Int
ern
at
i
onal
Journ
al of Ele
ctrical
an
d
Co
mput
er
En
gin
eeri
ng
(IJ
E
C
E)
Vo
l.
15
,
No.
1
,
Febr
uary
20
25
, pp.
1
~
14
IS
S
N:
20
88
-
8708
, DO
I: 10
.11
591/ij
ece.v
15
i
1
.
pp
1
-
14
1
Journ
al h
om
e
page
:
http:
//
ij
ece.i
aesc
or
e.c
om
Energy
analysis
of activ
e photo
vo
l
taic co
oli
ng syst
em
us
i
ng
water fl
ow
An
t
. Ard
ath
Kristi
1,2
, Erwi
n S
us
ant
o
1
, A
gu
s
Risdiy
ant
o
2
, Ag
us
Juna
edi
2
, R
u
di D
ar
ussa
l
am
2
,
Noviadi
A
ri
e
f Ra
c
hman
2
, A
hma
d
Fu
dh
oli
2,3
1
Dep
artm
en
t of
El
ectrica
l
E
n
g
in
eerin
g
,
Sch
o
o
l
o
f
Elect
r
ical E
n
g
in
eering
,
Telko
m
Univ
ersity
,
Ban
d
u
n
g
,
Ind
o
n
e
sia
2
Res
earc
h
Cen
ter
f
o
r
Energy
Co
n
v
ersio
n
and
Co
n
serv
ati
o
n
,
Natio
n
al Resea
rch and
I
n
n
o
v
atio
n
Agen
cy
,
Jak
arta
,
I
n
d
o
n
esia
3
So
lar
Energy
Res
earc
h
I
n
stitu
te,
Nat
io
n
al
Un
iv
ersity
of M
alay
sia
,
Ban
g
i
,
Malays
ia
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
M
a
r 4, 2
024
Re
vised
A
ug 14, 2
024
Accepte
d
Aug 21,
2024
An
active
wat
er
-
cool
ing
sys
te
m
i
s
one
of
sev
era
l
te
chno
logi
es
that
has
be
en
prove
n
to
b
e
ab
le
to
r
educe
he
at
losses
and
in
cre
ase
elec
t
rical
ene
rgy
in
photovol
taic
(P
V)
modul
e.
T
his
rese
ar
ch
discusses
a
c
ompa
ra
ti
ve
expe
ri
me
nt
al
st
udy
of
thr
ee
p
ump
ac
t
ivatio
n
cont
rols
in
coo
l
ing
of
PV
modul
e
wi
th
th
e
aim
of
ev
al
u
a
ti
ng
spec
ifi
c
al
ly
the
PV
output
power,
ne
t
ene
rgy
ga
in,
wa
te
r
flow
ra
te,
an
d
modul
e
te
mp
e
rat
ure
r
eduction.
The
thr
ee
pump
a
ct
iv
at
ion
cont
rols
b
ei
ng
c
ompa
red
ar
e
con
ti
nuously
a
ctive
during
th
e
te
st,
a
ct
iv
e
base
d
on
se
tpoi
nt
t
em
per
at
ure
,
and
a
ct
iv
e
by
con
t
roll
ing
the
pump
vol
ta
ge
u
sing
pulse
widt
h
modulati
on
(
PWM)
cont
rol
i
n
adj
ust
ing
wate
r
f
low
ra
te
s
moot
hly. T
h
e
r
esult
s show
that
co
ntrol
li
ng
th
e
pu
mp
voltage
using
PWM
in
the
PV
cool
in
g
proc
ess
produc
e
s
en
erg
y
of
4
37.
95
Wh,
slight
ly
lower
th
an
the
oth
ers
an
d
th
e
av
era
ge
m
odule
cooling
t
e
mpe
ra
ture
is
35.
24
°
C
,
h
igher
of
1
-
3
°
C
tha
n
the
oth
ers.
Nev
ert
he
le
ss
,
PWM
cont
ro
l
o
f
cool
ing
pu
mp
h
as
resulted
th
e
per
ce
n
ta
g
e
of
n
et
ene
rgy
g
ai
n
of
9.
94%
,
gre
ater
tha
n
oth
er
cont
rols,
and
with
an
av
era
g
e
f
low
ra
te
of
2
.
17
L/
m
in,
more
e
fficie
nt
t
han
the
othe
rs
.
Thus,
thi
s
cont
r
ol
is
quite
eff
ect
ive
as
it
ca
n
produc
e
h
ighe
r
n
et
PV
en
erg
y
y
ield
and
lower
wat
er
consump
ti
on
.
Ke
yw
or
d
s
:
Eff
ic
ie
nc
y
M
od
ule tem
perat
ur
e
Pu
m
p
act
iv
at
io
n
Pu
lse
widt
h
m
odulati
on
c
on
tr
ol
Water
-
c
ooli
ng
sy
ste
m
Th
is i
s
an
op
e
n access
art
ic
le
u
nder
the
CC
BY
-
SA
li
cens
e.
Corres
pond
in
g
Aut
h
or
:
An
t.
Arda
th
Kri
sti
Dep
a
rtme
nt of
Ele
ct
rical
En
gi
neer
i
ng,
Sc
hool
of Elec
tric
al
Engineeri
ng, T
el
ko
m
Unive
rs
it
y
40257 B
an
dung, I
ndonesi
a
Emai
l:
ard
at
hme
ca@
gm
ai
l.c
om
1.
INTROD
U
CTION
The
te
mp
e
ratu
r
e
of
ph
otovo
lt
a
ic
(PV)
m
odul
es
ca
n
ge
ner
al
l
y
i
ncr
ease
d
ras
ti
cal
ly,
infl
uenced by
high
ambient
te
m
pe
ratur
e
due
to
s
olar
r
adiat
io
n,
env
i
ronme
ntal
conditi
ons
an
d
geog
raphical
locat
ion
[
1],
[
2]
.
The
high
te
m
per
at
ur
e
can
af
fect
the
c
ha
racter
ist
ic
s
of
t
he
PV
mod
ule
w
hich
il
lustrate
d
in
the
f
orm
of
a
current/p
ower
-
vo
lt
age
(
I/P
-
V
)
c
urves
[3],
[
4]
.
U
nder
co
nst
ant
so
la
r
ir
radi
ance,
th
e
ou
t
put
volt
age
dec
r
eases
with
the
i
ncr
e
asi
ng
t
rend
of
the
m
odule
t
empe
rature,
w
hil
e
the
out
pu
t
curre
nt
te
nds
to
be
co
ns
ta
nt
.
The
stud
ie
s
ha
ve
re
ported
t
hat
ty
pi
cal
ly
for
eve
r
y
1
°
C
inc
reas
ing
te
m
per
at
ure
of
PV
cel
l
above
25
°
C
,
volt
age
decr
ease
s
ar
ound
2.2
m
V/°C
[5]
,
the
outp
ut
current
of
t
he
PV
pan
el
sli
gh
tl
y
increases
[6],
[
7]
eve
n
te
nt
to
be
const
ant
[8]
a
nd
power
decre
ases
a
rou
nd
0.4
%
to
0.5
%
f
or
cr
ys
ta
ll
ine
s
il
ic
on
cel
l
a
nd
0.3
5
%
to
0
.38%
f
or
amo
rph
ou
s
cell
s
[
9]
–
[
13]
.
Seve
ral
met
hods
ha
ve
bee
n
c
arr
ie
d
ou
t
to
i
mpro
ve
P
V
m
odule
e
ff
ic
ie
nc
y
due
t
o
t
herm
al
eff
ect
s
by
util
iz
at
ion
of
var
i
ou
s
c
ooli
ng
te
ch
niques
in
P
V
water
-
ba
sed
co
olin
g
s
yst
em.
The
methods
dev
el
ope
d
f
rom
simple
t
o
c
om
p
le
x
te
ch
nique
s
incl
ud
i
ng
pa
ssive,
act
ive,
a
nd
hybri
d
co
ol
ing
with
dif
fere
nt
fluid
mate
rial
s.
Passive
c
oo
li
ng
is
a
co
olin
g
te
chn
iq
ue
t
hat
do
e
s
not
re
qu
i
r
e
powe
r
co
nsu
mp
ti
on
to
oper
at
e
the
sy
ste
m
.
This
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1
-
14
2
te
chn
iq
ue
usua
ll
y
us
es
a
dd
it
ion
al
c
ompone
nts
to
co
ntr
ol
natu
ral
co
nv
ec
ti
on
co
olin
g
s
uch
as
ai
r
ve
nt
il
at
ion
[14]
,
li
qu
i
d
im
mersio
n
a
nd
floati
ng
[15
],
[
16]
,
heat
pi
pe
[
17]
,
heat
si
nks
an
d
ph
as
e
c
ha
ng
e
mate
rial
(
PCM)
pan
el
[18
]
.
Me
anwhil
e
act
iv
e
co
oling
re
quires
exter
nal
powe
r
to
m
ov
e
a
co
olant
s
uch
as
ai
r
[
19]
or
water
[20]
.
Alth
ough
requiri
ng
e
xt
ern
al
powe
r,
the
act
ive
co
ol
ing
sti
ll
is
fe
asi
ble,
e
ff
ect
iv
e,
a
nd
s
uitable
f
or
integrati
on w
it
h
photov
oltai
c
powe
r
pla
nts,
bo
t
h
s
mall
an
d
la
rg
e
scal
e.
Se
ver
al
a
uthor
s have
sta
te
d
that wate
r
-
base
d
c
ooli
ng
t
echnolo
gies
ar
e
quit
e
ma
t
ur
e
,
an
d
the
best
s
olu
ti
on
by
pro
vid
in
g
unif
orm
co
olin
g
te
m
pe
ratur
e
and
mainta
ini
ng
surface
cl
eanli
ness.
Ot
he
r
stu
dies
repo
rted
t
hat
9%
of
t
he
net
gai
n
in
el
ect
rical
yield
achieve
d
by
th
is
method
[
21]
and
the
c
ooli
ng
process
c
on
su
mes
le
ss
tha
n
10%
of
the
maxim
um
P
V
powe
r
performa
nce
[
22]
.
T
he
rate
of
co
olin
g
is
al
so
determi
ne
d
by
the
water
flo
w
rate
in
f
luence
d
by
set
po
i
nt
te
mp
erat
ur
e
[23],
[
24]
,
set
ti
ng
the
durati
on
of
ti
me
(on/o
ff)
in
c
oo
li
ng
process
act
ivati
on
[
25]
.
Water
co
oli
n
g
sy
ste
ms
on
PV
mod
ule
ca
n
offer
more
ec
on
om
ic
al
s
olu
ti
on
with
s
ys
te
m
op
ti
miza
ti
on
a
nd
intel
li
gen
t
process
con
t
ro
l.
T
he
a
dv
a
ntage
s
of
c
oo
li
ng
P
V
m
odules
us
in
g
a
water
-
base
d
phot
ovoltai
c
s
yst
em
du
e
to
t
he
co
olin
g
process
is
fast
er,
im
pro
ves
e
ff
ic
ie
nc
y,
cl
ea
ns
dirt,
e
xten
ds
li
feti
me,
an
d
the
remai
ning
heat
obta
ine
d
can
be
us
e
d
f
or
house
ho
l
d
or
co
m
mercial
pu
rpo
ses
[
12]
.
I
nc
r
easi
ng
ph
otov
oltai
c
powe
r
ou
t
pu
t
t
hro
ugh
act
ive
coo
li
ng
that
fa
r
e
xcee
ds
c
ooli
ng
s
ys
te
m
po
w
er
c
onsumpti
on
is
an
esse
ntial
facto
r
t
hat
mu
st
be
co
ns
i
de
red
in
resu
lt
in
g
great
er
net
e
ne
rgy
ga
in.
I
n
a
ddit
ion,
water
avail
ab
il
it
y
an
d
it
s
sources
a
re
al
s
o
the
c
halle
nges
f
or
th
e
act
ive
wate
r
-
c
oo
li
ng
meth
od
[
26]
,
exce
pt
for
floati
ng
phot
ovolta
ic
w
her
e
unli
mit
ed
am
ount
of
w
at
er
is
avail
able
underneath.
This
pa
per
pre
sents
a
c
ompar
ison
of
ex
per
i
mental
resu
lt
s
from
th
ree
wat
er
pum
p
act
iva
ti
on
s
et
ti
ng
s
in
the
m
odule
coo
li
ng
pr
oces
s
of
the
P
V
c
ooli
ng
s
ys
te
m.
The
three
c
on
t
r
ols
of
pump
ac
ti
vation
i
nc
lu
de
act
ive
con
ti
nu
ously,
act
ive
base
d
on
set
point
of
de
sire
te
mp
e
ratur
e
,
an
d
act
ive
by
pulse
wi
dth
m
odulati
on
(
PWM
)
con
t
ro
l
i
n
a
djust
ing
water
flo
w.
T
he
pur
pos
e
of
the
e
xperi
ment
is
t
o
de
te
rmin
e
w
hich
c
on
t
ro
l
s
ys
te
m
is
more
eff
ect
ive
in
re
du
ci
ng
mod
ule
te
mp
erat
ur
e
by
minimi
zi
ng
the
pump
e
ne
rgy
co
nsum
pt
ion
a
nd
mi
ni
mizi
ng
amo
un
t
of
wat
er.
T
her
e
f
or
e,
the
ke
y
to
t
his
exp
e
rime
nt
is
that
increasi
ng
the
PV
outp
ut
powe
r
is
ba
la
nced
with
ob
ta
ini
ng
opti
mal
net
e
nerg
y
gai
n
a
nd
sa
ving
am
ou
nt
of
water.
T
his
pa
pe
r
is
or
gan
iz
e
d
int
o
s
ever
al
sect
ion
s,
wh
e
r
e
in
the
nex
t
sect
ion
,
namel
y
sect
ion
2,
di
scusses
the
m
at
erial
s
an
d
m
et
hods
us
e
d
f
or
the
exp
e
rime
ntal
inv
e
sti
gation.
S
ect
ion
3
prese
nts
the
e
xperi
mental
res
ults
and
anal
ytica
l
discuss
i
on
re
ga
rd
i
ng
the
com
pa
rati
ve
us
e
of
each
pump
c
ontrol
r
el
at
ed
to
mod
ul
e
te
mp
eratu
re,
increase
d
ef
fici
ency
,
cl
ea
n
e
nerg
y
gain, an
d wate
r
f
lo
w rat
e, a
nd
con
cl
ud
i
ng r
e
mar
ks
a
re
discuss
e
d
in
secti
on
4.
2.
MA
TE
RIA
L
S
AND MET
H
OD
2.1.
Ov
er
view o
f
e
xper
im
ent
se
t
up
The
sc
hemati
c
dia
gr
a
m
of
ac
ti
ve
wat
er
co
ol
ing
of
P
V
syst
em
i
n
sin
gle
m
odule
sp
eci
fical
ly
is
gi
ven
in
Fig
ure
1.
T
he
100
W
p
of
polyc
ry
sta
ll
ine
PV
mod
ule
wit
h
ef
fecti
vely
0.
72
m
2
of
surfa
ce
area.
The
m
odule
was
instal
le
d
with
t
he
ti
lt
an
gle
of
15
°
t
o
th
e
ho
rizo
ntal
an
d
facin
g
no
rth
with
a
n
azi
m
uth
a
ngle
of
5
°
.
A
12
V
DC
ce
ntrif
ug
al
pum
p
was
use
d
to
ci
rc
ulate
water
by
cl
ose
d
lo
op
from
t
he
ta
nk
t
hro
ugh
3/4
-
inc
h
P
V
C
pip
e
li
ne
thr
ough
th
e
water
flo
w
s
ens
or
(F
S
300A)
t
hen
t
o
the
inlet
channel
i
ns
ta
ll
ed
at
the
top
of
t
he
m
od
ule.
A
3/4
-
inc
h
PV
C
pip
e
as
inlet
c
hannel
w
hich
has
60
hole
s
w
it
h
a
diamet
er
of
3
m
m
t
o
dr
ai
n
c
old
wate
r
even
l
y
from
t
he
t
op
to
the
bo
tt
om
of
the
f
ront
si
de
t
he
m
odule
surf
ace.
W
arm
wat
er
f
r
om
t
he
re
mainin
g
c
ooli
ng
was
colle
ct
ed
i
n
t
he
outl
et
c
hann
el
,
the
n
it
co
ol
ed
a
gain
by
a
heat
e
xchan
ger
an
d
sto
red
in
the
ta
nk
as
we
ll
.
The
water circ
ulati
on works
conti
nuously
as lo
ng as
the
pum
p
i
s acti
ve.
Fo
r
meas
ur
e
m
ent
an
d
anal
ysi
s,
the
PV
water
-
base
d
c
oo
li
ng
s
ys
te
m
was
eq
uippe
d
with
s
om
e
measu
rin
g
i
ns
tru
ments.
T
he
t
hr
ee
te
mp
e
ratu
re
se
nsors
(
DS18
B
20)
we
re used
t
o
me
asu
re
mod
ule
te
m
pe
ratur
e
.
It
i
s
at
ta
che
d
on
t
hr
ee
points
of
the
bac
k
sid
e
with
a
pro
por
ti
on
al
distance
that
can
re
pres
ent
the
e
ntire
s
urface
of
t
he
m
odule.
Othe
r
D
S18B
20
al
s
o
in
sta
ll
ed
in
t
he
wate
r
ta
nk
to
meas
ur
e
t
he
te
m
perat
ur
e
of
t
he
c
ooli
ng
water.
A
3
Ohm
resist
or
a
s
a
loa
d
was
c
on
nected
to
the
posit
ive
a
nd
ne
gative
P
V
outp
ut
te
r
minals,
t
hen
t
he
vo
lt
age
a
nd
cu
rr
e
nt
of
PV
ou
tpu
t
inclu
ding
pump
powe
r
w
ere
meas
ur
e
d
by
se
nsor
s
inte
gr
at
e
d
in
PZ
E
M
-
017
as
energ
y
met
er.
A
pyr
an
ome
te
r
(S
E
M228
)
was
us
ed
to
measu
re
s
olar
irrad
ia
ti
on
dur
ing
th
e
ex
per
i
ments.
The
s
ys
te
m
a
ls
o
co
mp
le
te
d
by
D
TT2
2
t
hat
us
e
d
to
r
ead
a
mb
ie
nt
te
m
perat
ur
e
a
nd
hum
idit
y.
Fi
nally,
a
dat
a
logger
was
use
d
to
rec
ord
a
nd
sto
re
mea
s
ur
e
ments
f
or
var
i
ou
s
co
ndit
ion
s
at
s
pecific
inter
vals.
Detai
ls
of
com
pone
nt
spe
ci
ficat
ion
s
a
nd
meas
uri
ng
i
ns
tr
um
e
nts
inc
lud
in
g
measu
r
ement
e
rror
s
(
%)
of
t
he
P
V
coo
li
ng
exp
e
rime
nts are
g
ive
n
i
n
Ta
bl
e 1
.
2.2.
Pump
ac
tiv
at
i
on
se
tt
in
gs
In
water
-
base
d PV
co
olin
g
syst
em, pump is the h
ea
rt of the c
oo
li
ng s
ys
te
m
that increase t
he
w
orkin
g
pr
ess
ure
of
t
he
wate
r
co
olant
in
t
he
ci
rcu
la
ti
n
g
s
ys
te
m
a
nd
pre
ven
t
the
operati
ng
te
m
pe
ratur
e
of
PV
modu
le
from
ove
rh
eat
i
ng.
M
ea
nwhile
,
in
m
oder
n
co
oling
s
ys
te
m,
t
he
pum
p
c
ontr
ol
plays
the
m
os
t
im
portant
r
ole
as
well
.
It
re
gula
te
s
the
pum
p’s
el
ect
ric
mo
t
or,
w
hich
has
a
direct
im
pa
ct
on
operati
on
pe
rfor
manc
e
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Ener
gy analysi
s o
f
activ
e
ph
oto
voltaic
co
olin
g
syste
m usin
g w
ater fl
ow (An
t. Ardath
Kri
sti
)
3
consu
mp
ti
on.
I
n
this
ex
per
im
ent,
the
th
ree
c
oo
li
ng
c
ontr
ols
were
c
ompare
d
in
wate
r
-
bas
e
PV
co
olin
g
s
ys
te
m
base
d on pum
p mot
or act
ivati
on as
giv
e
n
i
n Fi
gure
2.
Figure
1. Sc
he
mati
c d
ia
gram
of PV co
olin
g exp
e
rime
nt set
up
Table
1.
Sp
eci
f
ic
at
i
on
of t
he
e
xp
e
rime
ntal set
up
Item
s
Descripti
o
n
PV
mo
dule*
:
PV cell
typ
e
Po
ly
crys
tallin
e
Mod
u
le ef
fect
iv
e a
rea
0
.72
m
2
Nu
m
b
er
o
f
cells pe
r
p
an
el
36
Maximu
m
po
wer,
P
ma
x
1
0
0
W
Op
en
cir
cu
it vo
lta
g
e,
V
oc
2
1
V
Sh
o
rt
circuit cur
re
n
t,
I
sc
6
.4 A
Vo
ltag
e at
m
ax
im
u
m
po
wer
,
V
mp
1
7
.5 V
Cu
rr
en
t at
m
ax
im
u
m
po
wer
,
I
mp
5
.71
A
NOCT
45
2
°C
PV ang
le (
tilt;
azi
m
u
th
)
1
5
°;
5
°
No
rth
PV
co
o
ling
sy
ste
m:
Co
o
lan
t
W
ater
Pip
e
PVC, ¾ inch
Inlet
PVC, ¾ inch
Ou
tlet
PVC
g
u
tter,
1 in
ch
W
ater
tan
k
9
0
0
×6
0
0
×6
0
0
m
m
Cen
trif
u
g
al
p
u
m
p
Bru
sh
less
DC m
o
t
o
r,
12
V,
18
W,
13
.3 L/
m
in
M
ea
suring
instru
ments:
W
ater
flow
meter
FS3
0
0
A,
1
-
4
5
L
/m
in
,
(
:
2
-
5
%)
Tem
p
e
rature
Sen
so
r
PV and
wate
r:
DS
1
8
B2
0
,
(
:
0
.5
°
C)
Air:
D
HT22
,
(
:
5
%)
Sen
so
r
m
o
d
u
le
PZE
M
-
017
Vo
lt m
ete
r
V: 0.0
5
–
3
0
0
V,
(
:
1
%)
Am
p
ere
meter
A: 0.0
2
–
1
0
A,
(
:
1
%)
Po
wer mete
r
P: 0.1
–
3
kW
,
(
:
1
%)
Energy
m
ete
r
E:
0
–
9
9
9
9
kWh, (
:
1
%)
Py
rano
m
eter
SEM
2
2
8
,
0
-
1
8
0
0
W/m
2
, (
:
3
%
)
*
Refers to
m
an
u
fa
ctu
ring
d
atash
eet,
stan
d
ard test con
d
itio
n
s (ST
C)
: 10
0
0
W/m
2
; 25
°
C; A
M
1
.5
First
a
rr
a
ngem
ent
was
c
oo
li
ng
base
d
on
pump
t
hat
c
onti
nuously
act
ive
durin
g
the
te
st
with
a
const
ant
nominal
po
wer
pro
vid
in
g
fu
ll
s
pe
ed
as
giv
e
n
i
n
Figure
2(
a
).
T
hu
s
,
the
P
V
m
odule
was
s
up
plied
by
water
c
oola
nt
at
fixe
d
flo
w
r
at
e
con
ti
nuous
ly
with
f
ull
ca
pacit
y.
H
ow
e
ve
r,
t
his
c
on
tr
ol
is
only
to
det
ermine
the
ef
fect
of
c
on
ti
nu
ously
of
const
ant
fl
ow
rate
on
the
m
aximum
decr
e
ase
in
m
odule
te
mp
erat
ur
e
ac
hieve
d
un
ti
l
ste
ad
y
st
at
e
conditi
on
s
,
then
t
he
pum
p
en
er
gy
c
ons
umpti
on
was
e
valuated
.
Sec
ond
a
rran
geme
nt
was
pump
act
ivati
on
that
li
mit
ed
base
d
on
th
e
te
mp
e
rature
set
po
i
nt
as
gi
ve
n
in
Fig
ur
e
2(b
)
.
I
n
this
c
on
t
r
ol,
the
P
(
+
)
(
-
)
1
1
V
A
V
A
I
n
l
e
t
O
u
t
l
e
t
H
e
a
t
E
x
c
h
a
n
g
e
r
L
o
a
d
/
R
P
V
M
o
d
u
l
e
T
e
m
p
.
S
e
n
s
o
r
1
T
e
m
p
.
S
e
n
s
o
r
2
T
e
m
p
.
S
e
n
s
o
r
3
V
o
l
t
m
e
t
e
r
A
m
p
e
r
e
m
e
t
e
r
P
u
m
p
C
o
n
t
r
o
l
l
e
r
V
o
l
t
m
e
t
e
r
A
m
p
e
r
e
m
e
t
e
r
B
a
t
t
e
r
y
W
a
t
e
r
T
a
n
k
F
l
o
w
m
e
t
e
r
+
-
P
y
r
a
n
o
m
e
t
e
r
D
a
t
a
L
o
g
g
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1
-
14
4
uppe
r
li
mit
te
mp
e
ratur
e
set
point
of
35
°
C
was
c
hose
n
t
o
act
ivate
the
pu
mp
(t
urn
-
on),
and
30
°
C
of
the
l
ow
e
r
li
mit
was
ch
ose
n
to
deacti
vat
e
the
pum
p
(turn
-
off
).
T
he
pr
i
nciple
is
th
at
wh
e
n
the
pum
p
is
act
ive
(on),
it
consu
mes
f
ull
powe
r
f
or
ci
rc
ulati
ng
water
t
hro
ugh
P
V
m
odule
at
f
ull
wa
te
r
flo
w
rate.
Con
tra
r
y,
wh
e
n
pum
p
is
not
act
iv
e
(off),
ther
e
is
no
pump
powe
r
a
nd
no
water
ci
r
culat
ion
.
T
hus,
this
co
ntr
ol
on
ly
has
tw
o
sp
e
eds
i
n
coo
li
ng
the
m
odule,
n
amel
y f
ull
fl
ow
rate
an
d
no f
lo
w
rate at
al
l.
T
his
c
ontrol
ca
us
es
the
w
at
er f
lo
w
rate
to
be
intermit
te
nt
with
the
ai
m
of
consi
der
i
ng
e
n
ergy
savi
ng
a
nd
minimi
ze
t
he
am
ount
of
w
at
er
to
ma
ke
c
oo
li
ng
more
e
ff
ic
ie
nt.
I
n
fact,
pum
p
co
ntr
ol
by
the
on/
off
c
ycle
ha
s
been
widel
y
ap
plied
in
e
nginee
rin
g
fiel
ds
that
require
te
m
perat
ur
e
re
gula
ti
on.
T
he
la
st
arra
ng
e
ment
was
pump
t
hat
co
ntinuousl
y
act
iv
e
durin
g
the
te
st,
bu
t
with
pum
p
volt
age
re
gu
la
ti
on
by
us
i
ng
PWM
c
on
tr
oller
a
s
giv
e
n
in
Fig
ur
e
2(
c
).
It
wa
s
done
t
o
re
du
ce
the
pump
po
wer
s
moothly
w
hich
has
t
he
e
ff
ect
of
dec
reasin
g
sp
ee
d
a
nd
ma
nag
e
wate
r
fl
ow
rate
a
s
well
.
This
con
t
ro
l
has
vari
ou
s
s
pee
ds
w
i
th
ve
ry
subtl
e
changes
.
T
he
pe
rcen
ta
ge
of
duty
c
ycle
(
D
)
in
the
high
fr
e
quenc
y
PWM
sig
nal
is
pro
portion
al
t
o
re
gula
te
d
the
aver
a
ge
pump
vo
lt
age
.
It
ob
t
ai
ned
base
d
on
the
fee
db
ac
k
s
ign
al
from
the
m
odul
e
te
mp
e
ratu
re
rea
ding
as
the
in
pu
t
re
fere
nc
e
of
co
ntr
ol
le
r.
T
he
dec
rease
in
pum
p
volt
age
by
con
t
ro
ll
er
was
carrie
d
ou
t
by
co
ntin
uousl
y
re
duci
ng
duty
c
ycle
(
D
)
from
10
0%
at
maxim
um
modu
le
te
mp
erat
ur
e
t
o
a
certai
n
pe
r
centage
where
the
dec
rease
in
mod
ule
te
m
per
at
ur
e
reach
es
ste
ady
sta
te
.
The
pur
po
se
of
thi
s
set
ti
ng
is
t
o
determi
ne
the
eff
ect
of
re
du
c
ing
t
he
water
f
low
rate
sm
oo
thly
on
re
duci
ng
the
modu
le
te
m
pe
ratur
e
by
mini
mizi
ng
gr
a
dua
ll
y
the
pum
p's
energ
y
co
nsu
mp
ti
on.
T
he
opti
mal
po
i
nt
of
net
energ
y gain is
ob
ta
ine
d b
y ba
la
ncing pu
mp
energ
y,
water
f
low rate
a
nd
P
V
m
odule te
m
per
at
ur
e.
(a)
(b)
(b)
Figure
2. Com
par
is
on of t
hr
e
e pum
p
m
otor
act
ivati
on
sett
ing
s
(a
) fu
ll
s
pe
ed,
(
b)
li
mit
ed
base
d on the
te
mp
erat
ur
e
setpo
i
nt,
a
nd (
c
) u
sing P
WM co
nt
ro
ll
er
2.3.
PV
cel
ls p
ar
am
eters
and te
mpera
tu
re e
ffec
t
analy
sis
In
PV
mod
ule
te
chnolo
gy,
th
ere
are
seve
ral
par
a
mete
rs
t
ha
t
need
t
o
be
know
n
be
f
or
e
a
pp
l
ying
it
in
real
co
ndit
ion
s
inclu
de:
ma
xi
mu
m
po
wer
(
P
max
),
vo
lt
age
at
maxim
um
powe
r
(
V
mp
),
current
at
ma
ximum
powe
r
(
I
mp
),
open
ci
rc
uit
vol
ta
ge
(
V
oc
),
sho
rt
ci
rc
uit
cu
rr
e
nt
(
I
sc
),
fill
fac
tor
(
FF
),
m
odule
ef
fici
enc
y
(
),
a
nd
nominal
ope
rati
ng
cel
l
te
mp
e
r
at
ur
e
(
N
OCT
).
The
ma
xim
um
powe
r
(
P
max
)
gen
e
rated
is
t
he
maxim
um
vo
lt
age
(
V
mp
)
m
ulti
plied
by the
maxi
mu
m
curre
nt
(
I
mp
)
of the
P
V mo
du
le
unde
r
l
oad co
ndit
ion
s
.
T
he
f
il
l fact
or
(
FF
)
is
a
meas
ur
e
of
t
he
qu
al
it
y
of
a
PV
m
odule
obta
ined
by
co
mp
a
rin
g
the
th
eor
et
ic
al
ma
ximu
m
po
wer
an
d
ou
t
put
powe
r
at
op
e
n ci
rcu
it
and s
ho
rt circuit c
ondi
ti
on
s.
I
t ca
n be
determi
ned b
a
s
ed by
(
1)
[
27]
.
=
∙
=
∙
∙
(1)
The
great
er
of
fill
factor
(
FF
)
val
ue
in
di
cat
es
hig
he
r
energ
y
co
nver
sion
e
ff
ic
ie
nc
y
an
d
bette
r
PV
cel
l
performa
nce.
PV
cel
l
eff
ic
ie
nc
y
(
η
pv
)
is
relat
ed
to
the
ma
ximu
m
outp
ut
powe
r
(
P
m
)
a
nd
so
la
r
rad
ia
ti
on
(
G
)
in
W/m
2
ov
e
r
t
he
PV
cel
l
a
rea
(
A
c
)
in
m
2
.
PV
ce
ll
eff
ic
ie
nc
y
ca
n
be
cal
culat
e
d
with
(
2)
.
=
∙
=
∙
=
∙
∙
(2)
The
te
m
per
at
ure
of
cel
ls
and
modu
le
s
in
crea
ses
at
hig
he
r
a
mb
ie
nt
te
m
perat
ur
es
wh
ic
h
is
influ
e
nce
d
by
th
e
i
nten
sit
y
of
so
la
r
rad
i
at
ion
.
As
a
res
ult,
t
he
cel
l
te
mp
e
ratur
e
a
nd
the
rear
-
s
urfac
e
m
odule
te
mpe
ratur
e
can
be
ve
ry
di
f
fer
e
nt.
If
the
c
el
l
te
mp
erat
ur
e
is
di
ff
ic
ult
or
cannot
be
mea
su
re
d
directl
y,
then
the
rear
-
s
urface
modu
le
te
m
pe
ratur
e
can
be
measu
red
first.
T
he
n
the
relat
ion
s
hip
betwe
en
cel
l
te
mp
e
r
at
ur
e
a
nd
t
he
rear
-
su
r
face
mod
ule tempe
ratu
re c
an be
wr
it
te
n u
sing
(
3)
[
27]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Ener
gy analysi
s o
f
activ
e
ph
oto
voltaic
co
olin
g
syste
m usin
g w
ater fl
ow (An
t. Ardath
Kri
sti
)
5
=
+
0
∙
∆
(3)
wh
e
re
T
c
is
the
cel
l
te
mp
eratu
re
inside
mod
ul
e,
T
m
is
rear
-
s
urface
m
odule
te
mp
erat
ur
e
,
G
is
so
la
r
ir
rad
i
ance
on
the
mod
ule,
G
0
is
t
he
ref
e
r
ence
s
ol
ar
irra
diance
at
10
00
W/m
2
,
an
d
ΔT
is
te
mp
e
ratu
re
dif
fer
e
nce
bet
ween
the
cel
l
i
ns
ide
a
nd
the
rear
-
su
r
face
of
the
m
odule
w
hic
h
ra
ng
e
s
from
2
°C
to
3
°
C
f
or
plate
modu
le
s
(g
la
ss/ce
ll
/po
l
yme
r)
in
ope
n
r
ack
mou
nts
[
28]
.
Howe
ver,
i
f
the
rea
r
-
surfa
ce
m
odule
te
m
per
at
ur
e
is
unknow
n,
then
t
he
cel
l t
e
mp
e
ratur
e
ca
n be
determi
ned
by
(
4)
.
=
+
(
−
20
80
0
)
∙
(4)
The
inc
reasin
g
te
mp
erat
ur
e
m
eans
that
el
ect
r
on
s
a
re
m
or
e
e
asi
ly
excit
ed,
c
ausin
g
a
l
ower
op
e
n
ci
rc
uit
vo
lt
age
(
V
oc
).
The dec
r
ease i
n
V
oc
ca
nnot
be
c
ompen
sat
ed
by t
he
short circ
uit cu
rrent (
I
sc
) wh
ic
h sl
igh
tl
y
inc
reas
es due
to the i
ncr
ea
se
in car
rier c
onc
entrati
on. T
he
eff
ect
lea
ds
to
(5)
[29]
:
=
[
1
−
(
−
)
]
(5)
wh
e
re
pv
is
the
m
odule’s
eff
ic
ie
nc
y
at
t
he
re
fer
e
nce
t
empe
rature,
pv
is
the
m
odule’s
e
ff
ic
ie
nc
y
at
te
mp
erat
ur
e
of
STC
sta
nda
rd
(25
°
C,
10
00
W/m
2
),
β
is
the
te
m
per
at
ure
coeffic
ie
nt
of
maxim
um
pow
er,
P
m
(%/
°C)
ref
e
rr
i
ng
t
o
the
man
uf
act
ur
e
r's
dat
asheet
[
23],
[30],
[
31]
.
T
he
re
fore,
the
relat
ion
s
hi
p
bet
wee
n
outp
ut
powe
r
of
PV
m
odule
a
nd
te
m
per
at
ur
e
c
an
be
deter
mine
d
usi
ng
(
6)
[
29]
:
=
[
1
−
(
−
)
]
(6)
wh
e
re
G
is
so
l
ar ir
rad
ia
nce a
nd
is t
he
s
urfa
ce area
of the
modu
le
.
2.4.
Raw an
d
ne
t g
ain
T
h
e
r
a
w
g
a
i
n
of
a
P
V
c
o
o
l
i
n
g
s
y
s
t
e
m
(
∆
)
i
s
t
he
e
x
t
r
a
e
n
e
r
g
y
p
r
o
d
u
c
e
d
b
y
t
h
e
P
V
m
o
d
u
l
e
du
e
t
o
t
h
e
u
s
e
o
f
t
h
e
c
o
o
l
i
n
g
s
y
s
t
e
m
(
)
i
n
w
a
t
t
h
o
u
r
(
W
h
)
.
T
h
i
s
c
a
n
b
e
c
a
l
c
u
l
a
t
e
d
s
i
m
p
l
y
w
i
t
h
(
7
)
a
n
d
(
8
)
:
∆
=
−
(7)
(
%
)
=
(
−
)
×
100%
(8)
M
e
a
n
w
h
i
l
e
,
t
h
e
n
e
t
g
a
i
n
from
t
h
e
PV
c
o
o
l
i
n
g
s
y
s
t
e
m
(
∆
)
is
the
e
x
t
r
a
e
n
e
r
g
y
p
r
o
d
u
c
e
d
by
t
h
e
PV
m
o
d
u
l
e
c
o
n
s
i
d
e
r
i
n
g
e
n
e
r
g
y
of
c
o
o
l
i
n
g
s
y
s
t
e
m
,
t
h
e
n
c
o
m
p
a
r
e
d
w
i
t
h
t
h
e
e
n
e
r
g
y
p
r
o
d
u
c
e
d
by
t
h
e
m
o
d
u
l
e
w
i
t
h
o
u
t
c
o
o
l
i
n
g
(
)
.
In
o
t
h
e
r
w
o
r
d
s
,
t
h
e
n
e
t
g
a
i
n
t
a
k
e
s
i
n
t
o
a
c
c
o
u
n
t
t
h
e
t
ot
a
l
e
n
e
r
g
y
c
o
n
s
u
m
e
d
by
th
e
c
i
r
c
u
l
a
t
i
n
g
p
u
m
p
(
E
CP
)
to
c
i
r
c
u
l
a
t
e
w
a
t
e
r
c
o
o
l
a
n
t
t
h
r
o
u
g
h
the
m
o
d
u
l
e
s
u
r
f
a
c
e
at
a
c
e
r
t
a
i
n
f
l
o
w
r
a
t
e
d
u
r
i
n
g
t
h
e
a
c
t
i
v
e
c
o
o
l
i
n
g
p
r
o
c
e
s
s
.
F
o
r
a
g
i
v
e
n
p
e
r
i
o
d
of
t
i
m
e
,
t
h
e
n
e
t
g
a
i
n
can
be
c
a
l
c
u
l
a
t
e
d
as
e
x
p
r
e
s
s
e
d
in
(9)
to
(10)
.
∆
=
∆
−
(9)
∆
=
(
−
)
−
(10)
(
%
)
=
(
∆
−
)
×
100%
(11)
Op
ti
mal
net
ga
in
is
the
key
to
the
te
c
hn
ic
al
feasibil
it
y
of
a
PV
c
ooli
ng
s
ys
te
m.
It
al
so
highli
gh
ts
t
he
act
ual
energ
y
gai
n
in
th
is
study.
T
he
refor
e
,
in
c
ontrolli
ng
an
act
ive
co
olin
g
sys
te
m,
it
is
necessary
to
ide
ntif
y
the
po
i
nts
wh
e
re
t
he
gain
is
opti
mal
in
te
r
ms
of
the
wate
r
fl
ow
rate
an
d
t
he
eff
ect
i
ve
e
nergy
of
t
he
ci
rc
ul
at
ion
pump
(
E
CP
).
3.
RESU
LT
S
AND DI
SCUS
S
ION
On
e
of
the
obj
ect
ives
of
this
study
was
t
o
e
valuate
th
e
co
oling
pr
ocess
of
PV
co
olin
g
sy
ste
m
base
d
on
the
te
m
pera
ture
reducti
on
achieve
d,
t
he
i
ncr
ease
d
PV
outp
ut
po
wer
,
ne
t
energ
y
gai
n
and
wate
r
fl
ow
rate.
The
c
omplet
e
s
cheme
of
t
he
e
xp
e
rime
ntal
se
tup
can
b
e
see
n
as
s
how
n
i
n
Figure 3
.
I
n
thi
s
stu
dy,
a
c
omparis
on
of
t
he
c
oo
li
ng
process
pe
rfo
rme
d
ba
sed
on
th
ree
pump
sy
ste
m
act
iva
ti
on
s,
nam
el
y
the
first
was
act
ive
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1
-
14
6
con
ti
nu
ously,
the
sec
ond
wa
s acti
ve
base
d
on
set
po
i
nt
te
m
per
at
ur
e,
a
nd
th
e
la
st was
act
i
ve
base
d
on
th
e
pum
p
PWM c
ontrol.
The
e
xp
e
rime
nt
al
so
i
nvolve
d
a
n
unc
oo
le
d
P
V
m
odule
as
a
co
m
par
i
so
n.
In
t
he
process
al
l
the
par
a
mete
rs
ne
eded
f
or
a
naly
sis
are
meas
ur
ed
in
real
ti
m
e
for
e
very
1
-
minu
te
i
nter
va
l
of
data
colle
ct
ion
thr
oughout
t
he
day.
T
he
init
ia
l
of
the
pro
cess
of
co
olin
g
or
act
ivati
ng
the
pum
p
w
as
w
hen
t
he
modu
le
te
mp
erat
ur
e
h
a
s r
eac
hed 50
°
C or m
or
e
.
Figure
3. Ex
pe
rimental
set
up
of PV m
odules
cooli
ng
3.1.
General cir
c
u
mstances
The
mod
ule
w
as
te
ste
d
in
a
geog
raphic
l
oc
at
ion
with
a
tr
op
ic
al
cl
imat
e
(Ban
dung
Ci
ty
,
I
ndonesi
a)
on
a
cl
ea
r
sum
mer
day
a
nd
th
ere
we
re
only
t
hin
cl
ou
ds
at
c
ertai
n
ti
mes.
Fi
gure
4
sho
ws
the
inten
sit
y
of
so
la
r
irrad
ia
nce
(
G
)
in
W/m
2
meas
ur
e
d
us
in
g
ir
ra
diance
mete
r
duri
ng
one
of
th
e
ex
p
erime
ntal
da
ys
in
A
ugust
,
ai
r
te
mp
erat
ur
e
(
T
A
)
in
degrees
Ce
lsi
us
meas
ured
us
in
g
D
H
T2
2
se
nsor
,
a
nd
water
c
oo
la
nt
te
mp
e
ratu
re
(
T
W
)
i
n
degrees
Ce
lsi
us
meas
ur
e
d
us
i
ng
D
S18B
20
s
ens
or
.
M
ean
w
hile
the
ai
r
velocit
y
was
ne
glect
ed
becau
se
i
t
is
le
ss
than 1
m/s.
Figure
4. S
olar
irr
a
diati
on int
ensity
(POA
), t
empe
rature
of
ai
r
an
d wate
r, i
n diff
e
re
nt ho
urs
Series
of
meas
ur
e
ments
was
carried
out
f
r
om
09.
00
a.
m.
t
o
15.00
p.
m
.
within
1
-
min
ut
e
inter
vals
of
ti
me.
The
s
olar
irra
diance
ra
nged
f
r
om
695
to
1247
W∕
m
2
oc
cur
s
at
09.00
a.m.
an
d
12.
32
p.m.
,
r
especti
vely.
Accor
ding
to
I
ndonesi
an
So
l
ar
Atla
s,
4.7
1
to
5.2
5
k
W
h∕m
2
are
the
daily
aver
a
ge
ir
rad
ia
ti
on
durin
g
a
da
y
in
0
10
20
30
40
50
60
70
80
90
1
0
0
0
2
0
0
4
0
0
6
0
0
8
0
0
1
0
0
0
1
2
0
0
1
4
0
0
0
9
:0
0
1
0
:0
0
1
1
:0
0
1
2
:0
0
1
3
:0
0
1
4
:0
0
1
5
:0
0
Tem
p
erature,
T
[
0
C]
Ir
radian
ce,
G
[
W
/m
2
]
Tim
e
o
f
Day
[
h
our
:
m
in
u
te
]
G
TA
TW
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Ener
gy analysi
s o
f
activ
e
ph
oto
voltaic
co
olin
g
syste
m usin
g w
ater fl
ow (An
t. Ardath
Kri
sti
)
7
Aug
us
t
in
Ba
ndun
g
ci
ty.
T
he
minimu
m
of
ai
r
te
mp
e
ratu
re
(
T
A
)
is
eq
ual
to
32.2
o
C,
a
nd
t
he
maxim
um
is
equ
al
to 41.3
o
C
with
av
e
rag
e
of
38.
43
o
C, als
o wit
h
a
ver
a
ge wat
e
r
c
oo
la
nt temp
eratur
e
(
T
W
) of
28.56
o
C.
3.2.
Effect
of
w
at
e
r co
oling on
t
e
mpera
tu
re
of
PV
m
odul
e
S
i
m
u
l
t
a
n
e
o
u
s
m
e
a
s
u
r
e
m
e
n
t
r
e
s
u
l
t
s
w
i
t
h
t
h
e
r
e
a
d
i
n
g
p
a
r
a
m
e
t
e
r
s
a
r
e
d
i
s
p
l
a
y
e
d
c
o
m
p
l
e
t
e
l
y
in
F
i
g
u
r
e
5
.
It
sh
ows
t
he
flo
w
rate
ef
fect
of
co
oling
wate
r
mass
(
m
w
)
on
the
te
mp
erat
ure
(
T
m
)
of
the
coo
le
d
PV
m
odules
of
PV
c
oo
li
ng
a
nd
its
com
par
is
on
to
the
un
c
oo
le
d
PV
m
odule.
In
nami
ng
c
urves
,
un
coo
le
d
PV
m
odule
is
denoted
by
M
uc
,
co
oled
PV
modu
le
by
usi
ng
pump
act
iv
at
ion
1
(c
onsta
nt
flo
w
rate),
pum
p
act
ivati
on
2
(intermitt
ent
flow
rate)
,
a
nd
pum
p
act
ivati
on
3
(
sm
oo
t
h
de
crease
in
fl
ow
rate
)
a
re
de
no
te
d
by
M
c1
,
M
c2
,
an
d
M
c3
,
res
pecti
ve
ly.
Figure
5. Com
par
is
on of t
he e
ff
ect
s
of v
a
rio
us
water
flo
w r
at
e o
n m
odule
te
mp
erat
ur
e
The
te
m
per
at
ure
rea
dings
of
modu
le
s
sta
rt
to
be
rec
orded
at
09
.
00
a.m
.,
wh
e
n
the
sunli
gh
t
beg
a
n
to
rise
an
d
t
he
t
empe
rature
of
mod
ules
inc
r
eased
e
xcee
d
nor
mal
co
nd
it
ion
s
(
N
OCT
)
.
At
t
his
po
i
nt
the
te
mp
erat
ur
e
of
al
l
mo
dule
s
t
est
ed
excee
ds
45
ºC.
Durin
g
the
te
st,
t
he
aver
a
ge
te
m
pe
ratur
e
of
unc
oo
le
d
modu
le
(
T
_M
uc
)
rea
c
he
d
56.
21
ºC
with
a
min.
of
48
ºC
and
a
ma
x.
of
59
ºC
as
sho
w
n
by
blac
k
li
ne
cu
rv
e
.
Wh
il
e
at
9.08
a.m.,
al
l
co
oled
m
odules
of
PV
c
ooli
ng
syst
ems
(
M
c1
,
M
c2
,
an
d
M
c3
)
sta
rted
to
act
iva
te
the
coo
li
ng
proces
s.
F
ur
t
hermo
re,
f
r
om t
he
t
hr
ee
cooli
ng acti
va
ti
on
c
o
nt
ro
ls
c
an be e
xp
la
i
ne
d
as
foll
ows:
−
Con
ti
nu
ou
s
pum
p
act
i
vatio
n
res
ults
c
onsta
nt
water
fl
ow
rate
of
c
oo
le
d
mod
ule
(
m
_M
c1
)
ar
ound
11
L/mi
n
as
show
n
by
gr
ee
n
do
tt
ed
li
ne
a
s
s
how
n
in
Fi
gur
e
6.
Durin
g
th
e
te
st,
the
ave
ra
ge
te
m
per
at
ur
e
of
coo
le
d
mod
ule
1
(
T
_M
c1
)
is
a
rou
nd
32.
42
º
C
with
the
a
ve
rag
e
of
flo
w
r
at
e
of
10.73
L/mi
n
acc
ordi
ng
t
o
gr
ee
n
li
ne
c
urve.
A
s
harp
r
edu
ci
ng
in
te
mp
e
ratur
e
of
the
co
oled
m
odule
1
(
T_
M
c1
)
occ
ur
s
f
rom
49.82
º
C
to
29.
43
º
C
at
09:08
to
09:1
9
a
.
m.
T
his
c
ooli
ng
pr
ocess
res
ults
in
a
ma
xim
um
de
crease
i
n
modu
le
te
m
pe
r
at
ur
e
(
∆
T_
M
c1
)
arou
nd
20.
39
º
C
for
13
min
utes
with
water
f
low
rate
of
11
L/mi
n.
Hen
c
e,
the
declai
m
rat
e
of
mod
ule
te
mp
e
ratur
e
is
1.57
º
C/
min
.
Af
t
er
reachi
ng
a
minimu
m
te
m
per
at
ur
e
(
29
º
C
)
,
there
is
no
f
urt
her
decr
ea
se
in
m
odule
te
m
per
at
ur
e,
eve
n
it
te
nd
s
to
ste
ady
an
d
on
l
y
rises
bac
k
to
wa
r
ds
33
º
C
due to
th
e increase
in
air tem
per
at
ur
e a
nd so
la
r
ir
rad
ia
nce.
−
Acti
vation
of
the
pum
p
base
d
on
t
he
set
poin
t
te
mp
e
ratur
e
r
eadin
g
by
se
nsor
res
ults
i
n
th
e
co
olin
g
mod
ule
water
fl
ow
(
m
_M
c2
)
bein
g
i
nt
ermit
te
nt
between
11
L/mi
n
an
d
0
L/mi
n
as
s
how
n
by
blu
e
do
tt
ed
li
ne
in
Figure
6.
Acc
ordin
g
to
bl
ue
li
ne
cu
rv
e
,
r
edu
ci
ng
t
he
te
mp
e
ratur
e
of
the
c
oo
le
d
m
odule
2
(
T_M
c2
)
relat
ively
sa
m
e
as
the
te
mpe
ratur
e
of
t
he
coo
le
d
m
odule
1
(
T
_M
c1
)
.
It
occ
ur
s
at
the
be
ginnin
g
of
the
coo
li
ng
pr
oces
s
un
ti
l
the
l
ower
li
mit
set
po
i
nt
of
31
º
C
r
ea
ched,
a
nd
the
n
the
process
st
op
s
.
Ne
xt,
a
ne
w
coo
li
ng
cycle
will
be
gin
t
o
st
art
after
the
te
mp
e
ratur
e
of
the
mod
ule
2
(
T_
M
c2
)
e
xceeds
35
º
C.
D
ur
i
ng
t
his
coo
li
ng,
the
t
empe
rature
of
the
co
oled
modu
le
2
(
T_M
c2
)
is
maint
ai
ned
i
n
the
r
ang
e
of
30
º
C
to
35
º
C.
The
ai
m
of
this
c
ooli
ng
proces
s
is
to
minimiz
e p
um
p
e
nerg
y
a
nd
the
am
ount of w
at
er
c
onsump
ti
on
.
In
Fig
ur
e
6,
t
he
blu
e
li
ne
c
ur
ve
s
hows
the
aver
a
ge
inc
rea
se
rate
in
m
o
dule
te
mp
e
ratu
r
e
above
30
º
C
i
s
1
º
C/
min
w
he
n
co
olin
g
is
not
act
ive.
Wh
i
le
wh
e
n
it
is
act
ive,
the
a
ve
rag
e
of
decli
ne
rate
in
m
odule
te
mp
erat
ur
e
is
1.67
º
C/
min
, d
ependin
g o
n
ai
r
te
m
per
at
ur
e a
nd so
la
r
ir
rad
ia
nce.
0
5
10
15
20
25
30
35
40
45
50
0
10
20
30
40
50
60
70
0
9
:0
0
1
0
:0
0
1
1
:0
0
1
2
:0
0
1
3
:0
0
1
4
:0
0
1
5
:0
0
Flo
w
rate,
m
w
[
L/m
in
]
Tem
p
erature,
T
m
[
o
C]
Tim
e
o
f
Day
[
h
our
:
m
in
u
te
]
T_
Mu
c
T_
Mc1
T_
Mc2
T_
Mc3
m_
Mc1
m_
Mc2
m_
Mc3
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1
-
14
8
−
Acti
vation
of
t
he
pum
p
base
d
on
a
decr
ea
se
i
n
the
pump
P
W
M
vo
lt
a
ge
r
esults
the
c
oo
li
ng
m
odule
wat
er
flo
w
(
m
_M
c3
)
decr
easi
ng
fro
m
11
L/mi
n
to
1.5
L/mi
n
duri
ng
the
te
st.
He
re,
as
long
as
t
he
mod
ule
te
mp
erat
ur
e
de
creases,
the
c
ontr
oller
will
au
tomati
cal
ly
re
duce
t
he
P
WM
vo
lt
age
.
Acc
ordin
g
to
re
d
line
c
urve,
re
du
ci
ng
the
te
mp
e
ratur
e
of
the
c
oo
le
d
m
odule
3
(
T_M
c3
)
from
49.64
º
C
to
31.12
º
C,
occ
urs
at
09
:
08
to
09
:
27
a.m
.
T
his
co
ol
ing
process
re
su
lt
s
in
a
dec
r
ease
in
m
odul
e
te
mp
e
ratu
re
(
∆
T_
M
c3
)
a
rou
nd
18.52
º
C
for
22
mi
nu
te
s
as
sho
wn
in
Fi
gure
6.
Hen
ce
,
the
declai
m
rate
of
mod
ul
e
te
mp
e
ratu
re
is
0.84
º
C/
min.
B
ecause
the
modu
le
te
m
per
at
ure
of
31.
12
º
C
cannot
be
re
duced
an
y
furthe
r
(stead
y
sta
te
)
at
a
flo
w
rate
of
1.5
L/mi
n,
th
en
base
d
on
t
he
te
m
per
at
ure
sens
or
read
i
ng,
t
he
c
on
t
rol
le
r
auto
mati
cal
l
y
cannot
re
du
ce
the
pum
p
PWM
volt
age
a
ny
lo
wer.
In
t
his
conditi
on
t
he
PWM
val
ue
w
as
mai
ntaine
d
un
t
i
l
the
e
nd
of
the
te
s
t.
Unde
r
c
onditi
ons
of
c
on
sta
nt
water
flo
w
rate
at
1.5
L/
min,
the
t
empe
rature
of
the
coo
le
d
m
odule
3
(
T
_M
c3
)
ra
ng
e
s
bet
wee
n
31
º
C
to
35
º
C
depen
ding
on
the
ai
r
te
m
per
at
ur
e
a
nd
s
olar
irrad
ia
nce.
Figure
6. Com
par
is
on of t
he e
ff
ect
s
of v
a
rio
us
water
flo
w
r
at
e o
n mi
ni
mum ste
ad
y
sta
te
modu
le
te
mp
e
r
at
ur
e
Accor
ding
to
Figure
6,
it
is
f
ur
t
her
obse
r
ved
that
t
her
e
is
a
non
-
li
ne
ar
relat
ion
s
hip
bet
ween
the
te
mp
erat
ur
e
of
the
c
oo
le
d
modu
le
a
nd
the
w
at
er
flo
w
rate
at
a
sp
eci
fic
so
l
ar
ir
rad
ia
nce.
By
c
on
sta
nt
fl
ow
r
at
e
(
m
_M
c1
),
the
te
mp
e
ratur
e
of
the
c
oole
d
m
odule
1
(
T
_M
c1
)
decr
ease
s
non
-
li
near
ly
su
c
h
that
at
a
certai
n
point
a
furthe
r
co
ns
ta
nt
flo
w
rate
does
not
res
ult
in
sig
nifica
nt
decr
e
ase
in
the
m
odule
te
mp
e
ratur
e
1
(
T_
M
c1
).
Anothe
r
obse
r
vation
was
al
s
o
on
the
co
ole
d
m
odule
3
(
M
c3
)
wh
e
re
at
a
c
ertai
n
point,
t
he
decr
easi
ng
P
W
M
or
water
flo
w
rate
(%
/
m
_M
c3
)
does
not
res
ult
in
sig
nifica
nt
in
crease
in
t
he
te
mp
e
ratur
e
of
t
he
c
oo
le
d
m
odule
3
(
T_M
c3
).
T
his
ob
s
er
vation
is
in
acc
ordan
ce
with
wh
at
has
been
re
porte
d
by
pre
vious
st
ud
ie
s
[
23],
[30]
–
[33
]
.
Howe
ver,
the
r
esults
of
the
non
-
li
near
e
quat
ion
s
ca
nnot
be
gen
e
rali
zed,
de
pend
on
t
he
ther
mal
desig
n
of
t
he
PV
c
ooli
ng
s
yst
em
an
d
requir
e
f
ur
the
r
i
nv
est
igati
on
.
3.3.
El
ectric
al ene
rgy and e
ff
ic
ie
ncy an
alysi
s of P
V
m
od
ule
d
ue to c
ooli
ng
process
In
this
sect
ion
the
ef
fect
of
the
c
ooli
ng
te
c
hn
i
qu
e
of
PV
coo
li
ng
syst
em
on
t
he
outp
ut
ene
rgy
an
d
el
ect
rical
eff
ic
ie
ncy
of
the
PV
m
odule
was
inv
e
sti
gated.
Figu
re
7
s
how
s
co
mp
a
rati
ve
prof
il
e
of
el
ec
tric
al
powe
r
gen
e
rated
by
unc
oo
le
d
PV
mod
ule
com
par
e
d
to
c
oo
le
d
PV
mod
ules,
as
well
as
the
el
ect
rical
powe
r
consu
med
by
t
he
pum
p
duri
ng
t
he
co
olin
g
proces
s.
In
fact,
al
l
c
oo
le
d
PV
modu
le
s
produ
ce
great
er
el
ec
tric
al
ene
rgy
ou
t
pu
t
t
han
unc
oo
le
d
modu
le
at
al
l
ti
me
du
rin
g
the
t
est
.
Th
e
lo
wer
the
m
odule
te
mp
e
ratur
e
le
ad
to
t
he
gr
eat
er
el
ect
rical
energy
ge
ne
rated,
as
t
he
c
onse
qu
e
nce
was
gr
eat
er
the
el
e
ct
rical
energy
and
a
mou
nt
of
water
in
an
act
ive
c
ooli
ng
s
ys
te
m.
The
maxim
um
powe
r
ou
t
put
of
al
l
PV
m
odules
te
ste
d
occ
urred
at
12:3
3
p.
m
.
,
with
ma
ximum
so
la
r
ir
rad
ia
nc
e
of
1247
W/m
2
.
This
co
rr
el
at
ion
was
in
acc
orda
nce
with
(
2).
At
that
poi
nt,
the
ou
t
pu
t
powe
r
of
t
he
un
c
oole
d
m
odule
(
P
_M
uc
)
is
79.
96
W.
M
ea
nwhile
,
the
ou
t
pu
t
powe
r
o
f
t
he
c
oo
le
d
modu
le
s
by
c
on
sta
nt
fl
ow
r
at
e
(
P
_M
c1
),
by
inte
rmitt
ent
flo
w
rate
(
P
_M
c2
),
a
nd
by
decr
easi
ng
fl
ow
rate
(
P_
M
c3
)
are
97.47,
97.50,
a
nd
96.41
W,
res
pe
ct
ively.
T
he
minimu
m
po
w
er
outp
ut
of
al
l
PV
m
odules
t
est
ed
occurre
d
at
09
:00
a.
m.,
with
s
olar
irr
a
dian
ce
of
749
W/
m
2
.
It’s
re
su
lt
e
d
t
he
outp
ut
powe
r
of
the
unco
oled
modu
le
(
P_
M
uc
)
eq
ual
to
the
ou
t
pu
t
pow
er
of
al
l
coo
l
ed
m
odule
(
P
_Mc
1,2,3
)
ar
ou
nd
63
W
w
he
re
the
0
5
10
15
20
25
30
35
40
45
50
0
10
20
30
40
50
60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Flo
w
Rate,
V
[
l/m
]
Tem
p
erature,
T
[
C
]
Tim
e[
m
in
u
te]
T_
Mc1
T_
Mc2
T_
Mc3
m_
Mc1
m_
Mc2
m_
Mc3
T_Mc1
Stead
y
T_Mc3
Stead
y
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Ener
gy analysi
s o
f
activ
e
ph
oto
voltaic
co
olin
g
syste
m usin
g w
ater fl
ow (An
t. Ardath
Kri
sti
)
9
instanta
ne
ous
coo
li
ng
proces
s
has
just
be
gu
n.
T
hu
s
,
f
or
6
hours
of
t
he
te
st,
the
total
en
ergy
pro
duce
d
by
the
modu
le
with
ou
t
co
oling
(
E_
M
uc
)
is
370.5
4
W
h,
w
hile
the
outp
ut
powe
r
of
the
co
oled
m
odules
by
c
on
sta
nt
flo
w
rate
(
E
_M
c1
),
by
inter
mit
te
nt
flo
w
r
at
e
(
E_
M
c2
),
a
nd
by
dec
reasi
ng
fl
ow
rate
(
E_M
c3
)
are
44
4.65
W
h,
439.1
9
Wh,
a
nd
437.9
5
Wh,
r
especti
vely
.
Figure
7. Ele
ct
rical
pow
e
r pro
file
s of c
oo
le
d/u
nc
oole
d mo
dule
s a
nd cooli
ng
process
r
e
qu
i
reme
nt
The
el
ect
rical
powe
r
co
nsum
ed
by
t
he
pu
m
p
in
t
he
pr
oces
s
of
co
olin
g
th
e
PV
mod
ules
are
s
hown
by
the
dott
ed
li
ne
curves.
The
pa
tt
ern
of
pum
p
power
c
urves
al
way
s
e
qual
to
the
fl
ow
rate
on
e
s
,
as
s
hown
i
n
Figure
5).
Re
f
ers
to
pump
na
me
plate
,
the
nominal
volt
ag
e,
po
wer,
a
nd
flo
w
rate
are
12
V
DC
,
19
W,
an
d
11
L/mi
n,
res
pe
ct
ively.
The
total
ene
rgy
co
ns
ume
d
of
co
ol
ing
pum
p
(
∑E
cp
)
f
or
6
hours
o
f
the
te
st
on
c
oo
le
d
modu
le
s
by
co
ns
ta
nt
fl
ow
rat
e
(
PP
_M
c1
),
by
inter
mit
te
nt
flo
w
rate
(
P
P
_M
c2
),
a
nd
by
decr
easi
ng
flo
w
rate
(
PP
_M
c3
)
a
re
97.
16,
46.38,
an
d
30.66
W
h,
re
sp
ect
ively
.
Fi
gure
8
s
how
s
the
pro
file
s
of
el
ect
rical
eff
ic
ie
ncy
of
coo
le
d
PV
m
odules
(
_
M
c1,2,
3
)
inclu
ding
unco
oled
PV
m
odule
(
_
M
uc
)
as
a
co
mp
a
rison.
Af
te
r
t
hat,
the
el
ect
rical
eff
ic
i
ency
of
al
l
c
oole
d
PV
m
odule
s
w
as
al
ways
hi
gh
e
r
t
han
that
of
un
c
oole
d
m
odules
unti
l
the
en
d
of
the
te
st.
Figure
8. Ele
ct
rical
eff
ic
ie
nc
y p
rofil
es of c
ool
ed/un
c
oole
d
modu
le
s
0
10
20
30
40
50
60
70
80
90
1
0
0
50
55
60
65
70
75
80
85
90
95
1
0
0
09
:00
10
:00
11
:00
12
:00
13
:00
14
:00
15
:00
Pu
m
p
Po
wer,
Pp
[
W
att]
Mod
u
le
Po
wer,
P_
M
[
W
att]
Tim
e
o
f
Day
[
h
our
:
m
in
u
te
]
P_
Mc
1
P_
Mc
2
P_
Mc
3
P_
Muc
PP_
M
c1
PP_
M
c2
PP_
M
c3
5
6
7
8
9
10
11
12
13
14
15
0
9
:0
0
1
0
:0
0
1
1
:0
0
1
2
:0
0
1
3
:0
0
1
4
:0
0
1
5
:0
0
Electr
ical
Ef
f
icien
cy
,
[
%]
Ti
m
e of
Day
[
h
our
:
m
inut
e]
_
Muc
_
Mc1
_
Mc2
_
Mc3
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1
-
14
10
Ele
ct
rical
eff
ic
ie
ncy
of
al
l
PV
modu
le
s
e
xper
ie
nces
a
dow
nwar
d
tre
nd
fro
m
the
be
ginnin
g
of
the
te
s
t
un
ti
l
the
mid
dl
e
of
day
(
12:3
3
p.
m
.)
due
to
the
inc
reasin
g
te
mp
erat
ur
e
of
the
PV
m
odul
es
infl
ue
nced
by
ai
r
te
mp
erat
ur
e
durin
g
t
hat
per
i
od.
H
oweve
r,
the
tre
nd
rev
e
rse
d
a
fter
12
:
33
p.m.
w
he
n
both
the
ai
r
te
m
perat
ure
and
PV
mod
ule's
te
mp
e
ratu
re
be
ga
n
to
dec
r
ease.
It
is
cl
ear
that
inc
reasin
g
the
te
m
per
at
ur
e
of
t
he
m
od
ule
ca
n
reduce
its
el
ec
tric
al
eff
ic
ie
nc
y.
T
he
a
ve
rage
el
ect
rical
ef
f
ic
ie
ncy
rec
ord
ed
duri
ng
the
te
st
for
the
co
oled
modu
le
s
by
c
on
sta
nt
fl
ow
r
at
e
(
_
M
c1
),
by
inte
rmitt
ent
flo
w
rate
(
_
M
c2
),
a
nd
by
decr
easi
ng
fl
ow
rate
(
_
M
c3
)
are
11
.84%,
11.
69%,
an
d
11.
65%,
r
especti
vely
,
wi
th
inc
rease
in
e
ff
ic
ie
nc
y
a
re
20.
10%,
18.
53%,
a
nd
18,16%
r
es
pec
ti
vely
agai
ns
t
9.86%
f
or
an
un
c
oole
d
mod
ule
(
_
M
uc
).
T
hu
s
,
the
highe
r
the
water
flo
w
rate
le
ad
to
t
he
higher
the
i
ncr
eas
e
in
m
odule
ef
f
ic
ie
ncy
.
3.4.
Analy
sis
of r
aw
an
d
net ene
rgy gain
The
pro
file
s
of
the
ra
w
a
nd
the
net
e
nergy
ga
in
of
al
l
c
oole
d
PV
mod
ules
c
an
be
see
n
in
F
igure
9.
A
s
pr
ese
nted
in
(
7),
the
ra
w
e
nerg
y
gain
(
∆
E
Raw
)
was
deter
mined
ba
sed
on
the
dif
fer
e
nce
in
total
e
nerg
y
pro
du
ce
d
betw
een
c
oo
le
d
P
V
m
odules
(
∆
E_M
c1,2,3
)
a
nd
unco
oled
P
V
m
odule
(∑E
_M
uc
)
.
It
hi
gh
li
ght
s
the
po
te
ntial
extra
energ
y
due
t
o
coo
li
ng
proces
s
in
P
V
c
oo
li
ng
s
ys
te
m
(in
W
h/kWh
).
As
pr
esented
i
n
(9),
the
net
energ
y
gai
n
is
determi
ne
d
ba
sed
on
the
di
ff
e
ren
ce
bet
we
en
ra
w
e
nerg
y
gain
(
∆
E
Raw
)
and
the
t
otal
en
ergy
consu
med
by t
he
c
oo
li
ng
pu
mp
(
∑E
cp
)
during the test
.
B
ased
on
the
t
otal
power
of
al
l
coo
le
d
m
odul
es
(∑
P
raw
_M
c1
,2,3
)
cal
culat
ion
for
6
hours
of
the
te
st,
the
raw
e
nerg
y
of
coo
le
d
m
odule
s
by
c
onsta
nt
f
low
rate
(∑
E
ra
w
_M
c1
),
by
i
ntermitt
ent
flo
w
r
at
e
(∑
E
raw
_M
c2
),
an
d
by
dec
reasin
g
flo
w
rate
sm
oothly
(∑
E
raw
_M
c3
)
a
re
74.
13,
68.
63,
a
nd
67.
49
Wh,
resp
ect
i
vely.
M
ean
w
hile,
ne
t
energ
y
gain
of
co
oled
m
odul
es
by
co
ns
ta
nt
flo
w
rate
(∑
E
net
_M
c1
),
by
inte
rmitt
ent
fl
ow
r
at
e
(∑
E
net
_M
c2
),
a
nd
by
dec
reasin
g
flo
w
rate
s
m
oo
t
hly
(∑
E
net
_M
c3
)
are
-
23.
03,
22.
25,
a
nd
36.
83
Wh,
resp
ect
ivel
y,
with
a
per
ce
ntage
i
nc
rease
are
-
6.21%,
6.0
1%,
an
d
9.94%,
r
espec
ti
vely.
T
hus,
the
process
of
co
oling
t
he
PV
m
odul
e
with
a
sm
oo
t
h
decr
ease
in
wa
te
r
flo
w
rate
by
pum
p
P
W
M
vo
lt
age
set
ti
ng
,
resu
lt
in
g
m
or
e
su
pe
rio
r
net
e
nerg
y
gain.
A
ne
gative
ne
t
energy
gai
n
ind
ic
at
es
that
the
ene
r
gy
r
equ
i
red
f
or
t
he
PV
c
ooli
ng
process
is
unbalance
d
a
nd
not
ef
fici
ent.
Even
res
ulti
ng
a
low
po
sit
ive
energ
y
gai
n,
it
requires
the
opti
mal
con
t
ro
l
desig
n
and
pro
pe
r
cal
culat
ion
s
relat
ed
t
o
te
c
hn
ic
al
and
eco
nomica
l
viable.
As
e
xpla
ined
in
t
he
pr
e
vious
sect
io
n
that
unde
r
ce
rtai
n
conditi
ons,
t
he
re
is
non
-
li
nea
r
relat
io
nship
betwee
n
c
ooli
ng
the
m
odule
te
mp
e
ratu
re
a
nd
the
const
ant
wate
r
flo
w
rate.
F
or
a
l
ong
ti
m
e,
co
olin
g
pr
oc
ess
in
this
s
pecif
ic
PV
c
ooli
ng
sy
ste
m,
la
rg
e
diff
e
re
nces
in
f
low
rates
do
not
ha
ve
an
y
sig
nificant
on
la
r
ge
differe
nces
in
m
odule
te
m
per
at
ur
e
re
du
ct
ion
as
well
,
es
pecial
ly
a
fter
each
re
aches
a
ste
a
dy
te
mp
erat
ur
e
.
T
he
se
ve
ral
factor
s
in
flue
nce
it
su
c
h
as
the
m
at
erial
heat
p
rope
rty,
ai
r
te
mp
e
ratu
r
e,
water
te
mpe
ratur
e
,
ir
rad
ia
nce,
a
nd
ot
her
en
vironm
e
nta
l
factor
s
that
r
equ
i
re
furthe
r
in
vestig
at
ion
.
Figure
9. The
ra
w
a
nd the
net
energ
y prof
il
es
of
un
c
oole
d P
V
m
odules
3.5.
Ov
er
all perf
or
man
ce
analy
sis
As
the
e
xperi
mental
obje
ct
ives
sta
te
d
in
t
he
intr
oductio
n,
this
sect
io
n
descr
i
bes
esse
ntial
po
ints
of
the
c
oo
li
ng
pum
p
act
ivati
on
set
ti
ngs
i
n
coo
li
ng
the
P
V
m
odules
in
the
PV
co
oling
s
ys
te
m.
Th
e
pum
p
act
ivati
on
set
ti
ng
s
wit
h
P
W
M
co
ntr
ollers
a
re
more
s
uperi
or
than
ot
her
co
nt
ro
ls
in
co
olin
g
PV
m
odule
due
to
2
2
1
1
1
1
2
2
1
11
12
1
14
1
o
w
e
r
,
W
a
t
t
i
m
e
o
f
d
a
h
o
u
r
m
i
n
u
t
e
r
a
w
c
1
r
a
w
c
2
r
a
w
c
n
e
t
c
1
n
e
t
c
2
n
e
t
c
Evaluation Warning : The document was created with Spire.PDF for Python.