I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
14
,
No
.
6
,
Dec
em
b
er
20
24
,
p
p
.
6
3
8
0
~
6
3
8
8
I
SS
N:
2088
-
8
7
0
8
,
DOI
:
1
0
.
1
1
5
9
1
/ijece.
v
14
i
6
.
pp
6
3
8
0
-
6
3
8
8
6380
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Enha
ncement
of
e
nerg
y
and sp
ect
ra
l ef
fi
ciency
for
mm
-
wa
v
e
ba
sed 5
G
co
mm
u
nica
tion net
wo
rk
Vis
ha
k
ha
G
a
ik
wa
d,
Ash
wini
Na
ik
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
o
n
i
c
s
a
n
d
T
e
l
e
c
o
mm
u
n
i
c
a
t
i
o
n
En
g
i
n
e
e
r
i
n
g
,
D
.
Y
.
P
a
t
i
l
D
e
e
me
d
t
o
b
e
U
n
i
v
e
r
si
t
y
,
R
a
mr
a
o
A
d
i
k
I
n
st
i
t
u
t
e
o
f
T
e
c
h
n
o
l
o
g
y
,
N
a
v
i
M
u
mb
a
i
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
6
,
2
0
2
4
R
ev
is
ed
J
u
l 1
8
,
2
0
2
4
Acc
ep
ted
Au
g
6
,
2
0
2
4
5
G
n
e
two
rk
is
a
n
e
n
h
a
n
c
e
d
c
o
m
m
u
n
ica
ti
o
n
n
e
two
r
k
,
d
e
sig
n
e
d
t
o
c
o
n
v
e
rg
e
th
e
re
q
u
irem
e
n
ts
o
f
q
u
a
li
ty
o
f
se
rv
ice
(
Qo
S
)
p
a
ra
m
e
ters
,
d
a
ta
a
n
d
c
a
p
a
c
it
y
,
b
y
m
e
a
n
s
o
f
si
g
n
a
ls
wit
h
h
i
g
h
Qo
S
a
n
d
h
i
g
h
-
s
p
e
e
d
d
a
ta
ra
te.
S
e
v
e
ra
l
sta
te
-
of
-
a
rt
tec
h
n
o
lo
g
ies
a
re
in
v
o
l
v
e
d
t
o
o
b
tain
th
e
re
q
u
irem
e
n
t
o
f
e
n
e
r
g
y
e
fficie
n
t
c
o
m
m
u
n
ica
ti
o
n
sy
ste
m
wi
th
in
c
r
e
a
se
d
n
u
m
b
e
r
o
f
u
se
rs,
d
e
v
ice
s,
h
ig
h
e
r
d
a
ta
ra
te
with
lo
w
late
n
c
y
.
T
h
is
p
a
p
e
r
p
re
se
n
ts
a
sy
ste
m
wh
ich
d
e
m
o
n
stra
tes
th
e
e
n
e
rg
y
a
n
d
sp
e
c
tral
e
fficie
n
c
y
a
c
h
iev
e
d
f
o
r
v
a
ri
o
u
s
n
u
m
b
e
r
o
f
n
o
d
e
s
i
n
a
sp
e
c
ifi
c
a
re
a
.
Th
is
stu
d
y
a
d
d
re
ss
e
s
th
e
imp
ro
v
e
m
e
n
t
in
e
n
e
r
g
y
a
n
d
sp
e
c
tral
e
fficie
n
c
y
wh
e
n
t
h
e
p
ro
p
o
se
d
a
lg
o
rit
h
m
is
u
se
d
.
Th
e
p
r
o
p
o
se
d
a
lg
o
rit
h
m
is
a
c
o
m
b
in
a
ti
o
n
o
f
sw
a
rm
b
a
se
d
a
rti
ficia
l
b
e
e
c
o
lo
n
y
(ABC)
a
lg
o
r
it
h
m
with
n
e
u
ra
l
n
e
two
rk
.
E
x
p
e
rime
n
tal
re
su
lt
s
h
a
v
e
b
e
e
n
c
a
rried
o
u
t
t
o
o
b
se
rv
e
th
e
p
e
rfo
rm
a
n
c
e
o
f
Qo
S
p
a
ra
m
e
ters
su
c
h
a
s
b
it
e
rro
r
ra
te
(BER),
t
h
ro
u
g
h
p
u
t,
p
o
we
r
c
o
n
su
m
p
ti
o
n
a
n
d
m
e
a
n
s
q
u
a
re
e
rro
r
(M
S
E).
Th
e
m
a
x
imu
m
e
n
e
rg
y
e
fficie
n
c
y
a
c
h
i
e
v
e
d
is
3
4
%
a
n
d
S
p
e
c
tral
e
fficie
n
c
y
is 3
6
%
.
K
ey
w
o
r
d
s
:
5G
E
n
er
g
y
ef
f
icien
cy
Mu
ltip
le
-
in
p
u
t a
n
d
m
u
ltip
le
-
o
u
tp
u
t
Qu
ality
o
f
s
er
v
ice
p
a
r
am
eter
s
Sp
ec
tr
al
ef
f
icien
cy
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Vis
h
ak
h
a
Gaik
wad
Dep
ar
tm
en
t o
f
E
lectr
o
n
ics an
d
T
elec
o
m
m
u
n
icatio
n
E
n
g
in
ee
r
in
g
,
D.
Y.
Patil De
em
ed
to
b
e
Un
iv
er
s
ity
,
R
am
r
ao
Ad
ik
I
n
s
titu
te
o
f
T
ec
h
n
o
lo
g
y
Nav
i M
u
m
b
ai
-
4
0
0
4
0
6
,
I
n
d
ia
E
m
ail: v
is
h
ak
h
a.
g
aik
wa
d
@
r
ait.
ac
.
in
1.
I
NT
RO
D
UCT
I
O
N
Fifth
-
g
en
er
atio
n
(
5
G)
telec
o
m
m
u
n
icatio
n
s
tech
n
o
lo
g
y
,
in
t
r
o
d
u
ce
d
in
2
0
1
9
,
h
as
b
ee
n
h
ailed
as
th
e
in
ter
n
et
o
f
th
in
g
s
(
I
o
T
)
p
an
ac
ea
f
o
r
p
r
o
b
lem
s
s
u
ch
as
m
o
b
ile
p
h
o
n
e
tar
if
f
s
.
T
h
e
m
o
b
ile
p
h
o
n
e
in
d
u
s
tr
y
h
as
co
m
m
itted
to
n
et
ze
r
o
em
is
s
io
n
s
b
y
2
0
5
0
,
a
n
d
5
G
s
p
e
cif
icatio
n
s
ca
ll
f
o
r
a
9
0
%
r
ed
u
ctio
n
in
e
n
er
g
y
co
n
s
u
m
p
tio
n
(
p
e
r
u
n
it
o
f
d
at
a
tr
an
s
f
er
)
co
m
p
ar
ed
to
4
G.
T
h
ese
p
r
o
m
is
es
ar
e
g
r
ea
t,
b
u
t
5
G
is
s
till
in
its
in
f
an
cy
an
d
th
e
lim
itatio
n
s
o
f
ex
is
tin
g
in
f
r
astru
ctu
r
e
an
d
d
es
ig
n
m
ak
e
th
ese
p
r
o
m
is
es
f
ar
-
r
ea
ch
in
g
.
T
h
e
m
ain
im
p
r
o
v
em
e
n
ts
th
at
5
G
p
r
o
m
is
es
ar
e
p
r
im
ar
ily
th
e
u
s
e
o
f
m
illi
m
eter
-
wav
e
lin
e,
wh
ich
allo
ws
co
m
m
u
n
icatio
n
o
f
th
e
d
ir
ec
tio
n
o
f
r
ad
iatio
n
.
T
h
is
m
ea
n
s
5
G
ca
n
f
o
cu
s
d
ata
tr
an
s
f
er
s
o
v
er
a
s
h
o
r
t
d
is
tan
ce
,
r
ath
er
th
a
n
illu
m
in
atin
g
th
e
en
tire
ar
ea
b
eh
in
d
y
o
u
,
b
ath
in
g
a
s
o
m
ewh
at
b
u
lb
-
lik
e
tar
g
et
with
elec
tr
i
city
.
T
h
e
s
ec
o
n
d
is
th
e
h
u
g
e
in
cr
ea
s
e
in
co
m
m
u
n
icatio
n
s
p
ee
d
;
T
h
is
will
h
elp
im
p
r
o
v
e
s
elf
-
m
an
ag
em
e
n
t
an
d
to
o
ls
(
r
ed
u
ce
d
laten
cy
)
an
d
th
e
g
r
o
wth
o
f
I
o
T
d
ev
ices,
p
av
in
g
th
e
way
f
o
r
in
n
o
v
atio
n
an
d
o
p
tim
izatio
n
.
T
h
e
n
u
m
b
e
r
o
f
5
G
co
n
n
ec
tio
n
s
is
in
cr
ea
s
in
g
b
y
2
1
7
%
ev
e
r
y
y
ea
r
,
an
d
th
er
e
will
b
e
ap
p
r
o
x
im
ately
1
0
0
b
illi
o
n
in
f
o
r
m
atio
n
an
d
co
m
m
u
n
icatio
n
s
tech
n
o
lo
g
y
(
I
C
T
)
co
n
n
ec
tio
n
s
(
4
0
b
illi
o
n
o
f
wh
ich
ar
e
I
o
T
s
en
s
o
r
s
)
b
y
2
0
2
5
.
I
n
th
e
n
ex
t
d
ec
ad
e,
m
o
b
ile
d
ata
u
s
ag
e
will
in
cr
ea
s
e
s
ix
f
o
ld
in
d
ev
el
o
p
in
g
c
o
u
n
tr
ies
an
d
th
r
ee
f
o
ld
in
d
ev
elo
p
i
n
g
co
u
n
t
r
ies.
W
h
en
n
ew
m
o
d
els
ar
e
in
tr
o
d
u
ce
d
(
s
u
ch
as
th
e
tr
an
s
itio
n
f
r
o
m
3
G
to
4
G)
,
m
o
b
ile
d
ata
alwa
y
s
in
cr
ea
s
es
en
er
g
y
c
o
n
s
u
m
p
tio
n
,
b
u
t
th
i
s
is
n
o
t
d
u
e
t
o
in
c
r
ea
s
ed
d
at
a
tr
af
f
ic,
b
u
t
to
th
e
ad
d
itio
n
o
f
n
ew
h
ar
d
war
e
f
o
r
th
e
n
etwo
r
k
.
M
o
s
t
o
f
th
e
e
n
er
g
y
u
s
ed
in
I
C
T
s
y
s
tem
s
is
n
o
t
u
s
ed
to
s
en
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
me
n
t o
f e
n
erg
y
a
n
d
s
p
ec
tr
a
l e
fficien
cy
fo
r
mm
-
w
a
ve
b
a
s
ed
…
(
V
is
h
a
k
h
a
Ga
ikw
a
d
)
6381
in
f
o
r
m
atio
n
;
is
wasted
d
u
e
to
h
ea
t
lo
s
s
,
id
le
tim
e
an
d
o
th
er
in
ef
f
icien
cies.
T
h
e
co
m
p
o
n
en
ts
th
at
f
o
r
m
th
e
d
ig
ital
co
r
e
o
f
I
C
T
n
etwo
r
k
s
(
s
witch
es
an
d
d
ata
ce
n
ter
s
)
ar
e
d
o
wn
7
2
%
o
f
th
e
tim
e,
an
d
5
7
%
o
f
th
e
n
etwo
r
k
p
o
wer
is
n
ee
d
ed
b
y
ce
llu
la
r
s
tatio
n
s
.
T
h
e
k
ey
t
o
th
e
p
r
o
b
lem
is
th
e
way
c
u
r
r
e
n
t
I
C
T
s
y
s
tem
s
ar
e
d
esig
n
e
d
an
d
b
u
ilt
in
all
th
eir
f
o
r
m
s
.
T
h
e
p
r
o
b
lem
is
th
at
th
e
co
m
m
u
n
i
ca
tio
n
s
in
d
u
s
tr
y
in
g
en
er
al
is
alm
o
s
t
f
o
cu
s
ed
o
n
s
en
d
in
g
as
m
an
y
item
s
p
er
s
e
co
n
d
as
p
o
s
s
ib
le.
Ho
wev
er
,
li
ttle
atten
tio
n
is
p
aid
to
th
e
u
s
e
o
f
f
ir
e
elec
tr
icity
th
at
co
m
es
with
it.
T
h
e
p
o
wer
ef
f
icien
cy
o
f
2
G
is
6
0
%
.
T
h
i
s
m
ea
n
s
th
at
f
o
r
ev
e
r
y
1
0
wat
ts
u
s
ed
,
6
watts
ar
e
u
s
ed
f
o
r
d
ata
tr
an
s
m
is
s
io
n
.
I
n
4
G
s
y
s
tem
s
,
th
is
ef
f
icien
cy
d
r
o
p
s
to
2
0
%,
wh
ile
in
5
G
s
y
s
tem
s
it
is
o
n
ly
1
0
%,
wh
ich
m
ea
n
s
t
h
at
ev
er
y
9
wat
ts
u
s
ed
to
s
en
d
d
ata
is
wasted
.
T
h
in
g
s
a
r
e
e
v
en
wo
r
s
e
f
o
r
5
G
n
etwo
r
k
s
th
at
r
u
n
o
n
4
G
h
ar
d
war
e
a
n
d
u
s
e
m
illi
m
eter
wav
es.
W
av
e:
T
h
is
p
r
o
d
u
ct
u
s
es
o
n
ly
1
%
en
er
g
y
.
T
h
is
is
wo
r
s
e
th
an
o
ld
f
ash
io
n
ed
in
ca
n
d
escen
t
lam
p
s
.
B
u
s
in
ess
p
r
ess
u
r
es
will
lim
it
th
e
u
s
e
o
f
5
G
tec
h
n
o
lo
g
y
u
n
l
ess
s
tep
s
ar
e
tak
en
to
in
cr
ea
s
e
th
ese
lev
els
o
f
en
er
g
y
ef
f
icien
c
y
.
5
G
n
etwo
r
k
s
u
s
in
g
m
illi
m
eter
wav
es
s
h
o
u
ld
b
e
f
aster
th
an
4
G
with
in
3
0
0
m
eter
s
o
f
a
m
o
b
ile
p
h
o
n
e.
Or
g
an
izatio
n
s
u
s
e
s
m
all
m
o
b
ile
p
h
o
n
es
t
o
ex
ten
d
m
illi
m
eter
wav
e
lin
es
b
ey
o
n
d
th
is
lim
it
wh
en
n
ee
d
e
d
.
5
G
s
m
all
ce
lls
ar
e
n
ec
ess
ar
y
to
in
c
r
ea
s
e
m
m
-
W
av
e
co
v
er
ag
e,
ca
p
ac
ity
an
d
s
p
ee
d
.
T
h
e
ter
m
s
“
m
illi
m
eter
wav
e”
an
d
“
5
G”
ar
e
o
f
ten
u
s
ed
in
ter
ch
a
n
g
ea
b
ly
.
Ho
wev
er
,
t
h
er
e
ar
e
im
p
o
r
ta
n
t
d
if
f
er
en
ce
s
b
etwe
en
th
e
two
.
5
G
r
ef
er
s
to
e
x
is
tin
g
ce
llu
lar
n
etwo
r
k
s
,
wh
ile
m
illi
m
eter
b
au
d
r
ef
er
s
to
th
e
r
a
d
i
o
s
p
ec
tr
u
m
in
t
h
e
r
a
n
g
e
o
f
2
4
a
n
d
1
0
0
GHz
.
T
h
is
is
ca
lled
m
i
llime
ter
wav
e
(
m
m
W
av
e)
b
an
d
5
G
a
n
d
is
b
est
f
o
r
u
s
e
in
d
en
s
ely
p
o
p
u
late
d
ar
e
as
r
ath
er
t
h
an
s
h
o
r
t
d
is
tan
ce
s
.
Acc
o
r
d
i
n
g
to
th
e
s
tu
d
ies
ca
r
r
ied
o
u
t
th
e
p
o
wer
co
n
s
u
m
p
tio
n
f
o
r
5
G
n
etwo
r
k
at
p
ea
k
h
o
u
r
s
is
ar
o
u
n
d
3
0
0
%
g
r
ea
ter
th
an
4
G
p
o
wer
co
n
s
u
m
p
tio
n
.
Du
e
to
th
e
en
er
g
y
c
o
n
s
tr
ain
ts
an
d
v
er
s
atile
n
etwo
r
k
r
eq
u
ir
em
en
ts
tr
ad
itio
n
al
m
eth
o
d
s
ar
e
n
o
t
e
n
o
u
g
h
f
o
r
n
etwo
r
k
o
p
tim
izatio
n
.
An
d
th
u
s
,
lear
n
i
n
g
tech
n
iq
u
es
b
ased
o
n
ML
a
r
e
en
g
a
g
ed
wh
ic
h
allo
w
th
e
s
y
s
tem
to
lear
n
f
r
o
m
th
e
d
ata
an
d
o
p
tim
ize
th
e
n
etwo
r
k
[
1
]
.
E
n
er
g
y
ef
f
icien
cy
as
d
ef
in
e
d
is
in
v
er
s
e
to
e
n
er
g
y
c
o
n
s
u
m
ed
p
e
r
tr
a
n
s
m
itted
b
it
o
r
c
an
also
b
e
d
ef
in
ed
as
th
e
n
u
m
b
er
o
f
b
its
tr
an
s
m
itted
f
o
r
ev
er
y
u
n
it
o
f
e
n
er
g
y
co
n
s
u
m
e
d
.
I
n
th
e
co
m
m
u
n
icatio
n
s
d
o
m
ain
,
co
n
s
u
m
p
tio
n
o
f
p
o
wer
an
d
e
n
er
g
y
-
r
elate
d
p
o
llu
tio
n
r
esu
lt
in
g
o
u
t
o
f
it
ar
e
b
ec
o
m
i
n
g
m
ajo
r
c
o
n
ce
r
n
s
in
o
p
er
atio
n
al
an
d
ec
o
n
o
m
ical
ter
m
s
[
2
]
.
As
5
G
is
ex
p
ec
ted
in
claim
in
g
to
co
n
n
ec
t
lar
g
e
n
u
m
b
er
o
f
d
e
v
ices
to
g
eth
er
,
h
en
ce
lar
g
e
am
o
u
n
t
o
f
tr
an
s
m
it
p
o
wer
will
b
e
r
eq
u
ir
e
d
r
esu
ltin
g
in
h
u
g
e
am
o
u
n
t
o
f
en
er
g
y
co
n
s
u
m
p
tio
n
.
T
h
is
is
d
ir
ec
tly
g
o
in
g
to
r
esu
lt
in
e
m
is
s
io
n
o
f
g
r
ee
n
h
o
u
s
e
g
ases
alo
n
g
with
l
ar
g
e
p
e
r
ce
n
tag
e
o
f
ca
r
b
o
n
d
i
o
x
id
e
p
r
o
d
u
c
ed
b
y
th
ese
co
n
n
ec
ted
d
ev
ices
an
d
th
is
in
cr
ea
s
es
b
y
f
ew
m
illi
o
n
to
n
s
[
3
]
.
T
h
e
I
o
T
d
ev
ices
in
5
G
n
etwo
r
k
s
ar
e
en
tan
g
led
with
m
u
ltip
le
o
f
m
u
ltip
le
-
in
p
u
t
an
d
m
u
lti
p
le
-
o
u
tp
u
t
(
MI
MO
)
tr
an
s
m
is
s
io
n
in
ter
f
ac
es.
No
w
th
at
MI
MO
is
m
o
r
e
f
r
eq
u
e
n
tly
av
ailab
le
o
n
I
o
T
d
e
v
ices
an
ef
f
icien
t
clu
s
ter
in
g
s
tr
ateg
y
f
o
r
q
u
ick
ly
g
r
o
win
g
I
o
T
s
y
s
tem
s
is
ab
s
en
t
an
d
is
u
r
g
en
tly
r
eq
u
ir
e
d
s
o
as
to
h
a
n
d
l
e
a
v
ar
iety
o
f
u
s
er
s
itu
atio
n
s
.
As
a
r
esu
lt,
m
an
y
n
o
v
el
tech
n
i
q
u
es
in
lo
ad
b
alan
c
in
g
b
ased
o
n
n
etwo
r
k
o
p
tim
izatio
n
u
s
in
g
r
o
u
tin
g
p
r
o
to
co
l
f
o
r
5
G
wir
eless
co
m
m
u
n
icatio
n
n
etwo
r
k
s
ar
e
p
r
o
p
o
s
ed
b
y
r
esear
c
h
er
s
[
4
]
.
Alo
n
g
with
en
h
a
n
ce
m
en
t
o
f
e
n
er
g
y
ef
f
icien
c
y
(
E
E
)
,
s
p
ec
tr
a
l
ef
f
icien
cy
(
SE)
m
u
s
t
also
b
e
tak
en
in
to
ac
co
u
n
t,
as
s
tu
d
ies
h
a
v
e
f
o
cu
s
ed
th
at
if
we
in
cr
ea
s
e
th
e
E
E
,
SE
d
ec
r
ea
s
es
an
d
v
ice
-
v
er
s
a
[
5
]
.
Mittal
et
a
l.
[
6
]
h
as
p
r
o
p
o
s
ed
r
o
u
tin
g
p
r
o
to
c
o
ls
in
co
llab
o
r
atio
n
with
n
eu
r
al
n
etwo
r
k
to
o
v
e
r
co
m
e
p
r
o
b
lem
o
f
lim
ited
b
atter
y
p
o
wer
f
o
r
wir
eless
s
en
s
o
r
n
o
d
es
(
W
SN)
.
Sh
ar
m
a
et
a
l.
[
7
]
h
as p
r
o
p
o
s
ed
m
o
d
if
ie
d
p
o
wer
c
o
n
s
u
m
p
tio
n
m
o
d
els
th
at
wo
u
ld
ac
cu
r
ately
d
ep
ict
th
e
p
o
wer
co
n
s
u
m
p
tio
n
f
o
r
5
G
b
ase
s
ta
tio
n
s
.
R
o
s
tam
i
et
a
l.
[
8
]
s
u
g
g
ested
a
wak
e
-
up
s
ig
n
alin
g
f
o
r
5
G
co
n
tr
o
l
p
lan
e
in
o
r
d
er
to
r
ed
u
ce
en
er
g
y
co
n
s
u
m
p
tio
n
o
f
ce
llu
lar
m
o
d
u
le
in
d
o
wn
lin
k
.
Asl
am
et
a
l.
[
9
]
p
r
o
p
o
s
ed
en
er
g
y
-
ef
f
icien
t
p
at
h
p
lan
n
i
n
g
r
o
u
tin
g
p
r
o
to
c
o
ls
a
r
e
to
d
ea
l
with
th
e
f
lu
ctu
atio
n
o
f
n
etwo
r
k
d
ep
lo
y
m
en
ts
an
d
ad
ap
tiv
e
tr
a
n
s
m
is
s
i
o
n
r
an
g
e
o
f
W
SNs
.
I
n
[
1
0
]
,
t
h
e
L
E
AC
H
–
en
er
g
y
b
etwe
en
n
ess
(
L
E
AC
H
-
E
B
)
m
o
d
el
is
p
r
o
p
o
s
ed
b
y
tak
in
g
e
n
e
r
g
y
co
n
s
u
m
p
tio
n
as a
co
n
s
tr
ai
n
t c
o
n
d
itio
n
.
Z
h
a
n
g
et
a
l.
[
1
1
]
p
r
o
p
o
s
ed
c
o
m
b
in
ed
o
p
tim
izatio
n
o
f
s
p
ec
tr
al
e
f
f
icien
cy
alo
n
g
with
p
o
wer
co
n
tr
o
l
o
f
m
ass
iv
e
MI
MO
n
etwo
r
k
s
.
Pan
d
a
[
1
2
]
h
as
p
r
o
p
o
s
ed
an
alg
o
r
ith
m
wh
ich
im
p
r
o
v
e
th
e
o
v
er
all
s
p
ec
tr
al
ef
f
icien
cy
u
p
lin
k
an
d
d
o
wn
lin
k
co
m
b
in
e
d
.
T
h
e
ac
h
iev
ab
le
ef
f
ec
tiv
e
SE
o
f
a
m
ass
iv
e
MI
MO
s
y
s
tem
was
a
n
aly
ze
d
b
y
C
h
en
an
d
Z
h
an
g
[
1
3
]
.
I
n
[
1
4
]
,
an
an
t
c
o
lo
n
y
o
p
tim
izatio
n
r
o
u
tin
g
al
g
o
r
ith
m
with
win
d
o
w
r
e
d
u
cti
o
n
f
o
r
L
E
O
s
atellite
n
etwo
r
k
s
,
is
p
r
o
p
o
s
ed
to
ac
h
i
ev
e
lo
ad
b
alan
ci
n
g
.
A
3
-
hop
non
-
o
r
th
o
g
o
n
al
m
u
ltip
le
ac
ce
s
s
-
u
n
m
an
n
ed
ae
r
ial
v
eh
icle
(
NOM
A
UAV
)
-
aid
ed
g
r
ee
n
co
m
m
u
n
icatio
n
n
etwo
r
k
f
r
am
ewo
r
k
is
p
r
o
p
o
s
ed
b
y
W
an
g
et
a
l.
[
1
5
]
,
wh
er
e
UAVs
s
er
v
e
as
ae
r
ial
r
e
lay
s
to
s
u
p
p
o
r
t
two
g
r
o
u
p
s
o
f
g
r
o
u
n
d
u
s
er
s
.
I
n
[
1
6
]
,
a
n
o
v
el
r
eso
u
r
ce
allo
ca
tio
n
s
ch
em
e
is
p
r
o
p
o
s
ed
to
m
ax
i
m
ized
th
e
s
u
m
th
r
o
u
g
h
p
u
t
o
f
th
e
wir
eless
-
p
o
wer
e
d
NOM
A
in
ter
n
et
-
of
-
th
in
g
s
(
I
o
T
)
n
etwo
r
k
.
K
h
u
n
tia
et
a
l.
[
1
7
]
f
o
c
u
s
es
to
r
ev
iew
an
d
i
n
tr
o
d
u
ce
to
th
e
tec
h
n
iq
u
es
u
s
ed
f
o
r
e
n
h
an
ce
m
en
t
o
f
th
e
en
er
g
y
e
f
f
icien
cy
g
ain
s
p
r
o
v
id
e
d
b
y
MI
MO
s
y
s
tem
s
,
p
r
o
v
id
in
g
an
o
v
er
v
iew
o
f
MI
MO
tech
n
o
lo
g
y
,
em
p
h
asizin
g
th
e
n
ec
ess
ity
f
o
r
r
ea
lis
tic
p
o
wer
co
n
s
u
m
p
tio
n
m
o
d
els
tailo
r
ed
to
t
h
ese
s
y
s
tem
s
.
Pra
d
h
an
et
a
l.
[
1
8
]
h
as
p
r
o
v
i
d
ed
an
e
v
alu
at
io
n
o
f
latest
tr
en
d
s
in
a
v
a
r
i
o
u
s
o
f
D2
D
d
o
m
ain
n
a
m
es,
aid
allo
ca
tio
n
an
d
o
p
tim
izatio
n
f
o
r
D2
D
p
ac
k
a
g
es
f
o
r
5
G
tech
n
o
lo
g
ies
an
d
th
e
in
v
en
tio
n
tech
n
iq
u
e
f
o
r
s
u
s
tain
ab
le
v
er
b
al
ex
ch
an
g
e
in
5
G
co
m
m
u
n
ity
with
ef
f
ec
tiv
e
u
s
ag
e
o
f
en
er
g
y
.
Kh
an
an
d
Pes
ch
[
1
9
]
h
a
v
e
in
v
esti
g
ated
th
e
p
er
f
o
r
m
an
ce
o
f
two
MI
MO
p
r
ec
o
d
in
g
tech
n
iq
u
es
in
ter
m
s
o
f
ac
h
ie
v
ab
le
s
u
m
r
ates
f
o
r
m
ass
iv
e
MI
MO
.
Nata
r
aju
et
a
l.
[
2
0
]
p
r
o
v
i
d
es
an
o
v
er
v
iew
o
f
th
e
o
p
p
o
r
tu
n
ities
,
ch
allen
g
es,
an
d
b
en
ef
i
ts
o
f
th
e
5
G
-
I
o
T
ec
o
s
y
s
tem
to
war
d
th
e
s
u
s
tain
ab
le
d
ev
elo
p
m
en
t
o
f
g
r
ee
n
s
m
ar
t
cities
(
GSC
)
.
T
o
tack
le
t
h
e
ce
llu
lar
n
etwo
r
k
s
en
er
g
y
ef
f
icie
n
cy
is
s
u
e,
T
iwar
i
et
a
l.
[
2
1
]
in
v
esti
g
ates
en
er
g
y
ef
f
icie
n
cy
in
D2
D
-
en
a
b
led
h
eter
o
g
e
n
eo
u
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
14
,
No
.
6
,
Dec
em
b
e
r
20
24
:
6
3
8
0
-
6
3
8
8
6382
ce
llu
lar
n
etwo
r
k
s
.
T
o
e
f
f
ec
ti
v
ely
im
p
r
o
v
e
th
e
u
s
er
e
x
p
er
ien
ce
,
W
an
g
et
a
l.
[
2
2
]
h
as
p
r
o
p
o
s
ed
a
n
o
v
el
ap
p
r
o
ac
h
,
wh
ich
em
b
r
ac
es
r
e
s
o
u
r
ce
allo
ca
tio
n
an
d
p
o
wer
co
n
tr
o
l
alo
n
g
with
d
ee
p
r
ein
f
o
r
ce
m
en
t
lear
n
in
g
(
DR
L
)
f
o
r
5
G
c
o
m
m
u
n
icatio
n
n
etwo
r
k
.
I
n
[
2
3
]
,
h
ig
h
lig
h
tin
g
at
th
e
p
r
o
b
lem
o
f
h
ig
h
e
n
er
g
y
co
n
s
u
m
p
tio
n
an
d
im
p
r
o
v
e
d
q
u
ality
o
f
s
er
v
ice
d
em
an
d
s
b
y
th
e
D2
D
u
s
er
s
,
th
is
p
ap
er
p
r
o
p
o
s
es
a
n
o
v
el
s
ch
em
e
to
ef
f
ec
ti
v
ely
im
p
r
o
v
e
t
h
e
u
s
er
f
air
n
ess
an
d
s
atis
f
ac
tio
n
b
ased
o
n
th
e
u
s
er
g
r
o
u
p
in
g
in
t
o
clu
s
ter
s
.
San
g
ee
th
a
et
a
l.
[
2
4
]
p
r
o
p
o
s
e
d
a
n
o
v
el
en
e
r
g
y
-
awa
r
e
s
ch
ed
u
lin
g
m
o
d
el
th
at
tak
es
in
to
c
o
n
s
id
er
atio
n
th
e
s
p
ec
if
ic
ch
ar
ac
ter
is
tics
o
f
5
G
g
r
ee
n
co
m
m
u
n
icatio
n
s
y
s
tem
s
,
to
ad
d
r
ess
th
e
c
h
allen
g
es
o
f
ac
h
iev
in
g
o
p
tim
al
r
eso
u
r
ce
u
tili
za
tio
n
an
d
m
in
im
izin
g
en
e
r
g
y
co
n
s
u
m
p
tio
n
in
t
h
ese
s
y
s
tem
s
.
I
n
[
2
5
]
,
as
o
p
tim
izatio
n
o
f
en
er
g
y
ef
f
icien
c
y
h
as
th
u
s
b
ec
o
m
e
a
m
ajo
r
ch
allen
g
e
f
o
r
th
i
s
n
ew
g
e
n
er
atio
n
co
m
m
u
n
icat
io
n
s
y
s
tem
,
s
ev
e
r
al
s
tr
ateg
ies
ar
e
u
tili
ze
d
to
im
p
r
o
v
e
en
er
g
y
ef
f
icien
cy
.
T
h
is
ar
ticle
p
r
esen
ts
a
r
ev
iew
an
d
a
co
m
p
ar
ativ
e
an
al
y
s
is
o
f
th
ese
d
if
f
er
e
n
t
s
tr
ateg
ies,
th
o
s
e
r
elatin
g
to
th
e
b
ase
s
tatio
n
,
th
e
o
r
g
an
izatio
n
o
f
th
e
n
etwo
r
k
,
s
o
f
twar
e
d
ef
in
ed
n
etwo
r
k
s
a
n
d
t
h
o
s
e
b
ased
o
n
m
ac
h
in
e
lea
r
n
in
g
.
Pr
em
lath
a
et
a
l.
[
2
6
]
h
as
in
tr
o
d
u
ce
d
an
o
p
tim
ize
d
n
atu
r
e
-
b
ased
clu
s
ter
s
leep
tec
h
n
iq
u
e
to
r
e
d
u
ce
t
h
e
p
o
wer
c
o
n
s
u
m
p
tio
n
in
th
e
b
ase
s
tatio
n
an
d
in
th
e
n
etwo
r
k
u
s
in
g
Fire
f
ly
alg
o
r
ith
m
,
wh
ic
h
b
en
ef
ited
th
e
s
y
s
tem
to
im
p
r
o
v
e
c
o
n
n
ec
tiv
ity
am
o
n
g
th
e
b
ase
s
tatio
n
s
in
an
en
er
g
y
-
ef
f
icien
t
wa
y
.
A
5
G
n
etwo
r
k
is
a
d
y
n
am
ic
s
y
s
tem
a
n
d
c
o
n
s
u
m
es
en
e
r
g
y
co
n
tin
u
o
u
s
ly
in
r
esp
o
n
s
e
t
o
s
p
ik
es
in
n
etwo
r
k
ac
tiv
ities
.
Ma
jo
r
co
n
s
u
m
p
tio
n
o
f
en
er
g
y
is
d
u
e
to
elem
en
ts
at
b
ase
s
tatio
n
s
,
an
ten
n
as
an
d
r
ad
io
u
n
its
.
I
n
th
e
ar
ea
s
s
u
c
h
as
b
ac
k
h
au
l,
co
r
e
c
o
o
lin
g
an
d
co
m
p
u
tin
g
p
r
o
ce
s
s
es,
th
er
e
is
a
s
co
p
e
f
o
r
im
p
r
o
v
em
e
n
t
o
f
5
G
en
er
g
y
ef
f
icien
cy
.
T
h
e
I
C
T
in
d
u
s
tr
y
is
r
esp
o
n
s
ib
le
f
o
r
a
r
o
u
n
d
4
%
o
f
th
e
co
n
s
u
m
p
tio
n
o
f
th
e
wo
r
ld
’
s
elec
tr
icity
.
W
ith
5
G
p
r
o
jecte
d
t
o
in
cr
ea
s
e
c
ap
ac
ity
u
p
to
1
,
0
0
0
f
o
ld
s
a
n
d
h
i
g
h
f
r
eq
u
en
c
y
m
illi
m
eter
wav
e
(
m
m
W
av
e)
tr
an
s
m
is
s
io
n
d
r
iv
in
g
e
x
p
o
n
en
tially
h
ig
h
er
ce
ll
d
en
s
ity
,
th
i
s
p
er
ce
n
tag
e
co
u
ld
ex
ce
ed
ar
o
u
n
d
2
0
%
b
y
2
0
3
0
.
T
h
u
s
,
in
co
r
p
o
r
atin
g
m
ac
h
in
e
lear
n
in
g
tec
h
n
iq
u
es
with
5
G
n
etwo
r
k
wo
u
ld
b
e
b
en
ef
icial
in
ac
h
ie
v
in
g
a
n
im
p
r
o
v
em
e
n
t
in
s
p
ec
tr
al
an
d
en
er
g
y
ef
f
icien
cy
f
o
r
5
G
c
o
m
m
u
n
icatio
n
n
etwo
r
k
s
teer
in
g
th
e
I
C
T
in
d
u
s
tr
y
t
o
war
d
s
g
r
ee
n
e
r
elec
tr
icity
s
o
u
r
ce
s
.
T
o
a
d
d
r
ess
th
e
c
h
allen
g
es
in
ac
h
iev
in
g
th
e
en
er
g
y
e
f
f
icien
cy
f
o
r
5
G
n
etw
o
r
k
,
f
o
llo
win
g
o
b
jectiv
es a
r
e
p
r
esen
ted
in
th
e
ar
ticle:
−
T
o
lo
ca
te
a
ce
r
tain
n
u
m
b
er
o
f
an
ten
n
as
(
n
o
d
es)
in
a
s
p
ec
if
ied
ar
ea
an
d
estab
lis
h
a
co
m
m
u
n
icatio
n
lin
k
b
etwe
en
th
e
n
o
d
es f
o
r
d
ata
tr
a
n
s
m
is
s
io
n
to
tak
es p
lace
.
−
T
o
p
er
f
o
r
m
c
h
an
n
el
esti
m
atio
n
an
d
o
b
tain
q
u
ality
–
of
–
s
er
v
ic
e
(
Qo
S)
p
ar
am
ete
r
s
−
T
o
o
b
s
er
v
e
en
h
a
n
ce
m
en
t in
Q
o
S p
ar
am
eter
s
b
y
ap
p
ly
i
n
g
p
r
o
p
o
s
ed
h
y
b
r
id
alg
o
r
ith
m
.
−
T
o
ass
ess
h
o
w
well
s
u
g
g
ested
alg
o
r
ith
m
p
e
r
f
o
r
m
s
in
ter
m
s
o
f
en
er
g
y
an
d
s
p
ec
tr
al
ef
f
icien
c
y
ca
lcu
latio
n
s
.
T
h
u
s
,
th
e
p
ap
er
claim
s
f
o
llo
win
g
co
n
tr
ib
u
tio
n
s
o
win
g
to
in
teg
r
atio
n
o
f
5
G
n
etwo
r
k
with
m
ac
h
in
e
lear
n
in
g
tech
n
iq
u
es:
−
L
o
ca
tin
g
d
if
f
er
e
n
t
n
u
m
b
e
r
o
f
an
ten
n
as
in
a
1
0
0
0
×
1
0
0
0
m
a
r
ea
an
d
u
s
in
g
ad
-
h
o
c
d
is
tan
ce
v
ec
to
r
r
o
u
tin
g
(
AODV
)
r
o
u
tin
g
s
ch
em
e
to
s
e
tu
p
co
m
m
u
n
icatio
n
lin
k
b
etwe
en
s
o
u
r
ce
to
d
esti
n
atio
n
n
o
d
e.
−
B
y
p
er
f
o
r
m
in
g
ch
an
n
el
esti
m
atio
n
at
r
ec
eiv
i
n
g
e
n
d
o
b
tain
a
d
ataset
co
n
tai
n
in
g
p
ar
am
et
er
s
s
u
ch
as
b
it
er
r
o
r
r
at
e
(
B
E
R
)
,
th
r
o
u
g
h
p
u
t a
n
d
m
ea
n
s
q
u
ar
e
er
r
o
r
(
MSE
)
.
−
Ap
p
ly
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
i.e
.
ar
tific
ial
b
ee
co
lo
n
y
(
AB
C
)
with
ar
tific
ial
n
eu
r
al
n
etwo
r
k
(
ANN)
to
o
p
tim
ize
an
d
tr
ai
n
th
e
n
etwo
r
k
an
d
o
b
tain
en
h
an
ce
m
en
t i
n
Q
o
S p
ar
am
eter
s
.
−
C
o
m
p
ar
e
th
e
v
alu
es
o
f
Qo
S
p
ar
am
eter
s
b
e
f
o
r
e
a
n
d
a
f
ter
ap
p
ly
in
g
p
r
o
p
o
s
ed
alg
o
r
ith
m
an
d
ca
lc
u
late
s
p
ec
tr
al
ef
f
icien
cy
(
SE)
a
n
d
e
n
er
g
y
e
f
f
icien
cy
(
E
E
)
tak
i
n
g
i
n
to
ac
co
u
n
t d
if
f
e
r
en
t n
u
m
b
er
o
f
n
o
d
es.
2.
M
E
T
H
O
D
Fig
u
r
e
1
s
h
o
ws
th
e
im
p
lem
en
t
atio
n
f
lo
w
o
f
th
e
p
r
o
p
o
s
ed
s
y
s
tem
.
T
h
e
p
r
o
p
o
s
ed
s
o
lu
tio
n
is
d
esig
n
ed
in
to
two
s
eg
m
en
ts
in
wh
ich
t
h
e
f
ir
s
t
s
eg
m
en
t
is
u
s
ed
f
o
r
d
ep
lo
y
in
g
a
co
m
m
u
n
icatio
n
n
e
two
r
k
an
d
p
er
f
o
r
m
ch
an
n
el
esti
m
atio
n
.
I
n
th
e
s
ec
o
n
d
s
eg
m
e
n
t,
m
ac
h
in
e
lear
n
in
g
tech
n
iq
u
e
is
u
s
ed
to
o
p
tim
ize
th
e
n
etwo
r
k
.
2
.
1
.
Net
wo
rk
m
o
del
I
n
th
e
f
ir
s
t
s
tag
e
o
f
th
e
s
tu
d
y
,
we
g
en
er
ated
a
d
ataset
co
n
tain
in
g
Qo
S
p
ar
am
ete
r
s
s
u
ch
as
th
r
o
u
g
h
p
u
t,
B
E
R
an
d
MSE
.
Fo
r
o
b
tain
in
g
th
e
d
ataset,
in
itially
we
cr
ea
te
a
n
etwo
r
k
o
f
1
,
000
×
1
,
0
0
0
m
ar
ea
an
d
p
lo
t
r
an
d
o
m
n
u
m
b
er
o
f
a
n
ten
n
as
(
n
o
d
es).
T
o
estab
lis
h
th
e
co
m
m
u
n
icatio
n
lin
k
b
etwe
en
th
e
s
o
u
r
ce
a
n
d
d
esti
n
atio
n
an
ten
n
as
,
we
u
s
e
AODV
s
ch
em
e.
I
n
t
h
e
n
ex
t
s
tag
e,
ch
an
n
el
esti
m
atio
n
is
ca
r
r
ied
o
u
t
to
u
n
d
e
r
s
tan
d
an
d
an
aly
ze
th
e
co
m
m
u
n
icatio
n
c
h
an
n
el’
s
p
r
o
p
e
r
ties
.
C
h
an
n
el
esti
m
atio
n
h
elp
s
to
im
p
r
o
v
e
t
h
e
Qo
S
p
a
r
am
eter
s
an
d
d
eter
m
in
e
th
e
o
p
tim
al
co
m
m
u
n
icatio
n
p
at
h
.
T
h
u
s
,
at
th
e
r
ec
eiv
in
g
en
d
ch
an
n
el
esti
m
atio
n
is
p
er
f
o
r
m
e
d
co
n
s
id
er
in
g
8
,
0
0
0
s
u
b
ch
a
n
n
els,
8
n
u
m
b
er
o
f
p
ilo
ts
,
4
th
o
r
d
er
q
u
ad
r
atu
r
e
p
h
ase
s
h
if
t
k
ey
in
g
(
QPSK)
m
o
d
u
latio
n
tech
n
i
q
u
e
o
v
er
c
h
an
n
el
len
g
th
o
f
3
2
f
o
r
1
,
0
0
0
iter
atio
n
s
,
wh
ic
h
in
tu
r
n
g
en
er
ates
a
d
atab
ase
co
n
tain
in
g
Qo
S
p
ar
am
eter
v
a
lu
es.
I
n
5
G
co
m
m
u
n
icatio
n
s
y
s
tem
,
th
e
lar
g
e
n
u
m
b
er
o
f
u
s
er
s
ca
n
u
tili
ze
th
e
f
r
eq
u
e
n
cy
s
p
ec
tr
u
m
af
ter
f
u
lf
i
lm
en
t
o
f
ce
r
tain
o
b
jectiv
es
s
u
ch
as
m
in
im
izin
g
B
E
R
,
m
ax
i
m
izin
g
th
r
o
u
g
h
p
u
t
an
d
m
in
im
izin
g
p
o
wer
co
n
s
u
m
p
tio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
me
n
t o
f e
n
erg
y
a
n
d
s
p
ec
tr
a
l e
fficien
cy
fo
r
mm
-
w
a
ve
b
a
s
ed
…
(
V
is
h
a
k
h
a
Ga
ikw
a
d
)
6383
Fig
u
r
e
1
.
Flo
w
ch
a
r
t o
f
p
r
o
p
o
s
ed
s
y
s
tem
2
.
2
.
P
ro
po
s
ed
m
o
del
T
h
is
is
th
e
s
ec
o
n
d
p
h
ase
o
f
t
h
e
s
tu
d
y
.
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
is
a
co
m
b
in
atio
n
o
f
ar
ti
f
icial
b
ee
co
lo
n
y
(
AB
C
)
alg
o
r
ith
m
an
d
ar
tific
ial
n
eu
r
al
n
etwo
r
k
(
ANN)
.
T
h
e
AB
C
alg
o
r
ith
m
is
r
esp
o
n
s
ib
le
f
o
r
m
ax
im
izin
g
th
e
ac
c
u
r
ac
y
o
f
ea
ch
class
an
d
ANN
is
u
s
ed
to
t
r
ain
t
h
e
s
y
s
tem
.
T
h
e
AB
C
alg
o
r
ith
m
is
th
e
s
war
m
-
b
ased
o
p
tim
izatio
n
al
g
o
r
ith
m
wh
ich
i
n
clu
d
es
f
o
u
r
p
h
ases
.
I
n
th
e
in
itializatio
n
p
h
ase,
th
e
in
itial
f
o
o
d
s
o
u
r
ce
s
ar
e
p
r
o
d
u
ce
d
r
an
d
o
m
l
y
u
s
in
g
ex
p
r
ess
io
n
(
1
)
,
=
+
(
0
,
1
)
∗
(
−
)
(
1
)
w
h
er
e
an
d
ar
e
u
p
p
er
an
d
l
o
wer
b
o
u
n
d
o
f
th
e
s
o
lu
tio
n
s
p
ac
e
o
f
th
e
o
b
jectiv
e
f
u
n
cti
o
n
.
Nex
t
is
th
e
E
m
p
lo
y
ed
b
ee
p
h
ase,
in
wh
ich
th
e
n
eig
h
b
o
r
f
o
o
d
is
ev
alu
ated
b
y
u
s
in
g
(
2
)
,
=
+
ф
(
+
)
(
2
)
wh
er
e
is
a
r
an
d
o
m
ly
s
elec
ted
p
ar
am
ete
r
in
d
e
x
,
is
a
r
an
d
o
m
ly
s
elec
ted
f
o
o
d
s
o
u
r
ce
,
ф
is
a
r
an
d
o
m
n
u
m
b
er
with
in
a
r
a
n
g
e
[
-
1
,
1
]
.
T
h
e
f
itn
ess
f
u
n
ctio
n
is
ca
lcu
lated
b
y
u
s
in
g
(
3
)
,
(
)
=
1
1
+
(
)
,
(
)
>
0
(
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
14
,
No
.
6
,
Dec
em
b
e
r
20
24
:
6
3
8
0
-
6
3
8
8
6384
wh
er
e
(
)
is
th
e
o
b
jectiv
e
f
u
n
cti
o
n
v
alu
e
o
f
.
T
h
e
th
ir
d
p
h
ase
is
On
lo
o
k
er
b
ee
p
h
ase,
th
e
q
u
an
tity
o
f
th
e
f
o
o
d
is
ev
alu
ated
b
y
its
p
r
o
f
itab
ilit
y
(
)
u
s
in
g
(
4
)
,
=
(
)
∑
(
)
=
1
(
4
)
wh
er
e
(
)
is
th
e
f
itn
ess
o
f
.
On
lo
o
k
er
b
ee
s
s
ea
r
ch
n
eig
h
b
o
u
r
h
o
o
d
s
o
f
f
o
o
d
s
o
u
r
ce
u
s
in
g
th
e
ex
p
r
ess
io
n
(
2
)
.
I
n
th
e
f
o
u
r
t
h
p
h
ase,
s
co
u
t
b
ee
p
ah
s
e,
th
e
n
ew
s
o
lu
tio
n
s
ar
e
r
an
d
o
m
ly
s
ea
r
ch
ed
b
y
th
e
s
co
u
t
b
ee
s
u
s
in
g
(
1
)
.
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
s
ele
cts
th
e
b
est
s
u
itab
le
b
ee
s
ag
ain
s
t
ea
ch
class
d
ef
in
e
d
a
n
d
p
ass
es
to
L
ev
en
b
er
g
o
r
ien
ted
f
ee
d
f
o
r
war
d
b
ac
k
p
r
o
p
ag
atio
n
n
eu
r
al
n
etwo
r
k
s
(
FF
B
PNN)
.
T
h
e
n
etwo
r
k
tr
ain
s
th
e
s
y
s
tem
with
1
0
lay
er
s
o
f
p
r
o
p
ag
atio
n
a
n
d
1
0
0
p
r
o
p
ag
atio
n
e
p
o
ch
s
.
L
e
v
en
b
e
r
g
is
a
g
r
a
d
ien
t
o
r
ien
ted
,
s
ig
m
o
id
b
ased
tr
ain
in
g
m
o
d
el
wh
ic
h
p
r
o
p
ag
ates in
a
b
ac
k
war
d
d
ir
ec
tio
n
to
attain
m
i
n
im
u
m
m
ea
n
s
q
u
ar
ed
er
r
o
r
.
2.
RE
SU
L
T
S
AND
D
I
SCU
SS
I
O
N
T
h
e
aim
is
to
s
tu
d
y
th
e
en
er
g
y
an
d
s
p
ec
tr
al
p
er
f
o
r
m
a
n
ce
o
f
th
e
s
y
s
tem
.
E
n
e
r
g
y
ef
f
icien
c
y
d
escr
ib
es
h
o
w
m
u
ch
en
e
r
g
y
is
co
n
s
u
m
e
d
p
er
r
ec
eiv
ed
in
f
o
r
m
atio
n
b
it
,
m
ea
s
u
r
ed
in
b
its
/jo
u
les.
Sp
ec
tr
u
m
ef
f
icien
cy
is
th
e
am
o
u
n
t
o
f
tr
a
n
s
m
itted
d
at
a
o
v
er
a
g
iv
en
s
p
ec
tr
u
m
with
th
e
m
in
im
u
m
n
u
m
b
er
o
f
e
r
r
o
r
s
.
T
h
e
s
im
u
latio
n
r
esu
lts
d
em
o
n
s
tr
ate
th
e
r
esp
o
n
s
e
o
f
B
E
R
,
th
r
o
u
g
h
p
u
t
,
MSE
,
p
o
wer
co
n
s
u
m
p
tio
n
,
an
d
r
o
u
tin
g
o
v
er
h
ea
d
f
o
r
a
r
an
g
e
o
f
SNR
v
alu
es
r
an
g
in
g
f
r
o
m
5
to
2
5
d
B
f
o
r
d
if
f
er
en
t
n
u
m
b
er
s
o
f
n
o
d
es
p
lace
d
in
a
1
,
000
×
1
,
0
0
0
m
ar
ea
.
E
ac
h
p
a
r
am
eter
is
an
aly
ze
d
i
n
two
d
if
f
er
e
n
t
c
o
n
d
itio
n
s
:
wh
en
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
i
s
n
o
t
a
p
p
lied
,
i.e
.
,
with
o
u
t o
p
tim
izatio
n
,
an
d
w
h
e
n
th
e
p
r
o
p
o
s
ed
al
g
o
r
ith
m
is
ap
p
lied
,
i.e
.
,
with
o
p
tim
izatio
n
.
3
.
1
.
Sim
ula
t
io
n
re
s
ults wit
h d
if
f
er
ent
nu
m
ber
o
f
no
des
T
h
e
g
r
ap
h
ical
r
ep
r
esen
tatio
n
o
f
th
e
ab
o
v
e
r
esu
lts
f
o
r
d
if
f
e
r
en
t
p
a
r
am
eter
s
is
s
h
o
wn
i
n
F
ig
u
r
e
2
.
Fig
u
r
e
2
(
a
)
s
h
o
ws
t
h
e
p
o
s
itio
n
in
g
o
f
8
0
an
ten
n
as,
wh
ich
a
r
e
p
lace
d
r
an
d
o
m
ly
in
a
1
,
0
0
0
×
1
,
0
0
0
m
ar
ea
.
I
t
s
h
o
ws
th
e
co
m
m
u
n
icatio
n
p
at
h
s
et
b
etwe
en
t
h
e
s
o
u
r
ce
an
d
d
esti
n
atio
n
an
ten
n
as,
estab
lis
h
ed
with
th
e
h
elp
o
f
th
e
AODV
r
o
u
tin
g
p
r
o
to
co
l.
Fig
u
r
e
2
(
b
)
d
em
o
n
s
tr
ates
t
h
at
f
o
r
a
n
etwo
r
k
with
8
0
n
o
d
es,
th
e
p
o
we
r
co
n
s
u
m
p
tio
n
is
r
e
d
u
ce
d
wh
e
n
th
e
p
r
o
p
o
s
ed
o
p
tim
izatio
n
al
g
o
r
ith
m
is
u
s
ed
.
T
h
e
aim
b
eh
in
d
th
is
s
tu
d
y
is
to
m
ax
im
ize
th
e
e
n
er
g
y
ef
f
icien
c
y
o
f
th
e
co
m
m
u
n
icatio
n
n
etw
o
r
k
,
f
o
r
wh
ich
th
e
p
o
wer
co
n
s
u
m
p
tio
n
s
h
o
u
ld
b
e
as lo
w
as p
o
s
s
ib
le.
Fig
u
r
e
2
(
c
)
s
h
o
ws
th
at
th
e
v
alu
e
o
f
MSE
wh
en
th
e
o
p
tim
izatio
n
alg
o
r
ith
m
is
ap
p
lied
is
less
th
an
wh
en
th
e
o
p
tim
izatio
n
alg
o
r
it
h
m
is
n
o
t a
p
p
lied
.
I
d
ea
lly
,
th
e
v
alu
e
o
f
th
e
m
ea
n
s
q
u
ar
e
er
r
o
r
(
MSE
)
is
ex
p
ec
ted
to
b
e
as
lo
w
as
p
o
s
s
ib
le,
as
it
s
ig
n
if
ies
b
etter
ac
cu
r
ac
y
o
f
th
e
p
r
ed
ictiv
e
m
o
d
el.
I
t
is
th
e
m
etr
ic
th
at
in
d
icate
s
th
e
er
r
o
r
s
b
etwe
en
th
e
ac
tu
al
an
d
p
r
e
d
icted
v
alu
es
f
o
r
ea
ch
d
ata
p
o
in
t.
Fig
u
r
e
2
(
d
)
d
em
o
n
s
tr
ates
th
e
p
er
f
o
r
m
an
ce
o
f
th
r
o
u
g
h
p
u
t
w
ith
r
esp
ec
t
to
th
e
ch
an
g
e
in
SNR
.
I
t
s
h
o
ws
im
p
r
o
v
em
en
ts
in
th
r
o
u
g
h
p
u
t
wh
e
n
o
p
tim
izatio
n
is
p
er
f
o
r
m
ed
,
wh
ich
in
d
icate
s
th
e
m
ax
im
izatio
n
o
f
th
e
u
s
er
’
s
d
ata.
I
n
g
en
er
al
,
th
e
v
alu
e
o
f
B
E
R
s
h
o
u
ld
b
e
1
0
-
3
f
o
r
a
wir
eless
co
m
m
u
n
icatio
n
s
y
s
tem
,
wh
ich
in
d
icate
s
b
etter
tr
an
s
m
is
s
io
n
ac
cu
r
ac
y
a
n
d
h
i
g
h
er
d
ata
in
te
g
r
ity
.
Fig
u
r
e
2
(
e
)
d
em
o
n
s
tr
ates
th
at
th
e
v
alu
e
o
f
B
E
R
wh
en
th
e
o
p
tim
izatio
n
al
g
o
r
ith
m
is
u
s
ed
is
less
th
an
wh
en
th
e
o
p
tim
izatio
n
alg
o
r
ith
m
is
n
o
t
u
s
ed
.
T
o
ac
h
iev
e
im
p
r
o
v
em
e
n
t
in
s
p
ec
tr
al
e
f
f
ici
en
cy
,
t
h
e
v
al
u
e
o
f
B
E
R
h
as
to
b
e
m
in
im
ized
.
T
h
e
ef
f
icien
tl
y
u
tili
ze
d
s
p
ec
tr
u
m
h
as
a
lo
w
B
E
R
v
alu
e
with
m
in
im
u
m
er
r
o
r
s
o
n
t
h
e
r
ec
eiv
e
r
s
id
e.
R
o
u
tin
g
o
v
er
h
ea
d
r
ef
e
r
s
to
th
e
ad
d
itio
n
a
l
d
ata,
tim
e,
an
d
p
r
o
ce
s
s
in
g
r
eq
u
ir
ed
to
m
a
n
ag
e
th
e
r
o
u
tin
g
i
n
f
o
r
m
atio
n
o
f
a
co
m
m
u
n
icatio
n
n
etwo
r
k
.
As
s
ee
n
f
r
o
m
Fig
u
r
e
2
(
f
)
,
th
e
r
o
u
tin
g
o
v
er
h
ea
d
r
eq
u
i
r
ed
wh
en
o
p
ti
m
izatio
n
is
p
er
f
o
r
m
e
d
is
less
th
an
th
e
co
n
d
itio
n
with
o
u
t
o
p
tim
izatio
n
.
I
n
a
s
i
m
ilar
way
,
th
e
r
esp
o
n
s
es
o
f
p
ar
am
eter
s
s
u
ch
as
B
E
R
,
th
r
o
u
g
h
p
u
t,
MSE
,
p
o
wer
co
n
s
u
m
p
tio
n
,
an
d
r
o
u
tin
g
o
v
e
r
h
ea
d
ca
n
b
e
o
b
tain
ed
f
o
r
d
if
f
er
en
t
n
u
m
b
er
s
o
f
n
o
d
es.
T
ab
l
es
1
,
2
,
an
d
3
s
h
o
w
th
e
s
im
u
latio
n
r
esu
lts
f
o
r
8
0
,
1
0
0
,
an
d
1
5
0
n
o
d
es,
r
esp
ec
tiv
el
y
.
2
.
2
.
E
nerg
y
ef
f
iciency
ca
lcula
t
io
n r
esu
lt
s
T
ab
les
1
,
2
,
an
d
3
d
em
o
n
s
tr
a
te
th
e
p
er
f
o
r
m
a
n
ce
o
f
v
a
r
io
u
s
p
ar
am
eter
s
s
u
ch
as
B
E
R
,
M
SE,
p
o
wer
co
n
s
u
m
p
tio
n
,
th
r
o
u
g
h
p
u
t,
an
d
r
o
u
tin
g
o
v
er
h
ea
d
m
ea
s
u
r
e
d
u
n
d
er
two
d
if
f
e
r
en
t
co
n
d
i
tio
n
s
,
i.e
.
,
with
o
u
t
o
p
tim
izatio
n
p
er
f
o
r
m
e
d
an
d
with
o
p
tim
izatio
n
p
er
f
o
r
m
e
d
.
Acc
o
r
d
in
g
ly
,
T
ab
le
4
s
h
o
ws
th
e
p
er
ce
n
tag
e
im
p
r
o
v
em
e
n
t
in
E
E
an
d
SE
b
y
tak
in
g
in
to
ac
co
u
n
t
b
o
th
c
o
n
d
itio
n
s
.
T
h
e
E
E
is
co
m
p
u
ted
d
ep
en
d
in
g
o
n
th
e
p
o
wer
co
n
s
u
m
p
tio
n
v
alu
es,
an
d
th
e
SE
is
co
m
p
u
ted
u
s
in
g
B
E
R
v
alu
es.
Ma
x
im
izin
g
SE
an
d
EE
wh
ile
m
ain
tain
in
g
q
u
ality
o
f
s
er
v
ice
is
a
to
p
p
r
i
o
r
ity
f
o
r
n
ex
t
-
g
e
n
er
atio
n
wir
eless
n
etwo
r
k
s
.
Ho
wev
er
,
th
e
r
e
is
a
n
o
tab
le
tr
ad
e
-
o
f
f
w
h
en
o
p
tim
izin
g
b
o
th
SE
an
d
E
E
p
ar
am
ete
r
s
s
im
u
ltan
eo
u
s
ly
.
T
ab
le
4
s
h
o
ws th
at
wh
en
th
er
e
is
im
p
r
o
v
em
en
t
in
E
E
,
SE
d
e
cr
ea
s
es,
an
d
v
ice
v
er
s
a.
T
h
e
m
ax
im
u
m
E
E
ac
h
ie
v
ed
is
3
4
%,
an
d
th
e
m
ax
im
u
m
th
e
m
ax
im
u
m
SE
ac
h
iev
ed
is
3
6
%.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
me
n
t o
f e
n
erg
y
a
n
d
s
p
ec
tr
a
l e
fficien
cy
fo
r
mm
-
w
a
ve
b
a
s
ed
…
(
V
is
h
a
k
h
a
Ga
ikw
a
d
)
6385
(
a)
(
b
)
(
c)
(
d
)
(
e)
(f)
Fig
u
r
e
2
.
Simu
latio
n
r
esu
lts
f
o
r
1
5
0
n
o
d
es in
a
n
etwo
r
k
(
a)
c
o
m
m
u
n
icatio
n
s
ce
n
ar
io
with
8
0
n
o
d
es
,
(
b
)
p
o
wer
co
n
s
u
m
p
tio
n
v
s
SNR
,
(
c)
MSE
v
s
SNR
,
(
d
)
th
r
o
u
g
h
p
u
t
v
s
S
NR
,
(
e)
b
it e
r
r
o
r
r
ate
v
s
SNR
,
an
d
(
f
)
r
o
u
tin
g
o
v
er
h
ea
d
v
s
SNR
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
14
,
No
.
6
,
Dec
em
b
e
r
20
24
:
6
3
8
0
-
6
3
8
8
6386
T
ab
le
1
.
Simu
latio
n
r
esu
lts
f
o
r
8
0
n
o
d
es in
a
n
etwo
r
k
Q
o
S
p
a
r
a
m
e
t
e
r
s
S
i
g
n
a
l
-
to
-
n
o
i
s
e
r
a
t
i
o
(
dB
)
5
10
15
20
25
B
ER
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
2
8
0
.
1
4
6
0
.
0
4
0
.
0
1
6
0
.
0
0
3
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
2
8
0
.
1
2
7
0
.
0
3
0
.
0
1
2
0
.
0
0
2
Th
r
o
u
g
h
p
u
t
*
1
0
0
M
b
p
s
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
4
3
0
.
6
6
0
.
8
2
0
.
8
5
1
.
0
0
5
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
1
.
1
2
9
1
.
1
3
4
1
.
1
3
5
1
.
1
8
4
1
.
2
M
S
E
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
6
4
0
.
5
0
.
0
6
0
.
0
3
0
.
0
4
3
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
5
0
.
4
3
0
.
0
4
0
.
0
2
0
.
0
3
P
o
w
e
r
c
o
n
su
mp
t
i
o
n
(
W
a
t
t
s)
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
6
3
3
.
4
7
2
5
.
3
2
1
7
1
.
9
8
2
5
5
7
.
5
2
5
6
3
4
.
9
6
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
3
9
1
.
1
5
6
6
.
9
1
6
8
7
.
9
6
2
2
2
0
.
9
9
3
9
8
8
.
1
7
R
o
u
t
i
n
g
o
v
e
r
h
e
a
d
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
1
2
3
0
.
0
4
6
0
.
0
6
3
0
.
1
2
6
0
.
1
2
8
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
0
9
0
.
0
3
2
0
.
0
4
9
0
.
0
7
9
0
.
1
1
T
ab
le
2
.
Simu
latio
n
r
esu
lts
f
o
r
1
0
0
n
o
d
es in
a
n
etwo
r
k
Q
o
S
p
a
r
a
m
e
t
e
r
s
S
i
g
n
a
l
-
to
-
n
o
i
s
e
r
a
t
i
o
(
dB
)
5
10
15
20
25
B
ER
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
2
8
0
.
1
1
1
0
.
0
6
3
0
.
0
3
2
0
.
0
1
2
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
2
1
0
.
0
9
1
0
.
0
3
6
0
.
0
1
8
0
.
0
0
6
Th
r
o
u
g
h
p
u
t
*
1
0
0
M
b
p
s
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
5
6
0
.
3
2
0
.
3
2
0
.
7
3
0
.
9
2
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
1
.
1
3
1
.
1
3
1
.
1
4
1
.
6
7
1
.
2
1
M
S
E
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
8
1
0
.
3
6
0
.
1
4
0
.
0
4
0
.
0
1
3
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
5
7
0
.
3
0
.
0
8
0
.
0
2
5
0
.
0
0
6
7
P
o
w
e
r
c
o
n
su
mp
t
i
o
n
(
W
a
t
t
s)
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
1
6
3
6
.
9
5
2
0
7
6
.
3
2
1
3
5
9
8
.
6
1
5
3
3
8
.
9
1
8
1
7
5
.
8
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
9
5
1
.
3
9
8
1
7
1
7
.
7
3
7
8
6
3
.
9
8
7
9
2
5
.
2
6
1
3
0
1
8
.
5
R
o
u
t
i
n
g
o
v
e
r
h
e
a
d
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
1
5
0
.
0
4
6
0
.
0
9
1
0
.
1
7
9
0
.
2
4
8
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
1
0
.
0
3
8
0
.
0
4
7
0
.
1
0
4
0
.
1
4
5
T
ab
le
3
.
Simu
latio
n
r
esu
lts
f
o
r
1
5
0
n
o
d
es in
a
n
etwo
r
k
Q
o
S
p
a
r
a
m
e
t
e
r
s
S
i
g
n
a
l
-
to
-
n
o
i
s
e
r
a
t
i
o
(
dB
)
5
10
15
20
25
B
ER
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
4
3
0
.
1
2
8
0
.
0
2
2
0
.
0
0
9
7
0
.
0
0
9
2
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
2
3
0
.
0
9
0
.
0
2
1
0
.
0
0
7
5
0
.
0
0
4
8
Th
r
o
u
g
h
p
u
t
*
1
0
0
M
b
p
s
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
9
7
0
.
1
5
5
0
.
7
0
9
0
.
8
0
9
1
.
0
6
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
1
.
1
2
9
1
.
1
3
1
.
1
3
7
1
.
1
5
6
1
.
2
2
M
S
E
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
1
.
3
2
5
0
.
2
7
0
.
0
7
2
0
.
0
0
1
4
0
.
0
2
2
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
7
0
7
0
.
1
9
5
0
.
0
7
2
0
.
0
0
1
1
0
.
0
1
2
P
o
w
e
r
c
o
n
su
mp
t
i
o
n
(
W
a
t
t
s)
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
9
0
6
.
2
2
6
6
2
.
9
6
9
4
7
2
.
5
4
9
8
1
5
.
1
8
2
5
7
8
4
.
1
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
4
8
3
.
9
3
1
9
2
0
.
3
7
7
3
7
9
.
9
7
9
2
0
1
.
7
8
1
3
4
7
3
.
5
R
o
u
t
i
n
g
o
v
e
r
h
e
a
d
W
i
t
h
o
u
t
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
2
3
0
.
0
2
4
0
.
0
2
5
0
.
1
1
3
0
.
1
7
8
W
i
t
h
o
p
t
i
m
i
z
a
t
i
o
n
0
.
0
1
7
0
.
0
1
9
0
.
0
2
3
0
.
0
5
9
0
.
9
5
T
ab
le
4
.
E
n
er
g
y
ef
f
icien
c
y
(
E
E
)
an
d
s
p
ec
tr
al
e
f
f
icien
cy
(
SE)
f
o
r
8
0
,
1
0
0
,
an
d
1
5
0
n
o
d
es
N
o
d
e
s
S
N
R
EE
(
%)
S
E
(
%)
80
5
38
25
10
22
13
15
22
25
20
13
25
25
29
33
A
v
e
r
a
g
e
25
24
1
0
0
5
42
25
10
17
18
15
42
43
20
43
44
25
28
50
A
v
e
r
a
g
e
34
36
1
5
0
5
44
45
10
28
30
15
22
25
20
26
23
25
46
42
A
v
e
r
a
g
e
33
33
4.
CO
NCLU
SI
O
N
I
n
th
is
ar
ticle,
we
p
r
esen
t
a
n
o
v
el
h
y
b
r
id
s
war
m
-
b
ased
m
ac
h
in
e
lear
n
i
n
g
alg
o
r
ith
m
with
th
e
p
er
s
p
ec
tiv
e
o
f
o
p
tim
izin
g
a
w
ir
eless
n
etwo
r
k
f
o
r
e
n
h
an
ce
m
en
t
in
b
o
t
h
E
E
a
n
d
SE.
W
e
p
r
esen
ted
an
an
aly
s
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
me
n
t o
f e
n
erg
y
a
n
d
s
p
ec
tr
a
l e
fficien
cy
fo
r
mm
-
w
a
ve
b
a
s
ed
…
(
V
is
h
a
k
h
a
Ga
ikw
a
d
)
6387
o
f
Qo
S
p
ar
a
m
eter
s
u
n
d
er
tw
o
d
if
f
e
r
en
t
co
n
d
itio
n
s
,
i.e
.
,
w
ith
o
u
t
o
p
tim
izatio
n
an
d
with
o
p
tim
izatio
n
.
T
h
is
s
tu
d
y
is
b
ased
o
n
th
e
Qo
S
p
a
r
am
eter
v
alu
es
b
ased
o
n
wh
ic
h
E
E
a
n
d
SE
a
r
e
ca
lcu
lated
.
W
e
h
ig
h
lig
h
ted
t
h
at
th
e
s
y
s
tem
n
o
t
o
n
ly
im
p
r
o
v
es
E
E
an
d
SE
b
u
t
also
s
h
o
ws
a
r
ed
u
ctio
n
i
n
th
e
tr
ad
e
-
o
f
f
b
et
wee
n
th
e
two
.
T
h
e
r
esu
lts
s
h
o
w
th
at,
o
n
av
er
ag
e,
th
e
m
ax
im
u
m
E
E
ac
h
iev
e
d
is
3
4
%
an
d
SE
i
s
3
6
%.
I
m
p
r
o
v
e
m
en
t
in
E
E
in
d
icate
s
less
p
o
wer
co
n
s
u
m
p
tio
n
,
an
d
im
p
r
o
v
em
e
n
t
in
S
E
in
d
icate
s
m
in
im
u
m
tr
an
s
m
is
s
io
n
er
r
o
r
s
in
th
e
r
ec
eiv
ed
s
ig
n
al.
T
h
e
in
cr
ea
s
e
in
en
er
g
y
an
d
s
p
ec
tr
u
m
u
s
e
ef
f
icien
cy
in
5
G
co
m
p
ar
ed
t
o
4
G
is
d
u
e
to
th
e
ad
d
itio
n
o
f
m
o
r
e
an
ten
n
as,
wh
ich
in
tu
r
n
in
cr
ea
s
es
cir
cu
it
p
o
wer
.
Mo
v
in
g
f
o
r
war
d
,
if
it
i
s
p
o
s
s
ib
le
to
lo
wer
cir
cu
it
p
o
wer
th
r
o
u
g
h
m
o
r
e
e
n
er
g
y
-
ef
f
icien
t
m
eth
o
d
s
,
th
e
e
n
er
g
y
ef
f
icien
cy
o
f
g
r
ee
n
p
o
i
n
ts
will
r
is
e,
b
u
t
th
e
s
p
ec
tr
u
m
ef
f
icien
cy
o
f
g
r
ee
n
p
o
in
ts
will
f
all.
I
t
i
s
lik
ely
th
at
th
e
ef
f
icien
cy
o
f
th
e
s
p
ec
tr
u
m
will
s
ig
n
if
ican
tly
im
p
r
o
v
e
in
u
p
c
o
m
in
g
6
G
co
m
m
u
n
icatio
n
s
an
d
b
ey
o
n
d
,
in
d
icatin
g
th
at
th
e
en
er
g
y
ef
f
ici
en
cy
o
f
g
r
ee
n
p
o
in
ts
will
d
ec
r
ea
s
e
ev
en
m
o
r
e,
an
d
th
e
u
s
e
o
f
p
o
wer
will
s
p
ee
d
u
p
.
Sh
o
u
ld
th
e
wir
eless
co
m
m
u
n
icatio
n
s
ec
to
r
ad
o
p
t
t
h
is
p
atter
n
,
th
e
r
esu
lt
in
g
ca
r
b
o
n
em
is
s
io
n
s
will
s
u
r
ely
r
is
e.
T
h
u
s
,
it
i
s
cr
u
cia
l
f
o
r
in
d
u
s
tr
ies
to
o
v
er
co
m
e
th
e
tr
ad
e
-
o
f
f
b
etwe
en
s
p
ec
tr
u
m
an
d
en
e
r
g
y
ef
f
ici
en
cy
,
e
n
h
an
ci
n
g
t
h
e
en
e
r
g
y
ef
f
icien
cy
o
f
s
y
s
tem
s
wh
ile
k
ee
p
in
g
t
h
e
s
p
ec
tr
u
m
e
f
f
icien
cy
h
ig
h
.
So
,
in
c
o
r
p
o
r
atin
g
n
ewly
in
tr
o
d
u
ce
d
m
ac
h
in
e
l
ea
r
n
in
g
tech
n
iq
u
es
with
ex
is
tin
g
s
y
s
tem
s
co
u
ld
b
e
b
en
ef
icial
f
o
r
f
u
r
th
er
c
o
n
tr
i
b
u
tin
g
to
a
g
r
ee
n
er
s
o
ciety
.
in
f
u
tu
r
e,
f
u
zz
y
lo
g
ic
ar
ch
itectu
r
e
ca
n
b
e
u
tili
ze
d
to
lab
el
th
e
ca
te
g
o
r
ize
d
ata
as
it
ca
n
m
a
n
ag
e
n
u
m
er
ica
l
d
ata
a
n
d
h
an
d
le
th
e
lin
g
u
is
tic
in
f
o
r
m
atio
n
at
th
e
s
am
e
tim
e.
On
th
e
o
th
er
h
a
n
d
,
we
ca
n
also
u
tili
ze
s
war
m
-
b
ased
o
p
tim
izatio
n
alg
o
r
ith
m
s
,
s
u
ch
as
Fire
f
ly
a
lg
o
r
ith
m
f
o
r
b
etter
tu
n
in
g
o
f
th
e
s
y
s
tem
'
s
p
ar
am
eter
s
r
es
u
ltin
g
in
en
h
a
n
ce
d
co
m
m
u
n
icatio
n
th
r
o
u
g
h
p
u
t,
e
n
ab
lin
g
th
e
co
m
m
u
n
icatio
n
s
y
s
tem
to
o
p
er
ate
m
o
r
e
ef
f
icie
n
tly
.
RE
F
E
R
E
NC
E
S
[
1
]
S
.
H
a
n
d
D
.
D
.
R
,
“
E
n
e
r
g
y
e
f
f
i
c
i
e
n
t
a
n
d
e
n
h
a
n
c
e
me
n
t
me
t
h
o
d
s
f
o
r
5
G
t
e
c
h
n
o
l
o
g
y
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
En
g
i
n
e
e
ri
n
g
Re
se
a
rc
h
i
n
El
e
c
t
ro
n
i
c
s
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
E
n
g
i
n
e
e
ri
n
g
,
v
o
l
.
9
,
n
o
.
6
,
p
p
.
8
–
1
7
,
J
u
n
.
2
0
2
2
,
d
o
i
:
1
0
.
3
6
6
4
7
/
i
j
e
r
e
c
e
/
0
9
.
0
6
.
a
0
0
2
.
[
2
]
O
.
S
h
u
r
d
i
,
L
.
R
u
c
i
,
A
.
B
i
b
e
r
a
j
,
a
n
d
G
.
M
e
s
i
,
“
5
G
e
n
e
r
g
y
e
f
f
i
c
i
e
n
c
y
o
v
e
r
v
i
e
w
,
”
E
u
r
o
p
e
a
n
S
c
i
e
n
t
i
f
i
c
J
o
u
r
n
a
l
E
S
J
,
v
o
l
.
1
7
,
n
o
.
3
,
Jan
.
2
0
2
1
,
d
o
i
:
1
0
.
1
9
0
4
4
/
e
sj
.
2
0
2
1
.
v
1
7
n
3
p
3
1
5
.
[
3
]
M
.
A
.
I
n
a
m
d
a
r
a
n
d
H
.
V
.
K
u
m
a
r
a
s
w
a
m
y
,
“
E
n
e
r
g
y
e
f
f
i
c
i
e
n
t
5
G
n
e
t
w
o
r
k
s
:
T
e
c
h
n
i
q
u
e
s
a
n
d
c
h
a
l
l
e
n
g
e
s
,
”
i
n
P
r
o
c
e
e
d
i
n
g
s
-
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
S
m
a
r
t
E
l
e
c
t
r
o
n
i
c
s
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
,
S
e
p
.
2
0
2
0
,
p
p
.
1
3
1
7
–
1
3
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
O
S
E
C
4
9
0
8
9
.
2
0
2
0
.
9
2
1
5
3
6
2
.
[
4
]
D
.
P
a
i
k
a
r
a
y
,
D
.
C
h
h
a
b
r
a
,
S
.
S
h
a
r
m
a
,
S
.
G
o
sw
a
mi
,
H
.
K
.
S
h
a
sh
i
k
a
l
a
,
a
n
d
G
.
Je
t
h
a
v
a
,
“
En
e
r
g
y
e
f
f
i
c
i
e
n
c
y
b
a
s
e
d
l
o
a
d
b
a
l
a
n
c
i
n
g
o
p
t
i
m
i
z
a
t
i
o
n
r
o
u
t
i
n
g
p
r
o
t
o
c
o
l
i
n
5
G
w
i
r
e
l
e
s
s
c
o
mm
u
n
i
c
a
t
i
o
n
n
e
t
w
o
r
k
s
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
C
o
m
m
u
n
i
c
a
t
i
o
n
N
e
t
w
o
rks
a
n
d
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
ri
t
y
,
v
o
l
.
1
4
,
n
o
.
3
,
p
p
.
1
8
7
–
1
9
8
,
D
e
c
.
2
0
2
2
,
d
o
i
:
1
0
.
1
7
7
6
2
/
i
j
c
n
i
s.
v
1
4
i
3
.
5
6
0
5
.
[
5
]
L.
S
b
o
u
i
,
Z
.
R
e
z
k
i
,
A
.
S
u
l
t
a
n
,
a
n
d
M
.
S
.
A
l
o
u
i
n
i
,
“
A
n
e
w
r
e
l
a
t
i
o
n
b
e
t
w
e
e
n
e
n
e
r
g
y
e
f
f
i
c
i
e
n
c
y
a
n
d
sp
e
c
t
r
a
l
e
f
f
i
c
i
e
n
c
y
i
n
w
i
r
e
l
e
ss
c
o
mm
u
n
i
c
a
t
i
o
n
s
s
y
st
e
ms,”
I
EE
E
Wi
rel
e
ss
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
2
6
,
n
o
.
3
,
p
p
.
1
6
8
–
1
7
4
,
J
u
n
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
M
W
C
.
2
0
1
9
.
1
8
0
0
1
6
1
.
[
6
]
M
.
M
i
t
t
a
l
,
R
.
P
.
d
e
P
r
a
d
o
,
Y
.
K
a
w
a
i
,
S
.
N
a
k
a
j
i
ma,
a
n
d
J
.
E.
M
u
ñ
o
z
-
Ex
p
ó
si
t
o
,
“
M
a
c
h
i
n
e
l
e
a
r
n
i
n
g
t
e
c
h
n
i
q
u
e
s
f
o
r
e
n
e
r
g
y
e
f
f
i
c
i
e
n
c
y
a
n
d
a
n
o
ma
l
y
d
e
t
e
c
t
i
o
n
i
n
h
y
b
r
i
d
w
i
r
e
l
e
ss se
n
s
o
r
n
e
t
w
o
r
k
s
,
”
En
e
r
g
i
e
s
,
v
o
l
.
1
4
,
n
o
.
1
1
,
M
a
y
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
4
1
1
3
1
2
5
.
[
7
]
D
.
S
h
a
r
m
a
,
S
.
S
i
n
g
h
a
l
,
A
.
R
a
i
,
a
n
d
A
.
S
i
n
g
h
,
“
A
n
a
l
y
si
s
o
f
p
o
w
e
r
c
o
n
su
mp
t
i
o
n
i
n
st
a
n
d
a
l
o
n
e
5
G
n
e
t
w
o
r
k
a
n
d
e
n
h
a
n
c
e
me
n
t
i
n
e
n
e
r
g
y
e
f
f
i
c
i
e
n
c
y
u
si
n
g
a
n
o
v
e
l
r
o
u
t
i
n
g
p
r
o
t
o
c
o
l
,
”
S
u
st
a
i
n
a
b
l
e
En
e
r
g
y
,
G
ri
d
s
a
n
d
N
e
t
w
o
rks
,
v
o
l
.
2
6
,
Ju
n
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
se
g
a
n
.
2
0
2
0
.
1
0
0
4
2
7
.
[
8
]
S
.
R
o
s
t
a
m
i
,
K
.
H
e
i
s
k
a
,
O
.
P
u
c
h
k
o
,
J.
Ta
l
v
i
t
i
e
,
K
.
L
e
p
p
a
n
e
n
,
a
n
d
M
.
V
a
l
k
a
ma,
“
N
o
v
e
l
w
a
k
e
-
u
p
si
g
n
a
l
i
n
g
f
o
r
e
n
h
a
n
c
e
d
e
n
e
r
g
y
-
e
f
f
i
c
i
e
n
c
y
o
f
5
G
a
n
d
b
e
y
o
n
d
mo
b
i
l
e
d
e
v
i
c
e
s
,
”
D
e
c
.
2
0
1
8
,
d
o
i
:
1
0
.
1
1
0
9
/
G
L
O
C
O
M
.
2
0
1
8
.
8
6
4
8
0
6
2
.
[
9
]
M
.
A
s
l
a
m
,
E
.
U
.
M
u
n
i
r
,
M
.
M
.
R
a
f
i
q
u
e
,
a
n
d
X
.
H
u
,
“
A
d
a
p
t
i
v
e
e
n
e
r
g
y
-
e
f
f
i
c
i
e
n
t
c
l
u
s
t
e
r
i
n
g
p
a
t
h
p
l
a
n
n
i
n
g
r
o
u
t
i
n
g
p
r
o
t
o
c
o
l
s
f
o
r
h
e
t
e
r
o
g
e
n
e
o
u
s
w
i
r
e
l
e
ss
s
e
n
s
o
r
n
e
t
w
o
r
k
s,”
S
u
st
a
i
n
a
b
l
e
C
o
m
p
u
t
i
n
g
:
I
n
f
o
rm
a
t
i
c
s
a
n
d
S
y
st
e
m
s
,
v
o
l
.
1
2
,
p
p
.
5
7
–
7
1
,
D
e
c
.
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
su
s
c
o
m.
2
0
1
6
.
0
9
.
0
0
1
.
[
1
0
]
Y
.
F
.
F
e
n
g
,
S
.
G
.
P
a
n
,
Z
.
Y
.
H
u
a
n
g
,
a
n
d
H
.
C
.
L
i
n
,
“
I
mp
r
o
v
e
m
e
n
t
o
f
e
n
e
r
g
y
e
f
f
i
c
i
e
n
c
y
i
n
w
i
r
e
l
e
ss
se
n
so
r
n
e
t
w
o
r
k
s
u
si
n
g
l
o
w
-
e
n
e
r
g
y
a
d
a
p
t
i
v
e
c
l
u
st
e
r
i
n
g
h
i
e
r
a
r
c
h
y
(
LEA
C
H
)
-
b
a
se
d
e
n
e
r
g
y
b
e
t
w
e
e
n
n
e
ss
mo
d
e
l
,
”
S
e
n
so
rs
a
n
d
M
a
t
e
ri
a
l
s
,
v
o
l
.
3
1
,
n
o
.
9
,
p
p
.
2
6
9
1
–
2
7
0
2
,
S
e
p
.
2
0
1
9
,
d
o
i
:
1
0
.
1
8
4
9
4
/
S
A
M
.
2
0
1
9
.
2
4
0
3
.
[
1
1
]
X
.
Zh
a
n
g
,
H
.
Q
i
,
X
.
Z
h
a
n
g
,
a
n
d
L.
H
a
n
,
“
S
p
e
c
t
r
a
l
e
f
f
i
c
i
e
n
c
y
i
m
p
r
o
v
e
m
e
n
t
a
n
d
p
o
w
e
r
c
o
n
t
r
o
l
o
p
t
i
mi
z
a
t
i
o
n
o
f
massi
v
e
M
I
M
O
n
e
t
w
o
r
k
s,”
I
EEE
Ac
c
e
ss
,
v
o
l
.
9
,
p
p
.
1
1
5
2
3
–
1
1
5
3
2
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
1
.
3
0
5
1
1
7
0
.
[
1
2
]
S
.
P
a
n
d
a
,
“
S
p
e
c
t
r
a
l
e
f
f
i
c
i
e
n
c
y
o
p
t
i
m
i
z
a
t
i
o
n
o
f
m
a
ssi
v
e
M
I
M
O
sy
s
t
e
m
u
n
d
e
r
c
h
a
n
n
e
l
v
a
r
y
i
n
g
c
o
n
d
i
t
i
o
n
s,”
W
i
rel
e
ss
Pe
rs
o
n
a
l
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
1
1
7
,
n
o
.
2
,
p
p
.
1
3
1
9
–
1
3
3
5
,
N
o
v
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
1
2
7
7
-
0
2
0
-
0
7
9
2
4
-
9.
[
1
3
]
L.
C
h
e
n
a
n
d
L
.
Zh
a
n
g
,
“
S
p
e
c
t
r
a
l
e
f
f
i
c
i
e
n
c
y
a
n
a
l
y
si
s
f
o
r
m
a
ssi
v
e
M
I
M
O
sy
s
t
e
m
u
n
d
e
r
Q
o
S
c
o
n
s
t
r
a
i
n
t
:
a
n
e
f
f
e
c
t
i
v
e
c
a
p
a
c
i
t
y
p
e
r
s
p
e
c
t
i
v
e
,
”
M
o
b
i
l
e
N
e
t
w
o
rks
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
2
6
,
n
o
.
2
,
p
p
.
6
9
1
–
6
9
9
,
J
a
n
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
3
6
-
0
1
9
-
0
1
4
1
4
-
4.
[
1
4
]
X
.
D
e
n
g
e
t
a
l
.
,
“
A
n
a
n
t
c
o
l
o
n
y
o
p
t
i
mi
z
a
t
i
o
n
-
b
a
se
d
r
o
u
t
i
n
g
a
l
g
o
r
i
t
h
m
f
o
r
l
o
a
d
b
a
l
a
n
c
i
n
g
i
n
LEO
sa
t
e
l
l
i
t
e
n
e
t
w
o
r
k
s,
”
W
i
re
l
e
ss
C
o
m
m
u
n
i
c
a
t
i
o
n
s
a
n
d
M
o
b
i
l
e
C
o
m
p
u
t
i
n
g
,
v
o
l
.
2
0
2
2
,
p
p
.
1
–
1
8
,
A
p
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
2
/
3
0
3
2
9
9
7
.
[
1
5
]
Q
.
W
a
n
g
e
t
a
l
.
,
“
U
A
V
-
e
n
a
b
l
e
d
n
o
n
-
o
r
t
h
o
g
o
n
a
l
m
u
l
t
i
p
l
e
a
c
c
e
s
s
n
e
t
w
o
r
k
s
f
o
r
g
r
o
u
n
d
-
a
i
r
-
g
r
o
u
n
d
c
o
m
m
u
n
i
c
a
t
i
o
n
s
,
”
I
E
E
E
T
r
a
n
s
a
c
t
i
o
n
s
o
n
G
r
e
e
n
C
o
m
m
u
n
i
c
a
t
i
o
n
s
a
n
d
N
e
t
w
o
r
k
i
n
g
,
v
o
l
.
6
,
n
o
.
3
,
p
p
.
1
3
4
0
–
1
3
5
4
,
S
e
p
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
T
G
C
N
.
2
0
2
2
.
3
1
5
2
6
0
1
.
[
1
6
]
X
.
Li
,
Z.
X
i
e
,
Z
.
C
h
u
,
V
.
G
.
M
e
n
o
n
,
S
.
M
u
mt
a
z
,
a
n
d
J.
Zh
a
n
g
,
“
E
x
p
l
o
i
t
i
n
g
b
e
n
e
f
i
t
s
o
f
I
R
S
i
n
w
i
r
e
l
e
ss
p
o
w
e
r
e
d
N
O
M
A
n
e
t
w
o
r
k
s,”
I
EEE
T
r
a
n
sa
c
t
i
o
n
s
o
n
G
ree
n
C
o
m
m
u
n
i
c
a
t
i
o
n
s
a
n
d
N
e
t
w
o
rki
n
g
,
v
o
l
.
6
,
n
o
.
1
,
p
p
.
1
7
5
–
1
8
6
,
M
a
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
TG
C
N
.
2
0
2
2
.
3
1
4
4
7
4
4
.
[
1
7
]
A
.
K
h
u
n
t
i
a
,
D
.
D
h
a
r
sh
i
n
i
R
,
M
.
R
,
K
.
A
d
i
t
y
a
,
D
.
P
r
a
d
h
a
n
,
a
n
d
R
.
A
.
A
t
mo
k
,
“
En
e
r
g
y
-
e
f
f
i
c
i
e
n
c
y
f
o
r
5
G
n
e
t
w
o
r
k
s
w
i
t
h
M
I
M
O
sy
st
e
m,
”
J
o
u
rn
a
l
o
f
N
e
t
w
o
rk
S
e
c
u
ri
t
y
C
o
m
p
u
t
e
r
N
e
t
w
o
r
k
s
,
v
o
l
.
9
,
n
o
.
3
,
p
p
.
2
6
–
3
8
,
2
0
2
3
,
d
o
i
:
1
0
.
4
6
6
1
0
/
j
o
n
s
c
n
.
2
0
2
3
.
v
0
9
i
0
3
.
0
0
4
.
[
1
8
]
D
.
P
r
a
d
h
a
n
,
C
.
S
u
ma
,
R
a
j
e
sw
a
r
i
,
a
n
d
C
.
B
.
C
a
r
v
a
,
“
I
mp
l
i
c
a
t
i
o
n
s
o
f
r
e
s
o
u
r
c
e
o
p
t
i
m
i
z
a
t
i
o
n
i
n
D
2
D
c
o
mm
u
n
i
c
a
t
i
o
n
f
o
r
e
f
f
i
c
i
e
n
t
u
sa
g
e
o
f
R
F
e
n
e
r
g
y
:
P
r
a
c
t
i
c
e
a
n
d
c
h
a
l
l
e
n
g
e
s,”
2
0
2
3
3
r
d
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
l
l
i
g
e
n
t
T
e
c
h
n
o
l
o
g
i
e
s
(
C
O
N
I
T
)
,
H
u
b
l
i
,
I
n
d
i
a
,
2
0
2
3
,
p
p
.
1
-
8,
d
o
i
:
1
0
.
1
1
0
9
/
C
O
N
I
T5
9
2
2
2
.
2
0
2
3
.
1
0
2
0
5
7
2
9
.
[
1
9
]
M
.
F
.
K
h
a
n
a
n
d
D
.
P
e
sc
h
,
“
O
n
p
e
r
f
o
r
man
c
e
o
f
m
u
l
t
i
-
u
ser
mass
i
v
e
M
I
M
O
f
o
r
5
G
a
n
d
b
e
y
o
n
d
,
”
i
n
I
EE
E
V
e
h
i
c
u
l
a
r
T
e
c
h
n
o
l
o
g
y
C
o
n
f
e
re
n
c
e
,
J
u
n
.
2
0
2
2
,
v
o
l
.
2
0
2
2
-
Ju
n
e
,
d
o
i
:
1
0
.
1
1
0
9
/
V
TC
2
0
2
2
-
S
p
r
i
n
g
5
4
3
1
8
.
2
0
2
2
.
9
8
6
0
5
6
7
.
[
2
0
]
A
.
B
.
N
a
t
a
r
a
j
u
,
D
.
P
r
a
d
h
a
n
,
a
n
d
S
.
S
.
Jam
b
l
i
,
“
O
p
p
o
r
t
u
n
i
t
i
e
s
,
c
h
a
l
l
e
n
g
e
s,
a
n
d
b
e
n
e
f
i
t
s
o
f
5
G
-
I
o
T
t
o
w
a
r
d
s
u
st
a
i
n
a
b
l
e
d
e
v
e
l
o
p
me
n
t
o
f
g
r
e
e
n
sm
a
r
t
c
i
t
i
e
s
(
S
D
-
G
S
C
)
,
”
2
0
2
3
3
r
d
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
l
l
i
g
e
n
t
T
e
c
h
n
o
l
o
g
i
e
s
(
C
O
N
I
T
)
,
H
u
b
l
i
,
I
n
d
i
a
,
2
0
2
3
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
14
,
No
.
6
,
Dec
em
b
e
r
20
24
:
6
3
8
0
-
6
3
8
8
6388
p
p
.
1
-
8,
d
o
i
:
1
0
.
1
1
0
9
/
C
O
N
I
T5
9
2
2
2
.
2
0
2
3
.
1
0
2
0
5
7
8
0
.
[
2
1
]
A
.
K
.
T
i
w
a
r
i
,
P
.
K
.
M
i
s
h
r
a
,
S
.
P
a
n
d
e
y
,
a
n
d
P
.
R
.
Te
j
a
,
“
R
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
a
n
d
m
o
d
e
sel
e
c
t
i
o
n
i
n
5
G
n
e
t
w
o
r
k
s
b
a
se
d
o
n
e
n
e
r
g
y
e
f
f
i
c
i
e
n
t
g
a
me
t
h
e
o
r
y
a
p
p
r
o
a
c
h
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
n
Re
c
e
n
t
a
n
d
I
n
n
o
v
a
t
i
o
n
T
re
n
d
s
i
n
C
o
m
p
u
t
i
n
g
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
,
v
o
l
.
1
0
,
n
o
.
1
1
,
p
p
.
1
1
5
–
1
2
0
,
N
o
v
.
2
0
2
2
,
d
o
i
:
1
0
.
1
7
7
6
2
/
i
j
r
i
t
c
c
.
v
1
0
i
1
1
.
5
7
8
7
.
[
2
2
]
D
.
W
a
n
g
,
H
.
Q
i
n
,
B
.
S
o
n
g
,
K
.
X
u
,
X
.
D
u
,
a
n
d
M
.
G
u
i
z
a
n
i
,
“
J
o
i
n
t
r
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
a
n
d
p
o
w
e
r
c
o
n
t
r
o
l
f
o
r
D
2
D
c
o
mm
u
n
i
c
a
t
i
o
n
w
i
t
h
d
e
e
p
r
e
i
n
f
o
r
c
e
me
n
t
l
e
a
r
n
i
n
g
i
n
M
C
C
,
”
P
h
y
s
i
c
a
l
C
o
m
m
u
n
i
c
a
t
i
o
n
,
v
o
l
.
4
5
,
A
p
r
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
p
h
y
c
o
m.2
0
2
0
.
1
0
1
2
6
2
.
[
2
3
]
R
.
M
.
A
l
s
h
a
r
f
a
,
S
.
L
.
M
o
h
a
mm
e
d
,
S
.
K
.
G
h
a
r
g
h
a
n
,
I
.
K
h
a
n
,
a
n
d
B
.
J.
C
h
o
i
,
“
C
e
l
l
u
l
a
r
-
D
2
D
r
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
se
d
o
n
u
ser fa
i
r
n
e
ss,
”
E
l
e
c
t
r
o
n
i
c
s
,
v
o
l
.
9
,
n
o
.
3
,
F
e
b
.
2
0
2
0
,
d
o
i
:
1
0
.
3
3
9
0
/
e
l
e
c
t
r
o
n
i
c
s
9
0
3
0
3
8
6
.
[
2
4
]
S
.
S
a
n
g
e
e
t
h
a
,
J
.
L
o
g
e
sh
w
a
r
a
n
,
M
.
F
a
h
e
e
m,
R
.
K
a
n
n
a
d
a
s
a
n
,
S
.
S
u
n
d
a
r
a
r
a
j
u
,
a
n
d
L.
V
i
j
a
y
a
r
a
j
a
,
“
S
mart
p
e
r
f
o
r
m
a
n
c
e
o
p
t
i
mi
z
a
t
i
o
n
o
f
e
n
e
r
g
y
‐
a
w
a
r
e
sc
h
e
d
u
l
i
n
g
mo
d
e
l
f
o
r
r
e
so
u
r
c
e
sh
a
r
i
n
g
i
n
5
G
g
r
e
e
n
c
o
mm
u
n
i
c
a
t
i
o
n
s
y
st
e
ms,
”
T
h
e
J
o
u
r
n
a
l
o
f
E
n
g
i
n
e
e
ri
n
g
,
v
o
l
.
2
0
2
4
,
n
o
.
2
,
F
e
b
.
2
0
2
4
,
d
o
i
:
1
0
.
1
0
4
9
/
t
j
e
2
.
1
2
3
5
8
.
[
2
5
]
M
.
F
a
l
l
,
Y
.
B
a
l
b
o
u
l
,
M
.
F
a
t
t
a
h
,
S
.
M
a
z
e
r
,
M
.
E
l
B
e
k
k
a
l
i
,
a
n
d
A
.
A
.
D
.
K
o
r
a
,
“
E
n
e
r
g
y
e
f
f
i
c
i
e
n
c
y
o
p
t
i
mi
z
a
t
i
o
n
t
e
c
h
n
i
q
u
e
s
f
o
r
t
h
e
5
G
c
e
l
l
u
l
a
r
n
e
t
w
o
r
k
s,
”
i
n
L
e
c
t
u
r
e
N
o
t
e
s i
n
N
e
t
w
o
rks
a
n
d
S
y
s
t
e
m
s
,
v
o
l
.
6
3
5
,
S
p
r
i
n
g
e
r
I
n
t
e
r
n
a
t
i
o
n
a
l
P
u
b
l
i
sh
i
n
g
,
2
0
2
3
,
p
p
.
3
8
2
–
3
8
7
.
[
2
6
]
J.
P
r
e
m
a
l
a
t
h
a
,
A
.
S
a
h
a
y
a
A
n
se
l
i
n
N
i
s
h
a
,
S
.
E
.
V
.
S
o
ma
n
a
t
h
a
n
P
i
l
l
a
i
,
a
n
d
A
.
B
h
u
v
a
n
e
s
h
,
“
P
e
r
f
o
r
ma
n
c
e
m
e
a
s
u
r
e
men
t
o
f
sma
l
l
c
e
l
l
p
o
w
e
r
man
a
g
e
m
e
n
t
me
c
h
a
n
i
sm
i
n
5
G
c
e
l
l
u
l
a
r
n
e
t
w
o
r
k
s
u
si
n
g
f
i
r
e
f
l
y
a
l
g
o
r
i
t
h
m,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
S
y
st
e
m
s
,
v
o
l
.
1
5
,
n
o
.
5
,
p
p
.
4
3
7
–
4
4
8
,
M
a
y
2
0
2
4
,
d
o
i
:
1
0
.
3
2
9
8
5
/
i
j
e
c
e
s.
1
5
.
5
.
6
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Visha
k
h
a
G
a
ik
wa
d
h
o
l
d
s
a
Ba
c
h
e
lo
r
o
f
E
n
g
i
n
e
e
rin
g
d
e
g
re
e
in
e
lec
tro
n
ics
a
n
d
tele
c
o
m
m
u
n
ica
ti
o
n
e
n
g
i
n
e
e
rin
g
f
ro
m
th
e
U
n
iv
e
rsit
y
o
f
N
o
rth
M
a
h
a
ra
sh
tra,
In
d
ia
i
n
2
0
0
8
a
n
d
M
.
E.
i
n
e
lec
tro
n
ics
e
n
g
i
n
e
e
rin
g
fr
o
m
Dr.
Ba
b
a
sa
h
e
b
Am
b
e
d
k
a
r
Un
iv
e
rsity
,
A
u
ra
n
g
a
b
a
d
.
S
h
e
is
p
u
rsu
i
n
g
P
h
D
i
n
e
lec
tro
n
ics
a
n
d
t
e
lec
o
m
m
u
n
ica
ti
o
n
e
n
g
in
e
e
rin
g
fr
o
m
D.Y.
P
a
ti
l
De
e
m
e
d
to
b
e
Un
iv
e
rsity
.
I
n
2
0
1
1
,
sh
e
jo
i
n
e
d
th
e
De
p
a
rtme
n
t
o
f
El
e
c
tro
n
ics
a
n
d
Tele
c
o
m
m
u
n
ica
ti
o
n
,
M
.
G
.
M
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
M
u
m
b
a
i
Un
i
v
e
rsity
a
s
a
lec
tu
re
r
.
S
i
n
c
e
2
0
1
2
,
s
h
e
h
a
s
b
e
e
n
wo
rk
in
g
with
th
e
De
p
a
rtme
n
t
o
f
E
lec
tro
n
ics
a
n
d
Tele
c
o
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
a
t
Ra
m
ra
o
Ad
ik
In
stit
u
te o
f
Tec
h
n
o
lo
g
y
,
Un
i
v
e
rsity
o
f
M
u
m
b
a
i,
I
n
d
ia,
wh
e
re
sh
e
w
a
s
lec
tu
re
r
a
n
d
late
r
b
e
c
a
m
e
a
n
a
ss
istan
t
p
ro
fe
ss
o
r
2
0
1
5
ti
ll
d
a
te.
He
r
c
u
rre
n
t
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
5
G
Tec
h
n
o
lo
g
y
,
wire
les
s
c
o
m
m
u
n
ica
ti
o
n
s
,
a
rti
fici
a
l
in
telli
g
e
n
c
e
a
n
d
m
a
c
h
in
e
lea
rn
in
g
.
Vish
a
k
h
a
G
a
ik
wa
d
is
a
li
fe
m
e
m
b
e
r
o
f
th
e
I
n
d
ian
S
o
c
ie
ty
o
f
Tec
h
n
ica
l
E
d
u
c
a
ti
o
n
(I
S
T
E).
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
v
ish
a
k
h
a
.
g
a
ik
wa
d
@ra
it
.
a
c
.
in
.
As
h
win
i
Na
ik
re
c
e
iv
e
d
h
e
r
e
n
g
i
n
e
e
rin
g
d
e
g
re
e
in
e
lec
tri
c
a
l
a
n
d
e
lec
tro
n
ics
e
n
g
in
e
e
rin
g
fr
o
m
Ka
rn
a
tak
a
Un
i
v
e
rsity
i
n
1
9
9
7
.
In
2
0
0
7
s
h
e
re
c
e
iv
e
d
m
a
ste
r’s
d
e
g
re
e
fro
m
M
u
m
b
a
i
Un
i
v
e
rsity
a
n
d
in
2
0
1
5
P
h
D
i
n
e
lec
tro
n
ics
e
n
g
i
n
e
e
rin
g
fro
m
Ve
e
rm
a
ta
Jijab
a
i
Tec
h
n
o
l
o
g
ica
l
I
n
stit
u
te (V.
J.T
.
I),
M
a
tu
n
g
a
,
M
u
m
b
a
i
u
n
d
e
r
t
h
e
g
u
id
a
n
c
e
o
f
Dr.
M
.
S
.
P
a
n
se
.
S
h
e
is
wo
rk
i
n
g
a
s
a
p
ro
fe
ss
o
r
i
n
t
h
e
El
e
c
tro
n
ics
a
n
d
Tele
c
o
m
m
u
n
ica
ti
o
n
E
n
g
i
n
e
e
rin
g
De
p
a
rtme
n
t
at
Ra
m
ra
o
Ad
ik
In
stit
u
te
o
f
Tec
h
n
o
l
o
g
y
(R.
A.I.
T)
,
Ne
ru
l,
Na
v
i
,
M
u
m
b
a
i.
S
h
e
h
a
s
1
9
y
e
a
rs
o
f
tea
c
h
in
g
e
x
p
e
rie
n
c
e
.
He
r
a
re
a
s
o
f
in
tere
st
in
c
lu
d
e
a
n
ten
n
a
a
rra
y
s,
d
ig
it
a
l
c
o
m
m
u
n
ica
ti
o
n
,
a
n
d
u
lt
ra
so
n
ic
o
b
sta
c
le
d
e
tec
ti
o
n
a
n
d
l
o
c
a
ti
o
n
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
a
sh
win
i.
n
a
i
k
@ra
it
.
a
c
.
in
.
Evaluation Warning : The document was created with Spire.PDF for Python.