
velo
p a sing
le-
s
tage PV-Grid
system usi
ng
a
singl
e-ph
ase v
o
ltag
e sourc
e
five-lev
el inv
e
rte
r
.
T
he volta
ge e
quil
i
br
iu
m o
n
capac
itor w
a
s to make
PV g
e
nerate
max
i
mu
m p
o
w
e
r; henc
e, the equ
ili
bri
u
m
voltag
e b
e
tw
ee
n PV a
n
d
five-l
evel
inv
e
rter o
u
tput w
a
s pr
op
osed
to d
e
liv
er
that
maxi
mu
m pow
er g
e
n
e
rat
e
d
by PV to the grid. Here, a
n
ana
lysis an
d a simu
lati
on
w
e
re performed to de
mo
ns
trate the desi
g
n
effectiveness.
Ke
y
w
ords
: PV-Grid, five-leve
l
inverter, pow
e
r
equi
libr
i
u
m
, capac
itor
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In re
sp
on
se
to the ve
ry rapidly g
r
o
w
in
g ne
ed fo
r
e
nergy, th
e u
s
e
of a
solar ene
rgy
gro
w
s very
rapidly. Such
ene
rgy
dev
elopme
n
t, ho
wever,
al
so
emerge
s
so
me e
n
vironm
ental
probl
em
s.
In
this ca
se, Photovoltaic (PV),
sola
r e
nergy
co
nversion
eq
uipm
ent directly i
n
to
electri
c
al
en
e
r
gy, ha
s b
e
e
n
wid
e
ly u
s
e
d
. PV has
a
nonlin
ea
r ch
ara
c
teri
stic curve; the
r
efo
r
e,
whe
n
load
ed
directly, PV woul
d make the power
ge
nerate
d
by the PV not maximal, for this,
improvin
g the
system i
s
a
must [1]. The
device
call
e
d
Maximum
Powe
r Point
Tra
c
ker
(MP
P
T)
has be
en
use
d
to e
nabl
e th
e PV to o
perate at
maxim
u
m po
we
r
poi
nt. This device mu
st be
u
s
ed
in many of applicatio
ns
su
ch as PV for b
a
ttery cha
r
ge
r appli
c
ation,
or PV-G
r
id sy
stem.
The utilizatio
n of indep
en
dent PV req
u
ire
s
a
g
r
eat
er dem
and i
n
whi
c
h thi
s
system i
s
mostly applied in
som
e
areas i
n
a
c
cessib
le by p
o
we
r li
nes.
This sy
stem is
call
ed
stand
-alo
ne
PV
system
s. Th
e othe
r o
n
e
is
call
ed
gri
d
-conn
ec
te
d
system
s in
t
hat PV an
d
grid
have
be
en
integrate
d
. T
he PV-g
r
id
system is a ve
ry interest
ing
topic, m
a
ki
n
g
this te
ch
niq
ue g
r
o
w
ing v
e
ry
rapidly an
d widely studie
d
by many researche
r
s.
In PV-grid inte
g
r
ation, it must be ascertai
ned
that the PV o
perate
s
at ma
ximum power point.
PV-gri
d
system
s that use a two
-
stage
conve
r
sion
con
s
i
s
t of a DC-DC
co
nvert
e
r fun
c
tionin
g
as a m
a
ximu
m power p
o
in
t tracker to m
a
ximize p
o
we
r
gene
rated
by PV and inve
rter a
c
ting a
s
an interfa
c
e
to the grid.
This
system
woul
d be m
o
re
compl
e
x, req
u
iring
com
p
licated co
ntrol; hen
ce, it
might be co
stly in its implemen
tation [2-5].
In singl
e-stag
e PV-Gri
d
sy
stem u
s
ing
a
n
inve
rte
r
, the syste
m
wo
uld be
more
attractive
in view of the
use of
the i
n
verter
both
a
s
th
e
maximu
m po
we
r p
o
in
t tracke
r a
n
d
as
an i
n
terfa
c
e
to the grid. I
n
this
way, the po
we
r ge
nerate
d
by P
V
would
be
delivere
d
to the gri
d
. A three
-
phase invert
er has been used to im
prove stabilit
y in the PV-
Grid sy
stem.
That system is
impleme
n
ted
by means
of DSP hard
w
a
r
e [6] and co
n
t
rol usin
g a PI regulato
r
[7]. A single-sta
ge
three p
h
a
s
e f
o
r the
sola
r P
V
system
with ene
rg
y capt
ure im
prove
m
ent ba
sed
on
voltage control
to solve fast cha
ngin
g
irra
diation proble
m
is
prop
ose
d
. This struct
ure is u
s
e
d
along with a DC
link
volta
ge control loo
p
an
d a current control lo
o
p
[8]. For a better perform
an
ce
, the authors
[9
]
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cap
a
cito
r Ba
nk Voltage E
quilibri
um
for MPPT in Single-Pha
s
e
…
(L
. Heru Prato
m
o)
63
has u
s
e
d
fuzzy logic to
control thi
s
o
ne
and th
e others u
s
ing
Doubl
e-Line
ar-Ap
p
roxima
tion
MPPT [10]. A photovoltaic
grid
-conn
ecte
d simulatio
n
platform for di
gital/physi
cal hybrid re
al-ti
m
e
simulatio
n
in whi
c
h RTDS use
s
a digital
-
to-a
nal
o
g
int
e
rface to
co
mmuni
cate
with external
DSP
devices were feasibility and effe
ctive [11]. An implementation us
i
ng DSP hardware is
com
m
only
rathe
r
compl
e
x in algo
rithm and mu
st
have a go
od
perfo
rman
ce.
Thoug
h si
ng
le-ph
a
se si
ng
le-
stage PV-g
r
id
system usi
n
g hill-clim
bing
contro
l o
r
P & O has a go
od perfo
rma
n
c
e [4], [12-14],
the hill-clim
bi
ng algorithm based on
∆
V and
∆
P has some oscillati
ons
at maxim
u
m power poi
nt.
If
∆
V an
d
∆
P are
la
rge, t
he
system
wi
ll be fa
ste
r
to
achieve
max
i
mum p
o
wer,
but th
e
syst
em
woul
d produce greater osc
illation. In contrast, if
∆
V
and
∆
P are
getting small
e
r, achi
eving
the
maximum
power point would
be slow
er, but with a relatively smal
l oscillation.
Capacitor control
is used a
s
an
MPPT for boost DC-DC
converte
r.
This syste
m
ha
s been integ
r
a
t
ed with a sin
g
le
pha
se inve
rte
r
to deliver
p
o
we
r ge
nerated by PV
to the grid. In o
t
her words, f
o
r u
s
ing
a two-
stage conve
r
sion system,
the syste
m
wa
s relatively co
mplex [15].
In turn, thi
s
p
aper p
r
opo
se
s a
ca
pa
citor ban
k e
quilib
rium control for MPPT i
n
a
sin
g
le-
pha
se
single
-
stag
e PV-G
r
id system, th
e implem
ent
ation of which wa
s by u
s
ing a five-lev
el
inverter. A co
ntrol ba
sed o
n
the ene
rgy has b
een
sto
r
ed in a
cap
a
c
itor b
ank to
be dete
c
ted
by
the voltage
censor
on th
e
ca
pa
citor. It
wa
s by
cont
rolling the
voltage
on the
capa
citor to
see
wheth
e
r it wa
s eq
ual to the
power
cont
ro
l on the
capa
citor. Thi
s
ca
pacito
r
mo
unt
ed a
s
capa
citor
ban
ks l
o
cate
d between th
e PV module
s
an
d five-lev
el inverte
r
. This
control scheme p
u
rpo
s
ely
wa
s to a
c
hie
v
e power e
q
u
ilibriu
m
bet
wee
n
in
stant
aneo
us
and
averag
e po
wer. Thi
s
st
rat
egy in
turn
would
force the
ave
r
age
po
we
r
of five-lev
el i
n
verter to
h
a
ve the
sam
e
value a
s
t
h
e
maximum
po
wer g
ene
rat
ed by
PV
module
s
. T
h
e five-level
i
n
verter was used
for g
ood
perfo
rman
ce
in power q
uality output. Finally,
it was
continu
e
d
by performi
ng analy
s
is
and
simulatio
n
to demon
strate the de
sign eff
e
ctivene
ss.
2. Rese
arch
Metho
d
The first
step
wa
s to re
cog
n
ize the p
r
o
p
o
se
d
PV-Gri
d
system by d
e
scribi
ng a th
eoreti
c
al
analysi
s
ab
o
u
t voltage e
quilibri
um on
cap
a
cito
r b
ank
and PV.
Based
on F
i
gure
1, the
P-V
cha
r
a
c
teri
stic of PV was
n
online
a
r. Max
i
mum po
we
r
point (P
MP
P
) woul
d be
gen
erated
by voltage
(V
MP
P
). These value
s
of p
o
we
r would
b
e
variou
s
u
n
der the
different co
ndition
of irra
dian
ce
and
temperature.
Figure 1. Cha
r
acte
ri
stic P-V curve of PV
It is revealed
that, to keep the voltage cap
a
cito
r co
n
s
tant, the PV shoul
d be in
stalled.
Thus, it was
possibl
e to control the
out
put volt
age of
the PV via the voltage a
c
ross the
cap
a
c
itor
ban
k. In fa
ct, the voltag
e
across th
e
ca
pacito
r
h
ad
a
relatio
n
ship
with p
o
wer, i
ndicating th
at by
controlling the voltage on
the capa
citor bank, the power
could al
so
be controll
ed. The drop of
the voltage
a
c
ro
ss th
e
ca
pacito
r
at the
DC voltag
e i
ndicates the
real
po
we
r gi
ven to the
five-
level inverte
r
,
whil
e, if the
cap
a
cito
r volt
age
ro
se; th
e
ab
so
rption
p
o
we
r
of PV
woul
d o
c
cur.
T
o
ensure
the i
n
crea
se
and
de
cre
a
se in
po
wer,
the
cap
a
cito
r volt
age m
u
st
be
ke
pt con
s
ta
nt,
Figure 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 62 – 71
64
Figure 2. Con
t
rol power to the ca
pa
citor
ban
k with a voltage
The first co
n
d
ition: at inte
rval of
2
1
t
t
, the capa
citor tran
smitted po
we
r to five-level
inverter
, thu
s
makin
g
the capa
citor volta
ge do
wn.
For
this, the amo
unt of energy
is expre
s
sed
by
the equatio
n:
dt
t
P
W
t
t
2
1
1
(
1
)
The se
con
d
con
d
ition:
at interval
of
3
2
t
t
, the c
a
pac
i
tor
abs
o
rbed power from the
PV
, thus
raisi
ng the ca
pacito
r
voltag
e.
Thus, the a
m
ount
of ene
rgy is expressed by the eq
uation bel
ow:
dt
t
P
W
t
t
3
2
2
(
2
)
Since sola
r module
s
u
s
ed t
he voltage on
the c
apa
citor detection
system, the energy abso
r
ption
can b
e
derive
d
as follo
ws:
2
1
W
W
W
(
3
)
At interval co
ndition
1
t
would
prod
uce a voltage acro
ss t
he ca
pa
citor:
1
cap
V
At interval co
ndition
2
t
would
prod
uce a voltage acro
ss t
he ca
pa
citor:
2
cap
V
At interval co
ndition
3
t
would
prod
uce a voltage acro
ss t
he ca
pa
citor:
3
cap
V
Thus, the
cap
a
citor voltag
e
can be exp
r
e
s
sed a
s
follo
ws:
2
1
cap
cap
V
V
,
2
3
cap
cap
V
V
,
3
1
cap
cap
V
V
.
(4)
The delive
r
y pro
c
e
ss a
nd
energy
absorption wo
uld cause voltage
fl
uctuation
s
in
the capa
citor
ban
k at:
1
2
cap
cap
V
V
V
(
5
)
The ca
pa
citor bank
wa
s ca
pable of sto
r
i
ng ene
rgy ab
sorbed from the PV and then se
nt energ
y
to the grid. The amou
nt of energy stored
in
the capa
ci
tor ban
k wa
s
defined by th
e equatio
n:
2
2
1
V
C
W
2
1
2
2
1
cap
cap
V
V
C
W
(6)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cap
a
cito
r Ba
nk Voltage E
quilibri
um
for MPPT in Single-Pha
s
e
…
(L
. Heru Prato
m
o)
65
Thus, the val
ue of the cap
a
citor b
a
n
k
could be exp
r
e
s
sed in an e
q
uation:
2
1
2
2
1
2
cap
cap
t
t
C
V
V
dt
t
P
C
(
7
)
The capa
cito
r ban
k voltage
woul
d fluctu
ate in value
of
V
.
The p
o
we
r suppli
e
d or a
b
sorbe
d
by
the cap
a
cito
r ban
k wa
s exp
r
esse
d as foll
ows:
dt
V
d
t
V
C
P
C
(8)
By maintainin
g a co
nsta
nt voltage value
on t
he ci
rcu
m
stan
ce
s, the power
coul
d also
be
maintaine
d
. Based on th
e above descriptio
n
, t
he
control sche
me can be derived as se
en in
Figure 3.
Figure 3. Power
cont
rol schem
e ba
sed
on the cap
a
citor ban
k voltage
The output of PV modules wa
s DC voltage in
which an inverter was need
ed
to convert
DC
voltage into
AC voltage.
Some pa
ralle
l con
n
e
c
tion
s betwe
en P
V
in the gri
d
must
con
s
id
er
several p
a
ra
meters, one
of whi
c
h
was that th
e
output voltag
e of the inv
e
rter
mu
st b
e
synchro
n
ized
with the
grid
voltage. If the inverter
wa
s
use
d
ba
se
d o
n
cu
rrent
con
t
rol, the outp
u
t
of the inverte
r
wo
uld a
u
to
matically lo
ck to the
grid v
o
ltage. Figu
re 4 sho
w
s th
e blo
ck
syste
m
PV
module
s
, inverte
r
, and the
grid.
Figure 4. Block
system: PV module
s
, inverter, and th
e grid
If the grid voltage V
Grid
and output cu
rrent inverter I
in
v
, the instantaneou
s po
wer was
injecte
d
into the grid, a
s
expre
s
sed bel
o
w
:
t
i
t
v
t
p
inv
Grid
inv
(
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 62 – 71
66
Thus, the ave
r
age p
o
wer
could be fou
n
d
at:
T
inv
inv
dt
t
p
P
0
(
1
0
)
Whe
n
current
and voltag
e
were in
pha
se, the av
erag
e po
we
r coul
d be
cal
c
ulat
ed by u
s
ing
the
RMS value of
current an
d voltage (Fi
gure 5).
Thu
s
,
inv
grid
inv
I
V
P
(
1
1
)
In ideal co
ndi
tion, the average po
we
r of inje
cte
d
po
we
r had the
sam
e
value of PV powe
r
.
inv
C
PV
P
P
P
inv
Grid
C
I
V
P
(12
)
For the
s
e con
d
itions, the in
verter
outp
u
t curre
n
t coul
d be expre
s
sed
as:
Grid
C
inv
V
P
I
(
1
3
)
Figure 5. Instantane
ou
s values of
voltag
e, current an
d power
The imp
o
rta
n
t
one that m
u
st be
co
nsi
d
e
r
ed
wa
s inve
rter
. Inverte
r
with high
perfo
rman
ce
kno
w
n a
s
the five-level inverter ha
s
been inve
stig
ated [16]. If the five-level inverter ma
d
e
a
gene
rali
zatio
n
of the switching fun
c
tion
woul
d have the followi
ng e
quation:
L
V
V
S
dt
t
i
d
o
s
sw
)
(
(
1
4
)
Equation (14
)
sh
ows that
the five
-level
inverter
coul
d be u
s
ed a
s
a controll
e
d
cu
rre
nt so
u
r
ce
strategy to tra
n
smit po
we
r
,
Figure 6.
Figure 6. Equivalent circuit of a five-level
inverter pul
se width mod
u
l
ation as a
co
ntrolled
cur
r
e
n
t
sou
r
c
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cap
a
cito
r Ba
nk Voltage E
quilibri
um
for MPPT in Single-Pha
s
e
…
(L
. Heru Prato
m
o)
67
The influe
nce
of the swit
ch
on the curre
n
t con
d
ition
s
and the a
c
tu
al refe
ren
c
e
coul
d be
illustrated in Figure 7.
Thus, the functi
on of t
he output current of the switchi
n
g function
was
obtaine
d as f
o
llows:
o
o
s
sw
i
dt
L
V
V
S
t
i
(
1
5
)
Figure 7. Influence of the switch
to the current co
nditi
ons of the referen
c
e a
nd th
e actual
curre
n
t
In the implementation of the actual cu
rrent will fluctuate around the current
∆
I of
referen
c
e, as
see
n
in Figu
re 8.
Figure 8.
Actual cu
rrent fluct
uation
s
aro
und current referen
c
e
Thus, the referen
c
e
cu
rre
nt and the act
ual cu
rrent co
uld be written
as follows:
t
i
t
i
I
*
2
(
1
6
)
2
*
i
t
i
t
i
(
1
7
)
Then the ma
gnitude of the
output voltage wa
s obtain
ed as follo
ws:
t
V
d
t
i
t
i
L
t
V
o
S
2
*
(
1
8
)
Equation (18) sho
w
s that the fi
ve-level inverter o
u
tpu
t
voltage was requi
red to follow th
e
output cu
rre
n
t
∆
I referen
c
e
to fluctuations in the inst
a
n
taneo
us voltage.
The voltage so
urce was
adde
d to the
inducto
r
.
Five-level invert
er output voltage of V
d
was the averag
e voltage pulse
width mod
u
la
tion.
A
curren
t controlle
r would try to make
∆
I as
sm
all as po
ssibl
e
and the a
c
tual
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 62 – 71
68
curre
n
t magn
itude must b
e
ensu
r
e
d
eq
ual to t
he referen
c
e value
by adding a control sy
ste
m
.
The pro
p
o
s
e
d
sch
eme of
single-pha
se single
-
sta
g
e
PV
-Grid sy
stem usi
ng five-level inverter
based capa
ci
tor ban
k voltage equilib
riu
m
control is shown in Figu
re 9.
Figure 9. The
propo
se
d scheme
3. Results a
nd Analy
s
is
Once the an
alysis h
a
s
b
een
cond
uct
ed, its verifi
cation
wa
s
perfo
rmed th
roug
h a
simulatio
n
. The simul
a
tion
works
we
re
based on Po
wer Simul
a
to
r softwa
r
e u
s
i
ng the sche
me
as d
epi
cted i
n
Figu
re 9. T
able 1
pre
s
e
n
ts the p
a
ra
meter u
s
e
d
i
n
the sim
u
lati
on. The p
o
wer line
system
conta
i
ns
a n
u
mb
er of resi
stive l
oad
s u
s
e
d
a
s
a
grid
whe
r
e
the PV
and
five-level inve
rter
were
con
n
e
c
ted to th
e g
r
id
. Furthe
rmo
r
e
,
four
co
nditio
n
s fo
r th
e
sim
u
lation
we
re t
a
ke
n the
sola
r
irra
dian
ce
un
der 10
00
W/m
2
with re
si
stive
loa
d
of
50
Ohm and
10
Ohm,
the
n
the sola
r irra
dia
n
ce
unde
r 500
W/
m
2
with
re
si
stive load
of 5
0
Oh
m
a
nd 100 Ohm. Under
1
000
W/
m
2
with
re
si
s
t
ive
load of 50
O
h
m, it was
co
nsid
ere
d
that
the power
a
b
so
rbe
d
by a
resi
stive loa
d
(50
Ohm
)
wa
s
less than the power ge
nerated by
PV; therefo
r
e, the amount of po
wer
woul
d be
delivered to the
grid.
Hen
c
e, t
he g
r
id
cu
rre
nt’s p
hase a
n
g
le was 18
0
0
with respe
c
t to the g
r
id volt
age a
nd
cu
rrent
load an
d inve
rter outp
u
t cu
rre
nt woul
d b
e
in pha
se, Figure 1
0
.
Table 1. The
simulatio
n
pa
ramete
r value
Parameters
Value
PV module max
Power
50.45 Wp
PV Module Voltage at max Po
w
e
r
14.20 V DC
PV Module Curr
e
n
t at max Po
wer
3.55A
Number of
modul
es in arra
y
16
Modules connection
Series
Voltage Grid
220V AC
Load
10, 50, 100
Ohm
Inductor
3mH
Capacitor Bank
470uF
Capacitor on Inv
e
rter
220uF
Sw
itching Fr
equ
enc
y
10KHz
Since
the i
n
verter
output
cu
rrent a
n
d
vo
ltage
we
re si
nu
soid
al
and
in
pha
se, the
instanta
neo
u
s
po
we
r
woul
d fluctuate
from zero
to
maximum val
ue who
s
e av
erag
e po
we
r
wa
s
equal
to th
e
power gen
erated by
PV. Cap
a
cito
r
ba
nk played
a
signifi
cant rol
e
to ke
ep po
wer
equilib
rium p
o
we
r delive
r
e
d
PV and five-level inverte
r
, an Equation
(7).
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cap
a
cito
r Ba
nk Voltage E
quilibri
um
for MPPT in Single-Pha
s
e
…
(L
. Heru Prato
m
o)
69
Figure 10. Simulated waveform
s und
er 1000
W/m
2
wi
th resi
stive load 50 Ohm
(a
) Inverter o
u
tput
curre
n
t, (b) L
oad current, (c) G
r
id curren
t, (d)
PV maximum po
wer, (e) Inverte
r
ou
tput powe
r
Figure 11. Simulated waveform
s und
er 1000
W/m
2
wi
th resi
stive load 10 Ohm
(a
) Inverter o
u
tput
curre
n
t, (b) L
oad current, (c) G
r
id curren
t, (d)
PV maximum po
wer, (e) Inverte
r
ou
tput powe
r
Whe
n
the so
lar irradia
n
ce
was at 1
0
0
0
W/m
2
with resi
stive load
10 Ohm, the power
gene
rated
by
PV woul
d b
e
fixed. Thi
s
co
ndition
would influ
e
n
c
e the p
o
wer
delivere
d
by
grid
sou
r
ce. For t
he load’
s po
wer g
r
e
a
ter t
han the po
wer produ
ce
d, the amount o
f
powe
r
woul
d be
sup
p
lied
by g
r
id
sou
r
ce. F
o
r thi
s
conditi
on, all of the
curre
n
t wo
uld
be in
pha
se
with respe
c
t to
the grid volta
ge, Figure 11
.
Figure 12. Simulated waveform
s und
er 500W/m
2
wit
h
resi
stive loa
d
50 Ohm (a) Inverter outp
u
t
curre
n
t, (b) L
oad current, (c) G
r
id curren
t, (d)
PV maximum po
wer, (e) Inverte
r
ou
tput powe
r
Whe
n
the
so
lar i
r
radian
ce
dropp
ed
unt
il 500
W/m
2
with re
si
stive l
oad
of 5
0
O
h
m, the
power
gen
erated by PV
wo
uld b
e
decrea
s
e
d
.
This
co
nditio
n
would i
n
fluen
ce th
e p
o
we
r
delivere
d
by
grid
source.
For th
e lo
ad’
s p
o
wer grea
ter tha
n
the
p
o
we
r
pro
d
u
c
e
d
, the
amou
n
t
of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 62 – 71
70
power would
be su
pplied b
y
grid sou
r
ce. For this
co
n
d
ition, all of the cu
rrent would be in ph
ase
with re
spe
c
t to the grid voltage, Figu
re 1
2
.
Figure 13. Simulated waveform
s und
er 500W/m
2
wit
h
resi
stive loa
d
100 Ohm
(a
) Inverter o
u
tput
curre
n
t, (b) L
oad current, (c) G
r
id curren
t, (d)
PV maximum po
wer, (e) Inverte
r
ou
tput powe
r
Whe
n
the
so
lar i
r
radian
ce
dropp
ed
unt
il 500
W/m
2
with
re
sistive
load
chan
ge
to 1
00
Ohm, the po
wer g
ene
rate
d by PV would be de
cr
e
a
se
d. This condition woul
d influen
ce the
power
delivered by the
gri
d
so
ur
ce. F
o
r the loa
d
’s
p
o
we
r lo
we
r t
han the
po
wer p
r
od
uced,
the
amount of p
o
w
er
wo
uld be
abso
r
b
ed by
grid
sou
r
ce. For thi
s
co
ndi
tion, the grid
curre
n
t’s ph
a
s
e
angle
was 1
8
0
0
with
resp
ect to
the
gri
d
voltage
an
d current
loa
d
an
d inve
rte
r
o
u
tput
cu
rrent
woul
d be
in
p
hase all
of th
e current
wo
uld b
e
in
pha
se
with
re
spe
c
t to the
gri
d
voltage, Figu
re
13.
Figure 14. Simulated po
wer wavefo
rm
s under 5
00 –
1000
W/m
2
(a
) power o
n
na
meplate,
(b) p
o
w
e
r out
put PV
The analy
s
is
on the po
wer conversio
n
u
s
ing voltag
e detectio
n
on
cap
a
cito
r met
hod was
sho
w
n i
n
Fig
u
re 1
4
. The
magnitud
e
of
the ene
rgy
conve
r
si
on e
fficiency of t
h
is meth
od
wa
s
approximatel
y 93.76%. Fi
ve-level inve
rter u
s
ed i
n
th
e sim
u
lation
coul
d be
ru
n
well, a
s
ma
n
y
as
five levels
, Figure 15.
Figure 15. Inverter o
u
tput voltage
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Cap
a
cito
r Ba
nk Voltage E
quilibri
um
for MPPT in Single-Pha
s
e
…
(L
. Heru Prato
m
o)
71
4. Conclusio
n
Based
on
th
e analy
s
is a
bout
single
-
stage PV-G
r
id
system
u
s
in
g five-level i
n
verter
based on
cap
a
citor
ban
k voltage eq
uilib
rium control,
it is reveale
d
that a cap
a
cit
o
r ban
k volta
ge
control to obtain equilibri
um power
on
PV was very
simpl
e
. This cont
rol
scheme for five-l
evel
inverter to
ma
ximize the p
o
w
er
gen
erate
d
by PV and
t
o
deliver
po
wer to the
grid
wa
s de
rived.
In
this case, the
prop
osed
co
ntrol was
goo
d to achieve t
he re
qui
red f
unctio
n
s. Th
e
simulate
d re
sult
sho
w
s that under maxim
u
m irradi
an
ce (100
0W/m
2
) and wh
en the
solar irradi
a
n
ce d
r
op
ped
until
500 W/m
2
, m
a
ximum p
o
wer
can
still
be
pro
d
u
c
ed.
When th
e maxi
mum p
o
wer
prod
uced
by
PV,
the five-level inverter i
s
still
good to tran
smit a
ll po
we
r gene
rate
d b
y
PV to
the grid. In the use
of
voltage d
e
te
ction
on
ca
p
a
citor meth
o
d
in
sin
g
le-stage PV-Gri
d
sy
stem h
a
d
efficie
n
cy
a
t
approximatel
y 93.76%.
Referen
ces
[1]
F
u
Qiang, T
o
n
g
Nan. A Strateg
y
Res
earch
on MPPT
T
e
chni
que i
n
Phot
ovolta
ic Po
w
e
r
Generatio
n
Sy
s
t
e
m
.
T
E
LK
OMNIKA Indon
esia
n Journ
a
l o
f
Electrical Eng
i
ne
erin
g
. 201
3; 11(12): 76
27-
763
3.
[2]
YK
Lo,
et al. Grid-Con
necte
d Photovo
l
taic
S
y
stem
w
i
th P
o
w
e
r Factor Correction.
IEEE Transactions
on
Industri
a
l El
ectronics.
20
08
; 55: 2224-
222
7.
[3]
Jia Mi
n S
h
e
n
,
et al. F
i
v
e
-L
ev
el Inv
e
rter for
Ren
e
w
a
ble
Po
w
e
r Ge
nerati
o
n S
y
stem.
IEE
E
T
r
ansacti
ons
on Ener
gy Co
n
v
ert ion
. 201
3; 28(2): 25
7-2
6
6
.
[4]
Slamet
Ri
ya
di.
dsPIC33 B
a
se
d Contro
l for PV-Grid S
y
stem
w
i
t
h
a Buck-B
oost MPPT
.
TELKOMNIKA.
201
4; 12(7): 51
37-5
143
.
[5]
Jia Mi
n S
h
e
n
,
et al. F
i
v
e
-L
ev
el Inv
e
rter for
Ren
e
w
a
ble
Po
w
e
r Ge
nerati
o
n S
y
stem.
IEE
E
T
r
ansacti
ons
on Ener
gy Co
n
v
ersio
n
. 201
3; 28(2): pa
ge 2
5
7
-26
6
.
[6]
W
Libo, et al. A Singl
e-Stag
e
T
h
ree-Phas
e
Grid
-Con
necte
d Photov
oltaic
S
y
stem
w
i
t
h
Modifi
ed MPPT
Method
an
d R
eactive P
o
w
e
r
Comp
ensati
o
n.
IEEE Transactions
on E
n
ergy Convers
i
on
. 20
07; 2
2
:
881-
886.
[7]
S Kranthi K
i
ran, et a
l
. Pho
t
ovoltaic Gri
d
– con
necte
d Inverter Bas
e
d
MPPT
Using PI Regu
lator
.
Internatio
na
l Journ
a
l of Eng
i
n
eeri
ng Res
earc
h
and D
e
ve
lop
m
e
n
t.
2012; 4(
1): 68-80.
[8]
K Prasad
a Ra
o, et al. D
e
vel
opme
n
t of A Grid
C
onn
ected
Inverter for So
l
a
r PV S
y
stems
w
i
t
h
En
er
g
y
Captur
e Impro
v
ement Base
d
On
Current Contro
l Strateg
y
.
Intern
atio
n
a
l Jour
nal of
Scientific a
n
d
Rese
arch Pub
l
i
c
ations
. 20
13;
3(4):1-6.
[9]
B Nag
a
raj
u
. A
F
u
zz
y
L
o
g
i
c M
PPT
T
h
ree-Phase Grid-
C
on
n
e
cted Invert
er for Photov
olta
ic
Appl
icatio
ns
.
Internatio
na
l Journ
a
l of Eng
i
n
eeri
ng Res
earc
h
and Ap
pl
icati
ons (IJERA)
. 2012; 2(1): 1
04-
107.
[10]
Chih-
L
u
ng S
h
en, J
y
e-C
h
a
u
Su. Grid-Co
n
nectio
n
Si
ngl
e
-
Stage Ph
otov
oltaic Inv
e
rter
S
y
stem
w
i
th
Dou
b
le-
L
in
ear-
A
ppro
x
imatio
n
MPPT.
Applie
d Mathe
m
atics
& Informati
o
n
Scienc
es An
Internatio
na
l
Journ
a
l.
20
15; 9(1): 205-
21
1.
[11]
Lin
F
E
NG, et
al
.
H
a
rd
w
a
re-i
n-the-l
oop
Sim
u
lati
on
Platfor
m
of Ph
otovo
l
taic Gri
d
-Co
n
n
e
cted S
y
st
em
.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2014; 1
2
(4): 2
465-
247
3.
[12]
W
A
NG Yu-xi
n
, Z
H
ANG F
e
ng-g
e
, LI Lin-
lin.
Res
earc
h
on Sin
g
le-V
a
r
iabl
e Curr
ent
Perturbati
o
n
T
r
acking Meth
od for M
a
xima
l
Po
w
e
r
T
r
acking Co
ntrol M
e
th
od
of the S
o
lar
Po
w
e
r
Gen
e
ra
tion S
y
stem
.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2014; 1
2
(2): 8
99-9
04.
[13]
MM Marimuthu. Optimized
Cont
ro
l i
n
Grid
Con
necte
d P
hotovo
l
taic S
ystem bas
ed
o
n
Sin
g
l
e
-Stag
e
Voltag
e S
ourc
e
Inverter
.
In
ternatio
nal
Jo
urna
l of
Adva
nce
Rese
arch
in
Co
mputer
Scie
nce
a
n
d
Mana
ge
me
nt Studies
. 20
14; 2(3):13
6
-14
2
.
[14]
Slamet
Ri
ya
d
i
.
Singl
e-Ph
ase
Singl
e-Statge
PV-Grid S
y
st
em usin
g VSI
Based
on Si
mple C
ontro
l
Circuit.
Internat
ion
a
l Jour
na
l of Pow
e
r Elec
tronics an
d Drive
Systems (IJPEDS).
2013; 3(1
)
: 9-16.
[15]
W
en-Jun
g
Chi
ang, et al.
Maxi
mu
m Pow
e
r Point T
r
acking Metho
d
fo
r the Voltage-
Mode Grid
-
Con
necte
d Inv
e
rter of Ph
oto
v
oltaic Ge
ner
a
t
ion Syste
m
. Internati
o
n
a
l C
onfere
n
ce
on
Substanc
ia
l
Envirom
ental T
e
chn
o
lo
gi
es. Singa
pore. 2
008:
1-6.
[16]
Leo
nard
u
s H
e
r
u
Pratomo,
et al
.
A Simp
le S
t
rateg
y
of C
o
n
t
rollin
g a
Bal
a
nced V
o
lta
ge
Cap
a
citor i
n
Sing
le P
hase
F
i
ve-Lev
el Inv
e
rter.
Internati
ona
l Jo
urna
l
of Pow
e
r Elec
tronics a
nd
Dr
ive Syste
m
s
(IJPEDS).
201
5; 6(1): 160-1
6
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.