Int
ern
at
i
onal
Journ
al of Ele
ctrical
an
d
Co
mput
er
En
gin
eeri
ng
(IJ
E
C
E)
Vo
l.
15
,
No.
1
,
Febr
uary
20
25
, pp.
67
~
75
IS
S
N:
20
88
-
8708
, DO
I: 10
.11
591/ij
ece.v
15
i
1
.
pp
67
-
75
67
Journ
al h
om
e
page
:
http:
//
ij
ece.i
aesc
or
e.c
om
Estimati
on of
harmonic i
mped
ance and
res
onance
in pow
er
systems
Ha
it
ha
m
A
li
Alas
h
aary
1
,
G
ha
deer
N
y
azi
Al Shab
a'an
2
,
Wael F
awzi
Abu S
heh
ab
3
,
Sheh
ab
Abdul
wadood
A
li
4
1
Dep
artm
en
t of
Co
m
p
u
ter
Eng
in
eerin
g
,
Facu
lty
of E
n
g
i
n
eering
,
Al
-
Hu
ss
ei
n
Bin
T
alal Univ
er
sity
,
Maan,
Jo
rdan
2
Dep
artm
en
t of
E
l
ectrica
l
E
n
g
in
eerin
g
,
Facu
lty
of E
n
g
i
n
eering
,
Al
-
Balq
a
Ap
p
lied
Univ
ersity
,
Al
-
Salt
,
Jo
rdan
3
Dep
artm
en
t of
E
l
ectrica
l
E
n
g
in
eerin
g
,
Facu
lty
of E
n
g
i
n
eering
,
Al
-
Hu
ss
ei
n
Bin
T
alal Univ
er
sity
,
Maan,
Jo
rdan
4
Dep
artm
en
t of
Ph
y
sics
,
Sab
er
F
acul
ty
of Science and
E
d
u
catio
n
,
Un
iv
ersity
of L
ah
ej,
L
ah
ej,
Yem
en
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
J
un
24, 2
024
Re
vised
Sep 1
0,
2024
Accepte
d
Oct
1,
2024
Since
power
sys
te
ms
ar
e
design
e
d
to
work
at
th
e
funda
me
n
ta
l
fre
quenc
y,
the
pre
senc
e
of
o
th
er
fre
quencie
s
f
rom
var
ious
source
s
m
ay
induc
e
serie
s
an
d
par
allel
r
esona
n
ce
s,
l
ea
ding
to
d
am
ag
e.
Th
e
beh
avi
or
of
th
e
pow
er
sys
tem
in
the
pre
sen
ce
of
har
monics
become
s
evi
d
ent
w
it
h
knowledg
e
o
f
har
monic
im
ped
anc
e
.
Me
asure
me
n
t
offe
r
s
the
most
acc
ura
te
me
ans
of
est
im
a
ti
ng
har
monic
im
p
ed
anc
e
.
How
eve
r
,
when
pr
ec
ise
dat
a
of
the
po
wer
sys
te
m
par
amete
rs
ar
e
a
vai
l
abl
e
,
highl
y
sati
sfac
tory
r
esu
lt
s
ca
n
be
a
chiev
ed
through
ca
l
cul
a
ti
on
meth
ods,
par
t
ic
ul
arl
y
reg
ard
ing
lo
ads,
which
ar
e
unk
nown
and
al
ways
cha
nge
.
Thi
s
paper
p
rese
nts
a
study
on
esti
m
at
ing
har
mon
ic
im
ped
anc
e
usin
g
the
El
e
ct
ro
ma
gne
ti
c
Tra
ns
ie
nts
Program
Alte
rn
at
iv
e
Tra
nsien
t
Program
Draw
(
EM
TP
-
ATPD
raw
)
progra
m,
appl
i
ed
to
an
aut
hen
ti
c
n
et
wo
rk
of
Petrovi
c
e
li
ne
67
,
22/0
.
4
kV,
loc
a
te
d
in
the
Cz
ec
h
Republ
ic.
Hypot
het
i
ca
l
ly,
the
n
e
twork
was
subje
ct
ed
to
har
monic
in
jecti
on
from
a
source
(3
rd
,
5
th
,
7
th
,
9
th
,
and
11
th
h
ar
moni
cs),
and
th
e
har
moni
c
im
ped
anc
e
was
ca
l
cul
a
te
d
for
th
ree
d
iffe
r
ent
v
ar
ia
nts:
indi
vidu
al
har
mon
ic
s,
al
l
har
mon
ic
s,
a
nd
all
exc
ep
t
th
e
9
th
har
moni
c
.
The
r
esult
s
sho
w
tha
t
th
e
pre
senc
e
of
the
9
th
har
monic
c
a
n
le
ad
to
a
p
aral
le
l
r
esona
nc
e.
T
his
study
is
the
first
to
em
p
l
oy
EMTP
-
ATPD
raw
for
prog
ram
mi
ng
th
is
net
w
ork.
It
giv
es
the
poss
ibi
lity
to
cre
a
te
a
net
work
d
ataba
se
for
diff
ere
n
t
op
era
t
ing
condi
ti
ons
,
off
er
ing
an
asset
for
f
uture
pro
ject
p
lanning.
Ke
yw
or
d
s
:
Harmo
nic im
pe
dan
ce
Harmo
nics
Netw
ork mo
de
li
ng
Power syste
m
Series a
nd p
a
ra
ll
el
reso
na
nces
This
is an
open
acc
ess arti
cl
e
un
der
the
CC
BY
-
SA
l
ic
ense
.
Corres
pond
in
g
Aut
h
or
:
Wael Fa
wzi Abu S
heh
a
b
Dep
a
rtme
nt of
Ele
ct
rical
En
gi
neer
i
ng
, F
ac
ulty
of Enginee
ri
ng, Al
-
H
us
sei
n B
in Talal
Un
i
ver
sit
y
M
aa
n
71111
, Jor
da
n
Emai
l:
w
ael
ab
us
he
ha
b@
a
hu.
edu.jo
1.
INTROD
U
CTION
It
is
kn
own
t
ha
t
the
po
wer
s
ys
te
m
is
c
onst
ru
ct
e
d
to
w
ork
at
the
f
un
dam
ental
fr
e
quen
c
y
of
50
Hz
(or
60
Hz
),
a
t
w
hich
the
powe
r
sy
ste
m
has
an
im
pedance
with
a
n
inducti
ve
cha
r
act
er.
Ty
pical
ly,
the
impeda
nce
co
mb
ine
s
s
ource
,
tra
ns
f
ormer
,
tran
smissi
on,
an
d
ca
ble
im
ped
a
nces
.
When
a
no
n
-
li
ne
ar
lo
a
d
injec
ts
ha
rm
onic
currents
int
o
a
powe
r
s
yst
em,
the
sy
ste
m'
s
im
ped
a
nc
e
induces
a
volt
age
dro
p
at
each
harmo
nic
f
re
quenc
y.
Co
ns
e
quently
,
the
tota
l
harmo
nic
vo
l
ta
ge
dist
or
ti
on
at
the
te
rmi
nals
of
a
non
-
li
ne
ar
loa
d
equ
al
s
t
he
sum
of
t
hese
volt
age
dro
ps
[1]
.
D
ue
to
pres
en
ce
of
f
requ
encies
ot
her
t
han
t
he
f
unda
mental
,
par
al
le
l,
a
nd
se
ries
resona
nces
ma
y
occ
ur
due
to
the
in
flue
nc
e
of
po
wer
fa
ct
or
co
r
recti
on
capaci
tors
a
nd
cable
capaci
ti
es
[2],
[3]
,
w
hich
m
ay
dama
ge
ov
ervolt
age
or
overc
urre
nt
co
ndit
ion
s
.
It
is
note
w
or
t
hy
t
hat
mo
st
harmo
nic
re
sonance
issues
ar
e
sel
f
-
c
orrecti
ng.
T
his
im
plies
that
w
he
n
the
resona
nt
co
ndit
ion
occurs,
it
caus
e
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
67
-
75
68
su
f
fici
ent
c
urre
nts
or
volt
ages
withi
n
the
s
yst
em
to
ei
the
r
bl
ow
f
us
es,
cau
se
capaci
to
r
fai
lure,
or
i
nduce
othe
r
dama
ges
that
di
srupt
the
s
ys
te
m's
res
onance
.
The
c
on
t
rast
be
tween
se
ries
a
nd
pa
rall
el
reso
na
nce
is
that
series
resona
nce
pr
oduce
s
a
lo
w
impe
dan
ce
,
whic
h
draws
ma
xi
mu
m
c
urre
nt
into
the
s
ys
te
m.
I
n
c
on
t
rast,
par
al
le
l
resona
nce
le
ad
s
to
hi
gh
im
pe
dan
ce
,
w
hic
h
causes
si
gn
i
ficant
ha
rm
on
ic
vo
lt
ag
e
dro
p
even
with
minimal
current
present
and c
onseq
ue
ntly
resu
lt
s i
n dama
ges
as
so
c
ia
te
d
with
volt
age stre
ss.
Harmo
nic
sour
ces
within
the
po
wer
s
ys
te
m
incl
ud
e
d
tra
nsfo
rme
r
sat
ur
at
i
on
[4],
[
5]
,
in
du
st
rial
arc
furn
ace
s
[6]
,
a
nd
oth
e
r
a
rc
de
vices
s
uc
h
as
la
r
ge
el
ect
ric
welde
rs
[7]
.
T
he
risin
g
pr
e
va
le
nce
of
non
-
li
nea
r
loads
inc
reases
the
ha
rm
onic
distor
ti
on
in
th
e
net
wor
k.
T
he
se
loa
ds
incl
ude
powe
r
co
nv
erters
em
ploye
d
i
n
industrial
a
pp
li
cat
ion
s
(s
uch
a
s
pa
pe
r
a
nd
ste
el
industries,
pe
troc
hemical
i
ndus
trie
s
,
tra
nsporta
ti
on
in
dus
trie
s,
and
f
ood
in
du
strie
s),
m
ulti
pur
pose
m
otor
sp
ee
d
co
ntr
ol
sy
ste
ms
,
an
d
var
i
ou
s
el
ect
ri
c
app
li
an
ces
[
8],
[
9]
.
Var
i
ou
s
meth
ods
ha
ve
been
util
iz
ed
for
ha
rm
on
ic
a
nalysi
s,
dif
fer
i
ng
i
n
modeli
ng
c
omplexit
y,
al
go
rithms
employe
d,
a
nd
data prere
quisi
te
s
[10
]
–
[15
]
.
H
a
r
m
o
n
i
c
c
u
r
r
e
n
t
s
t
y
p
i
c
a
l
l
y
c
h
a
r
a
c
t
e
r
i
z
e
no
n
-
l
i
n
e
a
r
l
o
a
d
s
.
T
h
e
r
e
f
o
r
e
,
c
o
n
v
e
r
t
i
n
g
t
h
e
s
e
h
a
r
m
o
n
i
c
c
u
r
r
e
n
t
s
i
n
t
o
h
a
r
m
o
n
i
c
v
o
l
t
a
g
e
s
i
s
e
s
s
e
nt
i
a
l
t
o
d
e
t
e
r
m
i
n
e
t
h
e
h
a
r
m
o
n
i
c
i
m
p
e
d
a
n
c
e
.
K
n
o
w
l
e
d
g
e
o
f
t
h
e
h
a
r
m
o
n
i
c
i
m
p
e
d
a
n
c
e
o
f
t
h
e
p
o
w
e
r
s
y
s
t
e
m
p
r
o
v
i
d
e
s
i
n
s
i
g
h
t
i
n
t
o
h
o
w
t
h
e
s
y
s
t
e
m
b
e
ha
v
e
s
f
o
r
d
i
f
f
e
r
e
n
t
h
a
r
m
o
n
i
c
s
.
T
h
e
r
e
l
a
t
i
o
n
s
h
i
p
b
e
t
w
e
e
n
n
e
t
w
o
r
k
i
m
p
e
d
a
n
c
e
a
n
d
f
r
e
q
u
e
n
c
y
i
s
r
e
f
e
r
r
e
d
t
o
a
s
t
h
e
h
a
r
m
o
n
i
c
i
m
p
e
d
a
n
c
e
(
o
r
f
r
e
q
u
e
n
c
y
c
h
a
r
a
c
t
e
r
i
s
t
i
c
)
o
f
t
h
e
p
o
w
e
r
s
y
s
t
e
m
(
=
(
)
)
.
W
h
i
l
e
m
e
a
s
u
r
i
n
g
m
e
t
h
o
d
s
p
r
o
v
i
d
e
t
h
e
m
o
s
t
a
c
c
u
r
a
t
e
e
s
t
i
m
a
t
i
o
n
o
f
h
a
r
m
o
n
i
c
i
m
p
e
da
n
c
e
,
c
a
l
c
u
l
a
t
i
ng
m
e
t
h
o
d
s
a
l
s
o
y
i
e
l
d
s
a
t
i
s
f
a
c
t
or
y
r
e
s
u
l
t
s
[16]
–
[19]
.
Seve
ral
te
ch
ni
qu
e
s
ha
ve
bee
n
e
m
ployed
re
centl
y
to
est
im
at
e
the
ha
rm
on
ic
impe
da
nce
of
t
he
sy
ste
m,
includi
ng
Bu
rg
a
lgorit
hm
an
d
auto
re
gr
essi
ve
model
[16]
,
K
al
man
filt
er
al
gorithm
[
17]
,
Norto
n
model
and
it
s
impro
ved
ci
r
c
uit
model
[
12],
[
18]
,
a
dif
f
eren
ce
recurr
e
nce
est
imat
ion
method
[19]
,
Ba
yesian
op
t
imi
zed
Gau
s
sia
n
pr
oc
ess
regressio
n
[
20]
,
a
nd
im
pro
ved
ra
nk
r
egr
es
sio
n
method
[
21]
.
Howev
e
r,
wh
e
n
a
detai
le
d
knowle
dge
of
t
he
el
ect
rical
s
yst
em
is
acce
ssible
a
nd
ob
ta
in
able,
t
he
meth
od
s
me
ntio
ne
d
co
uld
be
c
ons
idere
d
as
intric
at
e.
In
this
study,
a
harmo
nic
injec
ti
on
into
a
real
known
netw
ork
is
use
d
t
o
est
imat
e
the
harmo
nic
impeda
nce
of
t
he
s
ys
te
m.
I
n
our
ca
se,
t
his
ap
proac
h
is
re
ga
r
ded
as
le
ss
c
ompli
cat
ed
c
omp
are
d
t
o
the
m
et
hods
ou
tl
ine
d.
T
he
main
co
ntribut
ion
s
of
this
st
udy
are:
i
)
Its
abili
ty
to
c
onve
rt
the
real
net
work
i
nto
num
erical
data
f
or
s
of
t
wa
re
co
mp
at
ibil
it
y.
T
o
e
ns
ure
s
uccess
fu
l
sim
ul
at
ion
an
d
acc
urat
e
harmo
nic
analysis,
t
he
ne
twork
model
c
omp
onents
mu
st
be
c
aref
ully
ch
os
e
n
base
d
on
the
anal
yze
d
pro
bl
em
;
ii
)
Its
ca
pa
ci
ty
to
est
a
blish
a
database
of
th
e
powe
r
s
ys
te
m
f
or
di
ff
e
ren
t
va
riants.
This
databa
se
is
va
luable
for
plan
ning
new
pr
oject
s
or
integrati
ng
a
nd
in
sta
ll
ing
ne
w
e
qu
i
pm
e
nt
within
t
he
s
yst
em.
T
hu
s
,
kn
ow
i
ng
if
t
he
ne
w
c
hanges
w
il
l
no
t
disturb
the
power
s
ys
te
m
wi
ll
be
easy
;
a
nd
ii
i
)
It
ca
n
res
ul
t
in
si
gn
i
fican
t
ti
me
a
nd
c
os
t
sa
vings
co
mpa
red
to
measu
rin
g
me
thods.
T
o
ac
hi
eve
the
ob
je
ct
ives
of
this
study,
t
he
E
le
ct
ro
ma
gn
et
ic
Transi
ents
P
rogr
a
m
Alte
rn
at
ive
T
r
ansient
P
rogra
m
Dr
a
w
(
EMT
P
-
ATPDra
w)
program
has
been
us
e
d,
whic
h
is
the
gra
ph
ic
al
pr
e
process
or
f
or
t
he
al
te
r
native
tra
ns
ie
nt
program
(
ATP)
ver
si
on
of
the
el
ect
ro
ma
gn
et
i
c
transie
nts
pr
ogram
(E
M
TP
)
[
22]
.
T
h
e
s
u
b
s
e
q
u
e
n
t
s
e
c
t
i
o
n
s
o
f
t
h
e
p
a
p
e
r
a
r
e
a
r
r
a
n
g
e
d
a
s
f
o
l
l
o
w
s
:
T
h
e
i
n
v
e
s
t
i
ga
t
e
d
n
e
t
w
o
r
k
i
s
d
e
s
c
r
i
b
e
d
i
n
s
e
c
t
i
o
n
2
.
N
e
t
w
o
r
k
c
o
n
s
t
r
u
c
t
i
on
a
n
d
m
o
d
e
l
i
n
g
i
s
d
e
t
a
i
l
e
d
i
n
s
e
c
t
i
o
n
3
.
S
e
c
t
i
on
4
d
i
s
c
u
s
s
e
s
t
he
s
i
m
ul
a
t
i
o
n
r
e
s
u
l
t
s
.
F
i
n
a
l
l
y
,
s
e
c
t
i
o
n
5
p
r
o
v
i
d
e
s
t
h
e
c
o
n
c
l
u
s
i
o
n
o
f
t
h
e
p
a
p
e
r
.
2.
DESCRIPTI
ON OF THE
I
NV
EST
I
GAT
ED N
ET
W
O
RK
The
netw
ork
of
Pet
rovice
-
li
ne
67,
22/0
.4
kV,
locat
ed
in
the
Cz
ec
h
Re
pu
blic,
has
a
to
w
n
distrib
utio
n
netw
ork
c
hara
ct
er.
T
he
netw
ork
c
omprises
17
distri
bu
ti
on
trans
f
or
me
rs
with
rated
po
wer
s
of
160,
250,
a
nd
400
kV
A.
The
connecti
on
fro
m
the
s
ubsta
ti
on
is
rea
li
zed
by
a
3
×
24
0
ANKTOY
-
P
V
ca
bl
e
(len
gth
2
.
965
km)
,
and
it
co
ntin
ue
s
as
a
n
over
he
ad
li
ne
of
110
or
12
0
AlFe6
with
br
a
nc
hes
of
70
AlFe
6.
T
he
sc
hema
il
lustrati
ng
this net
work is
dep
ic
te
d i
n Fi
gure
1.
The
pr
ima
r
y
c
halle
ng
e
in
modeli
ng
su
c
h
net
works
li
es
in
e
n
surin
g
t
he
acc
ur
ac
y
of
t
he
va
lues
of
the
netw
ork
co
mpon
e
nts,
es
pecia
ll
y
the
lo
ads
a
nd
t
he
c
ompe
nsa
ti
on
po
wer
s
,
wh
ic
h
are
c
on
s
ta
ntly
c
ha
ng
i
ng,
a
nd
the
ha
rm
on
ic
c
on
te
nt
ge
ner
at
ed
by
m
os
t
of
these
loa
ds
.
T
he
prob
le
m
aris
es
wh
e
n
the
ca
lc
ulati
on
res
ults
mu
s
t
be
c
ompare
d
to
th
os
e
ob
ta
i
ned
thr
ou
gh
measu
reme
nts.
He
nce,
se
ve
r
al
cal
culat
ion
var
ia
nts
need
to
be
performe
d
bas
ed
on
pr
act
ic
a
l
insigh
ts.
Th
ese
var
ia
nts
r
evo
l
ve
ar
ound
var
i
ou
s
opera
ti
on
al
scena
rio
s
an
d
com
pensat
ion
powe
r.
C
on
si
de
rin
g
that
t
he
load
val
ue
at
e
ach
t
ran
s
f
ormer
is
unkn
own
,
this
stu
dy
will
consi
der 1
00%
of the
transf
ormer
-
rated
po
w
er
with a
powe
r
fact
or of
cos
=
0
.
75
.
Additi
on
al
l
y,
the
c
ompe
ns
at
ion
powe
r
will
be
c
onside
red
to
c
ompen
sat
e
f
rom
cos
=
0
.
75
up
t
o
cos
=
0
.
98
.
T
he
ha
rm
onic
c
on
te
nt
will
be
assu
me
d
a
s
a
sou
rce
t
hat
gen
e
rates
3
rd
,
5
th
,
7
th
,
9
th
,
an
d
11
th
harmo
nic
cu
rrents,
a
nd
it
ca
n
be
co
nnect
ed
to
a
ny
tra
nsfo
rme
r
withi
n
the
net
work.
T
he
co
nnect
io
n
at
the
midd
le
of
the
netw
ork
(
po
i
nt
50
64,
tra
nsfo
rme
r
160
kVA
)
w
il
l
be
su
f
fici
ent
f
or
harmo
nic
im
pe
dan
ce
est
imat
ion
f
or
three
var
ia
nts
of
ha
rm
on
ic
c
on
te
nt.
T
he
ha
rm
on
ic
pro
pagat
ion
in
the
ne
twork
is
de
picte
d
by
the
E
M
TP
-
AT
PD
ra
w
sim
ulat
ion
,
an
d
the
re
su
lt
ing
c
urre
nts
an
d
vo
lt
ages
are
vis
ualiz
ed
by
Plot
XY
s
of
tware
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Esti
ma
ti
on
of
ha
r
m
on
ic
im
pe
dance
and res
onance i
n po
we
r systems
(
Ha
it
ham Al
i Al
ash
aa
r
y
)
69
[23]
.
More
ove
r,
PlotX
Y
pro
vid
es
F
ourier
trans
formati
on
f
or
volt
age
a
nd
c
urren
t,
w
hich
can
be
use
d
f
or
impeda
nce
cal
culat
ion
.
We
are
co
ncerne
d
with
fi
nd
i
ng
ou
t
the
disto
rt
ed
volt
age
a
nd
cu
rr
e
nt
wa
ve
forms
directl
y
at
t
he
s
upply net
w
or
k Pet
rovice a
nd s
ub
s
eq
ue
ntly
de
te
rmin
in
g
t
he h
arm
on
ic
im
pe
da
nce.
3.
CONSTR
U
C
TION
A
ND
MO
DELL
IN
G OF
THE
N
ET
WORK
The
Petr
ovic
e
netw
ork
s
how
n
in
Fi
gure
1
is
represe
nted
as
a
vo
lt
age
sour
ce
with
inter
na
l
impeda
nc
e
=
+
,
w
her
e
an
d
are
resist
a
nce
and
reacta
nce
,
res
pecti
vely
,
cal
culat
ed
f
rom
the
s
hort
-
ci
rcu
it
powe
r
S
K
''=
1000
M
V
A.
The
vo
lt
age
am
plit
ud
e
and
the
s
ys
t
em
e
quivale
nt
are
cal
culat
ed
us
in
g
(1),
(
2),
and (
3)
[
24], [
25]
:
=
√
2
×
√
3
,
(1)
=
∙
2
′′
,
=
1
.
1
(2)
2
=
2
+
(
)
2
=
2
+
(
10
)
2
,
=
(3)
,
,
,
,
an
d
are
nom
inal
vo
lt
a
ge
in
vo
lt
s,
i
nductiv
e
reacta
nce
in
ohms,
a
ngular
velocit
y
i
n
ra
di
ans
pe
r
seco
nd,
volt
ag
e
facto
r,
a
nd
i
nductance
in
Henr
y,
resp
e
ct
ively.
Acc
ordi
ng
to
t
he
in
ve
sti
gated
netw
ork
,
the
vo
lt
age
in (1
) i
s substit
uted wit
h 22
.
Figure
1. The
inv
e
sti
gated net
work c
on
st
ru
ct
ed
by
E
M
TP
-
ATPDra
w
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
67
-
75
70
The
s
upply
ne
twork
ca
n
be
modele
d
in
t
he
EMT
P
-
ATPDra
w
usi
ng
th
e
ACSOURC
E
model
(as
a
vo
lt
age
sou
rce
,
sin
gle
phase
).
Its
pa
ramet
ers
are
li
ste
d
in
Table
1.
Since
the
dat
a
of
t
he
distr
ibu
ti
on
trans
forme
rs
ar
e
well
known
,
they
ca
n
be
m
od
el
e
d
by
the
BC
TRAN
m
od
el
(as
1
-
phase,
1
W
c
onnecte
d
with
earthe
d
sec
onda
ry)
or
by
t
he
SA
TTR
AFO
model
since
it
consi
sts
of
sim
ple
series
R
a
nd
L
co
mpo
nent
s
[9]
.
Table
2
li
sts t
he
p
a
rameters
of the
transf
orm
ers.
Table
1.
Para
m
et
ers
of t
he
s
upply
netw
ork
V
am
p
(kV)
Z
(
Ω)
R (Ω)
L
(
m
H
)
1
7
.96
3
0
.53
2
0
.05
3
1
.68
7
Table
2.
Para
m
et
ers
of t
he
tra
ns
f
ormer
s
Po
wer
(kV
A)
Sh
o
rt
-
circuit v
o
lta
g
e (
%)
Op
en
-
circuit cur
re
n
t (
%)
Sh
o
rt
-
circuit lo
ss
e
s (kW
)
Op
en
-
circuit lo
ss
e
s (kW
)
400
6
5
.6
8
.51
2
250
4
.2
5
.9
5
.6
1
.53
160
4
.2
6
.5
3
.9
1
.1
The
re
sist
ance
R
and
reacta
nc
e
X
can
repres
ent
cables
a
nd
transmissi
on
li
nes.
T
hese
val
ues
ca
n
be
ob
ta
ine
d
ei
the
r
from
man
uf
act
ur
er
cat
al
ogs
or
th
rou
gh
cal
culat
ion
.
Seve
ral
cable
and
tr
ans
missi
on
li
ne
models
a
re
ava
il
able
in
the
E
M
TP
-
A
TP
Dr
a
w
,
w
hich
ca
n
be
easi
ly
im
plemented
us
in
g
t
he
R
LC
par
a
m
et
ers
or
the
buil
t
-
in
procedu
re
li
nes/
cable
(LCC)
.
Accor
ding
to
the
avail
able
data,
ca
ble
A
NK
T
O
Y
-
PV
c
an
be
modele
d
by
th
e
LCC
JM
a
rti
model
(
1
ph
as
e,
gro
unde
d,
ρ
=100
Ω
m),
a
s
sh
ow
n
in
Tabl
e
3.
C
on
c
er
ning
the
transmissi
on
li
nes,
the
ma
nuf
act
ur
er
pro
vid
e
s
the
data
for
the
t
ran
s
missi
on
li
ne
AlFe
6,
a
s
s
how
n
i
n
Ta
ble
4.
Hen
ce
, it wil
l
be
easi
ly
m
od
e
le
d
by t
he
L
INEPI
_1 m
od
el
usi
ng RLC
com
pone
nts.
Table
3.
Para
m
et
ers
of t
he
ca
bl
e
Cro
ss
sectio
n
(mm
2
)
Inn
er
radiu
s
R
in
(m)
Ou
ter
radiu
s
R
out
(m
)
Mater
i
al r
esis
tiv
ity
ρ (
Ωm
)
Mater
i
al r
elativ
e
p
erm
eabi
lity
μ
Ins
u
lato
r
relative
p
erm
eabi
lity
μ
u
Ins
u
lato
r
relative
p
erm
ittiv
ity
ε
240
0
.00
9
3
0
.01
5
3
2
.3E
-
8
1
1
2
.3
120
0
.00
6
1
8
0
.01
2
2
5
2
.3E
-
8
1
1
2
.3
Table
4.
Para
m
et
ers
of t
he
tra
ns
missi
on li
ne
Cro
ss
sectio
n
(
m
m
2
)
R (
Ω/km
)
L
(
m
H/k
m
)
C (nF/
km
)
120
0
.25
0
1
.06
4
1
0
.95
0
110
0
.25
9
1
.07
7
1
0
.80
6
70
0
.42
9
1
.12
4
1
0
.33
1
As
mentio
ne
d,
the
l
oad
will
be
co
ns
ide
re
d
100%
of
the
tra
ns
f
ormer
-
rate
d
pow
er
with
cos
=
0
.
75
,
and
the
powe
r
facto
r
will
be
com
pe
ns
at
ed
to
cos
=
0
.
98
.
RLC
co
m
pone
nts
ca
n
m
od
el
t
he
l
oad
without
capaci
ta
nce
C,
wh
e
reas
C
will
be
m
odel
ed
s
e
par
at
el
y
fro
m
the
c
ompensati
on
al
reacti
ve
powe
r.
The
valu
es
of
the
loa
ds
a
re li
ste
d
in
Tab
le
5 an
d
cal
culat
e
d usi
ng (4), (
5),
and (
6)
[
12], [
26]
,
=
2
(4)
=
2
2
(5)
=
2
2
(6)
wh
e
re
is t
he
t
r
ansfo
rmer
-
rate
d powe
r
in
volt
-
am
per
e.
Althou
gh
the
ha
rm
on
ic
c
onte
nt
is
ty
pical
ly
acqu
i
red
th
rou
gh
meas
ureme
nt
,
for
il
lustrati
ve
pur
po
s
es,
the
ha
rm
on
ic
s
ource
in
t
he
ex
amined
net
wor
k
is
m
od
el
e
d
by
the
HF
S
_So
ur
model
(
harmo
nic
fr
e
que
nc
y
sca
n
so
urce
,
t
ype
14)
,
w
hich
i
njec
ts
the
3
rd
,
5
th
,
7
th
,
9
th
,
and
11
th
ha
rm
on
ic
c
urrent
s
to
the
netw
ork
with
hypoth
et
ic
al
values
provide
d
in
Ta
ble 6 f
or th
ree calc
ulati
on
va
riants.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Esti
ma
ti
on
of
ha
r
m
on
ic
im
pe
dance
and res
onance i
n po
we
r systems
(
Ha
it
ham Al
i Al
ash
aa
r
y
)
71
Table
5.
Para
m
et
ers
of t
he
loa
ds
Tr
an
sfo
r
m
er
po
wer
S
(kVA)
C
os
α
P (
MW
)
Q
(
MVA
r)
R (
)
L
(
m
H
)
Q
C
(M
V
Ar
)
C (µF)
400
0
.75
0
.30
0
0
.26
5
0
.53
1
.93
0
.20
4
4
0
5
3
.6
9
3
250
0
.18
8
0
.16
5
0
.85
3
.08
0
.12
7
2
5
3
3
.5
5
8
160
0
.12
0
0
.10
6
1
.33
4
.81
0
.08
1
1
6
2
1
.4
7
7
Table
6.
T
he
val
ues of
t
he har
monic cu
rr
e
nts
Har
m
o
n
ic ord
er
3
5
7
9
11
Cu
rr
en
t
(A)
Ind
iv
id
u
al
200
200
200
200
200
All
200
200
200
200
200
All witho
u
t 9
th
200
200
200
-
200
4.
RESU
LT
S
AND DI
SCUS
S
ION
The
net
wor
k
of
Pet
rovice
-
li
ne
67,
s
how
n
in
Fig
ur
e
1,
was
co
ns
tr
ucte
d
with
one
va
riant
of
the
harmo
nic s
our
ce
co
nn
ect
i
on
and th
ree
var
ia
nts
of
ha
rm
on
i
c co
ntent, a
s
de
scribe
d belo
w
:
-
All
loa
ds
in
T
able
5
we
re
ch
os
e
n
a
s
100%
of
the
tra
nsfo
r
mer
-
rated
pow
er
a
nd
we
re
re
pr
ese
nted
as
R
L
com
pone
nts.
-
Com
pen
sat
io
na
l
capaci
tor
s
wer
e
co
nnect
ed
to
al
l
loa
ds
in
Ta
ble
5
to
com
pensat
e
f
or
the
po
wer
fa
ct
or
from
cos
=
0
.
75
up t
o
cos
=
0
.
98
.
-
The
ha
rm
on
ic
so
urce
i
n
Tabl
e
6
was
c
onne
ct
ed
in
the
mi
dd
le
of
t
he
network
(
point
5
064,
tra
ns
f
orm
er
160 k
VA).
-
The
ha
rm
on
ic
impe
da
nce
was
cal
culat
ed
from
the
volt
age
a
nd
cu
rr
e
nt
ob
ta
in
ed
di
rectl
y
from
th
e
Petro
vice s
uppl
y
net
wor
k.
The
simulat
io
n
by
EMT
P
-
AT
PD
ra
w
yield
s
distor
te
d
volt
age
a
nd
c
urren
t
curves
obse
rv
e
d
within
the
su
ppl
y
net
wor
k.
T
he
re
qu
ire
d
nex
t
ste
p
tha
t
the
Plot
XY
s
of
t
war
e
offe
rs
is
to
pe
rfo
rm
F
ourier
t
ran
s
f
ormat
io
n
for
the
volt
age
and cu
rr
e
nt as
li
ste
d
in Ta
bles
7,
8, 9, a
nd 10 fo
r
the
th
ree ca
lc
ulati
on
var
ia
nts,
as
foll
ows:
−
Fo
r
in
div
i
du
al
harmo
nics
as
s
how
n
in
Ta
ble
s
7 an
d 8.
−
Fo
r
all
h
a
rm
onic
s
as s
how
n
in
Table
s
9
a
nd
10.
−
Fo
r
a
ll
h
a
rm
onic
s
with
ou
t t
he 9
th
ha
rm
onic
as
shown
i
n
Ta
bl
e
s
9 an
d 1
0
.
Table
7.
T
he
harm
on
ic
volt
ag
es
f
or v
a
riant
1
h
Magn
itu
d
e (
V)
h
Magn
itu
d
e (
V)
3
rd
5
th
7
th
9
th
11
th
3
rd
5
th
7
th
9
th
11
th
1
1
8
3
9
6
1
8
3
9
6
.1
1
8
3
9
6
.1
1
8
3
9
6
.1
1
8
3
9
6
.1
11
0
.05
0
.03
0
.03
0
.10
9
4
8
.19
2
0
.50
0
.62
0
.61
0
.58
0
.60
12
0
.05
0
.03
0
.02
0
.06
0
.54
3
1
6
4
6
.7
7
0
.24
0
.23
0
.19
0
.23
13
0
.04
0
.02
0
.02
0
.05
0
.29
4
0
.37
0
.13
0
.12
0
.08
0
.13
14
0
.04
0
.02
0
.02
0
.04
0
.20
5
0
.20
4
4
1
.15
0
.07
0
.03
0
.09
15
0
.03
0
.02
0
.01
0
.04
0
.15
6
0
.13
0
.14
0
.07
0
.03
0
.09
16
0
.03
0
.02
0
.01
0
.03
0
.13
7
0
.10
0
.08
2
0
1
.94
0
.07
0
.11
17
0
.03
0
.02
0
.01
0
.02
0
.11
8
0
.08
0
.06
0
.09
0
.16
0
.15
18
0
.03
0
.02
0
.02
0
.03
0
.10
9
0
.08
0
.06
0
.06
4
0
3
.79
0
.23
19
0
.03
0
.01
0
.01
0
.02
0
.08
10
0
.06
0
.04
0
.04
0
.20
0
.50
20
0
.03
0
.01
0
.01
0
.02
0
.08
Table
8.
T
he
harm
on
ic
c
urre
nt
s
for varia
nt 1
h
Magn
itu
d
e (
A)
h
Magn
itu
d
e (
A)
3
rd
5
th
7
th
9
th
11
th
3
rd
5
th
7
th
9
th
11
th
1
8
1
9
.75
8
1
9
.76
8
1
9
.76
8
1
9
.76
8
1
9
.76
11
0
.02
0
.01
0
.01
0
.03
1
6
2
.63
2
0
.18
0
.06
0
.05
0
.05
0
.06
12
0
.02
0
.01
0
.01
0
.02
0
.09
3
1
0
3
5
.0
7
0
.04
0
.03
0
.03
0
.04
13
0
.02
0
.01
0
.01
0
.02
0
.04
4
0
.18
0
.05
0
.02
0
.02
0
.03
14
0
.02
0
.01
0
.01
0
.01
0
.03
5
0
.09
1
6
6
.43
0
.02
0
.01
0
.03
15
0
.02
0
.01
0
.01
0
.01
0
.02
6
0
.06
0
.04
0
.02
0
.01
0
.03
16
0
.02
0
.01
0
.01
0
.01
0
.02
7
0
.04
0
.02
5
4
.43
0
.01
0
.03
17
0
.01
0
.01
0
.01
0
.01
0
.01
8
0
.04
0
.02
0
.02
0
.03
0
.04
18
0
.01
0
.01
0
.01
0
.01
0
.01
9
0
.03
0
.01
0
.02
8
4
.65
0
.05
19
0
.01
0
.01
0
.00
0
.01
0
.01
10
0
.03
0
.01
0
.01
0
.05
0
.09
20
0
.01
0
.01
0
.00
0
.01
0
.01
These
ta
bles
facil
it
at
e
the
cal
culat
ion
of
ha
rm
on
ic
im
ped
a
nce
an
d
the
plo
tt
in
g
of
it
s
cu
rv
e
s.
Table
s
11
a
nd
12
gi
ve
t
he
harmo
nic
im
ped
a
nces
for
t
he
th
r
ee
va
riants
,
w
hi
le
Figures
2,
3,
an
d
4
dis
play
their
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
67
-
75
72
resp
ect
ive
cu
r
ve
s.
T
he
c
urves
of
t
he
harmo
ni
c
impe
dan
c
e
f
or
each
ha
rm
onic
in
Fig
ur
e
2
(variant
1)
s
how
the
pr
ese
nce
of
res
on
a
nces
.
The
pa
rall
el
resonanc
e
at
the
first
ha
rm
on
ic
(
50
H
z)
sho
ws
the
i
nductive
c
ha
racter
o
f
the
netw
ork.
T
he
fr
e
que
nc
ie
s
bel
ow
50
Hz
values
wer
e
ne
glect
ed
as
the
y
are
ir
releva
nt
to
our
cu
rr
e
nt
fo
c
us
.
The
pa
rall
el
reso
na
nce
du
e
t
o
the
9
th
ha
rm
onic
cl
early
app
e
ars,
wh
ic
h
co
nfi
rms
the
e
ff
ec
t
of
the
9
th
harmo
ni
c
on
the
harmo
ni
c
im
ped
a
nce
of
t
he
netw
ork
with
t
he
gi
ven
config
u
rati
on
.
Nex
t,
th
e
harm
on
ic
im
ped
a
nc
e
wa
s
recalc
ulate
d,
c
on
si
der
i
ng
the
pr
ese
nce
of
al
l
ha
rm
on
ic
s
(
va
riant
2),
as
de
pi
ct
ed
in
Fig
ur
e
3,
wh
e
re
t
he
c
urve
il
lustrate
s
the
i
ncr
ease
of
the
pa
rall
el
re
son
ance
co
rr
es
po
nd
i
ng
to
t
he
9
th
ha
rm
on
ic
.
U
pon
recalc
ulati
ng
the
harmo
nic
imp
edan
ce
with
out
the
9
th
harm
on
ic
(
va
riant
3),
the
par
al
le
l
resona
nce
co
rresp
onding
to
t
he
9
th
harmo
nic
disap
pear
e
d, as s
ho
wn in Fi
gure
4.
Table
9.
T
he
harm
on
ic
volt
ag
e
s for va
riants
2
a
nd 3
h
Magn
itu
d
e (
V)
h
Magn
itu
d
e (
V)
Variant 2
Variant 3
Variant 2
Variant 3
1
1
8
3
9
6
.10
1
8
3
9
6
.00
11
9
4
8
.14
9
4
8
.19
2
0
.43
0
.47
12
0
.52
0
.54
3
1
6
4
6
.8
0
1
6
4
6
.8
4
13
0
.26
0
.28
4
0
.45
0
.48
14
0
.18
0
.19
5
4
4
0
.93
4
4
0
.91
15
0
.14
0
.15
6
0
.10
0
.14
16
0
.11
0
.12
7
2
0
1
.85
2
0
1
.82
17
0
.09
0
.10
8
0
.12
0
.11
18
0
.08
0
.09
9
4
0
3
.90
0
.23
19
0
.07
0
.08
10
0
.61
0
.49
20
0
.06
0
.07
Table
10. T
he har
monic c
urre
nts
f
or
var
ia
nts
2
a
nd
3
h
Magn
itu
d
e (
V)
h
Magn
itu
d
e (
V)
Variant 2
Variant 3
Variant 2
Variant 3
1
8
1
9
.75
8
1
9
.75
11
1
6
2
.62
1
6
2
.63
2
0
.14
0
.14
12
0
.09
0
.09
3
1
0
3
5
.1
2
1
0
3
5
.1
2
13
0
.05
0
.05
4
0
.22
0
.23
14
0
.04
0
.03
5
1
6
6
.36
1
6
6
.35
15
0
.03
0
.03
6
0
.05
0
.06
16
0
.03
0
.02
7
5
4
.41
5
4
.40
17
0
.02
0
.02
8
0
.01
0
.04
18
0
.02
0
.02
9
8
4
.69
0
.05
19
0
.02
0
.02
10
0
.12
0
.10
20
0
.02
0
.02
Table
11. T
he
harmo
nic im
pe
dan
ce
s fo
r vari
ant 1
h
Magn
itu
d
e (
Ω)
h
Magn
itu
d
e (
Ω)
3
rd
5
th
7
th
9
th
11
th
3
rd
5
th
7
th
9
th
11
th
1
2
2
.44
2
2
.44
2
2
.44
2
2
.44
2
2
.44
11
2
.26
3
.06
3
.19
3
.71
5
.83
2
2
.77
1
0
.66
1
1
.23
1
0
.75
1
0
.64
12
2
.20
2
.80
2
.90
3
.20
6
.26
3
1
.59
5
.26
6
.90
6
.50
6
.34
13
2
.16
2
.80
2
.30
3
.05
6
.73
4
2
.07
2
.93
5
.47
4
.08
4
.51
14
2
.24
2
.78
2
.72
2
.83
7
.15
5
2
.32
2
.65
4
.05
2
.62
3
.30
15
2
.06
3
.13
2
.21
2
.79
7
.46
6
2
.28
3
.12
3
.12
2
.90
3
.36
16
2
.13
2
.90
2
.39
2
.65
7
.86
7
2
.23
3
.40
3
.71
5
.82
3
.71
17
2
.16
2
.71
2
.65
2
.40
7
.92
8
2
.30
3
.26
3
.78
5
.58
4
.21
18
2
.30
3
.48
3
.09
2
.79
8
.61
9
2
.57
3
.90
4
.20
4
.77
4
.75
19
2
.27
2
.06
2
.30
2
.20
8
.26
10
2
.38
3
.23
3
.22
4
.17
5
.35
20
2
.14
2
.80
2
.26
2
.01
8
.53
Table
12. T
he har
monic i
m
pe
dan
ce
s fo
r vari
ants
2
a
nd 3
h
Magn
itu
d
e (
Ω)
h
Magn
itu
d
e (
Ω)
Variant 2
Variant 3
Variant 2
Variant 3
1
2
2
.44
2
2
.44
11
5
.83
5
.83
2
3
.07
3
.50
12
5
.72
5
.94
3
1
.59
1
.59
13
5
.15
5
.97
4
2
.01
2
.08
14
4
.79
5
.64
5
2
.65
2
.65
15
4
.34
5
.45
6
1
.90
2
.21
16
4
.07
5
.33
7
3
.71
3
.71
17
3
.67
4
.96
8
1
7
.18
2
.43
18
3
.69
4
.97
9
4
.77
4
.11
19
3
.24
4
.57
10
4
.87
5
.18
20
3
.20
4
.47
As
obser
ved
f
r
om
t
hese
fig
ures,
the
ha
rm
onic
impeda
nce
of
t
he
netw
ork
is
infl
uen
ce
d
by
both
th
e
com
posit
ion
a
nd
mag
nitu
des
of
t
he
ha
rm
on
ic
cur
re
nts
inje
ct
ed
into
t
he
ne
twork
.
Be
side
s,
it
pr
ima
rily
reli
es
on
the
c
onfig
urat
ion
of
the
ne
twork
.
It
is
w
or
t
h
not
in
g
here
that
the
t
otal
harmo
nic
distor
ti
on
(THD
)
can
be
com
pu
te
d
usi
ng
the
Pl
otXY
so
ft
war
e
.
H
owever,
this
ste
p
was
not
pa
rt
of
this
stu
dy
.
T
he
TH
D
per
ce
ntag
e
mu
st
ad
he
re
to
the
sta
nd
a
rds
ou
tl
ine
d
in
the
IEEE
Std
519
-
20
22
for
ha
r
monic
li
mit
s
[2
7]
.
T
he
vali
da
ti
on
of
the
res
ults
in
this
stu
dy,
whic
h
tra
ns
f
orms
the
real
el
ect
rical
netw
ork
into
numerical
data
for
s
of
t
war
e
interp
retat
ion
and
pr
ocessin
g,
can
be
ac
hieved
by
c
ompa
r
ison
with
mea
su
re
ments
.
Unfortu
natel
y,
th
ese
are
no
t
al
wa
ys
pos
sible
due
to
t
he
hi
gh
co
st
ass
oc
ia
te
d
with
it
.
H
ow
e
ve
r,
c
ar
efu
l
sel
ect
of
c
ompone
nt
m
od
el
s
by
trustwo
rth
y
s
oft
war
e is
ve
ry imp
or
ta
nt to u
ndersta
nd the
ha
rm
on
ic
a
naly
sis an
d
t
o
s
ucces
s the sim
ulati
on.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Esti
ma
ti
on
of
ha
r
m
on
ic
im
pe
dance
and res
onance i
n po
we
r systems
(
Ha
it
ham Al
i Al
ash
aa
r
y
)
73
Figure
2. The
harmo
nic im
pe
dan
ce
for va
ria
nt 1
Figure
3. The
harmo
nic im
pe
dan
ce
f
or v
a
ria
nt 2
Figure
4. The
harmo
nic im
pe
dan
ce
for va
ria
nt 3
5.
CONCL
US
I
O
N
The
stu
dy
il
lustrate
s
the
cap
abili
ty
of
c
ompu
te
r
-
base
d
ha
rm
on
ic
a
nalysi
s
to
deter
mine
wh
et
her
the
sy
ste
m
c
onfi
gurati
on
is
susc
e
ptible
to
dr
i
ftin
g
int
o
se
ries
an
d
par
al
le
l
res
on
ance
co
ndit
ion
s
in
the
pr
e
se
nce
of
harmo
nics.
More
over,
t
he
e
le
ments
of
th
e
power
s
ys
te
m
that
exer
t
an
operati
on
al
eff
ect
on
harmo
nic
impeda
nce
c
ou
ld
be
i
den
ti
fie
d.
T
he
st
udy
ha
s
bee
n
co
nfi
ne
d
to
t
hr
ee
cal
culat
ion
var
ia
nt
s.
H
ow
e
ver,
t
her
e
is
po
te
ntial
to
m
ake
c
ha
ng
e
s
in
net
wor
k
el
ements
to
inv
est
igate
harmo
nic
im
pe
dan
ce
f
or
di
ff
ere
nt
config
ur
at
io
ns
or
to
ide
ntif
y
t
he
ha
rm
on
ic
orde
r
res
pons
i
ble
f
or
resona
nc
e
withi
n
a
s
pe
ci
fied
powe
r
s
ys
te
m
config
ur
at
io
n.
Our
stu
dy
s
hows
that
the
9
th
harmo
nic
in
duces
a
par
al
l
el
resona
nce
in
li
ne
67,
22
/
0.4
kV
br
a
nc
hing
fro
m
Pet
rovice.
T
he
c
halle
nge
f
or
cal
culat
io
n
methods
ste
ms
f
rom
t
he
li
mit
ed
a
vaila
bili
ty
of
loa
d
data
f
or
the
ne
twork
,
eve
n
t
houg
h
data
f
or
oth
e
r
c
ompone
nts
can
usual
l
y
be
ob
ta
ine
d
from
man
ufact
ur
e
r's
cat
al
og
s.
Su
c
h
stud
ie
s
ca
n
ai
d
in
detai
le
d
a
na
lyses
of
s
pecifi
c
powe
r
syst
ems
an
d
in
c
reat
ing
rob
us
t
data
bases
for
el
ect
rical
eng
i
neer
s
an
d
researc
he
rs
t
o
re
fine
a
nd
advance
t
heir
project
s.
A
dd
it
io
nally,
ut
il
iz
ing
cal
culat
ion
methods
can
lead t
o
s
ubsta
ntial
ti
me and c
os
t e
ffi
ci
encies com
pa
red to
measu
r
ement a
ppr
oac
hes
.
REFERE
NCE
S
[1]
Ł.
Michalec,
M.
Ja
siń
sk
i,
T.
Sik
o
rsk
i,
Z.
Leon
o
wicz,
Ł
.
Jas
iń
sk
i,
an
d
V.
Su
resh
,
“I
m
p
act
o
f
h
arm
o
n
ic
cu
rr
en
ts
o
f
n
o
n
lin
ear
lo
ad
s
o
n
po
wer
q
u
ality
o
f
a low
vo
ltag
e netwo
rk
-
review
an
d
c
ase stu
d
y
,”
Ener
g
ies
,
v
o
l.
1
4
,
n
o
.
1
2
,
2
0
2
1
,
d
o
i: 1
0
.33
9
0
/en
1
4
1
2
3
6
6
5
.
[2]
S.
Ch
alad
y
in
g
,
P.
Du
sitak
o
rn,
an
d
N.
Ru
g
th
aich
are
o
n
ch
eep,
“Res
o
n
a
n
ce
im
p
act
o
n
p
o
wer
factor
co
rr
e
ctio
n
sy
stem
in
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
67
-
75
74
p
o
wer
sy
stem
w
ith
h
ar
m
o
n
ic
d
isto
rtion
,”
App
lied
Mech
a
n
ics
a
n
d
Ma
teria
ls
,
v
o
l.
7
8
1
,
p
p
.
2
5
4
–
2
5
7
,
2
0
1
5
,
d
o
i:
1
0
.40
2
8
/www.scie
n
tific.
n
et/a
m
m
.78
1
.25
4
.
[3]
Y.
Yan
g
an
d
F.
Blaab
jerg,
“Po
wer
factor
co
r
rection
capacito
rs
for
m
u
ltip
le
p
arallel
th
r
ee
-
p
h
ase
ASD
sy
s
tem
s:
an
aly
sis
an
d
reso
n
an
ce
d
am
p
in
g
,”
in
2
0
1
7
IE
E
E
Ener
g
y
Co
n
ver
sio
n
Co
n
g
res
s
a
n
d
Expo
sitio
n
,
EC
CE
2
0
1
7
,
2
0
1
7
,
v
o
l.
2
0
1
7
-
Jan
u
a,
p
p
.
3
3
9
8
–
3
4
0
4
,
d
o
i: 10
.11
0
9
/ECCE.20
1
7
.8096
6
0
9
.
[4]
H.
W
.
Do
m
m
el,
A.
Yan
,
an
d
S.
W
ei,
“Ha
r
m
o
n
ics
fr
o
m
tr
an
sfo
rm
e
r
sat
u
ration
,”
IE
EE
Tra
n
sa
ctio
n
s
o
n
Po
wer
Delivery
,
v
o
l.
1
,
n
o
.
2
,
p
p
.
2
0
9
–
2
1
5
,
1
9
8
6
,
d
o
i: 10
.110
9
/TPWR
D.19
8
6
.4
3
0
7
9
5
2
.
[5]
I.
Dau
t,
S.
Hasan
,
S.
Taib,
R.
Ch
a
n
,
an
d
M.
Ir
wan
to
,
“Ha
rm
o
n
ic
co
n
ten
t
as
th
e
in
d
icato
r
o
f
t
rans
for
m
er
co
re
satu
r
atio
n
,”
in
PE
OCO
2
0
1
0
-
4
th
Inter
n
a
tio
n
a
l
Pow
er
Eng
in
eerin
g
a
n
d
Op
timiza
tio
n
C
o
n
feren
ce,
Pro
g
ram
a
n
d
Abs
tra
cts
,
2
0
1
0
,
p
p
.
3
8
2
–
3
8
5
,
d
o
i:
1
0
.1109
/PEOCO.20
1
0
.55
5
9
1
9
2
.
[6]
Z.
Olczyk
o
wsk
i,
“
Arc
v
o
ltag
e
d
isto
rt
io
n
as
a
so
u
rce
o
f
h
ig
h
er
h
arm
o
n
ics
g
en
erate
d
b
y
elect
ric
a
rc
furn
aces,”
Ener
g
ies
,
v
o
l.
1
5
,
n
o
.
1
0
,
2
0
2
2
,
d
o
i:
1
0
.33
9
0
/en
1
5
1
0
3
6
2
8
.
[7]
S.
V.
Ry
m
a
r,
A.
M.
Zherno
sek
o
v
,
an
d
V.
N.
Sid
o
rets
,
“E
ff
ect
o
f
sin
g
le
-
p
h
ase
p
o
wer
so
u
rces
o
f
weld
in
g
arc
o
n
electric
m
ain
s,”
Th
e P
a
to
n
Weld
in
g
Jou
rn
a
l
,
n
o
.
No
v
em
b
er
2
0
1
6
,
p
p
.
9
–
1
5
,
2
0
1
1
.
[8]
F.
C.
De
La
Ro
sa,
“Fu
n
d
am
en
tals
o
f
h
arm
o
n
ic
d
isto
rti
o
n
an
d
p
o
wer
q
u
ality
in
d
ices
in
elect
ric
p
o
wer
sy
stems,
”
Ha
rmo
n
ic
s
a
n
d
Pow
er S
ystems
,
p
p
.
1
9
–
4
4
,
2
0
2
0
,
d
o
i:
10
.12
0
1
/
9
7
8
1
4
2
0
0
0
4
5
1
9
-
5.
[9]
S.
A.
Ali
,
“Mod
e
lin
g
o
f
p
o
wer
n
et
wo
rks
b
y
ATP
-
Dr
aw
for
h
ar
m
o
n
ics
p
rop
ag
atio
n
stu
d
y
,”
Tra
n
sa
ctio
n
s
o
n
Electrica
l
a
n
d
Electro
n
ic Ma
teria
ls
,
v
o
l.
1
4
,
n
o
.
6
,
p
p
.
2
8
3
–
2
9
0
,
2
0
1
3
,
d
o
i: 10
.431
3
/TE
EM
.20
1
3
.14
.6.2
8
3
.
[10
]
X.
Xiao
,
R
.
Zho
u
,
X.
Ma,
an
d
R.
Xu
,
“A
n
o
v
el
m
eth
o
d
for
esti
m
atin
g
u
tili
ty
h
arm
o
n
ic
im
p
ed
an
ce
b
ased
p
rob
ab
ilistic
ev
alu
atio
n
,
”
IE
T
Gen
era
tio
n
,
Tra
n
smis
sio
n
a
n
d
Distrib
u
tio
n
,
v
o
l.
1
6
,
n
o
.
7
,
p
p
.
1
4
3
8
–
1
4
4
8
,
2
0
2
2
,
d
o
i: 10
.
1
0
4
9
/
g
td
2
.
1
2
3
8
0
.
[11
]
M.
J.
Gh
o
rban
i
an
d
H.
Mok
h
tari,
“
I
m
p
act
o
f
h
a
rm
o
n
ic
s
o
n
p
o
wer
q
u
ality
an
d
lo
ss
es
in
p
o
wer
d
istrib
u
tio
n
sy
stems,”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l of Electrica
l an
d
Co
mp
u
ter E
n
g
in
eerin
g
,
v
o
l.
5
,
n
o
.
1
,
p
p
.
1
6
6
–
1
7
4
,
2
0
1
5
,
d
o
i: 10
.115
9
1
/ijece.v5
i1
.pp
1
6
6
-
174.
[12
]
M.
I.
Alsh
arar
i
,
M.
Z.
Ah
m
ed
,
W
.
F
.
Ab
u
Sh
eh
ab
,
an
d
S.
A.
Ali
,
“
Evalu
atio
n
o
f
h
arm
o
n
ic
cu
rr
en
ts
an
d
n
etwo
rk
im
p
ed
an
ce
u
sin
g
No
rton
m
o
d
el
in
an
u
n
id
en
tified
n
e
two
rk
co
n
figu
ration
,”
Jo
rd
a
n
Jo
u
rn
a
l
o
f
Electrica
l
En
g
in
eerin
g
,
v
o
l.
1
0
,
n
o
.
1
,
p
p
.
8
4
–
9
5
,
2
0
2
4
,
d
o
i: 1
0
.54
5
5
/jjee.20
4
-
1
6
8
6
2
5
3
5
1
4
.
[13
]
J.
Yo
n
g
,
L.
Ch
en
,
A.
B.
Nass
if,
a
n
d
W
.
Xu
,
“A
fr
eq
u
en
cy
-
d
o
m
ain
h
arm
o
n
ic
m
o
d
el
for
co
m
p
act
fluo
rescent
lam
p
s,”
IE
E
E
Tra
n
sa
ctio
n
s o
n
P
o
wer
Delivery
,
vo
l.
2
5
,
n
o
.
2
,
p
p
.
1
1
8
2
–
1
1
8
9
,
2
0
1
0
,
d
o
i:
10
.11
0
9
/TPWR
D.20
0
9
.2
0
3
2
915.
[14
]
M.
H
.
Jo
p
ri,
A
.
Sk
am
y
in
,
M
.
M
an
ap
,
T.
Su
tik
n
o
,
M
.
R.
M.
Sh
a
rif
f,
an
d
A
.
Bels
k
y
,
“Iden
tifi
catio
n
o
f
h
arm
o
n
ic
so
u
rce
lo
catio
n
i
n
p
o
wer
d
istrib
u
tio
n
n
etwo
rk,”
Inter
n
a
tio
n
a
l
Jo
u
r
n
a
l
o
f
Pow
er
Electro
n
ics
a
n
d
Drive
S
ystems
,
v
o
l.
1
3
,
n
o
.
2
,
p
p
.
9
3
8
–
949,
2
0
2
2
,
d
o
i: 10
.1159
1
/ijp
e
d
s.v
1
3
.i2.p
p
9
3
8
-
9
4
9
.
[15
]
A.
Sk
am
y
in
,
Y
.
S
h
k
ly
arsk
iy
,
K.
Lob
k
o
,
V.
Do
b
u
sh
,
T.
Su
tik
n
o
,
an
d
M.
H.
Jo
p
ri,
“I
m
p
ed
an
ce
an
aly
sis
o
f
sq
u
irr
el
-
cage
in
d
u
ctio
n
m
o
to
r
at
h
ig
h
h
arm
o
n
ics
co
n
d
itio
n
,
”
Ind
o
n
esia
n
Jo
u
rn
a
l
o
f
Electrica
l
Eng
in
eerin
g
a
n
d
Co
mp
u
ter
S
cien
ce
,
v
o
l.
3
3
,
n
o
.
1
,
p
p
.
3
1
–
4
1
,
2
0
2
4
,
d
o
i: 10
.11
5
9
1
/ijeecs.v
3
3
.i1.p
p
3
1
-
41.
[16
]
Q.
Sh
u
,
Y.
Fan
,
F.
Xu
,
C.
W
an
g
,
an
d
J.
He,
“
A
h
ar
m
o
n
ic
im
p
ed
an
ce
esti
m
atio
n
m
eth
o
d
b
ased
o
n
AR
m
o
d
el
an
d
Bu
rg
alg
o
rithm,
”
Electric
Pow
er S
ystems
R
esea
rch
,
v
o
l
.
2
0
2
,
2
0
2
2
,
d
o
i: 1
0
.10
1
6
/j.eps
r.
2
0
2
1
.10
7
5
6
8
.
[17
]
Z.
Luo
,
B.
Ho
u
,
a
n
d
P.
Zhao
,
“
A
m
eth
o
d
for
esti
m
atin
g
th
e
h
ar
m
o
n
ic
i
m
p
ed
an
ce
in
re
al
ti
m
e
b
ased
o
n
Kal
m
an
filte
r
a
lg
o
rithm,
”
Jo
u
rn
a
l of Phys
ics
:
Co
n
feren
ce Serie
s
,
v
o
l.
2
4
7
7
,
n
o
.
1
,
2
0
2
3
,
d
o
i: 1
0
.10
8
8
/1
7
4
2
-
6
5
9
6
/
2
4
7
7
/1
/0
1
2
0
8
9
.
[18
]
H.
Zhen
g
,
F.
Xu
,
Q.
Sh
u
,
C.
W
an
g
,
an
d
Q.
Zho
u
,
“Est
im
atio
n
o
f
h
ar
m
o
n
ic
im
p
ed
an
ce
an
d
h
arm
o
n
ic
co
n
tribu
tio
n
with
h
arm
o
n
ic
co
m
p
lex
p
o
wer
in
th
e
ab
sen
ce
o
f
h
arm
o
n
ic
p
h
ase
an
g
le,”
IE
T
G
en
era
tio
n
,
Tra
n
smis
si
o
n
a
n
d
Distr
ib
u
ti
o
n
,
v
o
l.
1
7
,
n
o
.
1
,
p
p
.
2
0
0
–
2
0
8
,
2
0
2
3
,
d
o
i: 10
.10
4
9
/
g
td
2
.12
6
7
3
.
[19
]
H.
Hu
a,
H.
Gao
,
L.
G
ao
,
an
d
H.
G
u
o
,
“A
n
o
v
el
m
et
h
o
d
for
calculatin
g
h
arm
o
n
ic
co
n
tri
b
u
tio
n
b
ased
o
n
d
iff
er
en
ce
re
cu
rr
en
ce
estimation
,”
IE
T
G
en
era
tio
n
,
Tra
n
smi
ss
io
n
and Distr
ib
u
t
io
n
,
v
o
l.
1
8
,
n
o
.
3
,
p
p
.
5
9
6
–
6
0
8
,
2
0
2
4
,
d
o
i: 10
.10
4
9
/
g
td
2
.13
0
9
7
.
[20
]
Y.
Xia
an
d
W
.
Tang
,
“Stu
d
y
o
n
th
e
estimation
o
f
h
arm
o
n
ic
i
m
p
e
d
an
ce
b
ased
o
n
Bay
esian
o
p
tim
ized
Gau
ss
ian
p
rocess
regressio
n
,”
Inter
n
a
tio
n
a
l Jou
r
n
a
l of
Electrica
l P
o
wer
a
n
d
E
n
erg
y Sys
tems
,
v
o
l.
1
4
2
,
2
0
2
2
,
d
o
i
: 10
.10
1
6
/j.ijepes
.20
2
2
.1082
9
4
.
[21
]
D.
W
an
g
,
J
.
Ch
en
,
Q.
Yin
,
H.
Din
g
,
Q.
Liu,
an
d
H.
Mi
ao
,
“Ha
rm
o
n
ic
im
p
ed
an
ce
estimatio
n
b
ased
o
n
im
p
rov
ed
rank
esti
m
atio
n
,
”
Jo
u
rn
a
l of Phys
ics
:
Co
n
feren
ce Serie
s
,
v
o
l.
2
7
7
1
,
n
o
.
1
,
2
0
2
4
,
d
o
i: 1
0
.10
8
8
/1
7
4
2
-
6
5
9
6
/
2
7
7
1
/1
/0
1
2
0
3
4
.
[22
]
H.
Ho
id
alen
,
L.
Pr
ik
ler,
an
d
F.
Pen
al
o
za,
“A
TPDr
aw
v
ersio
n
7
.3
for
W
in
d
o
ws
-
u
sers’
m
an
u
al,”
No
rw
eg
ia
n
Un
ivers
ity
o
f
S
cien
ce
a
n
d
Techn
o
lo
g
y (
NTN
U)
,
2
0
2
1
.
[23
]
M.
Cer
ao
lo
,
“MC’
s
Plo
tXY
—
A
g
en
e
ral
-
p
u
rpo
se
p
lo
ttin
g
an
d
p
o
st
-
p
rocessing
o
p
en
-
source
to
o
l,”
S
o
ftwa
reX
,
v
o
l.
9
,
p
p
.
2
8
2
–
2
8
7
,
Jan
.
2
0
1
9
,
d
o
i: 10
.
1
0
1
6
/j.so
ftx.2
0
1
9
.
0
1
.01
7
.
[24
]
J. Schlab
b
ach,
S
h
o
rt circu
it cur
ren
ts
.
Ins
titu
tio
n
of E
n
g
in
eering
and
Techn
o
lo
g
y
,
2
0
0
5
.
[25
]
T.
N
.
Bo
u
tsik
a
an
d
S.
A.
Pap
ath
an
a
ss
io
u
,
“Sh
o
rt
-
circu
it
calculatio
n
s
in
n
etwo
rks
with
d
istrib
u
ted
g
en
eration
,”
Ele
ctric
Pow
er
S
ystems
R
esea
rch
,
v
o
l.
7
8
,
n
o
.
7
,
p
p
.
1
1
8
1
–
1
1
9
1
,
Ju
l.
2
0
0
8
,
d
o
i: 10
.1016
/j.
ep
sr.20
0
7
.10
.0
0
3
.
[26
]
S.
A
.
Ali
an
d
A.
Bo
d
o
r,
“Evalu
atio
n
o
f
th
e
h
arm
o
n
ic
im
p
ed
an
ce
o
f
Fry
d
lan
t
(L
in
e
5
3
)
p
o
wer
n
et
wo
rk,”
Ad
va
n
ces
in
Ele
ctric
a
l
a
n
d
E
lectro
n
ic E
n
g
in
eerin
g
,
v
o
l.
1
1
,
n
o
.
4
,
Sep
.
2
0
1
3
,
d
o
i: 10
.15
5
9
8
/aeee.
v
1
1
i4
.6
9
6
.
[27
]
IE
E
E,
“I
EE
E
stan
d
ard
for
h
a
rm
o
n
ic
co
n
trol
in
elect
ri
c
p
o
wer
sy
stems
,”
IE
E
E
S
td
5
1
9
-
2
0
2
2
(R
evisio
n
o
f
IE
EE
S
td
5
1
9
-
2014)
,
p
p
.
1
–
3
1
,
2
0
2
2
.
BIOGR
AP
HI
ES OF
A
UTH
ORS
Hai
tham
Ali
Al
ash
aary
received
the
B.
S.
deg
ree
in
e
le
c
tronic
s
engi
n
ee
ring
fro
m
the
Yar
mouk
U
nive
rsity
,
Irb
id,
Jordan,
in
2000
,
the
M.Sc
.
d
egr
ee
in
b
iom
ed
ica
l
eng
ineeri
ng
from
the
Univ
er
sity
of
New
South
Wa
l
es,
Aus
tra
l
ia
,
in
2003,
and
t
he
Ph.D.
degr
ee
in
elec
tr
ical
and
com
pu
te
r
en
gine
er
ing
from
t
he
Univ
ersit
y
of
Newca
stle,
Aus
tra
lia
in
2010
.
H
e
is
cur
r
ently
an
associ
at
e
pr
ofe
ss
or
at
A
l
-
H
uss
ei
n
Bin
Ta
l
a
l
Univer
si
ty,
Jo
rda
n.
His
rese
a
rch
in
te
rests
inc
lud
e,
but
not
limit
ed
to
neur
al
n
et
works
,
fuz
zy
log
ic
,
n
eur
o
-
fuz
zy
techniqu
e
s
,
signa
l
and
im
ag
e
p
roc
essin
g
,
aut
o
ma
t
ic
con
trol
,
p
ara
l
le
l
co
mput
ing
,
and
e
lectr
oni
cs.
He
c
an
be
contac
t
ed
a
t em
a
il
:
ha
it
ha
m.
a
la
shaa
ry@ah
u.
edu.jo.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Esti
ma
ti
on
of
ha
r
m
on
ic
im
pe
dance
and res
onance i
n po
we
r systems
(
Ha
it
ham Al
i Al
ash
aa
r
y
)
75
Ghad
ee
r
Nya
zi
Al
Sh
aba'an
rec
e
ive
d
th
e
B
.
Sc
.
degr
e
e
in
elec
troni
c
eng
ine
er
in
g
,
from
the
Prince
s
s
Sumaya
Unive
rsity
for
T
ec
hno
logy,
Amm
an,
Jordan
,
in
2004.
She
recei
ved
the
M.Sc
.
and
Ph.D.
degr
e
es
i
n
el
e
ct
ron
ic
en
gine
er
ing
from
School
of
Enginee
ring
and
Phys
ic
al
Scie
n
ce,
Univ
ersit
y
of
Dundee
,
UK
,
in
2005
and
2010
,
respe
ctivel
y
.
She
is
cur
ren
tl
y
an
associa
t
e
p
r
ofe
ss
or
at
th
e
Depa
rtment
of
Elec
tri
c
al
Eng
ine
er
ing,
Al
-
Ba
lqa
Appl
ie
d
Univer
sity
,
Jord
an
.
Her
r
ese
ar
ch
int
er
ests
inc
lud
e
elec
tron
ic
s
an
d
ren
ewa
bl
e
en
e
rgy
sys
te
ms.
She
ca
n
be
con
tacte
d
at email:
gh
ade
er
.
sh@
bau.e
du.
jo
.
Wael
Fawz
i
Ab
u Sh
eha
b
recei
ved
the
M.Sc
.
and
Ph.D.
degr
e
es
in
e
l
ec
tron
ic
s a
n
d
t
elec
om
muni
c
at
i
on
t
e
chni
que
fro
m
VSB
-
Te
chn
ical
Univ
ersit
y
o
f
Os
tra
va,
Czech
Republ
ic,
in
1997
and
2001,
respe
ct
iv
el
y
.
F
rom
2001
to
20
09,
h
e
was
a
l
e
ct
ure
r
and
th
e
hea
d
of
the
Depa
rtment
of
Industria
l
Elec
tr
onic
s
and
Cont
rol
a
t
Ja
za
n
Co
ll
eg
e
of
T
ec
hno
logy,
Saud
i
Arabi
a.
Sinc
e
20
10,
h
e
h
as
be
en
with
Al
-
Hus
sein
Bin
Tala
l
Univ
e
rsity
a
t
M
a’a
n,
J
orda
n,
wher
e
he
is
cur
r
ent
ly
a
profe
ss
or
at
th
e
Depa
r
tment
of
El
e
ct
ri
ca
l
Engi
n
ee
ring
.
His
rese
arc
h
in
te
r
est
spans
a
wide
ra
nge
of
topics
in
cl
uding
el
e
ct
r
ic
a
l
net
works
,
op
tical
f
ibe
r
sensors
and
wire
le
ss
com
munica
ti
on
s.
He
ca
n
be
con
t
ac
t
ed at
email:
w
ae
l
abushe
hab@ahu.e
du.
jo
.
Sh
ehab
Abdu
l
wad
ood
Ali
rec
e
ive
d
the
M.
Sc.
and
Ph.D.
d
egr
ee
s
in
the
fi
e
ld
o
f
El
e
ct
ri
ca
l
Pow
er
Engi
ne
eri
ng
fro
m
VS
B
-
Te
chnic
al
Univer
si
ty
of
Os
tra
va,
C
ze
ch
Republ
i
c
,
in
1993
and
2002
,
respe
ctivel
y
.
He
is
cur
ren
t
ly
a
P
rofe
ss
or
at
the
Depa
rtment
of
P
hysics,
Saber
Facul
ty
of
Sci
en
ce
and
Educ
a
ti
o
n
,
Univ
ersit
y
of
La
he
j,
Yem
en
.
His
rese
arc
h
in
terests
in
cl
ud
e,
but
no
t
li
m
it
ed
to
,
power
quality
and
e
le
c
tro
ma
gne
ti
c
com
p
at
ibilit
y
prob
lems
with
using
ATPD
raw
and
N
et
Calc.
He can
b
e
con
tacte
d
a
t
e
ma
il:
sheh
aba
bd
ulwadood
@
gmail.com
.
Evaluation Warning : The document was created with Spire.PDF for Python.