Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 2,
May 2016, pp
. 390 ~ 395
DOI: 10.115
9
1
/ijeecs.v2.i2.pp39
0-3
9
5
390
Re
cei
v
ed Fe
brua
ry 2, 201
6; Revi
se
d Ap
ril 24, 201
6; Acce
pted April 30, 2016
Energy Preservation in Heterogeneous Wireless Senso
r
Networks through Zone Partitioning
Shahzad Ha
ssan*
1
, Muhammad S N
i
sar
2
, Hongb
o Jiang
3
1,3
Department of Electronics
and Informati
o
n
Engi
ne
erin
g
2
W
uhan Nati
on
al La
borat
or
y
o
p
toel
ectronics
HUST
,
W
uhan
Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:shahz
ad@
hu
st.edu.cn
A
b
st
r
a
ct
Energy pr
eserv
a
tion is critic
al
task in the w
i
re
less sens
or net
w
o
rks and the
ener
gy cost inc
r
eases
prop
ortion
ally
as the
trans
mi
ssion
dista
n
ce
incre
a
ses.
Si
n
c
e n
odes
ar
e
equ
ipp
e
d
w
i
th
li
mited
e
nergy
it is
very cruci
a
l t
o
decre
ase th
e
e
nergy
cons
u
m
ption
by
decre
asin
g the
co
mmu
n
ic
ation
dist
ance
betw
e
e
n
the
nod
es. In clust
e
rin
g
protoc
ols
inter-cluster
a
nd intr
a-c
l
uster
communic
a
tio
n
is most ne
gl
ected p
a
rt. We
have
pro
pos
e
d
a
new
z
o
ne
bas
ed c
l
uster
i
ng
protoc
ol
wh
i
c
h re
du
ce
s th
e
i
n
tra
-
cl
u
s
te
ri
ng
an
d i
n
ter-
clusteri
ng tra
n
s
miss
ion
dista
n
ce b
e
tw
een t
he co
mmunic
a
ting n
o
d
e
s. Experi
m
e
n
tal r
e
s
u
lts reve
al th
at ou
r
prop
osed
proto
c
ols hav
e outp
e
rformed t
he c
o
mpar
ed prot
o
c
ols in ter
m
s of
stability per
io
d
,
instabil
i
ty peri
o
d
and thro
ug
hput
.
Ke
y
w
ords
: He
teroge
ne
ous, Z
one, Cl
usterin
g
,
Residu
al e
ner
gy
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The term
WS
N can be
def
ined a
s
, “In
c
orpo
ratin
g
si
mple sen
s
ing
,
processin
g
, stora
ge
and
com
m
un
ication
abiliti
e
s i
n
to mi
ni
mal
size,
lo
w pri
c
e
devi
c
e
s
a
nd
co
mbi
n
ing th
em i
n
to so
calle
d WSN” [1].
The
e
m
e
r
ging
field of WSNs
fu
se
s sen
s
in
g,
com
putation and
comm
uni
cati
on
on
sin
g
le
co
mpact chip known
as sen
s
or nod
e.
In the last two
decade
s the
WSN h
a
s att
a
in
rapid develo
p
ments and has
m
ade
it possibl
e
to
d
eploy the se
nso
r
net
works to monito
r
the
physi
cal occu
rre
nces in a
variet
y of environme
n
t, especi
a
lly in hostile locatio
n
s where huma
n
intervention i
s
not po
ssi
ble
or may be d
ange
rou
s
.
Since the
WSN contain
s
nu
mero
us n
u
mb
er of
node
s
ran
g
in
g bet
wee
n
couple
of h
u
n
d
red
s
to
tho
u
sa
nd
s
scattered
rand
oml
y
throug
hout
a
geog
rap
h
ic
area
or
dep
loyed cl
osed
to the ph
e
nomen
a. Ho
wever nod
es have severe
con
s
trai
nts in
terms
of en
ergy.The life
s
pa
n of
the
sen
s
o
r
net
wo
rks
stron
g
ly depe
nd
s on
the
battery and in
many ca
ses
the node
s
ma
y have restri
cted battery po
wer.
Many novel t
e
ch
niqu
es
rel
a
ted to wi
rel
e
ss
se
nsor
net
works h
a
ve b
een p
r
op
ose
d
by the
resea
r
chers i
n
order to mi
nimize
the n
ode’
s en
ergy
con
s
u
m
ption
[2]. The fun
c
tion of
se
nsor
node
ca
n be
divided into t
h
ree
majo
r p
hases i.e.
se
nsin
g, processing
and t
r
an
smissio
n
. In the
sen
s
in
g p
h
a
s
e no
de
s
sen
s
e the
data
an
d forwa
r
d it
f
o
r
pro
c
e
s
sing
to pe
rform lo
cal
co
mputati
on
on the
data,
while
in tran
smissi
on
pha
se the
nod
e
ex
cha
nge
s
data
with it
s n
e
igh
bors, respe
c
tive
clu
s
ter h
ead
s or ba
se
station as th
e case m
a
y be
[3]. A senso
r
node utili
ze
s en
ergy d
u
ri
ng
sen
s
in
g, pro
c
essing a
nd transmi
ssion.
Data tra
n
smi
ssi
on i
s
re
sp
onsi
b
le for
a
major
chu
n
k of
energy co
nsu
m
ption in a
sensor
n
ode,
con
s
umi
ng b
e
twee
n 60%
[4] and 80% [5]. At the same
time it con
s
umes l
e
ss e
nergy, rangin
g
betwe
en 2
0
%-40%, in
sen
s
in
g and
pro
c
e
ssi
ng.
To
address
abov
e mentio
ned
issue
s
, cl
uste
ring [6
-8]
ha
s bee
n p
r
op
osed by va
riou
s resea
r
chers.
Clustering protocol
s provide the solution to ut
ilize the network energy uni
forml
y
which enhances
netwo
rk life time. Cluste
rin
g
of nodes d
oes
al
so avoi
d long dista
n
c
e co
mmuni
cation betwe
e
n
node
s an
d BS.
Since the no
des a
r
e have
limited battery and ma
jor portion of the
energy is de
pleted in
transmissio
n
whi
c
h
is di
rectly p
r
o
portional to
tra
n
smi
ssi
on
di
stan
ce. T
h
u
s
minimi
zing
th
e
transmissio
n
dista
n
ce b
e
t
ween
the
n
ode
s
coul
d
signifi
cantly i
n
crea
se
t
he netwo
rk
lifetime.
Gene
rally in
clu
s
terin
g
th
e nod
es
are
divided into
clu
s
ter
hea
ds a
nd
clu
s
ter mem
b
e
r
s.
The
clu
s
ter mem
b
ers tran
smits their data to cluste
r hea
d
via intra-clu
s
ter comm
uni
cation while th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 390 –
395
391
clu
s
ter h
ead
s perform data
aggregatio
n on the data
o
b
tained by
cl
uster
memb
e
r
s a
nd forwa
r
ds
it to the base station for furt
her p
r
o
c
e
ssi
n
g
via inter-clu
s
ter
comm
uni
cation.
Clu
s
terin
g
method
s offer nume
r
ou
s ad
vantage
s over traditional r
outing protocols bu
t
conve
r
sely, there
al
so
exist certai
n d
r
awb
a
cks a
s
s
o
ciat
e
d
wit
h
clu
s
t
e
rin
g
p
r
ot
ocol
s su
ch
as
numbe
r of cl
uster h
ead
s, high ene
rgy depletio
n in
cluster h
ead
s
whi
c
h involve
s
multiple tasks
like data a
ggre
gation a
nd long h
a
u
l inter-clu
s
t
e
r commu
nication a
nd
the intra-clu
s
ter
comm
uni
cati
on di
stan
ce.
Although t
he intra
-
com
m
unication d
i
stan
ce b
e
tween the
clu
s
ter
membe
r
s an
d clu
s
te
r he
a
d
s i
s
kept to
minimum
bu
t howeve
r
d
u
e
to rand
om
deploym
ent
of
node
s, the
n
ode
may b
e
l
o
cate
d
clo
s
er to the
ba
se
station as co
mpared
to
th
e
cl
uste
r hea
d.
In
this
ca
se, alt
houg
h the
di
stan
ce
betwe
en n
ode
an
d
ba
se
statio
n is le
ss tha
n
the
dista
n
c
e
betwe
en n
o
d
e
and
cl
uste
r
head
but d
u
e
to clu
s
te
ring
mech
ani
sm t
he no
de
will t
r
an
smits its d
a
ta
to the cluste
r
head in
stea
d of transmittin
g
it directly to the base
station.
Thus p
r
olo
ngi
ng the netwo
rk life time in clusteri
ng do
e
s
not involve efficient clu
s
ter hea
d
sele
ction
alg
o
rithm
s
, bala
n
ce
d cl
uste
r
head
but it should
also a
c
cou
n
ts fo
r th
e intra
-
cl
uste
ring
and inter-clu
ster tran
smi
ssi
on dista
n
ce.
2. Related Work
SEP [8] is a
two tier
heterogeneous protocol
having nodes
with
different energy level.
Some n
ode
s have
high
er ene
rgy l
e
ve
l as
comp
ared to
the
re
st of th
e n
o
des.
The
no
des
equip
ped
wit
h
high
er
ene
rgy level are
known a
s
a
d
vance an
d the
one
s h
a
ving
less en
ergy a
r
e
k
n
own
as normal nodes
.
In SEP
the c
l
uster head
s
e
lec
t
ion is
ba
sed on the weight
ed probabilit
y
of eac
h
node acc
o
rdi
ng to initial
energy
ins
t
ead of
rema
ining energy. The
drawback
of SEP
is
advan
ced no
des, whi
c
h contain
s
hig
h
e
r
en
ergy
and
there
pro
babi
lity to becom
e clu
s
te
r he
a
d
is
more th
an th
e normal n
o
d
e
. At a certai
n point
the
e
nergy of the
s
e advan
ce
n
ode
s be
com
e
s
equal
or eve
n
less tha
n
n
o
rmal
nod
es,
but they
still
retain the
hi
gher
proba
bility to becom
e a
c
l
us
ter
head.
DTRE
-SEP [9] is
bas
e
d on direc
t
t
r
ansmis
s
i
on and
res
i
dual
energy of the network
node
s. T
he
n
o
rmal
no
de
s
comp
are its d
i
stan
ce
with
t
he a
s
so
ciate
d
CH
and
the
ba
se
station.
If
the CH is fa
r away fro
m
the no
de, the
node
will di
rectly tran
smit
its data to t
he ba
se
stati
o
n
instea
d of
th
e CH. In
thi
s
way l
o
ss
of extra t
r
an
smissio
n
ene
rgy
can
be
pre
s
e
r
ved. T
he
prob
ability of
CH ele
c
tion
is both
weigh
t
and re
si
dua
l ene
rgy ba
sed. If the en
ergy of a
d
va
nce
node
s b
e
co
mes l
e
ss th
a
n
the
spe
c
ifi
ed limit,
both
normal a
nd
advan
ce n
o
d
e
will
have e
qual
prob
ability to become CH o
n
basi
s
of re
sidual en
ergy.
The Z-SEP [10] is based
on zo
ne partitioning. The
zones
are
divided into multiple zone
namely zone
O, 1, and 2.
The no
rmal
n
ode i
s
de
ployed in
zon
e
0
while th
e adv
ance no
de
s a
r
e
deploye
d
in Zone 1 and 2. The normal n
ode
s dire
ctly transmit to th
e base
statio
n and doe
s n
o
t
take p
a
rt in
cl
uster form
ation an
d cl
uste
r hea
d
sele
ction.
The clu
s
t
e
r
formation and clu
s
ter
h
ead
sele
ction ta
kes pla
c
e onl
y in the advance nod
es.
Although this schem
e h
a
s si
gnificant
ly
enha
nce the stable re
gio
n
of the network a
nd
de
crease the un
stable regi
on but due to direct
transmissio
n
the en
ergy of
the
normal
node
s
drains out ve
ry q
u
i
ckly l
eaving
a hu
ge
coverage
area
un
cove
red. In a
nothe
r a
pproa
ch [1
1] the a
u
tho
r
has divide
d t
he n
e
two
r
k re
gion
mainly i
n
to
two are
a
s
(i)
Non
-
clu
s
te
re
d regio
n
. The
non-clu
s
tere
d regio
n
is further divided i
n
to two regi
o
n
s.
The nod
es
which a
r
e de
pl
oyed clo
s
e to
base
station,
transmit
s
directly to the base
station while
the node
s n
ear to the g
a
teway tran
smits dire
ctly
to the gateway, (ii) Clust
e
red
regio
n
, the
clu
s
tere
d re
gi
on refe
rs to that are
a
, in whi
c
h
no
de
s
are d
eploye
d
far from the
base station
as
comp
ared to
dire
ct tran
smi
ssi
on a
r
ea. In
this sch
e
me
the com
p
lexity of the network i
s
in
crea
sed
as eve
r
y regi
on pe
rform
s
different op
erations. Mo
re
o
v
er the ag
gre
gated d
a
ta is
from the
clu
s
ter
head
s is a
gai
n forwa
r
d
ed to the gatewa
y
for aggre
g
a
t
ion increa
sin
g
risk of data
loss.
We p
r
o
p
o
s
e
Zone Ba
se
d
Heteroge
neo
us
Clu
s
teri
ng
Protocol (ZBHCP
) which
aims to
prolong the
network life ti
me by
zone partitioning
whi
c
h leads to un
iform energy utilization in t
he
netwo
rk a
nd
decrea
s
in
g the intra-clu
s
ter and inte
r-cl
u
s
ter
comm
uni
cation di
stan
ce by computi
ng
the transmission di
stan
ce
betwee
n
the clu
s
te
r me
mber n
ode a
nd the ba
se
station and
as
sele
cting the
clu
s
ter he
ad
s from their re
spe
c
tive zo
ne
s.
3. Zone Ba
s
e
d He
tero
ge
neous
Clustering Protoc
ol (ZBHCP
)
In the prop
ose
d
proto
c
ol the network r
egio
n
is equally di
vided into four eq
ual
recta
ngul
ar zone
s a
n
d
eq
ual n
u
mb
ers
of nod
es a
r
e
ra
ndomly
de
ployed i
n
e
a
ch zone.
To
li
mit
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Energ
y
Pre
s
e
r
vatio
n
in Het
e
rog
ene
ou
s WSNs thro
ug
h Zone Partiti
oning
(Sha
hzad Ha
ssan
)
392
the ene
rgy wastag
e due t
o
long di
stan
ce bet
wee
n
cluster
hea
d a
nd and
clu
s
te
r memb
er, ea
ch
clu
s
ter
hea
d
is sele
cted from the
re
sp
ective z
one
by com
pairi
n
g
its
re
sidual
ene
rgy with
the
zon
e
nod
es.
3.1. HWS
N
a
nd Energ
y
C
onsumptio
n Model
The
HWS
N
model
co
nsi
s
ts of n n
u
mb
er of
n
ode
s
randomly
depl
oyed in m x
m regi
on.
Two type
s of
node
s h
a
ve
been
deploye
d
in the r
egio
n
advan
ce
n
ode
s m an
d
norm
a
l no
des n.
The a
d
vance
node
s a
r
e
eq
uippe
d with
α
times mo
re
e
nergy th
an th
e no
rmal n
o
d
e
s
whi
c
h i
s
(1
−
m) × n. Thi
s
rese
arch refle
c
ts the en
erg
y
cons
umptio
n model p
r
op
ose
d
in [6] to measure ene
rgy
con
s
um
ption
for propo
se
d proto
c
ol, To t
r
an
smit
a P
-
b
i
t
P
a
cket
a
c
ro
ss
a di
st
an
ce
d
TX
, the en
ergy
expend
ed by the system i
s
given belo
w
,
E
P,
d
P.
E
P
.
ɛ
.
i
f
d
P.
E
P
.
ɛ
.
i
f
d
(1)
E
P,
d
is the energ
y
consum
ed by the
transm
i
tting node that forwards the P bits
of
data with a tr
ansmi
ssion di
stan
ce ‘d’ to the receiver.
E
=50n
J is the
energy dissi
p
a
ted per bit
to run th
e transmitte
r o
r
the re
ceive
r
circuit. Free
spa
c
e
(
ɛ
fs
) a
nd multip
ath
(
ɛ
mp
) dep
en
ds
distan
ce (
) betwee
n
tran
smitter and re
ceiver. d
TX
is the distan
ce b
e
twee
n the T
x
(transmitte
r)
and R
x
(re
cei
v
er)
whil
e the
dista
n
ce b
e
twee
n the
net
work
nod
es a
nd the
BS is
at all time
s le
ss
than o
r
equal
to d
NS
. By e
quating
the t
w
o
expre
s
sio
n
s
at d
TX
=
d
NS
, we have
“d
NS=
√ɛ
fs/
ɛ
mp.
”To
rec
e
iv
e P
−
bit
message the system
s ut
ilizes energy equal to E
RX=
P.
E
Ckt
3.2. Cluste
r Head Sele
cti
on and Clus
ter Formation
The
clu
s
ter
head
sele
ctio
n p
r
o
c
ess is simila
r to
[6
] and
clu
s
te
r hea
ds a
r
e
randomly
sele
cted fo
r
each roun
d. Initially
the se
lection
proce
ss
of cl
uste
r
head i
s
pro
b
abilisti
c [5]. The
clu
s
ter
hea
d
s
a
r
e
sel
e
ct
ed in
depe
nd
ently from
e
a
ch
zone. A
ran
dom
nu
mber is ge
n
e
rated
betwe
en 0
an
d 1, if the g
e
nerate
d
n
u
m
ber i
s
g
r
e
a
ter than a
ce
rtai
n previou
s
ly set threshold
the
node b
e
come
s clu
s
te
r hea
d in that roun
d. The thre
sh
old for no
rmal
and advan
ce
node is:
1
∗
∗
1
∈
(2)
1
∗
∗
∗
1
∈
(3)
Whe
r
e, T
NN
, T
AN
are thre
sh
old for no
rma
l
and advan
ce node
s,P
NN
and P
AN
are the normal an
d
advan
ce no
d
e
s, r is the
ro
und,Y' and Y''
are the
set of normal an
d
advan
ce no
d
e
s that have
not
become
CHs within the l
a
st 1/P
NN
and
1/P
AN
, round
s of the epo
ch
. The proba
bi
lity for advan
ce
and no
rmal n
ode
s to beco
m
e CH i
s
,
1
∗
∗
(4)
1
1
∗
∗
(5)
Whe
r
e
NE a
n
d
AE is
norm
a
l and
adva
n
c
e
node
s
re
si
dual e
n
e
r
gy, onaverage
n*
P
opt
nodes m
u
st
become
CHs pe
r
roun
d
p
e
r
epo
ch.
On
ce th
e
clu
s
ter hea
d
sele
cti
on p
r
o
c
e
s
s i
s
co
mplete
d, the
sele
cted
clu
s
ter hea
ds, ad
vertise me
ssage to the cl
uster m
e
mb
e
r
s to join. Ba
sed o
n
the RSSI
value the clu
s
ter me
mbe
r
s join the n
e
a
re
st clu
s
ter
head thu
s
forming a cl
uste
r. More
over t
he
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 390 –
395
393
node
s al
so ta
ke pa
rt into di
rectio
n comm
unication to the ba
se
station only in tha
t
case
wh
en the
transmissio
n distan
ce of their re
sp
ectiv
e
cl
uste
r hea
d is maximu
m as com
p
a
r
ed to the base
station. The t
o
tal energy expande
d by
the clu
s
ter h
e
ad is given by
,
.
1
(6)
Whe
r
e
C is t
he num
ber
of cluste
rs, E
AD
aggregate
d
data and
d
TX
is the dista
n
c
e bet
wee
n
the
asso
ciated
CH and the
sin
k
. The en
ergy
used in a n
o
n
CH i
s
as fol
l
ow,
.
.
ɛ
.
.
.
ɛ
.
(7)
Whe
r
e d
CH
is the di
stan
ce from
ea
ch
memb
er
no
de to th
eir
resp
ective
CHs an
d d
BS
is the
distan
ce b
e
twee
n nea
re
st node an
d the ba
se
st
ation. The ove
r
all en
ergy e
x
pende
d in the
netwo
rk i
s
eq
ual to,
(8)
The optimal p
r
oba
bility of each n
ode to b
e
com
e
CH is
“P
opt
=C
opt
/n”, where C
opt
is
the
optimal num
b
e
r of clu
s
ters
per roun
d
3.3. Perform
a
nce Me
asur
e
s
Stability Period: Stability
Period or stable re
gion i
s
known as the time elapsed since the
netwo
rk b
e
ca
me ope
ration
al till the time
first node di
e
s
,
Instability Period: Instability Period
or unstable region
is the time
int
e
rval starting from
death
of first node ti
ll the last nod
e of the network di
es o
u
t
Network lifetime: is the m
eas
ure
of time peri
od si
nce the net
work becom
e
s operational till
the last active
node
s be
co
mes ina
c
tive,
Numb
er of a
c
tive node
s: i
s
the
overall
n
u
mbe
r
of
nod
es th
at a
r
e
st
ill active
and
are
pa
rt of
the netwo
rk,
Numb
er of de
ad nod
es: is t
he numb
e
r of
inac
tive nod
es which hav
e utilized the
r
e all energy.
Thro
ugh
put: is total numbe
r of packet
s
transmitt
ed fro
m
clust
e
r he
a
d
s to the ba
se station.
4. Simulations and Resu
lts
In simulatio
n
s
100
node
s are rando
ml
y deploy
ed e
qually in four zone
s havin
g both
norm
a
l a
nd
advan
ce
nod
es. Th
e b
a
se
station
is de
ployed in
the
ce
nter
of th
e net
work. T
he
packet si
ze
u
s
ed fo
r intra
-
clu
s
ter a
nd in
ter-clu
s
ter
co
mmuni
cation
and data
agg
regatio
n is
se
t to
500 bytes. Th
e simulatio
n
s are pe
rform
e
d in MATL
AB. Individual simulation
s we
re ru
n for ea
ch
proto
c
ol in th
eir ori
g
inal. Rest of
the parameters is gi
ven in Table
1.
Table 1. Net
w
ork Parame
ters
Parameter
Value
Ar
e
a
100*100
N
100
E
AD
5nJ/bit/message
E
0
0.5J
Packet Size
500 b
y
t
e
s
P
opt
0.1
ε
fs
10pJ/bit/m
^
2
ɛ
mp
0.0013pJ/bit/m
^
4
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Energ
y
Pre
s
e
r
vatio
n
in Het
e
rog
ene
ou
s WSNs thro
ug
h Zone Partiti
o
ning
(Sha
hzad Ha
ssan
)
394
Figure (1
) sh
ows the com
pari
s
on
of act
i
ve node
s. It has b
een ve
ri
fied that our
prop
osed
proto
c
ol h
a
s
signifi
cantly i
n
crea
sed th
e
stabl
e
regi
on
197 % a
s
co
mpared to M
-
GEAR an
d 1
8
%
compared to Z-SEP. In Z-SEP the normal nodes
are deployed between the advance nodes and
norm
a
l nod
es do not take p
a
rt in clu
s
ter f
o
rmat
io
n and
clu
s
ter he
ad
sele
ction. Th
e norm
a
l nod
es
adopt direct tran
smi
ssi
on to the base st
ation due to
whi
c
h their e
nergy is d
e
pl
eted very rap
i
dly.
It cannot be con
c
lu
ded from the figure (1) the
pe
rcenta
g
e of st
able re
gion
of our pro
p
o
s
ed
protoc
ol is
not very high as c
o
mpared to Z-SEP.
The inc
r
eas
ed
s
t
able region in
Z-SEP is
being
comp
romi
se
d
at a
co
st
of
coverage
a
r
e
a
. Since
the
norm
a
l n
ode
s tran
smits dat
a
directly to
the
base station,
and all of the
normal
nod
e
s
drain
s
ene
rgy at 2268
th
round le
aving
60% cove
rag
e
area u
n
covered. While in
ca
se of M-G
EAR the
author ha
s u
s
ed
four differen
t
scen
a
rio
s
b
u
t
overall n
e
two
r
k
stable
re
gi
on still i
s
very low an
d th
e first n
ode
d
r
ain
s
out it
s
energy in 62
3th
roun
d.
Figure 1. Co
mpari
s
o
n
of Active Node
s
Figure (2) prese
n
ts th
e
compa
r
ison
of dea
d n
ode
s. It can
be
con
c
lu
ded
th
at our
prop
osed
pro
t
ocol h
a
s de
crea
se th
e un
stable
re
gion
89 % a
s
com
p
are
d
to M
-
G
EAR and
19
%
with respect
to Z-SEP. In Z-SEP the
network ene
rgy utilization
is not uniform as the normal
node
s die
s
o
u
t at higher p
r
oba
bility leaving behin
d
a
d
vance nod
e
s
in the la
st round
s. Simila
rly
the de
crea
se
d sta
b
le
regio
n
is
sa
crificed
at the
co
st th
e un
cove
red
regio
n
. Mea
n
w
hile i
n
ca
se
of
M-GEAR the
last network node di
es o
u
t 2490
th
r
o
un
d.
Figure 2: Co
mpari
s
o
n
of Dea
d
No
de
s
Figure (3) ill
u
s
trate
s
the
si
mulation
re
su
lts of throug
h
put. The th
ro
ughp
u
t of the
ZBHCP
s
eems
to be c
o
mparatively very low as
c
o
mpared
to the Z-SEP and M-GEA
R
. The reaso
n
behin
d
this i
s
the data a
g
g
r
egation
pro
c
e
ss i
n
ZBHC
P.
Due to
ra
ndo
m
deploym
e
n
t
of the nod
e
s,
the covera
ge
are
a
of
nod
es
overla
ps
with e
a
ch
ot
her
and
highl
y correl
ated
data i
s
gath
e
r
ed
whi
c
h is elim
inated by the data aggreg
ation and onl
y aggreg
a
ted
data is tran
smitted to ba
se
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 2, May 2016 : 390 –
395
395
station fo
r
e
nd u
s
e
r
p
r
o
c
essing. A
s
e
x
plained
ea
rl
ier the
othe
r two
prot
oco
l
s a
d
opt
dire
ct
transmiss
ion. In Z-SEP 90% of t
he nodes
c
o
mmunicate with the
bas
e
s
t
ation
while in M-GE
AR
40% of the
node
s tra
n
smit dire
ctly to ba
se
st
ation which re
sults i
n
re
du
ndant d
a
ta b
e
ing
colle
cted by
base station
whi
c
h al
so in
cre
a
ses th
e load an
d processing p
o
wer requi
red at b
a
se
station. The t
h
rou
ghp
ut of these is p
r
o
t
ocol
is the
r
e
f
ore very hig
h
but it does not guara
n
tee
reliability of the data se
nt to base
station.
Figure 3. Co
mpari
s
o
n
of Throu
ghp
ut
5. Conclusio
n
It can b
e
con
c
lud
ed from t
he si
mulation
re
sult
s th
at n
e
twork life tim
e
ca
n b
e
si
gn
ificantly
prolo
nge
d b
y
redu
cing
the ene
rg
y wasta
g
e
in intra
-
cl
usteri
ng a
n
d
inter-cl
ust
e
ring
comm
uni
cati
on d
ue to l
o
ng tra
n
smissi
on di
stan
ce
s by dividing
the net
work
area
into
eq
ual
zon
e
s.
Referen
ces
[1]
Holg
er Karl, Andre
a
s W
illig.
Protocols a
nd
Archit
ectures f
o
r W
i
reless Se
nsor Net
w
orks.
First Edition.
W
e
st Sussex:
John W
ill
e
y
& Sons Ltd. 20
05
.
[2]
He Ni
ng
hui,
Li
Hon
g
she
ng,
G
ao Jin
g
.Ener
g
y
-s
avi
ng R
o
u
t
ing Al
gorithm
Based
on C
l
us
ter in W
S
N
.
T
E
LKO
M
NIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2013; 1
1
(2): 8
39-8
74.
[3]
C Siv
a
Ram M
u
rthy
and BS
Manoj. Ad Hoc
Wirele
ss
Net
w
orks Architectures and Protoc
ols. Prentic
e
Hall; 1 e
d
itio
n. 200
4.
[4]
CM Sadl
er, an
d M. Martonosi
.
Data compres
s
ion a
l
gor
ith
m
s
for energy co
nstrain
ed dev
ic
es in de
lay
tolera
nt netw
o
rks
. Proc. 4th Int. Conf. on Embed
ded
n
e
t
w
o
r
ke
d sens
or s
y
stems (S
enS
ys 6
)
.
Color
a
d
o
, USA. 2009: 26
5-27
8.
[5]
IF
Akyild
iz, W
.
Su, Y Sank
ar
asubr
aman
iam
,
E Ca
yirci. W
i
reless S
ensor
Net
w
orks: a s
u
rve
y
.
IE
EE
Co
mmun
icati
o
ns Maga
z
i
ne
. 2
002; 40(
8): 102
-114.
[6]
W
B
Heinz
e
lma
n
, AP Cha
ndr
a
k
asan, H B
a
lak
r
ishn
an.
An ap
plicati
on-s
pecif
ic
pr
otoc
ol arc
h
itecture f
o
r
w
i
reless microsensor net
w
or
ks.
IEEE T
r
an
sactions o
n
W
i
reless C
o
mmu
n
icati
ons
. 20
0
2
; 1(4): 660-
670.
[7]
Z
e
y
u
Su
n, Z
h
aoh
ui
Ch
en.
Hetero
gen
eo
u
s
Seq
u
e
n
ce
N
ode
of Ass
o
ci
ated
Cover
a
g
e
Alg
o
rithm
in
W
i
reless S
ens
or Net
w
o
r
k.
T
E
LKO
M
NIKA Indon
esia
n Jo
ur
nal
of Electric
a
l
Eng
i
n
eeri
n
g
. 201
3;
(11)
11
:
652
7-65
33.
[8]
Smaragdakis,
I Matta, A Bes
t
avros. SEP: A St
able El
ection Protoc
ol fo
r clustered
het
erog
ene
ou
s
w
i
rel
e
ss sens
o
r
net
w
o
rks. in:
Secon
d
Interna
t
iona
l W
o
rksho
p
on Se
nsor a
n
d
Actor Net
w
or
k Protocol
s
and Ap
plic
atio
ns (SANPA). 2004.
[9]
Shahz
ad H
a
ss
an , Muhamm
ad S Nisar, an
d Hon
gbo Ji
an
g
. DTRE-SEP: A Direct Transm
i
ssion and
Resid
u
a
l
Ener
gy base
d
Stab
le Electi
on Pro
t
ocol for Clust
e
rin
g
T
e
chni
qu
es in HW
SN
. I
n
ternational
Confer
ence
on
Communic
a
tio
n
Soft
w
a
re a
n
d
Net
w
o
r
ks(ICC
S
N).Che
ngd
u. 201
5: 266-
271.
[10]
S F
a
isal, N Ja
vaid, A Java
id,
MA Khan, SH
Bouk, Z
A
Kha
n
.
Z-SEP: Zonal-Stab
l
e El
ecti
on Protoc
ol
for Wireless Sensor Net
w
orks,
Journa
l of Bas
i
c and Ap
pli
ed
Scientific R
e
se
arch
(JBASR). 2013: 1-9.
[11]
Q
Nad
eem, M
B
Ras
h
e
ed, N
Java
id, Z
A
K
han, Y
Ma
qso
od
an
d A
Di
n. M-G
EAR: G
a
te
w
a
y-B
a
s
e
d
Energ
y
-A
w
a
re
Multi-Ho
p Ro
ut
ing Prot
ocol for
W
S
Ns , Eighth Internati
o
n
a
l
Confer
ence
on
Broad
ban
d
and W
i
re
less C
o
mmunic
a
tio
n
and Ap
plic
atio
n (BW
CCA). Compi
egn
e. 201
3: 164-1
69.
Evaluation Warning : The document was created with Spire.PDF for Python.