TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 3, June 20
15, pp. 428 ~ 4
3
3
DOI: 10.115
9
1
/telkomni
ka.
v
14i3.789
4
428
Re
cei
v
ed Ma
rch 1
2
, 2015;
Re
vised April
26, 2015; Accepte
d
May 1
6
, 2015
Bidirectional Battery Charger for PV Using Interleaved
Fourport DC-DC Converter
A. Elamath
y
*
,
G. Vi
ja
y
a
gow
ri, V. Ni
v
e
tha
K. S. Rangasa
m
y
Co
lle
ge of
T
e
c
hnolog
y, T
i
ruche
ngo
de, In
dia
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: elamath
y
2
1
@
gmai
l.com
A
b
st
r
a
ct
In this
pap
er, a
four-p
ort bi
dir
e
ction
a
l
dc-dc
conv
erter
is
pr
opos
ed for
gri
d
-interactiv
e
p
h
o
tovolta
i
c
(PV) system a
pplic
atio
n. The
fou
r-phas
e to
pol
ogy is su
ita
b
le for resi
de
n
t
ial pu
mpin
g, aeros
pace
po
w
e
r
requ
ire
m
e
n
ts. T
he contro
l of
battery a
nd d
i
fferent
ca
paciti
e
s
of
PV mo
d
u
les are natur
ally deco
u
p
l
ed.
I
n
add
ition, the
p
o
rt interface w
i
th
PV is current type w
h
ich can i
m
p
l
e
m
e
n
t maxi
mu
m po
w
e
r point track
i
n
g
(MPPT
) and s
o
ft sw
itching u
nder w
i
d
e
var
i
ation
of PV
te
rmi
nal
volta
ge.
F
i
nal
ly, si
mul
a
tion r
e
sults
a
r
e
prop
osed to ve
rify the pow
er cont
rol i
n
differe
nt operati
on
modes.
Ke
y
w
ords
: dc-
d
c converter, i
n
tegrate
d
three
-
port,
grid- inte
ractive, MPPT, soft-sw
itching
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Grid
-interacti
ve PV syste
m
s with
batt
e
ry
have b
e
e
n
rep
o
rte
d
fo
r pea
k p
o
wer shavin
g
and
ba
ckup
p
o
we
r [1
-3]. Rece
ntly, it ha
s al
so
be
en
reporte
d to
provide a
soluti
on to i
m
prove
the
power qu
ality of the grid. The sm
all en
ergy st
o
r
ag
e integrate
d
wit
h
re
sidential
PV systems
can
effectively re
duce the ove
r
voltage cau
s
ed by reve
rse power flo
w
to maintain th
e power q
uality
of the grid. More
over, the battery- integrate
d
PV system
s ca
n
perform a key powe
r
qu
ality
function, in
cl
uding rea
c
tive power co
mpen
sati
on
and ha
rmoni
c ca
ncellatio
n
[7-8]. Integrated
multi-po
rt bidi
rectio
nal d
c
-d
c conve
r
ter h
a
s b
een prop
ose
d
for
PV system with battery
ba
cku
p
[9-10]
due
to
the adva
n
tag
e
s
of lo
w
co
st and
hig
h
effi
cien
cy. Howe
ver, the
pre
s
e
n
ted
conve
r
te
rs
are
not a
b
le
to ch
arg
e
th
e battery f
r
o
m
the g
r
id.
More
over, th
e control
of
battery an
d
PV is
cou
p
led the
r
efore the o
p
e
r
ation of PV and batte
ry w
ill affect ea
ch othe
r. In this pa
per, a f
our-
port conve
r
te
r for g
r
id- i
n
teractive PV
system
i
s
d
e
velope
d ba
sed
on a int
e
rleave
d
bo
o
s
t
bidire
ction
a
l
dc-dc co
nvert
e
r [11
-
13]. T
he four-p
ha
se interle
a
ved
topology i
s
suitable for
hi
gher
MPP-tra
ckin
g
co
nverte
rs,
operating
ra
n
ge h
a
s to
be
limited to
th
e voltage
le
ss tha
n
th
e M
PP
voltage
whe
n
the o
u
tput vo
ltage o
r
cu
rre
n
t co
ntrol
is
a
c
tive [1]. However, a
multip
ort
conve
r
ter i
s
compl
e
x and
there a
r
e m
o
re de
sig
n
ch
alleng
es, e.
g.
The
control
stru
cture. Th
e advanta
g
e
s
o
f
using multi-port structure
is t
hat the
primary sou
r
ce
only nee
ds
to be si
ze
d
according to
the
averag
e po
wer con
s
ume
d
by the load for a sp
ecif
i
c
powe
r
ap
plication, and all
three po
rts
are
cap
able of bi
dire
ctional p
o
w
er flo
w
so b
a
ttery
can be
charged fro
m
PV and the grid a
s
well
. In
addition, the
PV port can i
m
pleme
n
t MPPT and ach
i
eve soft switchin
g und
er
wide va
riatio
n of
PV voltage. Therefo
r
e, the
high efficie
n
cy will be main
tained.
2. Rese
arch
Metho
d
Figure 1
sh
o
w
s the top
o
lo
gy of multiph
a
se
interl
eav
ed fou
r-p
ort
dc-dc convert
e
r. Thi
s
conve
r
ter
wa
s propo
sed in
[14] with detailed de
sc
ript
ion of open
-lo
op ope
ration
prin
ciple. In this
pape
r, this converte
r is a
pplied to grid
-inter
active PV system to achi
eve integ
r
ated MPPT and
bidire
ction
a
l
battery ch
arge/di
scha
rg
e func
tion.
Thre
e-p
h
a
s
e
Y-Y type
high frequ
ency
transfo
rme
r
s
are
u
s
ed
to b
oost th
e PV v
o
ltage
and
provide g
a
lvani
c i
s
olatio
n b
e
t
ween
g
r
id
si
de
and PV/batte
ry side. T
he
battery is
co
n
necte
d to th
e
prima
r
y sid
e
dc lin
k. Th
e voltage of b
a
ttery
cha
nge
s
slo
w
ly, so the p
r
imary si
de d
c
-link volt
ag
e can keep
co
nstant. The PV is conn
ecte
d
to
the curre
n
t so
urce low volta
ge dc p
o
rt.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Bidire
ctional
Battery Charger for PV Using Inte
rlea
ve
d Fourport DC-DC
Con
v
e
r
ter (A. Elam
athy)
429
Figure 1. Top
o
logy of multipha
se
interl
e
a
ved one
-po
r
t dc-d
c conve
r
ter
Figure 2. Modes of vario
u
s
ope
ration fo
r pro
p
o
s
ed m
e
thod
All of the three port
s
are bi
dire
ctional
an
d a
diod
e is a
dded to the P
V
port for p
r
o
t
ection.
Becau
s
e
the
termin
al volt
age
of PV a
rray va
rie
s
q
u
ickly an
d freque
ntly with
differe
nt sol
a
r
irra
diation lev
e
l, the dc lo
w voltage p
o
r
t with
curren
t source h
a
s the advanta
ge to implem
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 3, June 20
15 : 428 – 43
3
430
both MPPT
and
soft
swi
t
ching.
The
r
e a
r
e t
w
o
control
varia
b
l
e
s
of thi
s
in
tegrated
d
c
-dc
conve
r
ter. Du
ty
cycle D
i
s
use
d
to reali
z
e MPPT
cont
rol of PV, a
n
d
pha
se
shift angle
φ
is used
to regul
ate th
e total po
wer by PV and b
a
ttery. T
he P
V
and b
a
ttery power
cont
rol are
natu
r
al
ly
decoupl
ed, which
will be f
u
rthe
r de
scri
bed in the fo
l
l
owin
g. Figure 2 sh
ows th
e three
sele
cted
typical o
peration mo
de
s of
the g
r
id-i
nteractive PV
s
ystem with batt
e
ry. In mode I, when the solar
irra
diation is l
o
w, the powe
r
gene
rated b
y
PV c
annot satisfy the load power req
u
irem
ent so that
the battery
wi
ll discha
rg
e a
nd p
r
ovide
p
o
we
r to th
e l
oad. Th
e p
o
w
er flow is
shown in
(i),
where
Pload =P
pv +Pbat. Figure 2 (v)
gives the powe
r flow of mode III that there i
s
no
power
gene
rated
by
PV at night
or
clou
dy day
, and o
n
ly ba
ttery sup
p
o
r
ts the
load, i.
e. Pload
= P
bat.
There a
r
e mo
re mo
de
s for
grid
-conn
ecte
d co
mbine
d
o
peratio
n. Fo
r
example, the
battery can b
e
charged during night when
the pric
e of utility electricity is low.
Additionally, the PV can
provide
po
wer to b
a
ttery
, load o
r
g
r
id dep
endi
ng
on the
different cond
ition. Figure 3
sho
w
s th
e propo
sed
c
ont
rol algorith
m
o
f
grid- inte
ra
ctive PV system
usin
g a thre
e
port d
c
-d
c
converte
r. The
output cu
rre
n
t Io of dc-d
c converte
r i
s
controll
ed
b
y
pha
se shift angle
φ
, and
duty cycle is used to real
ize
MPPT. For the sta
nd-alone mo
de,
the
pha
se shift
a
ngle
φ
is
co
n
t
rolled by volt
age
controller and b
a
ttery curre
n
t Ibat is dete
r
min
e
d
by
the PV powe
r
and l
oad
re
quire
ment. When the PV
pow
er i
s
lo
w, the battery
discha
rge
s
a
nd
provide
s
part
of power to
th
e load.
Wh
en
the
PV po
we
r is
high, th
e
exce
ss
po
we
r will
cha
r
ge th
e
battery. For
the grid
-con
necte
d PV system, the ba
ttery curre
n
t
Ibat is more flexible a
nd
determi
ned
b
y
state of cha
r
ge
(SO
C
) m
anag
ement. I
f
the battery i
s
fully charge
d, the extra P
V
power
will se
nd ba
ck to th
e grid. T
he a
v
erage
mod
e
l
of the co
nverter is
develop
ed to an
alyze
its
steady
state
and
dynam
ic p
e
rfo
r
man
c
e. Be
ca
u
s
e
ea
ch p
h
a
s
e of p
r
op
osed top
o
logy
is
symmetri
c
al
[11], the m
o
d
e
ling
of three
-
pha
se
c
onve
r
ter ca
n
b
e
treated as
the model of sing
le-
pha
se half-bri
dge d
c
-d
c co
nverter.
Figure 3. Flow Dia
g
ra
m of Increm
ental
Con
d
u
c
tan
c
e
Algorithm
The state va
riable
s
are the dc in
du
ctor cu
rrent iL d
c
, the primary
side d
c
- link
voltage
Vd, and the o
u
tput voltage vo. The state equatio
n is gi
ven as,
L
V
i
n
D
V
d
(
1
)
Cd
D
ildc
i
o1
(
2
)
C
Φ
Φ
V
Φ
/R
l
i
Φ
1
(
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Bidire
ctional
Battery Charger for PV Using Inte
rlea
ve
d Fourport DC-DC
Con
v
e
r
ter (A. Elam
athy)
431
Since the po
wer of ea
ch p
hase is:
P0
V
d2
Φ
4
ᴨ
Φ
ᴨ
(
4
)
The average
value of io1 referred to the
primary
side
is,
i01
P0/V
d
Φ
4
ᴨ
Φ
ᴨ
(
5
)
Since the d
c
-link voltag
e kee
p
s
con
s
ta
nt le
vel, accordin
g to Equation (2
), the output
power Po i
s
j
u
st
relate
d to
the
pha
se
shift angle.
Th
e termi
nal vol
t
age of
PV chang
es in
a
wid
e
rang
e un
der
different am
b
i
ence, and th
e duty cycl
e
D in ste
ady
state. Un
der
different sola
r
irra
diation
an
d tempe
r
atu
r
e, the PV volt
age
of maxim
u
m po
we
r
poi
nt Vpm i
s
diff
erent. T
he
du
ty
cycle D i
s
reg
u
lated by MPPT controll
er
usin
g
increm
ental con
d
u
c
tance method
[15] to achieve
Vpm and MPP. The flow chart of MPPT controll
er
is presented
in Figure 3. For the battery
power, Pb
at
can
be
exp
r
e
s
sed
by, Pbat
= VbatIbat
=
Vbat (Vb
a
t-V
d
) /
Rb
at = V
bat DV
pv / Rbat.
Since Po
= Ppv + Pbat = Vpv Ipv + Vb
at Ibat = f (
φ
), the total p
o
we
r of PV and battery ca
n be
controlled by
pha
se shift angle
φ
.
3. Results a
nd Analy
s
is
Simulation in
Matlab
-Simu
link i
s
u
s
e
d
t
o
verify the
perfo
rman
ce
of pro
p
o
s
ed
system.
The integ
r
ate
d
MPPT function and batt
e
ry ch
arg
e
/d
i
s
charge o
peration, as
well
as the sy
ste
m
transi
ents b
e
t
ween differe
nt modes a
r
e sele
ct
ed i
n
simulatio
n
and experi
m
ental re
sult
s
to
evaluate the
controlle
r pe
rforman
c
e. Fi
gure
6 and
F
i
gure
7 sh
ow the simulatio
n
re
sults in t
he
con
d
ition of varied
sola
r irra
diation. Th
e PV
1 pane
l has the foll
owin
g sp
ecifi
c
ation
s
: und
er
1000
W/m2 i
r
radiation, the
maximum po
wer point i
s
V
m
= 5
4
.7V an
d Im = 5.5
8
A; the ope
n ci
rcuit
voltage Voc i
s
64.2V and
sho
r
t circuit
curre
n
t
Isc is 5.96A. 5*66
PV panels a
r
e co
nne
cted
in
parall
e
l to g
e
nerate
d
p
o
wer u
p
to 3K
W an
d the P
V
2 pan
el ha
s the foll
owin
g sp
ecifi
c
atio
ns:
unde
r 100
0W/m2 irradi
atio
n, the maximum power
poi
nt is Vm = 54.7V and Im =
5.58A; the open
circuit voltage
Voc is 64.2V
and sh
ort ci
rcuit
cu
rrent Isc is 5.96A. 5*
66 PV panel
s are conn
ecte
d
in pa
rallel
to
gene
rated
po
wer up
to 3K
W. Th
e b
a
ttery pack’
s volta
ge i
s
5
0
V an
d outp
u
t volta
ge
is 58.89V. At
first, when th
e irradi
ation is low,
both PV and provid
e powe
r
to the load, i.e. mode
I. When th
e i
rra
diation i
s
high, the p
o
wer g
ene
ra
ted
by PV not on
ly supp
ort
s
th
e load
but al
so
charges the
battery, whi
c
h
is m
ode
II. During cl
oudy
day or night,
Pp
v is
0, and
battery provides
all the
po
we
r to the
loa
d
.
For th
e
grid
-conne
cted
sy
stem, the b
a
ttery
curre
n
t can b
e
cont
rol
l
ed
by SOC man
ageme
n
t. In Figure 6, wh
en the battery
is almost f
u
ll, the curre
n
t decrea
s
e
s
to
1.5A. The
exce
ssive
po
we
r fro
m
PV i
s
sent ba
ck
to
th
e g
r
id. Th
e th
ree
-
ph
ase bi
d
i
rectio
nal
dc-dc
conve
r
ter is u
s
ing
ATMe
ga
micro
digital
controlle
r. Th
e pa
ram
e
ters of PV a
r
ray
are: Vp
m
= 4
0
V,
Voc = 48V, Imp=5
*
5.4A, Isc
= 5*5.8A. The prim
ar
y side d
c
link i
s
con
n
e
c
ted
to a 12V battery
pack.
Figu
re 6
sho
w
s
the experim
ental results
of mo
de ch
ang
e. The Po is fixed 50W. Th
e PV
power i
s
from
50W d
o
wn to 0W a
nd b
a
ttery is
from
chargi
ng mo
d
e
to discha
rgi
ng mod
e
. It can
be se
en that,
the total output power i
s
provide
d
by
b
a
ttery and th
e output current is not affe
cted
durin
g the m
ode tra
n
si
ent
. Figure
7 shows the
experim
ental re
sults
wh
en t
he PV termi
nal
voltage
cha
n
ges from
4
0
0
V
to 50
0V, i.e. the
so
l
a
r i
r
radiatio
n i
s
from 2
0
0
W
/m2
to 1
000
W/m
2
.
The power from PV will increase
and that from battery will de
crease.
When the PV power i
s
highe
r than
requireme
nt, the battery i
s
cha
r
ge
d by PV. Figure 8
and 9
sho
w
s expe
riment
al
results
of the
load
ch
angin
g
with
differe
nt PV volt
age
. The
experim
ental results il
lustrate
that t
h
e
power ex
cha
nge
can
be realized am
on
g three
po
rt
s and o
u
tput
power i
s
not
affected by t
he
dynamic p
o
wer
distri
bution
between
PV and
batte
ry
sin
c
e it
is co
ntrolled
by
p
hase
shift a
n
g
le.
For fo
ur-po
r
t
conve
r
ter, th
e switche
s
can al
so
s
a
t
i
sf
y
t
he ZV
S
co
ndit
i
on
s if
sm
all d
c
in
du
ct
o
r
s
are
utilize
d
a
nd the volta
g
e
s
on b
o
th
sides
of
the transfo
rme
r
a
r
e matched.
The p
a
ra
met
e
rs
use
d
for simu
lating the pro
posed algo
rit
h
m. The sim
u
lation re
sult
s are obtai
ne
d as follows (e.g.
Figure 6, 7, 8, 9)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 3, June 20
15 : 428 – 43
3
432
Figure 6. Irra
dian
ce, Input & Output power
grap
h for PV panel
Figure 7. Irra
dian
ce, Input & Output Voltage
graph with time in s
e
c
o
nds
Figure 8. Input voltage an
d curre
n
t for motor
with time in sec
o
nds
Figure 9. Cha
r
acte
ri
stics of motor sp
eed
and
torque
In this se
ction
,
it is explained the re
sults
of
rese
arch a
nd at the sam
e
time is given the
4. Conclusio
n
In this pape
r, a four-port dif
f
erent ca
pa
cities
of PV system with batte
ry using inte
rl
eaved
bidire
ction
a
l dc-dc
conve
r
ter wa
s pro
p
o
se
d.
The hi
gh frequ
en
cy transfo
rme
r
s provide voltage
boo
st capa
bili
ty and g
a
lvan
ic i
s
olatio
n. PV and
batte
ry
interfa
c
ing
wi
th different
type of
port
s
ca
n
reali
z
e MPPT
and
soft switchin
g un
der
wide va
riatio
n of PV voltage. The t
w
o
control vari
ab
les,
duty cycl
e
an
d ph
ase
shift
angl
e,
can
b
e
contro
lled
i
ndep
ende
ntly to reali
z
e
M
PPT and
po
wer
flow between
energy source
s and lo
a
d
.
The benefit of bidirectio
nal power flo
w
is helpful t
o
manag
e the
SOC of battery in grid
-
con
n
e
c
ted m
ode. Simulati
on and exp
e
r
imental
resu
lts
verified the principl
es.
Referen
ces
[1]
Yen-Mo
Che
n
,
Ale
x
Q Hu
an
g
,
Xu
n
w
e
i
Yu.
A Hig
h Step-U
p
T
h
ree-Port D
C
–DC
Co
nvert
e
r for Stand-
Alone PV/Batter
y
Po
w
e
r S
y
st
ems.
IEEE
Transactions on Power Electronics
.
2013; 28(
11): 504
9-50
62.
[2]
Josep
h
Carr, Juan C
a
rlos Ba
lda, Ala
n
Mant
oot
h. A High
Freque
nc
y
Lin
k
Multiport Co
nverter Utilit
y
Interface for Ren
e
w
a
ble E
nerg
y
R
e
so
ur
ces
w
i
th Inte
grated E
nerg
y
Storage.
IEEE Jo
u
r
na
l
of
Photovo
l
taics.
201
0: 354
1-35
48.
[3]
Dan
w
e
i
Liu, H
u
i Li. A Z
VS Bi-Directi
on
al
DC–D
C
Co
nve
r
ter for Multipl
e
Ener
g
y
St
orage El
eme
n
ts
.
IEEE Transactions on Power
Electronics.
20
06; 21(5): 1
513
-151
7.
[4]
Gui-Jia S
u
, F
ang P
e
n
g
. A Lo
w
Cost, T
r
ip
le-Voltag
e
Bus DC-D
C
Conv
erter fo
r Automotiv
e
Appl
icatio
ns.
IEEE Journal of
Photovoltaics.
200
5: 101
5-10
21.
[5]
Z
han W
a
n
g
, H
u
i L
i
. An Integr
ated T
h
ree-Por
t
Bidirecti
ona
l
DC–D
C
C
onve
r
ter for PV App
licatio
n o
n
a
DC Distrib
utio
n
S
y
stem.
IEEE Transactions on Power Electronics.
20
13; 28
(10): 461
2-4
6
2
4
.
[6]
Quan Li, Pete
r W
o
lfs. A Revie
w
of the Si
ngl
e Phas
e Photovo
l
taic Mo
dul
e Integrate
d
Conv
ert
e
r
T
opologi
es
w
i
t
h
T
h
ree Differ
ent DC
Link
C
onfig
uratio
ns.
IEEE Transactions on Power
Electronics.
200
8; 23(3): 13
20-1
333.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Bidire
ctional
Battery Charger for PV Using Inte
rlea
ve
d Fourport DC-DC
Con
v
e
r
ter (A. Elam
athy)
433
[7]
Oscar Luc
ia, I
gor
Cvetkovic,
Hector
Sar
n
a
go, D
u
sh
an
B
o
ro
yev
i
ch, P
a
olo
Mattave
lli,
Fred
C
Lee.
Desig
n
of Hom
e
Appli
anc
es for a DC-Base
d
N
ano
grid S
y
stem: An Induction Ra
nge Stud
y Cas
e
.
IEEE
Journ
a
l of Eme
r
gin
g
and S
e
le
cted T
opics in
Pow
e
r Electron
ics.
2013; 1(4):
315-3
26.
[8]
Chihc
h
i
ang
H
u
a, Jon
g
ro
ng
Li
n, Ch
ihmi
ng
S
hen.
Imp
l
eme
n
tation
of
a D
SP-Contro
lle
d
Photovo
l
tai
c
S
y
stem
w
i
th P
eak Po
w
e
r T
r
a
cking.
IEEE Transacti
ons o
n
Industri
a
l Electr
onics.
19
98; 45
(1): 99-10
7.
[9]
Chu
anh
on
g Z
hao, Simon D
Rou
nd, Joh
a
n
n
W
Ko
lar. An Isolated T
h
ree-Port Bidir
e
cti
ona
l DC-D
C
Conv
erter
w
i
t
h
Deco
up
led
Po
w
e
r F
l
o
w
Ma
n
agem
ent.
IEEE
T
r
ansacti
ons
on P
o
w
e
r Elec
tronics.
2
008
;
23(5): 24
43-
24
53.
[10]
A
li Bidr
am, Ali
Davou
d
i, Ro
b
e
rt S Balog. C
ontrol a
nd C
i
rc
uit T
e
chniqu
es
to Mitigate Pa
rtial Sha
d
i
n
g
Effects in Photovolta
ic Arra
ys
.
IEEE Journal of Photovolt
a
ic
s.
2012; 2(4): 5
32-5
46.
[11]
Aarton J
oha
n
Lub
is, Er
w
i
n
Susa
nto, Un
ang
Sun
a
r
y
a.
Impleme
n
tati
on of M
a
ximu
m Po
w
e
r
Poi
n
t
T
r
acking on
Ph
otovolta
ic Us
in
g F
u
zz
y
Lo
gic
Algorit
hm.
TELKOMN
I
KA Te
le
comm
un
i
c
a
t
ion
Com
p
u
t
ing
Electron
ics an
d Contro
l
. 201
5; 13
(
1): 32-
4
0
.
[12]
Ding
y
u
e
C
hen,
Xia L
i
, Liha
o Che
n
, Yong
hui
Z
hang, Li Ya
ng, Songs
on
g Li.
Basal Study
on Po
w
e
r
Contro
l Strate
g
y
for F
u
el
Ce
ll/Batter
y
H
y
b
r
i
d
Ve
hicl
e.
T
E
L
K
OMNIKA T
e
leco
mmu
n
icati
o
n C
o
mputi
n
g
Electron
ics an
d Contro
l
. 201
5; 13
(
2): 42
1-
431.
Evaluation Warning : The document was created with Spire.PDF for Python.