TELK
OMNIKA
Indonesian
Journal
of
Electrical
Engineering
V
ol.
14,
No
.
3,
J
une
2015,
pp
.
557
564
DOI:
10.11591/telk
omnika.v14.i3.7833
557
Finding
Kic
king
Rang
e
of
Sepak
T
akra
w
Game:
A
Fuzzy
Logic
Appr
oac
h
Andino
Maseleno*,
Md.
Mahm
ud
Hasan
1
Computer
Science
Prog
r
am,
Univ
ersiti
Br
unei
Dar
ussalam,
Negar
a
Br
unei
Dar
ussalam
F
aculty
of
Inf
or
mation
T
echnology
,
Kazakh
Br
itish
T
echnical
Univ
ersity
,
Kazakhstan
*
Corresponding
author
,
e-mail:
andinomaseleno@mail.r
u
Abstract
This
paper
presents
a
method
to
find
kic
king
r
ange
of
sepak
takr
a
w
game
when
pla
y
er
kic
ks
bac
k
the
ball
to
the
other
team.
This
research
w
or
ks
considered
ho
w
fuzzy
logic
can
be
applied
f
or
the
sepak
takr
a
w
game
-
f
or
addressing
uncer
tainty
in
kic
king
r
ange
of
the
ball.
Six
diff
ere
nt
conditions
are
descr
ibed.
This
research
has
chosen
Tsukamoto’
s
fuzzy
reasoning
scheme
,
because
the
individual
r
ule
outputs
are
cr
isp
n
umbers
,
and
theref
ore
,
the
functional
relationship
betw
een
the
input
v
ector
and
the
system
output
can
be
relativ
ely
easily
identified.
The
result
re
v
eals
that
the
f
ar
thest
r
ange
of
the
ball
coming
to
the
other
team
in
condition
1
obtained
r
ange
10.1%
of
f
ar
,
condition
2
obtained
r
ange
10.23%
of
v
er
y
f
ar
,
condition
3
obtained
r
ange
10.16%
of
v
er
y
f
ar
,
condition
4
obtained
r
ange
10.03%
of
f
ar
,
condition
5
obtaine
d
r
ange
10.28%
of
f
ar
,
and
condition
6
obtained
r
ange
10.42%
of
f
ar
.
K
e
yw
or
ds:
sepak
takr
a
w;
fuzzy
logic;
Tsukamoto
method;
kic
king
r
ange
Cop
yright
c
2015
Institute
of
Ad
v
anced
Engineering
and
Science
1.
Intr
oduction
Sepak
takr
a
w
or
kic
k
v
olle
yball
is
a
spor
t
nativ
e
to
Southeast
Asia,
resemb
ling
v
olle
yball,
e
xcept
that
it
uses
a
r
attan
ball
and
only
allo
ws
pla
y
ers
to
use
their
f
eet
and
head
to
touch
the
ball.
A
cross
betw
een
f
ootball
and
v
olle
yball,
it
is
a
popular
spor
t
in
Thailand,
Cambodia,
Mala
ysia,
Laos
,
Philippines
and
Indonesia.
The
str
ategies
in
Sepak
takr
a
w
are
also
v
er
y
similar
to
those
in
v
olle
yball.
The
receiving
team
will
attempt
to
pla
y
the
takr
a
w
ball
to
w
ards
the
front
of
the
net,
making
the
best
use
of
their
3
hits
,
to
set
and
spik
e
the
ball
[1].
Some
research
related
with
kic
ks
and
sepak
takr
a
w
ha
v
e
been
de
v
eloped
which
w
ere
the
study
to
identify
diff
erences
in
kic
k-
ing
kinematics
betw
een
the
kuda
and
sila
ser
vice
techniques
[2],
data’
s
researcher
sho
w
ed
that
angular
v
elocity
patter
n
betw
een
both
techniques
w
ere
compar
ab
le
with
no
significant
diff
erence
obser
v
ed
f
or
the
thigh,
shank
and
f
oot
angular
v
elocities
at
ball-contact.
Sam
uel
et
al.
[3]
intro-
duced
an
approach
to
enab
le
humanoid
soccer
robots
to
e
x
ecute
kic
ks
quic
kly
and
ensure
that
the
y
mo
v
e
the
ball
do
wn
field,
this
paper
presents
a
kic
k
engine
capab
le
of
kic
king
at
a
v
ar
iety
of
distances
and
angles
and
then
descr
ibes
a
kic
k
decision
method
f
or
selecting
from
amon
g
a
large
set
of
possib
le
kic
ks
.
This
method
pr
unes
and
ord
ers
the
kic
ks
according
to
a
metr
ic
and
then
chooses
the
first
possib
le
kic
k
that
ensures
that
their
field
position
is
impro
v
ed.
Currently
,
the
use
of
Fuzzy
Logic
is
widespread
and
also
n
umerous
system
ha
v
e
been
de
v
eloped
f
or
the
spor
ts
[4],
[5],
[6],
[7],
[8],
[9].
This
research
has
chosen
Tsukamoto’
s
fuzzy
reasoning
scheme
,
because
t
he
individual
r
ule
outputs
are
cr
isp
n
umbers
,
and
theref
ore
,
the
functional
relationship
betw
een
the
input
v
ector
and
the
system
output
can
be
relativ
ely
easily
identified.
2.
Sc
hematic
Representation
of
Sepak
T
akra
w
Game
Sepak
takr
a
w
is
a
highly
comple
x
net-barr
ier
kic
king
spor
t
that
in
v
olv
es
dazzling
displa
ys
of
quic
k
re
fle
x
es
,
acrobatic
twists
,
tur
ns
and
s
w
er
v
es
of
the
agile
human
body
.
The
r
ules
of
the
game
allo
w
pla
y
ers
to
mak
e
contact
to
the
ball
up
to
three
consecutiv
e
times
per
side
[1].
Figure
1
sho
ws
a
schematic
representation
of
sepak
takr
a
w
game
.
A
match
is
pla
y
ed
b
y
tw
o
regus
,
each
Receiv
ed
J
an
uar
y
26,
2015;
Re
vised
Apr
il
17,
2015;
Accepted
Ma
y
9,
2015
Evaluation Warning : The document was created with Spire.PDF for Python.
558
ISSN:
2302-4046
consisting
of
th
ree
pla
y
ers
.
One
of
the
three
pla
y
ers
shall
be
at
the
bac
k
and
the
pla
y
er
is
called
a
”T
ek
ong”
which
include
Pla
y
er
P
and
Pla
y
er
S
.
The
other
tw
o
pla
y
ers
shall
be
in
front,
one
on
the
left
and
the
other
on
the
r
ight
which
include
Pla
y
er
Q,
Pla
y
er
R,
Pla
y
er
T
and
Pla
y
er
U
.
The
pla
y
er
on
the
left
is
called
a
”Left
Inside”
and
the
pla
y
er
on
the
r
ight
is
called
a
”Right
Inside”.
Area
of
13.4
m
x
6.1
m
free
from
all
obstacles
up
to
the
height
of
8
m
measured
from
the
floor
surf
ace
.
The
width
of
the
lines
bounding
the
cou
r
t
should
not
be
more
than
0.04
m
measured
and
dr
a
wn
inw
ards
from
the
edge
of
the
cour
t
measurements
.
All
the
boundar
y
lines
should
be
dr
a
wn
at
least
3.0
m
a
w
a
y
from
all
obstacles
.
The
Centre
line
of
0.02
m
should
be
dr
a
wn
equally
dividing
the
r
ight
and
left
cour
t.
At
the
cor
ner
of
each
at
the
Centre
Line
,
the
quar
ter
circle
shall
be
dr
a
wn
from
the
sideline
to
the
Centre
Line
with
a
r
adius
of
0.9
m
measured
and
dr
a
wn
outw
ards
from
the
edge
of
the
0.9
m
r
adius
.
(a)
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
S
(b)
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
T
(c)
P
la
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
U
(d)
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
S
(e)
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
T
(f)
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
U
Figure
1.
Schematic
representation
of
sepak
takr
a
w
game
Figure
1(a)
sho
ws
schematic
representation
of
sepak
takr
a
w
game
from
Pla
y
er
P
and
Pla
y
er
Q
with
re
f
erence
to
ho
w
the
ball
coming
t
o
Pla
y
er
S
.
Figure
1(b)
sho
ws
schematic
repre-
sentation
of
sepak
takr
a
w
game
from
Pla
y
er
P
and
Pla
y
er
Q
with
ref
erence
to
ho
w
the
ball
coming
TELK
OMNIKA
V
ol.
14,
No
.
3,
J
une
2015
:
557
564
Evaluation Warning : The document was created with Spire.PDF for Python.
TELK
OMNIKA
ISSN:
2302-4046
559
to
Pla
y
er
T
.
Figure
1(c)
sho
ws
schematic
representation
of
sepak
takr
a
w
game
from
Pla
y
er
P
and
Pla
y
er
Q
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
U
.
Figure
1(d)
sho
ws
schematic
repre-
sentation
of
sepak
takr
a
w
game
from
Pla
y
er
P
and
Pla
y
er
R
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
S
.
Figure
1(e)
sho
ws
schematic
representation
of
sepak
takr
a
w
game
from
Pla
y
er
P
and
Pla
y
er
R
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
T
.
Figure
1(f)
sho
ws
schematic
represen-
tation
of
sepak
takr
a
w
game
from
Pla
y
er
P
and
Pla
y
er
R
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
U
.
3.
Using
Fuzzy
Logic
in
Sepak
T
akra
w
Game
Prof
essor
L.A.
Zadeh
introduced
the
concept
of
Fuzzy
Logic
[10],
Tsukamoto
Fuzzy
rea-
soning
are
models
based
on
Fuzzy
Logic
[
11].
These
r
ules
are
easy
to
lear
n
and
use
and
can
be
modified
according
to
the
situation.
It
helps
to
mak
e
decisions
and
can
be
used
in
decision
analysis
.
Tsukamoto
Fuzzy
reasoning
does
mapping
from
giv
en
input
to
an
output
using
Fuzzy
Logic.
Figure
2
sho
ws
Tsukamoto
model
of
Fuzzy
inf
erence
.
Tsukamoto
Fuzzy
reasoning
has
a
n
umber
of
r
ules
based
on
if
then
conditions
.
In
this
method,
the
consequence
of
each
Fuzzy
r
ule
is
represented
b
y
a
Fuzzy
set
with
a
monotonic
membership
function.
The
r
ule
base
has
the
f
or
m
as:
R
i
:
if
u
is
A
i
and
v
is
B
i
,
then
w
is
C
i
,
i
=
1,
2,
,
n.
Where
C
i
(w)
is
a
monotonic
function.
As
a
result,
the
inf
erred
output
of
each
r
ule
is
defined
as
a
cr
isp
v
alue
induced
b
y
the
r
ules
matching
deg
ree
(fir
ing
strength).
The
o
v
er
all
output
is
tak
en
as
the
w
eighted
a
v
er
age
of
each
r
ules
output.
Suppose
,
that
the
set
C
i
has
a
monotonic
membership
function
C
i
(w)
and
that
i
is
the
matching
deg
ree
of
its
r
ule
.
F
or
the
Fuzzy
set
input
(A’,
B’)
is
giv
en
b
y
the
equation
1:
i
=
min
[max
u
(
A
0
(
u
)
^
A
i
(
u
)
;
max
v
(
B
0
(
v
)
^
B
i
(
v
))]
(1)
In
this
case
,
IF
Pla
y
er
P
is
SER
VE
VE
R
Y
NEAR
AND
Pla
y
er
Q
is
KICKING
VER
Y
F
AR,
THEN
the
ball
should
be
[COMING
RIGHT
ON
Pla
y
er
S]
Figure
2.
Tsukamoto
model
of
Fuzzy
Inf
erence
A
linguistic
v
ar
iab
le
is
a
v
ar
iab
le
whose
v
alues
can
be
e
xpressed
b
y
means
of
natur
al
Finding
Kic
king
Range
of
Sepak
T
akr
a
w
Game:
A
Fuzzy
Logic
Approach
(Andino
Maseleno)
Evaluation Warning : The document was created with Spire.PDF for Python.
560
ISSN:
2302-4046
language
ter
ms
[12],
[13],
[14].
The
diff
erent
ter
ms
or
linguistic
v
alues
are
represented
b
y
Fuzzy
sets
char
acter
ised
b
y
membership
functions
defined
on
the
univ
erse
of
discourse
.
Linguistic
v
ar
iab
les
to
find
kic
king
r
ange
of
sepak
takr
a
w
game
are
sho
wn
in
T
ab
le
1.
T
ab
le
1.
Linguistic
v
ar
iab
les
Pla
y
er
P
ser
v
e
V
er
y
Near
Near
Right
On
F
ar
V
er
y
F
ar
(PSVN)
(PSN)
(PSR
O)
(PSF)
(PSVF)
Pla
y
er
Q
Kic
king
V
er
y
Near
Near
Right
On
F
ar
V
er
y
F
ar
(QKVN)
(QKN)
(QKR
O)
(QKF)
(QKVF)
Pla
y
er
R
Kic
king
V
er
y
Near
Near
Right
On
F
ar
V
er
y
F
ar
(RKVN)
(RKN)
(RKR
O)
(RKF)
(RKVF)
Coming
to
Pla
y
er
S
V
er
y
Near
Near
Right
On
F
ar
V
er
y
F
ar
(CVNS)
(CNS)
(CR
OS)
(CFS)
(CVFS)
Coming
to
Pla
y
er
T
V
er
y
Near
Near
Right
On
F
ar
V
er
y
F
ar
(CVNT)
(CNT)
(CR
O
T)
(CFT)
(CVFT)
Coming
to
Pla
y
er
U
V
er
y
Near
Near
Right
On
F
ar
V
er
y
F
ar
(CVNU)
(CNU)
(CR
OU)
(CFU)
(CVFU)
T
ab
le
2
sho
ws
kic
king
r
ange
f
or
inputs
to
find
kic
king
r
ange
of
sepak
takr
a
w
game
.
Condi-
tion
1
is
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
S;
Condition
2
is
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
T
;
Condition
3
is
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
U;
Condition
4
is
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
S;
Condition
5
is
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
T
;
Condition
6
is
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
U;
T
ab
le
2.
Kic
king
r
ange
f
or
inputs
to
find
kic
king
r
ange
of
sepak
takr
a
w
game
Condition
Action
Range
V
er
y
Near
Near
Right
On
F
ar
V
er
y
F
ar
Condition
1
Pla
y
er
P
ser
v
e
3.50
4.50
6.00
5.50
7.00
Pla
y
er
Q
kic
king
1.50
2.50
4.50
5.00
8.00
Condition
2
Pla
y
er
P
ser
v
e
3.20
4.10
5.20
6.60
6.70
Pla
y
er
Q
kic
king
1.00
1.50
3.50
7.60
7.70
Condition
3
Pla
y
er
P
ser
v
e
3.40
4.20
5.40
6.80
7.20
Pla
y
er
Q
kic
king
1.30
1.75
3.90
7.70
7.90
Condition
4
Pla
y
er
P
ser
v
e
3.70
4.30
5.60
6.90
7.20
Pla
y
er
R
kic
king
1.70
2.20
4.20
3.50
8.30
Condition
5
Pla
y
er
P
ser
v
e
3.80
4.70
5.80
7.30
7.60
Pla
y
er
R
kic
king
1.90
2.70
5.50
4.50
8.50
Condition
6
Pla
y
er
P
ser
v
e
3.90
4.80
6.30
7.40
7.90
Pla
y
er
R
kic
king
2.20
2.90
6.90
5.50
8.70
The
matr
ix
on
Figure
3
presents
a
g
roup
of
25
Fuzzy
r
ules
that
associate
Pla
y
er
P
and
Pla
y
er
Q
with
ref
erence
to
ho
w
Pla
y
er
S
should
be
changed.
The
matr
ix
on
figure
3(a)
presents
a
g
roup
of
25
Fuzzy
r
ules
that
associate
Pla
y
er
P
and
Pla
y
er
Q
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
S
should
be
changed.
F
or
e
xample
,
the
r
ule
w
ould
be
read
as:
IF
Pla
y
er
P
is
[SER
VE
VER
Y
NEAR]
AND
Pla
y
er
Q
is
[KICKING
VER
Y
F
AR],
THEN
the
ball
should
be
[COMING
RIGHT
ON
Pla
y
er
S].
The
matr
ix
on
figure
3(b)
presents
a
g
roup
of
25
Fuzzy
r
ules
that
associate
Pla
y
er
P
and
Pla
y
er
Q
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
T
should
be
changed.
The
matr
ix
on
figure
3(c)
presents
a
g
roup
of
25
Fuzzy
r
ules
that
associate
Pla
y
er
P
and
Pla
y
er
Q
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
U
should
be
changed.
The
matr
ix
on
figure
3(d)
presents
a
g
roup
of
25
Fuzzy
r
ules
that
associate
Pla
y
er
P
and
Pla
y
er
R
with
ref
erence
to
ho
w
the
ball
coming
TELK
OMNIKA
V
ol.
14,
No
.
3,
J
une
2015
:
557
564
Evaluation Warning : The document was created with Spire.PDF for Python.
TELK
OMNIKA
ISSN:
2302-4046
561
to
Pla
y
er
S
should
be
changed.
The
matr
ix
on
figure
3(e)
presents
a
g
roup
of
25
Fuzzy
r
ules
that
associate
Pla
y
er
P
and
Pla
y
er
R
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
T
should
be
changed.
The
matr
ix
on
figure
3(f)
presents
a
g
roup
of
25
Fuzzy
r
ules
that
associat
e
Pla
y
er
P
and
Pla
y
er
R
with
ref
erence
to
ho
w
the
ball
coming
to
Pla
y
er
U
should
be
changed.
(a)
Rule
matr
ix
of
Fuzzy
r
ules
betw
een
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
S
(b)
Rule
matr
ix
of
Fuzzy
r
ules
betw
een
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
T
(c)
Rule
matr
ix
of
Fuzzy
r
ules
betw
een
Pla
y
er
P
and
Pla
y
er
Q,
ho
w
the
ball
coming
to
Pla
y
er
U
(d)
Rule
matr
ix
of
Fuzzy
r
ules
betw
een
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
S
(e)
Rule
matr
ix
of
Fuzzy
r
ules
betw
een
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
T
(f)
Rule
matr
ix
of
Fuzzy
r
ules
betw
een
Pla
y
er
P
and
Pla
y
er
R,
ho
w
the
ball
coming
to
Pla
y
er
U
Figure
3.
Rule
matr
ix
of
Fuzzy
r
ules
When
a
game
begins
b
y
one
ser
v
e
,
a
ball
can
be
touched
b
y
the
attac
k
of
one
time
to
three
times
.
The
pla
y
er
can
use
a
head,
a
bac
k,
legs
,
and
an
ywhere
e
xcept
f
or
the
ar
m
from
the
shoulder
to
the
point
of
the
finger
.
Assume
that
pla
y
er
position
and
kic
king
r
ange
in
the
be-
Finding
Kic
king
Range
of
Sepak
T
akr
a
w
Game:
A
Fuzzy
Logic
Approach
(Andino
Maseleno)
Evaluation Warning : The document was created with Spire.PDF for Python.
562
ISSN:
2302-4046
ginning
of
sepak
takr
a
w
game
can
be
defined
as
f
ollo
ws:
Pla
y
er
P
v
er
y
near
=
3;
Pla
y
er
P
near
=
4;
Pla
y
er
P
r
ight
on
=
5;
Pla
y
er
P
f
ar
=
6.5;
Pla
y
er
P
v
er
y
f
ar
=
7.5.
Pla
y
er
Q
v
er
y
near
=
1;
Pla
y
er
Q
near
=
2;
Pla
y
er
Q
r
ight
on
=
3;
Pla
y
er
Q
f
ar
=
7.5;
Pla
y
er
Q
v
er
y
f
ar
=
8.5.
Pla
y
er
S
v
er
y
near
=
3.5;
Pla
y
er
S
near
=
4.5;
Pla
y
er
S
r
ight
on
=
5.5;
Pla
y
er
S
f
ar
=
9.5;
Pla
y
er
S
v
er
y
f
ar
=
10.5
Pla
y
er
S
v
er
y
near
is
used
to
define
the
v
ar
iab
le
v
er
y
near
.
The
w
eight
is
calculated
b
y
the
f
ollo
wing
f
or
m
ula:
(
Pla
y
er
S
v
er
y
near
[
w
])
=
8
>
<
>
:
1
;
w
3
:
5
4
:
5
w
4
:
5
3
:
5
;
3
:
5
w
4
:
5
0
;
w
4
:
5
(2)
Pla
y
er
S
near
is
used
to
define
the
v
ar
iab
le
near
.
The
w
eight
is
calculated
b
y
the
f
ollo
wing
f
or
m
ula:
(
Pla
y
er
S
near
[
w
])
=
8
>
<
>
:
0
;
w
3
:
5
or
w
5
:
5
w
3
:
5
4
:
5
3
:
5
;
3
:
5
w
4
:
5
5
:
5
w
5
:
5
4
:
5
;
4
:
5
w
5
:
5
(3)
Pla
y
er
S
r
ight
on
is
used
to
define
the
v
ar
iab
le
r
ight
on.
The
w
eight
is
calculated
b
y
the
f
ollo
wing
f
or
m
ula:
(
Pla
y
er
S
r
ight
on
[
w
])
=
8
>
<
>
:
0
;
w
4
:
5
or
w
9
:
5
w
4
:
5
5
:
5
4
:
5
;
4
:
5
w
5
:
5
9
:
5
w
9
:
5
5
:
5
;
5
:
5
w
9
:
5
(4)
Pla
y
er
S
f
ar
is
used
to
define
the
v
ar
iab
le
f
ar
.
The
w
eight
is
calculated
b
y
the
f
ollo
wing
f
or
m
ula:
(
Pla
y
er
S
f
ar
[
w
])
=
8
>
<
>
:
0
;
w
5
:
5
or
w
10
:
5
w
5
:
5
9
:
5
5
:
5
;
5
:
5
w
9
:
5
10
:
5
w
10
:
5
9
:
5
;
9
:
5
w
10
:
5
(5)
Pla
y
er
S
v
er
y
f
ar
is
used
to
define
the
v
ar
iab
le
v
er
y
f
ar
.
The
w
eight
is
calculated
b
y
the
f
ollo
wing
f
or
m
ula:
(
Pla
y
er
S
v
er
y
f
ar
[
w
])
=
8
>
<
>
:
0
;
w
9
:
5
w
9
:
5
10
:
5
9
:
5
;
9
:
5
w
10
:
5
1
;
w
10
:
5
(6)
Dur
ing
the
Sepak
takr
a
w
game
,
both
teams
will
mak
e
diff
erent
po
w
erful
mo
v
es
to
kic
k
and
spik
e
the
ball
to
go
to
the
opponent
side
and
f
all
within
the
boundar
y
line
of
the
cour
t,
pla
y
ers
tr
y
to
pla
y
the
ball
to
w
ard
the
front
of
the
net,
making
the
best
use
of
their
three
hits
to
pass
,
set
and
spik
e
.
Figure
4
sho
ws
a
v
er
age
kic
king
r
ange
.
Figure
5
sho
ws
kic
king
r
ange
of
the
ball
coming
to
the
other
team.
The
ball
coming
to
pla
y
er
S
in
condition
1
obtained
r
ange
4.09
of
v
er
y
near
,
5.11
of
near
,
8.36
of
medium,
10.1
of
high,
7.97
of
v
er
y
high.
Condition
2
obtained
r
ange
4.13
of
v
er
y
near
,
4.02
of
near
,
5.04
of
medium,
9.73
of
high,
10.23
of
v
er
y
hi
gh.
Condition
3
obtained
r
ange
3.91
of
v
er
y
near
,
4.11
of
near
,
5.16
of
med
ium,
9.79
of
high,
10.16
of
v
er
y
high.
Condition
4
obtained
r
ange
3.86
of
v
er
y
near
,
4.13
of
near
,
4.98
of
medium,
10.03
of
high,
9.8
7
of
v
er
y
high.
Condition
5
obtained
r
ange
3.78
of
v
er
y
near
,
4.11
of
near
,
4.76
of
medium,
10.28
of
high,
9.57
of
v
er
y
high.
Condition
6
obtained
r
ange
4.36
of
v
er
y
near
,
3.51
of
near
,
4.61
of
medium,
10.42
of
high,
9.55
of
v
er
y
high.
TELK
OMNIKA
V
ol.
14,
No
.
3,
J
une
2015
:
557
564
Evaluation Warning : The document was created with Spire.PDF for Python.
TELK
OMNIKA
ISSN:
2302-4046
563
(a)
A
v
er
age
kic
king
r
ange
of
condition
1
(b)
A
v
er
age
kic
king
r
ange
of
condition
2
(c)
A
v
er
age
kic
king
r
ang
e
of
condition
3
(d)
A
v
er
age
ki
c
kin
g
r
ange
of
condition
4
(e)
A
v
er
age
kic
king
r
ange
of
condition
5
(f)
A
v
er
ag
e
kic
king
r
ange
of
condition
6
Figure
4.
A
v
er
age
kic
king
r
ange
Figure
5.
Range
of
the
ball
coming
to
the
other
team
4.
Conc
lusion
This
research
has
descr
ibed
a
method
to
find
kic
king
r
ange
of
sepak
takr
a
w
game
using
Tsukamoto’
s
Fuzzy
reasoning.
T
o
ser
v
e
,
one
pla
y
er
stands
in
the
r
ight
semi-circle
on
their
side
of
the
cour
t.
The
pla
y
er
thro
ws
the
ball
to
the
ser
v
er
,
who
stands
in
the
circle
on
their
side
of
the
cour
t.
The
pla
y
er
kic
ks
the
ball
up
and
o
v
er
the
net
then
opponent
pla
y
er
kic
ks
bac
k
the
ball.
The
v
agueness
present
in
the
definition
of
ter
ms
is
consistent
with
the
inf
or
mation
contained
in
the
conditional
r
ules
.
Ev
en
though
the
set
of
linguistic
v
ar
iab
les
and
their
meanings
is
compatib
le
and
consistent
with
the
set
of
conditional
r
ules
used,
the
o
v
er
all
outcome
of
the
qualitativ
e
process
is
tr
anslated
into
obje
c
t
iv
e
and
quantifiab
le
results
.
Fuzzy
mathematical
tools
and
the
calculus
Finding
Kic
king
Range
of
Sepak
T
akr
a
w
Game:
A
Fuzzy
Logic
Approach
(Andino
Maseleno)
Evaluation Warning : The document was created with Spire.PDF for Python.
564
ISSN:
2302-4046
of
Fuzzy
IF-THEN
r
ules
pro
vide
a
most
useful
par
adigm
f
or
the
automation
and
implementation
of
an
e
xtensiv
e
body
of
human
kno
wledge
heretof
ore
not
embodied
in
the
quantitativ
e
modelling
process
.
These
mathematical
tools
pro
vide
a
means
of
shar
ing,
comm
u
nicating,
and
tr
ansf
err
ing
this
human
subjectiv
e
kno
wledge
of
systems
and
processes
.
The
result
re
v
eals
that
the
f
ar
thest
r
ange
of
the
ball
coming
to
the
other
team
in
condition
1
obtained
r
ange
10.1%
of
f
ar
,
condition
2
obtained
r
ange
10.23%
of
v
er
y
f
ar
,
condition
3
obtained
r
ange
10.16%
of
v
er
y
f
ar
,
condition
4
obtained
r
ange
10.03%
of
f
ar
,
condition
5
obtained
r
ange
10.28%
of
f
ar
,
and
condition
6
obtained
r
ange
10.42%
of
f
ar
.
The
f
ar
thest
r
ange
in
condition
6
(10.42%),
f
ollo
w
ed
b
y
Condition
5
(10.28%),
condition
2
(10.23%),
condition
3
(10.16%)
and
condition
1
(10.1%).
Ac
kno
wledg
ements
This
w
or
k
w
as
suppor
ted
b
y
Gr
aduate
Research
Scholarship
(GRS),
ref
erence:
UBD/GSR-
ADM/01,
from
Univ
ersiti
Br
u
nei
Dar
ussalam
in
Br
unei
Dar
ussalam.
W
e
g
r
atefully
appreciate
this
suppor
t.
Ref
erences
[1]
Inter
national
Sepak
T
akr
a
w
F
eder
ation.
La
ws
of
the
Game
Sepak
T
akr
a
w
in
The
24th
Kings
Cup
Sepaktakr
a
w
W
or
ld
Championship
2009
Prog
r
am.
Bangk
ok,
Thailand,
J
uly
2-7,
2009.
[2]
Michael
K
,
T
eik
H,
Ian
HS
.
3D
Kinematic
Analysis
of
The
K
uda
and
Sila
Ser
vice
T
echnique
,
24
Inter
national
Symposium
on
Biomechanics
in
Spor
ts
,
2006.
[3]
Sam
uel
B
,
Katie
G,
T
odd
H,
Michael
Q,
P
eter
S
.
Controlled
Kic
king
under
Uncer
tainty
,
The
Fifth
W
or
kshop
on
Humanoid
Soccer
Robots
(HSR-10),
Nashville
,
TN,
2010.
[4]
Cur
tis
KM,
K
elly
M,
and
Cr
a
v
en
MP
.
Cr
ic
k
et
Batting
T
echnique
Analyser/T
r
ainer
using
Fuzzy
Logic
,
16th
Inter
national
Conf
erence
on
Digital
Signal
Processing,
Santor
ini-Helas
,
pp
.
1
6,
2009.
[5]
Ref
ae
y
MA,
Elsa
y
ed
KM,
Hanafy
SM,
and
Da
vis
LS
.
Concurrent
T
r
ansition
and
Shot
Detection
in
F
ootball
Videos
using
Fuzzy
Logic
,
16th
IEEE
Inter
national
Conf
erence
on
Image
Process-
ing,
Cairo
,
Egypt,
pp
.
4341-4344,
2009.
[6]
Hang
Y
,
T
ang
Z,
Zhongcai
P
.
Str
ategies
f
or
Shooting
based
on
Fuzzy
Logic
and
Ar
tificial
P
o-
tential
Field
in
Robot
Soccer
Systems
.
Inter
national
Conf
erence
on
Computer
Application
and
System
Modeling
(ICCASM),
T
aiyuan,
China,
pp
.
V4-399
-
V4-403,
2010.
[7]
K
uo
JY
,
Ou
YC
.
An
Ev
olutionar
y
Fuzzy
Beha
viour
Controller
using
Genetic
Algor
ithm
in
RoboCup
Soccer
Game
.
Ninth
Inter
national
Conf
erence
on
Hybr
id
Intelligent
Systems
,
Shen
y
ang,
China,
pp
.
281-286,
2009.
[8]
Hag
r
as
H,
Ramadan
R,
Na
wito
M,
Gabr
H,
Zaher
M,
F
ahm
y
H.
A
Fuzzy
Based
Hier
archical
Coordination
and
Control
System
f
or
a
Robot
ic
Agent
T
eam
in
the
Robot
Hoc
k
e
y
Competition.
IEEE
Inter
national
Conf
erence
on
Fuzzy
Systems
,
pp
.
1-8,
Barcelona,
2010.
[9]
T
r
a
winski
K
A.
Fuzzy
Classification
System
f
or
Prediction
of
the
Results
of
the
Bask
etball
Games
,
IEEE
Inter
national
Conf
erence
on
Fuzzy
Systems
,
pp
.
1-7,
Barcelona,
2010.
[10]
Zadeh
LA.
Fuzzy
Sets
.
Inf
or
mation
and
Control,
V
ol.8,
pp
.338-353,
1965.
[11]
Tsukamoto
Y
.
Gupta
MM,
Ragade
RK,
and
Y
ager
RR,
Eds
..
An
approach
to
fuzzy
reasoning
method
in
adv
ances
in
Fuzzy
Set
Theor
y
and
Application.
Nor
th
Holland,
Amsterdam,
1979.
[12]
Zadeh
LA.
The
Concept
of
Lin
guistic
v
ar
iab
le
and
its
applications
to
appro
ximate
reasoning,
P
ar
t
I.
Inf
or
mation
Sciences
,
V
ol.8,
pp
.199-251,
1975.
[13]
Zadeh
LA.
The
Concept
of
Lin
guistic
v
ar
iab
le
and
its
applications
to
appro
ximate
reasoning,
P
ar
t
II.
Inf
or
mation
Sciences
,
V
ol.8,
pp
.301-357,
1975.
[14]
Zadeh
LA.
The
Concept
of
Lin
guistic
v
ar
iab
le
and
its
applications
to
appro
ximate
reasoning,
P
ar
t
III.
Inf
or
mation
Sciences
,
V
ol.9,
pp
.43-80,
1975.
TELK
OMNIKA
V
ol.
14,
No
.
3,
J
une
2015
:
557
564
Evaluation Warning : The document was created with Spire.PDF for Python.