Int
ern
at
i
onal
Journ
al of Ele
ctrical
an
d
Co
mput
er
En
gin
eeri
ng
(IJ
E
C
E)
Vo
l.
15
,
No.
1
,
Febr
uary
20
25
, pp.
224
~
234
IS
S
N:
20
88
-
8708
, DO
I: 10
.11
591/ij
ece.v
15
i
1
.
pp
224
-
234
224
Journ
al h
om
e
page
:
http:
//
ij
ece.i
aesc
or
e.c
om
Cascade
d AC
-
DC pa
ra
ll
el boost
-
flyback
convert
er for
powe
r
factor c
orre
ction
Nu
r
Vidia
La
ksmi B.
1
, Mu
h
amm
ad
Syahr
il
M
ub
arok
2
, Mo
h.
Z
aenal
Effend
i
3
,
Widi
A
ri
b
owo
1
,
Ti
an
-
H
ua Li
u
4
1
Dep
artm
en
t of
E
l
ectrica
l
E
n
g
in
eerin
g
,
Facu
lty
of
Vo
ca
tio
n
al
Stu
d
ies
,
Un
iv
ersitas Negeri
Sur
ab
ay
a,
Su
rabay
a,
I
n
d
o
n
esia
2
Dep
artm
en
t of
E
n
g
in
eering
,
Facu
lty
of Adv
an
ced Tech
n
o
lo
g
y
and
M
u
ltid
iscip
lin
e,
Un
iv
ersit
as Airlang
g
a,
Su
r
a
b
ay
a,
Ind
o
n
esia
3
Dep
artm
en
t of
E
l
ectrica
l
E
n
g
in
eerin
g
,
Elect
ron
ic E
n
g
in
eering
Po
ly
tech
n
i
c I
n
stitu
te of Sur
ab
ay
a,
Su
rabay
a,
Ind
o
n
esia
4
Dep
artm
en
t of
E
l
ectrica
l
E
n
g
in
eerin
g
,
Natio
n
al T
ai
wa
n
Univ
ersity
of Sci
en
ce a
n
d
T
echn
o
lo
g
y
,
Taipei,
Taiwan
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
J
un
4, 20
24
Re
vised
A
ug 11, 2
024
Accepte
d
Aug 20,
2024
A
two
-
stage
po
wer
fa
ct
or
cor
r
ec
t
ion
(PF
C)
to
pology
a
chi
ev
es
a
h
ighe
r
power
fa
ct
or
q
ual
it
y
and
lowe
r
har
mon
ic
dist
orti
on
tha
n
a
s
ingl
e
-
st
age
conve
rt
er.
Th
is
pape
r
int
rodu
ce
s
a
two
-
stag
e
PF
C
topol
ogy
usin
g
a
par
al
l
el
boost
and
flyback
conv
erter
wh
ic
h
is
e
mpl
oyed
as
a
vol
ta
g
e
r
e
gula
tor
Th
e
ma
in
boost
conv
ert
er
is
used
for
PF
C
and
th
e
oth
er
is
th
e
active
fi
lt
er
c
irc
ui
t.
The
filter
is
i
mpl
ement
ed
to
i
mprove
th
e
q
ual
it
y
of
ph
ase
-
cur
ren
t
and
el
iminate
the
sw
it
chi
ng
lo
ss
.
Furtherm
or
e,
a
re
ac
t
ion
cur
v
e
of
Zi
egler
-
N
ic
ho
l’s
method
d
eterm
ine
s
th
e
cont
ro
ller
p
ara
m
eter
for
ca
s
ca
ded
PF
C
conve
rt
er
c
irc
uit.
Simul
ated
and
expe
ri
me
nt
al
result
s
ar
e
pr
ese
nte
d
to
val
id
at
e
the
pro
posed
method.
The
tot
a
l
har
mo
nic
distor
ti
on
(
THD
)
val
ue
dec
re
ase
s
signi
f
ic
an
tl
y
from
83.
35%
be
com
e
0
.
98%
in
th
e
si
m
ula
ti
on
.
In
addi
ti
on
,
exp
erime
nt
al
resul
ts
show
tha
t
the
cur
ren
t
r
esponse
has
goo
d
per
forma
n
ce
s,
i
ncl
uding
le
ss
h
arm
oni
cs,
high
e
r
power
fa
ct
or,
and
lower
THD
val
ue
compare
d
to
withou
t
a
PF
C
circui
t.
The
PF
in
cre
ase
d
from
0
.
4
3
bec
om
e
0
.
96,
th
e
THD
val
u
e
d
ec
re
ase
d
from
4
9.
4%
b
ec
o
me
1
6.
2%,
and
cont
a
ins
a
sm
all
numb
er
of
har
moni
cs.
The
pro
posed
con
trol
l
er
m
et
hod
has
bet
t
er
responses
tha
n
th
e
conv
ent
ion
al
one
,
in
cl
uding
sm
al
l
s
te
ady
-
st
at
e
err
or,
fast
rise
ti
me
and
set
tl
in
g
time
.
A
micr
ocont
roller
(
MCU
),
typ
e
STM32F
407VG
,
produc
ed
by
S
TMic
roe
le
c
tronics
is
used
to
e
xec
ut
e
th
e
proposed
cont
ro
l
in
bo
th conve
rt
e
rs.
Ke
yw
or
d
s
:
Flyb
ac
k
c
onve
rter
Harmo
nic
Parall
el
boo
st
conve
rter
Power fact
or c
orrecti
on
Vo
lt
age
r
e
gula
tor
This
is an
open
acc
ess arti
cl
e
un
der
the
CC
BY
-
SA
l
ic
ense
.
Corres
pond
in
g
Aut
h
or
:
Nur Vidia
La
ksmi
B.
Dep
a
rtme
nt of
Ele
ct
rical
En
gi
neer
i
ng, F
ac
ulty
of Vocat
io
na
l
Stud
ie
s
,
Un
i
ve
rsita
s N
e
ger
i
Su
r
aba
ya
Su
r
aba
ya 6
1256, E
ast
Ja
va,
Indonesia
Emai
l:
n
ur
vid
i
al
aksmi@
unes
a.ac.id
1.
INTROD
U
CTION
Direct
cu
rr
e
nt
(
DC
)
volt
age
is
gained
ove
r
a
recti
fier.
T
hen,
the
ca
pac
it
or
filt
er
is
ne
cessar
y
to
pro
du
ce
a
sm
al
l
rip
ple
of
DC
vo
lt
ag
e.
Howe
ver,
the
huge
val
ue
of
the
capaci
to
r
le
ads
to
the
current
wav
e
f
or
m
being
dist
or
te
d
a
nd
ha
rm
onic
s
co
ntaminate
d.
T
he
harmo
ni
cs
cause
ra
p
i
d
deterio
rati
on
a
nd
malfu
nctio
n
of
el
ect
ro
nic
e
qu
ipment,
over
he
at
ing
,
a
nd
the
powe
r
fact
or
i
s
decr
e
ased
[
1],
[
2]
.
As
the
powe
r
factor
dec
reas
es,
powe
r
los
s
and
harmo
ni
cs
increase
ca
us
in
g
ot
her
de
vices
co
nnect
ed
to
the
li
ne
to
be
interfe
red.
I
n
non
-
li
near
l
oad,
the
power
factor
is
i
nf
l
uen
ce
d
by
t
he
disto
r
ti
on
facto
r
an
d
dis
placeme
nt
powe
r
factor,
w
hich
has
quit
e
a
cr
uc
ia
l
impact
on
the
sy
ste
m
.
He
nce,
a
power
f
act
or
c
orrecti
on
(PFC
)
met
hod
was
dev
el
op
e
d base
d on the sta
nd
a
rd
of in
put cu
rrent ha
rm
onic
s
[3]
–
[
6]
.
A PFC
circuit
util
iz
es the s
hap
e
s
of
i
nput
current
a
nd
volt
age
wav
e
for
m
t
o
be
in
ph
a
se.
T
he
refor
e
,
the
s
ys
te
m
is
c
on
si
der
e
d
a
pu
re
resist
ance
lo
ad
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Casc
ad
e
d
AC
-
DC
para
ll
el
boos
t
-
fl
yba
ck
c
onvert
er fo
r
powe
r factor
co
r
r
ect
ion
(
Nur
Vi
dia
La
k
smi B
.
)
225
ob
ta
in
s
a
un
it
y
powe
r
factor
e
ven
th
ough
a
non
-
li
near
loa
d
is
us
e
d
[7]
.
Ge
ner
al
ly
,
the
PF
C
meth
od
el
imi
nates
huge
ha
rm
on
ic
s
usi
ng
a
n
i
nduc
tor
filt
er
with
a
he
fty
siz
e.
H
ence,
the
PFC
conve
rter
is
cl
assifi
ed
i
nto
pa
ssiv
e
and
act
ive
c
onver
te
r
s.
T
he
ac
ti
ve
PFC
obta
ins
a
highe
r
power
facto
r,
sli
gh
te
r
siz
e,
a
nd
small
er
form
facto
r
than
th
e
pas
siv
e
conve
rter
[8]
,
[
9]
.
The
oper
at
ion
m
odes
of
act
ive
PFC
co
nv
e
rter
a
re
co
nt
inu
ous
c
ondu
ct
ion
mode
(CCM
),
disc
on
ti
nu
ou
s
co
nductio
n
m
od
e
(
DC
M
),
a
nd
crit
ic
al
co
nductio
n
mode
(CRM)
[
10]
.
These
modes
are
bas
ed
on
the
in
du
ct
or
cu
rr
e
nt
fl
ow.
O
n
the
oth
er
hand,
base
d
on
the
sta
ge
s
numb
e
r
of
c
onve
rter
typ
e,
a
n
act
i
ve
PFC
can
be
de
fine
d
as
a
sin
gle
-
sta
ge
a
nd
a
two
-
sta
ge
[
11]
.
The
si
ng
le
-
sta
ge
achie
ves
high
powe
r
facto
r
a
nd
e
ff
ic
ie
nc
y
but
has
a
n
ene
r
gy
im
balance
i
ssu
e
[
12]
.
The
r
eafter,
the
t
wo
-
sta
ge
P
FC
topolo
gy
rep
la
ces
the
s
ing
le
-
sta
ge
be
cause
it
ac
hie
ves
a
higher
powe
r
factor
and
f
ulfill
s
th
e
ha
rm
on
ic
st
and
a
r
d
regulat
ion.
M
a
ny
DC
-
DC
conve
rters
ca
n
be
us
e
d
as
PFCs,
s
uc
h
a
s
boos
t
c
onve
rters,
bu
c
k
c
on
ver
te
r
s,
Cuk
conve
rters,
a
nd
fl
yb
ac
k
[
13],
[
14]
.
Bo
os
t
co
nverter
is
co
mm
on
l
y
us
e
d
due
to
it
s
simpli
ci
ty
,
lo
w
cost
,
a
nd
ease
of
c
ontr
ol
[
15]
–
[18
]
.
M
a
ny
researc
hers
ha
ve
e
xamine
d
boos
t
c
onve
rter
util
iz
at
ion
for
PFC.
F
or
e
xa
mp
l
e
,
Ali
et
al.
[19]
pro
po
se
d
a
t
hree
-
phase
boos
t
co
nv
e
rter
us
in
g
a
pro
portio
na
l
-
integr
al
an
d
a
res
on
a
nt
c
ontr
oller
(
PI
-
RC
)
co
ntr
ol
le
r.
T
his
s
ys
te
m
ob
ta
in
s
a
tot
al
ha
rm
on
ic
di
stortio
n
(T
HD)
re
duct
ion
of
1.6
8%
an
d
imp
r
ov
e
s
harmo
nics
ac
c
entuati
on
pote
ncy.
A
disc
onti
nuous
c
onduc
ti
on
mode
(
D
CM
)
fl
yb
ac
k
c
onve
rter
f
or
th
e
in
pu
t
vo
lt
age
ra
nge
of
90
-
264
V
A
C
with
a
n
outp
ut
volt
age
of
80
V
DC
was
i
mp
le
me
nted
in
[
20]
.
The
syst
em
wa
s
op
e
rati
ng
in
a
co
ns
ta
nt
du
t
y
cycle
an
d
off
ered
t
he
ben
e
f
it
of
ac
hieving
a
high
-
po
wer
facto
r
usi
ng
CR
M
com
b
ine
d
with
ada
ptive
off
-
t
ime
(AOT
).
T
he
re
su
lt
s
s
how
that
the
ef
fici
ency
is
high
er
by
87.
6%
t
han
the
conve
ntion
al
one.
T
he
DC
-
D
C
buc
k
-
fly
bac
k
PFC
co
nvert
er
is
propose
d
in
[
21]
.
The
bu
c
k
c
onver
te
r
wa
s
employe
d
as
a
PFC
ci
rcu
it
i
n
DCM
m
ode.
It
obta
ined
s
at
isfact
ory
perform
a
nces,
inc
lud
in
g
small
outp
ut
vo
lt
age
an
d
c
urre
nt
rip
ple,
91
.08%
e
ff
ic
ie
nc
y,
a
nd
0.9
56
P
F.
Gi
ve
n
the
a
bs
e
nce
of
pr
e
vi
ou
s
st
udie
s
re
gardin
g
casca
de
d
AC
-
DC
PFC
co
nv
erters,
this
pa
per
ai
ms
to
a
ddress
t
his
re
s
earch
ga
p.
It
mar
ks
the
ina
ugural
inv
est
igati
on i
nt
o
t
his
matt
er
[1]
-
[21
].
The
outl
ine
of
the
pri
mar
y
co
ntributi
ons
of
this
pap
e
r
:
i
)
a
new
tw
o
-
sta
ge
PFC
t
opolog
y
of
par
al
le
l
boos
t
-
fly
bac
k
conve
rter
is
propose
d.
The
m
ai
n
PFC
co
nve
rter
is
a
pa
rall
el
boos
t
c
onve
rter,
a
nd
th
e
fl
yb
ac
k
conve
rter
is
for
t
he
outp
ut
volt
age
re
gula
tor
;
ii
)
a
sim
ple
DCM
mat
hem
at
ic
al
analysis
is
pro
pose
d
t
o
desig
n
the
par
al
le
l
boos
t
co
nverte
r
as
t
he
main
PFC
ci
rcu
it
;
an
d
iii
)
a
s
imple
P
I
c
ontrolle
r
desi
gn
us
in
g
Zie
gler
-
Nich
ol
’s
cu
rv
e is
pro
po
s
ed fo
r
the f
l
yb
ac
k
c
onver
te
r.
T
he
cu
rv
e
o
f
o
pe
n
-
l
oop
r
es
pons
e
determi
ne
s the
con
t
ro
ll
er
gai
n.
T
he
relat
ed
P
I
gain
is
us
ed
wh
e
n
the
open
-
lo
op
res
ponse
has
no
ove
rshoo
t
an
d
os
ci
ll
at
ion
.
Com
par
e
d
to
previ
ou
s
resear
c
h
[
1]
-
[
21],
t
he
ideas
in
this
pap
e
r,
wh
ic
h
inclu
de
the
in
ve
sti
gation
of
pa
rall
e
l
boos
t a
nd f
l
yback c
onve
rter
f
or PFC s
ys
te
m
s w
it
h Zi
egler
-
Nich
ols
-
base
d PI
c
ontrolle
r
tu
ning,
a
re
or
i
gina
l.
2.
METHO
D
The
PFC
s
ys
te
m
c
on
sist
s
of
a
pa
rall
el
boos
t
conve
rter
a
nd
fly
back
co
nver
te
r
in
a
se
ries
connecti
on
.
The
in
pu
t
vol
ta
ge
of
the
pa
rall
el
boost
c
onv
e
rter
is
fro
m
the
recti
fier
an
d
ste
p
-
dow
n
t
ran
s
f
or
me
r.
T
he
config
ur
at
io
n
of
t
he
P
FC
s
yst
em
is
sho
wn
i
n
Fi
gure
1.
T
he
detai
ls
of
D
C
-
DC
c
onve
rters
desig
n
us
e
d
in
the
PFC s
ys
te
ms
a
re e
xp
la
ine
d.
Figure
1. AC
-
DC paral
le
l b
oost
-
fly
back co
nv
e
rter
f
or
PF
C
c
onve
rter
2.1.
P
ara
ll
el
b
oo
s
t
c
onver
ter
A
par
al
le
l
boost
conve
rter
re
places
a
si
ng
le
boos
t
c
onve
rter
f
or
the
P
FC
ci
rcu
it
.
Fi
gure
2
s
hows
the
par
al
le
l
bo
os
t
c
onve
rter
ci
rc
ui
t.
The
s
witc
hi
ng
c
on
tr
ol o
f
t
he
par
al
le
l
bo
os
t
co
nv
e
rter
is p
hase
-
sh
ifte
d
by
180
o
.
The
main
to
po
logy
of
t
he
bo
os
t
c
onve
rter
is
f
or
t
he
PFC
ci
rcu
it
,
a
nd
t
he
ad
diti
onal
ci
rcu
it
is
f
or
t
he
act
ive
filt
er.
T
he
use
of
t
he
filt
er
is
to
im
prov
e
the
ph
a
se
cu
rr
e
nt
qu
al
it
y
a
nd
el
imi
nate
the
s
wi
tc
hin
g
loss
.
T
he
PF
C
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
224
-
234
226
boos
t
c
onver
te
r
anal
ys
is
is
in
DCM
i
n
3
ste
ps
[22]
.
Fig
ure
3
sho
ws
the
c
onve
rter
a
nalysi
s
wh
e
n
t
he
swi
tc
hin
g
com
pone
n
t cl
ose
d
a
nd the
d
i
ode
rev
e
rse
d.
Figure
2. DC
-
DC paral
le
l b
oost c
onver
te
r
t
opolog
y
Figure
3. S
witc
h
cl
ose
d an
d di
od
e
r
e
versed
The
a
nalysis
is d
e
rive
d
as
(
1)
,
(2)
:
=
(1)
=
−
(2)
wh
e
re
is
t
he
i
nducto
r
volt
ag
e,
is
the
capa
ci
tor
c
urren
t
,
a
nd
is
the
loa
d.
Sec
ond,
Fi
gure
4
s
hows
the
conve
rter a
nal
ys
is
wh
e
n
t
he
s
witc
hing c
omp
on
e
nt
op
e
ne
d
a
nd the
diode
f
orwa
rd
e
d.
It is d
e
fine
d
as
(3),
(
4)
:
=
−
(3)
=
+
−
(4)
wh
e
re
is
t
he
i
nput
c
urre
nt.
F
igure
5
s
how
s
the
la
st
a
nalysi
s
w
he
n
t
he
s
wi
tc
hin
g
c
ompon
ent
op
e
ne
d
a
nd
the
diode
rev
e
rse
d.
It is
represe
nted
as
(
5), (6
),
(7)
,
=
0
(5)
=
0
(6)
=
−
(7)
Figure
4. S
witc
h op
e
ne
d
a
nd di
od
e
f
orwarde
d
Figure
5. S
witc
h op
e
ne
d
a
nd di
od
e
re
ver
se
d
A
cco
r
ding
t
o
(1)
-
(7),
the
D
CM
mode
res
pons
es
a
re
s
how
n
in
Fig
ure
6.
Fig
ur
e
6(
a
)
s
hows
t
he
inducto
r
volt
age,
Fi
gure
6(b
)
prese
nts
indu
ct
or
c
urren
t,
a
nd
Fig
ur
e
6(
c
)
dem
onstrat
es
the
diode
c
urr
ent.
T
o
make
t
he
P
FC
model, the
a
nalysis ca
n be
deri
ved
a
s
(8)
,
=
(8)
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Casc
ad
e
d
AC
-
DC
para
ll
el
boos
t
-
fl
yba
ck
c
onvert
er fo
r
powe
r factor
co
r
r
ect
ion
(
Nur
Vi
dia
La
k
smi B
.
)
227
a
n
d
=
(
1
2
)
(9)
w
h
e
r
e
a
n
d
a
r
e
t
h
e
i
n
p
u
t
v
o
l
t
a
g
e
a
n
d
c
u
r
r
e
n
t
,
i
s
t
h
e
i
n
d
u
c
t
o
r
c
u
r
r
e
n
t
,
i
s
t
h
e
i
n
p
u
t
r
e
s
i
s
t
a
n
c
e
,
i
s
t
h
e
d
u
t
y
c
y
c
l
e
o
f
t
he
p
a
r
a
l
l
e
l
b
o
o
s
t
c
o
n
v
e
r
t
e
r
,
a
n
d
i
s
t
h
e
l
o
a
d
.
T
h
e
n
,
t
h
e
i
n
d
u
c
t
o
r
c
u
r
r
e
n
t
c
a
n
d
e
f
i
n
e
d
a
s
(10)
.
=
(10)
S
u
b
s
t
i
t
ut
i
n
g
(
1
0
)
i
n
t
o
(
9
)
,
o
n
e
c
a
n
d
e
r
i
v
e
.
=
2
2
(11)
B
y
u
s
i
n
g
(
1
1
)
a
n
d
s
u
b
s
t
i
t
u
t
e
i
t
i
n
t
o
(
8
)
,
y
i
e
l
d
s
=
2
2
(12)
w
h
e
r
e
i
s
t
h
e
i
n
d
u
c
t
o
r
v
a
l
u
e
.
A
c
c
o
r
d
i
n
g
t
o
(
1
2
)
,
t
h
e
v
a
l
u
e
o
f
t
h
e
i
n
d
u
c
t
o
r
,
d
u
t
y
c
y
c
l
e
,
a
n
d
p
e
r
i
o
d
a
r
e
s
u
p
p
o
s
e
d
t
o
b
e
c
o
n
s
t
a
n
t
.
A
s
a
c
o
n
s
e
q
u
e
n
c
e
,
t
h
e
i
n
p
u
t
r
e
s
i
s
t
a
n
c
e
i
s
c
on
s
t
a
n
t
.
T
h
e
n
,
b
a
s
e
d
o
n
t
h
e
b
o
o
s
t
c
o
n
v
e
r
t
e
r
a
n
a
l
y
s
i
s
,
t
h
e
p
o
w
e
r
f
a
c
t
or
b
e
c
o
m
e
u
n
i
t
y
b
e
c
a
u
s
e
t
h
e
s
y
s
t
e
m
s
u
p
p
l
i
e
d
t
he
r
e
s
i
s
t
i
v
e
l
o
a
d
.
T
h
e
o
u
t
p
u
t
v
o
l
t
a
g
e
c
a
n
b
e
d
e
f
i
n
e
d
as
(13)
[
2
3
]
.
=
1
−
(13)
I
n
D
C
M
m
o
d
e
,
t
h
e
i
n
d
u
c
t
o
r
v
a
l
u
e
i
s
s
m
a
l
l
e
r
t
h
a
n
,
w
h
i
c
h
c
a
n
b
e
d
e
f
i
n
e
d
a
s
(14)
[
2
4
]
.
=
1
2
(
1
−
)
2
2
(14)
w
h
e
r
e
i
s
t
h
e
s
w
i
t
c
hi
n
g
f
r
e
q
u
e
n
c
y
.
(a)
(b)
(c)
Figure
6. The
re
spon
ses
in
DC
M
m
ode
(a)
i
nducto
r v
oltag
e (
b)
i
nducto
r
c
urren
t
a
nd
(c)
diode c
urren
t
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
224
-
234
228
2.2.
Fly
ba
c
k
c
onverter
T
h
e
f
l
y
b
a
c
k
c
o
n
v
e
r
t
e
r
i
s
a
n
i
s
o
l
a
t
e
d
c
o
n
v
e
r
t
e
r
i
n
w
h
i
c
h
t
he
c
i
r
c
u
i
t
c
o
n
s
i
s
t
s
o
f
a
t
r
a
n
s
f
o
r
m
e
r
a
n
d
a
s
w
i
t
c
hi
n
g
c
o
m
p
o
n
e
n
t
.
U
n
l
i
k
e
a
n
i
d
e
a
l
t
r
a
n
s
f
o
r
m
e
r
,
t
h
e
c
u
r
r
e
n
t
d
o
e
s
n
o
t
f
l
o
w
s
i
m
u
l
t
a
n
e
ou
s
l
y
o
n
t
h
e
s
e
c
o
n
d
a
r
y
s
i
d
e
d
u
e
t
o
t
h
e
r
e
v
e
r
s
e
d
p
o
l
a
r
i
t
i
e
s
o
f
t
h
e
t
r
a
n
s
f
o
r
m
e
r
.
T
h
e
v
o
l
t
a
g
e
s
o
u
r
c
e
f
l
o
w
s
t
o
t
h
e
m
a
g
n
e
t
i
z
a
t
i
o
n
i
n
d
u
c
t
o
r
w
h
e
n
t
h
e
s
w
i
t
c
h
i
n
g
c
o
m
p
o
n
e
n
t
t
u
r
n
s
O
N
.
T
h
e
n
,
w
h
e
n
t
h
e
s
w
i
t
c
hi
n
g
c
o
m
p
o
n
e
n
t
i
s
O
F
F
,
t
h
e
v
o
l
t
a
g
e
s
o
u
r
c
e
f
l
o
w
s
t
o
t
h
e
l
o
a
d
.
T
h
e
f
l
y
b
a
c
k
c
o
n
v
e
r
t
e
r
i
s
i
m
p
l
e
m
e
n
t
e
d
a
s
a
v
o
l
t
a
g
e
r
e
g
u
l
a
t
o
r
i
n
t
h
e
s
y
s
t
e
m
.
T
h
e
o
u
t
p
u
t
v
o
l
t
a
g
e
o
f
f
l
y
b
a
c
k
i
s
d
e
f
i
n
e
d
a
s
(15)
[
2
5
]
,
_
=
_
(
1
−
)
(
)
(15)
w
h
e
r
e
_
a
n
d
_
a
r
e
t
h
e
o
u
t
p
u
t
a
nd
i
n
p
u
t
v
o
l
t
a
g
e
o
f
t
h
e
f
l
y
b
a
c
k
c
o
n
v
e
r
t
e
r
,
i
s
t
h
e
d
u
t
y
c
y
c
l
e
,
i
s
t
h
e
p
r
i
m
a
r
y
w
i
n
d
i
n
g
o
f
t
h
e
t
r
a
n
s
f
o
r
m
e
r
,
a
n
d
i
s
t
he
s
e
c
o
n
d
a
r
y
w
i
n
d
i
n
g
o
f
t
h
e
t
r
a
n
s
f
o
r
m
e
r
.
T
h
e
o
p
e
r
a
t
i
o
n
o
f
t
h
e
f
l
y
b
a
c
k
c
o
n
v
e
r
t
e
r
i
s
i
n
c
o
n
t
i
n
u
o
u
s
c
o
n
d
u
c
t
i
o
n
m
o
d
e
(
C
C
M
)
.
T
h
e
v
a
l
u
e
o
f
t
h
e
m
a
g
n
e
t
i
z
a
t
i
o
n
i
n
d
u
c
t
o
r
i
s
d
e
f
i
n
e
d
a
s
(16)
[
2
6
]
:
m
i
n
m
a
x
2
DC
f
l
y
b
a
c
k
m
s
w
R
VD
L
P
i
f
K
=
(16)
w
h
e
r
e
i
s
t
h
e
m
a
g
n
e
t
i
z
a
t
i
o
n
i
n
d
u
c
t
o
r
,
i
s
t
h
e
m
i
n
i
m
u
m
i
n
p
u
t
v
o
l
t
a
g
e
i
n
t
h
e
D
C
c
o
m
p
o
n
e
n
t
,
i
s
t
h
e
m
a
x
i
m
u
m
d
u
t
y
c
y
c
l
e
,
i
P
i
s
t
h
e
i
n
p
u
t
p
o
w
e
r
,
a
n
d
i
s
t
he
r
i
p
p
l
e
f
a
c
t
o
r
.
T
h
e
n
,
t
h
e
m
a
x
i
m
u
m
c
u
r
r
e
n
t
t
h
r
o
u
g
h
t
h
e
s
w
i
t
c
h
i
n
g
c
o
m
p
o
n
e
n
t
i
s
d
e
r
i
v
e
d
a
s
(17)
,
m
a
x
1.12
2
I
=
+
(17)
Accor
ding to
(17),
and
are
re
pr
ese
nted
as
(18)
,
m
i
n
m
a
x
i
DC
P
VD
=
(18)
a
n
d
,
m
i
n
m
a
x
DC
m
sw
VD
Lf
=
(19)
3.
SIMULATE
D
R
ES
ULTS
In
t
his
pa
per,
a
casca
de
P
FC
sy
ste
m
use
s
mathemat
ic
al
analysis
to
ob
ta
i
n
the
va
lue
of
eac
h
com
pone
nt.
T
he
sim
ulati
on
and
co
ntr
oller
desig
n
us
es
M
A
TLAB
Si
mu
li
nk.
Fig
ure
7
pr
ese
nts
t
he
blo
c
k
diag
ram
of
t
he
PFC
syst
em.
T
he
s
upply
of
th
e
PFC
s
ys
te
m
i
s
a
220
V
s
our
ce
from
t
he
gr
i
d.
T
he
n,
t
he
vo
lt
age
so
urce
is
dism
ounted
by
lo
w
-
f
reque
ncy
tr
a
ns
f
ormer
s
bec
om
in
g
32
V.
I
n
ad
diti
on,
the
recti
fier
pr
oduces
the
DC
vo
lt
age
af
te
r
the
s
eco
nd
ary
side
of
th
e
trans
f
or
m
er.
A
fter
th
at
,
the
pro
posed
D
C
-
DC
par
al
le
l
boost
–
Flyb
ac
k
PFC
c
onve
rter
im
pro
ves
t
he
sy
ste
m q
ualit
y.
T
he
pa
rameters
f
or
t
he
pr
opos
e
d
s
yst
em
are
d
escri
be
d
i
n
Ta
ble
1
.
Fo
r
the
c
ontr
ol
le
r
desig
n,
th
e
deter
minati
on
of
t
he
P
I
c
on
t
ro
l
par
a
mete
r
use
s
a
Zie
gler
-
Nich
ols
method
base
d
on
the
reacti
on
c
urve
of
a
n
op
e
n
-
lo
op
syst
em.
T
he
plant
is
treat
ed
as
an
op
e
n
-
lo
op
sy
ste
m
su
bject
to
a
un
it
ste
p
functi
on
si
gnal
.
T
he
s
ys
te
m
res
ponse
will
be
an
S
-
sh
a
pe
if
the
pl
ant
do
e
s
not
c
on
ta
in
integrat
or
el
e
ments
or
co
mpl
ex
pole
s
at
a
minimu
m.
T
he
S
-
sh
a
pe
d
cu
r
ve
has
tw
o
c
ons
ta
nts,
w
hich
ar
e
dead
ti
me
an
d
ti
me
de
la
y.
T
he
de
te
rmin
at
io
n
of
pro
portio
nal
–
integ
ral
–
de
riv
at
ive
(
PID
)
pa
rameters
i
s
ba
sed
o
n
ob
ta
ini
ng
the
se
tw
o
c
onsta
nts.
The
re
fore,
the
Zei
gler
-
Nich
ol
s
meth
ods
a
re
easy
t
o
im
ple
ment
beca
us
e
it
does
no
t re
quire c
ompli
cat
ed
mat
hemati
cal
an
al
ys
is. T
he
reacti
on
c
urve in
op
en
lo
op
m
ode
determi
nes
w
he
ther
th
e
sy
ste
m
bel
ongs
to
the
1
st
or
2
nd
orde
r.
T
he
volt
age
res
ponse
,
w
hich
ha
s
no
ove
rsho
ot
a
nd
os
ci
ll
at
ion
,
is
assigne
d
to
be
1
st
orde
r.
As
a
resu
lt
,
the
sy
st
em
only
needs
a
PI
co
ntr
oller.
The
n,
the
tra
nsfer
functi
on
(
TF)
in
op
e
n
-
lo
op m
ode can be
obta
in
ed
as
(
20)
:
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Casc
ad
e
d
AC
-
DC
para
ll
el
boos
t
-
fl
yba
ck
c
onvert
er fo
r
powe
r factor
co
r
r
ect
ion
(
Nur
Vi
dia
La
k
smi B
.
)
229
(
)
(
)
=
+
1
(20)
w
h
e
r
e
(
)
i
s
t
h
e
o
u
t
p
u
t
f
u
n
c
t
i
o
n
,
(
)
i
s
t
h
e
i
n
p
u
t
f
u
n
c
t
i
o
n
,
i
s
t
h
e
c
o
n
s
t
a
n
t
,
a
n
d
i
s
t
h
e
t
i
m
e
c
o
n
s
t
a
n
t
.
A
c
c
o
r
d
i
n
g
t
o
(
2
0
)
,
t
h
e
s
e
t
t
l
i
n
g
t
i
m
e
p
a
r
a
m
e
t
e
r
d
e
t
e
r
m
i
n
e
s
t
h
e
t
i
m
e
c
o
n
s
t
a
nt
a
s
(21)
:
=
5
(21)
w
h
e
r
e
i
s
t
h
e
s
e
t
t
l
i
n
g
t
i
m
e
.
F
i
g
u
r
e
8
s
h
o
w
s
t
h
e
o
u
t
p
u
t
v
o
l
t
a
g
e
r
e
s
p
o
n
s
e
o
f
t
h
e
f
l
y
b
a
c
k
c
o
n
v
e
r
t
e
r
.
F
i
g
ur
e
8
(
a
)
s
h
o
w
s
t
h
e
r
e
a
c
t
i
o
n
c
u
r
v
e
i
n
o
p
e
n
-
l
o
o
p
m
o
d
e
.
T
h
e
m
a
t
h
e
m
a
t
i
c
a
l
a
n
a
l
y
s
i
s
o
f
t
h
e
r
e
s
p
o
n
s
e
s
y
s
t
e
m
d
e
t
e
r
m
i
n
e
s
t
h
e
p
a
r
a
m
e
t
e
r
s
o
f
t
h
e
P
I
c
o
n
t
r
o
l
l
e
r
.
T
h
e
p
r
o
p
o
r
t
i
o
n
a
l
a
nd
i
n
t
e
g
r
a
l
g
a
i
n
i
s
d
e
r
i
v
e
d
a
s
(22), (23
)
:
=
∗
(22)
=
(23)
w
h
e
r
e
i
s
t
h
e
p
r
o
p
o
r
t
i
o
n
a
l
g
a
i
n
,
i
s
t
h
e
i
nt
e
g
r
a
l
g
a
i
n
,
i
s
t
h
e
i
n
t
e
g
r
a
l
t
i
m
e
c
o
n
s
t
a
n
t
w
h
e
r
e
t
h
e
v
a
l
u
e
i
s
a
s
s
u
m
e
d
=
,
a
n
d
∗
i
s
t
h
e
d
e
s
i
r
e
d
t
i
m
e
c
o
n
s
t
a
n
t
.
T
h
e
d
i
f
f
e
r
e
n
c
e
be
t
w
e
e
n
a
n
d
∗
i
s
t
h
e
s
e
t
t
l
i
n
g
t
i
m
e
v
a
l
u
e
.
i
s
o
b
t
a
i
n
e
d
f
r
o
m
t
h
e
o
p
e
n
-
l
o
o
p
c
o
n
d
i
t
i
o
n
w
h
i
l
e
∗
i
s
o
b
t
a
i
n
e
d
b
a
s
e
d
o
n
t
h
e
d
e
s
i
r
e
d
s
e
t
t
l
i
n
g
t
i
m
e
,
.
F
i
g
u
r
e
8
(
b
)
s
h
o
w
s
t
h
e
r
e
s
p
o
n
s
e
c
u
r
v
e
i
n
a
c
l
os
e
d
l
o
o
p
c
o
m
p
a
r
e
d
t
o
Z
i
e
g
e
r
-
N
i
c
h
o
l
a
n
d
t
h
e
c
o
n
v
e
n
t
i
o
n
a
l
m
e
t
h
o
d
.
T
a
b
l
e
2
p
r
e
s
e
nt
s
t
h
e
c
o
m
p
a
r
i
s
o
n
b
e
t
w
e
e
n
t
h
e
t
w
o
m
e
t
h
o
d
s
.
T
h
e
r
e
s
p
o
n
s
e
s
s
h
o
w
t
h
a
t
t
h
e
p
r
o
p
o
s
e
d
m
e
t
h
o
d
h
a
s
b
e
t
t
e
r
p
e
r
f
o
r
m
a
n
c
e
t
h
a
n
t
h
e
c
o
n
v
e
n
t
i
o
n
a
l
m
e
t
h
o
d
.
T
h
e
p
a
r
a
m
e
t
e
r
s
i
n
c
l
ud
e
r
i
s
e
t
i
m
e
,
s
e
t
t
l
i
n
g
t
i
m
e
,
a
n
d
e
r
r
o
r
s
t
e
a
d
y
-
s
t
a
t
e
.
A
c
c
o
r
d
i
n
g
t
o
T
a
b
l
e
2
,
t
h
e
Z
i
e
ge
r
-
N
i
c
h
o
l
’
s
h
a
s
a
f
a
s
t
e
r
r
i
s
e
t
i
m
e
,
f
a
s
t
e
r
s
e
t
t
l
i
n
g
t
i
m
e
,
a
n
d
s
m
a
l
l
e
r
e
r
r
o
r
s
t
e
a
d
y
-
s
t
a
t
e
e
r
r
o
r
t
h
a
n
t
h
e
c
o
n
v
e
n
t
i
o
n
a
l
m
e
t
h
o
d
.
T
h
e
n
,
t
h
e
s
i
m
u
l
a
t
i
o
n
o
f
t
h
e
i
n
t
e
g
r
a
t
i
o
n
s
y
s
t
e
m
i
s
a
l
s
o
c
a
r
r
i
e
d
o
u
t
i
n
F
i
g
u
r
e
9
.
T
h
e
s
i
m
u
l
a
t
i
o
n
i
s
c
o
n
d
u
c
t
e
d
w
i
t
h
t
w
o
c
a
s
e
s
.
T
h
e
f
i
r
s
t
c
a
s
e
i
s
t
h
e
c
i
r
c
u
i
t
w
i
t
h
a
r
e
c
t
i
f
i
e
r
a
n
d
f
l
y
b
a
c
k
c
o
n
v
e
r
t
e
r
o
n
l
y
.
S
e
c
o
n
d
,
t
h
e
c
o
m
p
l
e
t
e
c
i
r
c
ui
t
u
s
e
s
a
P
F
C
a
n
d
r
e
g
u
l
a
t
o
r
c
i
r
c
u
i
t
w
i
t
h
o
u
t
a
D
C
-
l
i
nk
c
a
p
a
c
i
t
o
r
o
n
t
h
e
r
e
c
t
i
f
i
e
r
s
i
d
e
.
F
i
g
u
r
e
9
(
a
)
.
s
h
o
w
s
t
h
e
r
e
s
p
o
n
s
e
w
i
t
h
o
u
t
a
P
F
C
c
i
r
c
ui
t
a
t
5
0
H
z
2
2
0
V
.
A
s
w
e
c
a
n
o
b
s
e
r
v
e
,
t
h
e
i
n
p
u
t
c
u
r
r
e
n
t
c
o
n
s
i
s
t
s
o
f
a
h
u
g
e
r
i
p
p
l
e
a
n
d
s
o
m
e
p
o
i
n
t
s
d
o
n
o
t
i
n
p
h
a
s
e
w
i
t
h
v
o
l
t
a
g
e
r
e
s
p
o
n
s
e
s
.
S
u
c
h
a
n
i
n
p
u
t
c
u
r
r
e
n
t
r
e
s
p
o
n
s
e
c
a
u
s
e
d
l
a
r
g
e
h
a
r
m
o
n
i
c
s
i
n
T
H
D
.
F
i
g
u
r
e
9
(
b
)
s
h
o
w
s
t
h
e
s
i
m
u
l
a
t
i
o
n
r
e
s
u
l
t
w
i
t
h
P
F
C
c
i
r
c
u
i
t
s
.
T
h
e
v
o
l
t
a
g
e
a
n
d
c
u
r
r
e
n
t
i
n
p
u
t
ha
v
e
b
e
t
t
e
r
r
e
s
po
n
s
e
s
c
o
m
p
a
r
e
d
w
i
t
h
t
h
o
s
e
w
i
t
h
o
u
t
P
F
C
c
i
r
c
u
i
t
s
i
n
F
i
g
u
r
e
9
(
a
)
,
i
n
c
l
u
d
i
n
g
s
m
a
l
l
e
r
i
n
p
u
t
c
u
r
r
e
n
t
h
a
r
m
o
n
i
c
s
a
n
d
t
h
e
r
e
s
p
o
n
s
e
s
t
r
a
c
k
e
d
t
h
e
i
n
p
u
t
v
o
l
t
a
g
e
a
s
w
e
l
l
.
F
i
g
u
r
e
1
0
p
r
e
s
e
n
t
s
t
h
e
h
a
r
m
o
n
i
c
s
s
p
e
c
t
r
u
m
o
f
t
h
e
i
n
p
u
t
c
u
r
r
e
n
t
s
i
d
e
.
I
n
F
i
g
u
r
e
1
0
(
a
)
h
a
s
a
h
u
g
e
T
H
D
v
a
l
u
e
o
f
8
3
.
3
5
%
w
h
e
n
w
i
t
h
o
u
t
a
P
F
C
c
i
r
c
u
i
t
.
W
h
e
n
u
s
i
n
g
t
h
e
P
F
C
c
i
r
c
u
i
t
i
n
F
i
g
u
r
e
1
0
(
b
)
,
a
s
c
a
n
b
e
o
b
s
e
r
v
e
d
,
t
h
e
T
H
D
d
e
c
r
e
a
s
e
d
s
i
g
n
i
f
i
c
a
n
t
l
y
f
r
o
m
8
3
.
3
5
%
t
o
0
.
9
8
%
.
L
ow F
r
e
que
nc
y
T
r
a
ns
f
or
me
r
AC
/
DC
P
a
r
a
l
l
e
l
B
oos
t
C
onv
e
r
te
r
F
ly
ba
c
k
C
onv
e
r
te
r
L
oa
d
P
W
M
R
e
a
c
ti
on C
ur
ve
Z
i
e
gle
r
-
Nic
hol
s
C
ont
r
ol
P
W
M
V
olt
a
ge
s
e
ns
or
s
Figure
7. Bl
oc
k diag
ram of
P
FC sy
ste
m
Table
1
. T
he
paramet
er
d
esc
ri
ption
Para
m
eters
Valu
es
Para
m
eters
Valu
es
P
ara
m
eters
Valu
es
Para
m
eters
Valu
es
220
V
_
∗
12
V
_
1
.65
1
A
40
k
Hz
_
32
V
_
3
.3 A
4
0
V
0
.5
_
5
A
0
.52
6
0
V
0
.25
T
_
2
8
.82
V
0
.5
_
0
.78
A
1
.96
cm
2
(PQ35
3
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
224
-
234
230
0
6
12
0
0
.
5
1
1
.
5
2
2
.
5
T
i
m
e
(
s
)
0
0
.
5
1
1
.
5
2
2
.
5
0
6
12
T
i
m
e
(
s
)
Z
i
e
ge
r
-
N
i
c
ho
l
s
m
e
t
ho
d
C
on
ve
nt
i
on
a
l
m
e
t
ho
d
(
a
)
(b)
Figure
8. The
ou
t
pu
t
volt
age
respo
ns
e
of f
l
yback
con
ver
te
r
(
a)
ope
n
-
l
oop
and
(
b) close
d
-
loop c
on
t
ro
l
Table
2.
T
he
paramet
er
comp
ariso
n
Zieger
-
Nich
o
ls’s
m
eth
o
d
Co
n
v
en
tio
n
al m
eth
o
d
Ris
e
-
tim
e
(
s)
0
.06
0
.1
Settlin
g
tim
e
(s)
0
.1
0
.6
Er
ror
stead
y
-
state
(
%)
0
.8
4
.2
T
i
m
e
(
s
)
0
0
.
5
1
1
.
5
2
-
3
1
1
0
3
1
1
2
.
5
-
6
0
6
I
nput
vol
t
a
ge
I
np
ut
c
ur
r
e
nt
T
i
m
e
(
s
)
0
0
.
5
1
1
.
5
2
-
3
1
1
0
3
1
1
2
.
5
-
6
0
6
I
nput
vol
t
a
ge
I
np
ut
c
ur
r
e
nt
(a)
(b)
Figure
9. Sim
ul
at
ion
r
es
ult (a
)
w
it
hout
PFC c
ircuit
an
d
(b) wit
h
P
FC ci
rc
ui
t
F
un
da
m
enta
l
(
50
Hz
)
=
1
.
7
7
1
,
THD
=
83
.
35
%
0
2
0
0
4
0
0
6
0
0
8
0
0
1
0
0
0
Freq
u
en
cy
(
Hz
)
0
5
10
15
20
25
Mag
(%
o
f
fu
n
d
am
en
t
al
)
F
unda
m
enta
l
(
50
Hz
)
=
6
.
0
4
8
,
THD
=
0
.
98
%
0
2
0
0
4
0
0
6
0
0
8
0
0
1
0
0
0
Freq
u
en
cy
(
Hz
)
0
0
.
05
0
.
1
0
.
15
0
.
2
0
.
25
0
.
3
Mag
(%
o
f
fu
n
d
am
en
t
al
)
(a)
(b)
Figure
10. Si
m
ulati
on
res
ult o
f
c
urren
t i
nput
sp
ect
r
um
ha
rm
on
ic
s
(
a
) wit
hout PF
C
ci
rcu
it
and
(b) wit
h
P
FC c
ircuit
4.
EXPERI
MEN
TAL RES
UL
TS
Figure
11
s
ho
ws
t
he
phot
ogr
aph
of
the
ex
pe
rimental
be
nc
h
te
st.
A
micr
oc
on
t
ro
ll
er
unit
(M
C
U)
f
rom
STM
ic
ro
el
ect
r
on
ic
s
,
t
ype
ST
M
32F
407V
G,
is
us
e
d
t
o
e
xec
ute
the
pr
opose
d
c
ontrol
f
or
bo
t
h
c
onve
rter
s.
T
he
du
t
y
c
ycle
of
t
he
paral
le
l
boost
co
nv
e
rter
is
52%.
The
vo
lt
age
set
point
of
the
fly
back
c
onve
rter
is
12
vo
lt
s
du
e
to
t
he
l
oad
re
qu
ire
ment
.
Both
c
onve
rter
s
us
e
a
40
kHz
switc
h
i
ng
f
requen
c
y
a
nd
a
25
µs
sam
plin
g
pe
rio
d.
Power
harmo
ni
c
analyzer
43
B
is
us
ed
to
c
ol
le
ct
data
and
wav
e
f
or
m
in
e
xp
e
rime
ntal
re
su
lt
s,
s
uch
a
s
vo
lt
age
and
c
urre
nt
res
pons
es
,
T
HD
,
and
PF
values
.
Figure
12
de
monstrate
s
the
vo
lt
age
an
d
c
urren
t
in
put
re
sp
onses
w
it
h
PFC
an
d
with
out
PFC
usi
ng
220
V,
10
0
W
se
ries
loa
d.
Fi
gure
12
(a)
s
hows
the
respo
ns
e
of
the
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Casc
ad
e
d
AC
-
DC
para
ll
el
boos
t
-
fl
yba
ck
c
onvert
er fo
r
powe
r factor
co
r
r
ect
ion
(
Nur
Vi
dia
La
k
smi B
.
)
231
par
a
mete
rs
without
a
P
FC
ci
rcu
it
.
T
he
c
urr
ent
res
pons
e
with
the
PFC
ci
rcu
it
in
Fi
gure
12
(b)
has
be
tt
er
performa
nces,
inclu
ding
fe
wer
ha
rm
onic
s,
a
nd
the
PF
has
si
gnific
ant
ly
inc
rease
d
f
rom
0.43
to
0.9
6.
I
n
add
it
io
n,
t
he
i
nput
vo
lt
age
is
in
ph
a
se
wit
h
the
in
pu
t
c
urre
nt
wa
ve
for
ms
w
he
n
the
PFC
ci
rc
uit
is
util
iz
ed.
Figure
13
s
ho
ws
t
he
c
urren
t
input
s
pectr
um
ha
rm
on
ic
s
res
pons
es
.
T
he
T
HD
val
ue
dec
r
eased
from
49.
4%
i
n
Fig
ure
13(a
)
t
o
16.2%
in
Fi
gure
13(
b).
Also
,
it
c
onta
ins
few
e
r
harmo
ni
cs
co
mp
a
red
to
th
os
e
with
ou
t
a
PFC
ci
rcu
it
.
Fi
g
ure
14
s
how
s
the
cu
rr
e
nt
a
nd
volt
age
wa
veforms
wh
e
n
t
he
s
ys
te
m
us
es
a
c
ouple
of
220
V
a
nd
100
W
l
oa
ds
in
pa
rall
el
.
Fig
ure
14(a
)
s
hows
t
he
wav
e
f
or
m
w
it
hout
a
PFC circuit
,
in
w
hic
h
the
PF
is 0.6
7,
a
nd
it
s
curre
nt
harmo
nics
a
re
ve
r
y
high.
On
the
oth
e
r
ha
nd,
as
we
ca
n
obse
rve
in
Fig
ure
14(
b),
t
he
PF
is
in
creased
to
0.9
6
w
he
n
t
he
P
FC
ci
rc
uit
is
util
iz
ed.
T
he
refor
e
,
the
hig
h
cu
rrent
ha
r
monics
c
ou
l
d
a
ff
ect
t
he
T
H
D.
The
n,
Figure
15
pr
e
s
ents
the
harmo
nic
res
pons
es
of
c
urre
nt
inpu
t
wh
e
n
the
s
ys
t
em
us
es
a
c
ou
ple
of
22
0
V
,
100
W
loads
.
Fig
ure
15(a)
sho
ws
th
e
TH
D
w
ave
f
orm
with
out
usi
ng
a
PFC
ci
r
cuit,
w
hich
is
30%.
T
he
n,
th
e
TH
D
decr
ease
d
to
15.4%
w
he
n
us
i
ng
a
P
FC
ci
rcui
t,
as
sho
wn
i
n
Figure
15
(b). As
a res
ult,
it
pro
ves
that
the
p
arall
el
boos
t
P
FC
ci
r
cuit
impro
ves
the
pe
rforma
nc
e
of
the
s
ys
t
em,
incl
ud
i
ng
enh
a
ncem
ent
of
powe
r
factor
a
nd
su
pp
ressio
n o
f THD
, as
sho
w
n
in
Ta
ble 3.
St
ep
-
d
o
w
n
T
ran
s
fo
rme
rs
Para
l
l
el
–
Bo
o
s
t
Co
n
v
ert
er
Fl
y
b
ack
C
o
n
v
ert
er
MC
U
T
o
p
-
v
i
e
w
o
f
P
a
r
a
l
l
e
l
–
Bo
o
s
t
Co
n
v
e
rt
e
r
T
o
p
-
v
i
e
w
o
f
F
l
y
b
a
c
k
Co
n
v
e
rt
e
r
Figure
11. Ph
ot
ograph
of p
a
ra
ll
el
b
oost
-
fl
yb
a
ck
P
FC c
onvert
er
(a)
(b)
Figure
12. T
he
volt
age a
nd c
urre
nt r
es
ponse
s
u
si
ng 22
0
V,
100
W
loa
d (a) wit
hout P
FC ci
rcu
it
a
nd
(b) wit
h pro
posed
P
FC ci
rc
ui
t
(a)
(b)
Figure
13. Res
pons
es
of
c
urre
nt in
pu
t
sp
ect
r
um
ha
rm
on
ic
s
us
in
g 1
00
W
lo
ad (a)
with
ou
t
PFC circ
uit
an
d
(b) wit
h pro
posed
P
FC ci
rc
ui
t
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
224
-
234
232
(a)
(b)
Figure
14. T
he
volt
age a
nd c
urre
nt r
es
ponse
s
u
si
ng a c
ouple
of
220
V,
10
0
W parall
el
loa
d (a) wit
hout
P
FC
ci
rcu
it
an
d
(
b)
with
pro
po
se
d PFC ci
rc
uit
(a)
(b)
Figure
15. Res
pons
es
of
c
urre
nt in
pu
t
sp
ect
r
um
ha
rm
on
ic
s
us
in
g
a
cou
ple
of 22
0
V
, 1
00
W parall
el
loa
d
without P
FC ci
rcu
it
a
nd
(
b) wi
th prop
os
ed
P
FC ci
rcu
it
Table
3.
T
he
c
omparati
ve
r
es
ult
Load
W
ith
o
u
t PFC circ
u
it
W
ith
PFC cir
cu
it
THD
(%)
PF
THD
(%)
PF
Sin
g
le 12
V,
2
0
W
4
3
.1
0
.74
1
6
.1
0
.95
A cou
p
le of 12
V,
2
0
W
3
5
.7
0
.75
1
5
.3
0
.95
Sin
g
le 22
0
V,
1
0
0
W
4
9
.4
0
.43
1
6
.2
0
.96
A cou
p
le of 22
0
V,
1
0
0
W
30
0
.67
1
5
.4
0
.96
5.
CONCL
US
I
O
N
This
pa
pe
r
int
rod
uced
AC
-
D
C
par
al
le
l
boost
-
fly
bac
k
f
or
the
powe
r
fac
tor
c
orrecti
on
conve
rter
.
Im
prov
i
ng
fro
m
a
sin
gle
-
sta
ge
t
o
a
t
wo
-
s
ta
ge
P
FC
ci
rc
uit
usi
ng
a
pa
rall
el
boost
c
onve
rter
f
ulfill
s
the
harmo
nic
sta
ndar
d
regulat
io
n.
In
t
wo
-
sta
ge
co
nv
e
rter
c
onsist
s
of
a
PFC
par
al
le
l
boost
conve
rter
as
t
he
main
sta
ge
an
d
a
no
t
her
fly
back
D
C
-
DC
co
nverte
r
as
an
a
ddit
ion
al
co
nv
e
rter.
This
ad
diti
on
al
conve
rter
co
ul
d
be
a
cancel
in
g
li
ne
f
reque
nc
y
rip
ple
a
nd
volt
ag
e
re
gula
tor
.
Simulat
ed
a
nd
e
xp
e
rime
ntal
re
su
lt
s
s
how
tha
t
th
e
pro
po
se
d
PFC
ci
rcu
it
has
bette
r
perf
or
ma
nce
s,
wh
ic
h
a
re
le
ss
c
urren
t
ha
r
monics,
hi
gh
e
r
PF
,
a
nd
l
ow
e
r
TH
D
value
c
ompa
re
d
to
th
os
e
without
the
PFC
sy
ste
m.
I
n
a
dd
it
ion
,
c
ompare
d
with
the
co
nventio
nal
meth
od,
the
Zie
ger
-
Nic
ho
ls
meth
od
has
be
tt
er
perf
or
ma
nce,
i
nclu
ding
faster
rise
ti
me,
faster
set
t
li
ng
ti
me,
a
nd
few
e
r
ste
ady
-
sta
te
er
r
or
s
.
T
her
e
fore,
the
pr
opos
e
d
r
eact
ion
c
urve
Zie
gler
-
Nich
ol
s
ex
hib
it
s
s
uffici
ent
perf
orma
nce
of
powe
r
c
onver
t
er fo
r
in
dustria
l app
li
cat
io
n.
REFERE
NCE
S
[1]
J.
-
Y.
Lee,
H.
-
S
.
J
an
g
,
J.
-
I.
K
an
g
,
an
d
S.
-
K.
Han
,
“
H
ig
h
eff
icien
cy
co
m
m
o
n
m
o
d
e
co
u
p
led
in
d
u
cto
r
b
ridgeless
p
o
wer
factor
co
rr
ectio
n
co
n
v
erter
w
ith
im
p
ro
v
ed
co
n
d
u
cted
EM
I
n
o
ise,”
I
E
EE
A
ccess
,
v
o
l.
1
0
,
p
p
.
1
3
3
1
2
6
–
1
3
3
1
4
1
,
2
0
2
2
,
d
o
i: 10
.1109
/ACC
ESS.
2
0
2
2
.32
2
7
1
1
0
.
[2]
V.
Bis
t
an
d
B
.
Sin
g
h
,
“A
b
rus
h
less
DC
m
o
to
r
d
r
iv
e
with
p
o
wer
f
acto
r
co
rr
ectio
n
u
sin
g
iso
lated
zeta
co
n
v
erter,”
IE
E
E
Tra
n
sa
ctio
n
s o
n
I
n
d
u
str
ia
l I
n
fo
rma
tic
s
,
v
o
l.
1
0
,
n
o
.
4
,
p
p
.
2
0
6
4
–
2
0
7
2
,
No
v
.
20
1
4
,
d
o
i: 10
.1
1
0
9
/TI
I
.20
1
4
.23
4
6
6
8
9
.
[3]
T.
Co
n
way
,
“An
i
so
lated
p
o
wer
fact
o
r
co
rr
ect
ed
p
o
wer
su
p
p
ly
u
tilizin
g
th
e
trans
form
er
le
a
k
ag
e
in
d
u
ctan
ce,”
IE
E
E
Tra
n
sa
ctio
n
s
o
n
P
o
wer
E
lectro
n
ics
,
v
o
l.
3
4
,
n
o
.
7
,
p
p
.
6
4
6
8
–
6
4
7
7
,
Ju
l
.
2
0
1
9
,
d
o
i: 10
.110
9
/TPE
L
.20
1
8
.287410
7
.
[4]
B.
Sin
g
h
,
B.
N.
S
in
g
h
,
A.
Ch
an
d
ra,
K.
Al
-
Had
d
ad
,
A
.
Pan
d
ey
,
an
d
D
.
P.
Ko
th
ari
,
“A
r
ev
iew
o
f
sin
g
le
-
p
h
ase
im
p
rov
ed
p
o
wer
q
u
ality
ac~d
c
co
n
v
erter
s,”
IE
E
E
Tra
n
sa
ctio
n
s
o
n
Ind
u
str
ia
l
Electro
n
ics
,
v
o
l.
5
0
,
n
o
.
5
,
p
p
.
9
6
2
–
9
8
1
,
Oct.
2
0
0
3
,
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
Casc
ad
e
d
AC
-
DC
para
ll
el
boos
t
-
fl
yba
ck
c
onvert
er fo
r
powe
r factor
co
r
r
ect
ion
(
Nur
Vi
dia
La
k
smi B
.
)
233
d
o
i: 10
.1109
/TI
E.
2
0
0
3
.8176
0
9
.
[5]
Y
.
Liu,
Y
.
Su
n
,
M
.
Su
,
M.
Zho
u
,
Q.
Zhu
,
an
d
X.
Li,
“
A
sin
g
le
-
p
h
ase
PFC
rectif
ie
r
with
wi
d
e
o
u
tp
u
t
v
o
ltag
e
an
d
lo
w
-
fr
eq
u
en
cy
ripp
le
p
o
wer
d
ecou
p
lin
g
,”
IE
EE
Tra
n
sa
ctio
n
s
o
n
Pow
er
Electro
n
ics
,
v
o
l.
3
3
,
n
o
.
6
,
p
p
.
5
0
7
6
–
5
0
8
6
,
Jun.
2
0
1
8
,
d
o
i: 10
.1109
/TPE
L.
2
0
1
7
.2
7
3
4
0
8
8
.
[6]
K
.
H
.
L
e
u
n
g
,
K
.
H
.
L
o
o
,
a
n
d
Y
.
M
.
L
a
i
,
“
U
n
i
t
y
-
p
o
w
e
r
-
f
a
c
t
o
r
c
o
n
t
r
o
l
b
a
s
e
d
o
n
p
r
e
c
i
s
e
r
i
p
p
l
e
c
a
n
c
e
l
l
a
t
i
o
n
f
o
r
f
a
s
t
-
r
e
s
p
o
n
s
e
P
F
C
p
r
e
r
e
g
u
l
a
t
o
r
,
”
I
E
E
E
T
r
a
n
s
a
c
t
i
o
n
s
o
n
P
o
w
e
r
E
l
e
c
t
r
o
n
i
c
s
,
v
o
l
.
3
1
,
n
o
.
4
,
p
p
.
3
3
2
4
–
3
3
3
7
,
A
p
r
.
2
0
1
6
,
d
o
i
:
1
0
.
1
1
0
9
/
T
P
E
L
.
2
0
1
5
.
2
4
5
3
0
1
6
.
[7]
Z.
Ch
en
,
P.
D
av
ari,
an
d
H.
W
an
g
,
“Sin
g
le
-
p
h
ase
b
ridg
eless
PFC
to
p
o
lo
g
y
d
erivatio
n
an
d
p
erf
o
rman
ce
b
en
ch
m
arkin
g
,”
I
EE
E
Tra
n
sa
ctio
n
s o
n
P
o
wer
E
lectro
n
ics
,
v
o
l.
3
5
,
n
o
.
9
,
p
p
.
9
2
38
–
9
2
5
0
,
Sep
.
2
0
2
0
,
d
o
i: 10
.1
1
0
9
/
TPE
L
.20
2
0
.29
7
0
0
0
5
.
[8]
B.
R.
d
e
Al
m
eid
a,
J.
W
.
M
.
d
e
A
ra
u
jo
,
P.
P.
Pr
aca,
a
n
d
D.
d
e
S.
Oliv
e
ira,
“A
sin
g
le
-
stag
e
th
ree
-
p
h
ase
b
id
i
rection
al
AC/DC
co
n
v
erter
with
h
ig
h
-
fr
eq
u
en
cy
iso
latio
n
an
d
PFC,”
IE
E
E
Tra
n
sa
ctio
n
s
o
n
Pow
er
E
le
ctro
n
ics
,
v
o
l.
3
3
,
n
o
.
1
0
,
p
p
.
8
2
9
8
–
8
3
0
7
,
Oct.
2
0
1
8
,
d
o
i: 10
.11
0
9
/TPE
L.
2
0
1
7
.2
7
7
5
5
2
2
.
[9]
C.
Sab
er,
D
.
Lab
r
o
u
ss
e,
B.
Rev
o
l,
an
d
A.
Gasch
er,
“Ch
allen
g
es
facing
PFC
o
f
a
sin
g
le
-
p
h
ase
o
n
-
b
o
ard
ch
arger
for
el
ectri
c
v
eh
icles
b
ased
o
n
a
cu
rr
en
t
so
u
rce
activ
e
r
ectifie
r
i
n
p
u
t
stag
e,”
IE
E
E
Tra
n
sa
ctio
n
s
o
n
Pow
er
Electro
n
ics
,
v
o
l.
3
1
,
n
o
.
9
,
p
p
.
6
1
9
2
–
6
2
0
2
,
Sep
.
2
0
1
6
,
d
o
i: 10
.1
1
0
9
/TPE
L.
2
0
1
5
.25
0
0
9
5
8
.
[10
]
Y
.
-
S
.
Ro
h
,
Y
.
-
J
.
Moo
n
,
J
.
Park,
an
d
C
.
Yo
o
,
“A
two
-
p
h
ase
in
terleaved
p
o
wer
fa
cto
r
co
rr
e
ctio
n
b
o
o
st
co
n
v
erter
with
a
v
ariatio
n
-
to
lerant
p
h
ase
sh
ifting
tech
n
iq
u
e,”
IE
EE
Tra
n
sa
ctio
n
s
o
n
Pow
er
Electr
o
n
ics
,
v
o
l.
2
9
,
n
o
.
2
,
p
p
.
1
0
3
2
–
1
0
4
0
,
Feb
.
2
0
1
4
,
d
o
i:
1
0
.11
0
9
/TPE
L.
2
0
1
3
.22
6
2
3
1
3
.
[11
]
C.
Zhan
g
et
a
l.
,
“
Co
o
rdin
ated
two
-
stag
e
o
p
eration
an
d
co
n
trol
for
m
in
im
izin
g
en
ergy
sto
r
ag
e
capacito
rs
in
ca
scad
ed
b
o
o
st
-
b
u
ck
PFC co
n
v
erter
s,”
I
EE
E
A
cc
ess
,
v
o
l.
8
,
p
p
.
1
9
1
2
8
6
–
1
9
1
2
9
7
,
2
0
2
0
,
d
o
i: 1
0
.1
1
0
9
/ACC
ESS.
2
0
2
0
.30
3
0
3
9
0
.
[12
]
H.
W
u
,
S.
C.
W
o
n
g
,
C.
K.
Tse,
an
d
Q.
Ch
en
,
“A
PFC
sin
g
le
-
co
u
p
led
-
in
d
u
cto
r
m
u
ltip
le
-
o
u
tp
u
t
LE
D
d
river
w
ith
o
u
t
electro
ly
tic
capacito
r,
”
IE
EE
T
ra
n
sa
ctio
n
s o
n
P
o
wer
E
lectro
n
ics
,
v
o
l.
3
4
,
n
o
.
2
,
p
p
.
1
7
0
9
–
1
7
2
5
,
2
0
1
9
,
d
o
i: 10
.11
0
9
/TPE
L.
2
0
1
8
.2
8
2
9
2
0
3
.
[13
]
H.
Luo
,
J.
Xu
,
D.
He,
an
d
J.
Sh
a,
“
P
u
lse
train
co
n
trol
strateg
y
for
CC
M
b
o
o
st
PFC
co
n
v
erter
w
ith
i
m
p
rov
ed
d
y
n
am
ic
resp
o
n
se
a
n
d
u
n
ity
p
o
wer
factor
,”
IE
EE
T
ra
n
sa
ctio
n
s
o
n
Ind
u
str
ia
l
Electro
n
ics
,
v
o
l.
6
7
,
n
o
.
1
2
,
p
p
.
1
0
3
7
7
–
1
0
3
8
7
,
2
0
2
0
,
d
o
i
:
1
0
.11
0
9
/TI
E.
2
0
1
9
.29
6
2
4
6
7
.
[14
]
Y.
S.
Ki
m
,
W
.
Y.
Su
n
g
,
an
d
B.
K.
Lee,
“Co
m
p
ar
ativ
e
p
erf
o
rman
ce
an
aly
sis
o
f
h
ig
h
d
e
n
sity
an
d
eff
cien
cy
PFC
to
p
o
l
o
g
ies,”
IE
E
E
Tra
n
sa
ctio
n
s o
n
P
o
wer
E
lectro
n
ics
,
v
o
l.
2
9
,
n
o
.
6
,
p
p
.
2
6
6
6
–
2
6
7
9
,
2
0
1
4
,
d
o
i: 10
.1109
/TPE
L.
2
0
1
3
.22
7
5
7
3
9
.
[15
]
Y.
-
D
.
Lee,
D.
Ki
m
,
S.
-
H.
Ch
o
i,
G.
-
W
.
Moo
n
,
an
d
C.
-
E
.
Kim
,
“Ne
w
b
ridg
e
less
p
o
wer
factor
c
o
rr
ectio
n
co
n
v
erter
with
si
m
p
le
g
ate
d
rivin
g
circuit
an
d
h
ig
h
eff
icien
cy
for
serv
er
p
o
wer
ap
p
licatio
n
s,”
IE
E
E
Tra
n
sa
ctio
n
s
o
n
Pow
er
Electro
n
ics
,
v
o
l.
3
5
,
n
o
.
1
2
,
p
p
.
1
3
1
4
8
–
1
3
1
5
6
,
Dec.
2
0
2
0
,
d
o
i: 10
.11
0
9
/TPE
L.
2
0
2
0
.2
9
9
4
5
4
4
.
[16
]
K.
S.
Bin
Muh
am
m
ad
an
d
D.
D.
-
C.
Lu,
“ZCS
b
ridg
ele
ss
b
o
o
st
PFC
rectif
ier
u
sin
g
o
n
ly
tw
o
activ
e
switch
es,”
IE
E
E
Tra
n
sa
ctio
n
s
o
n
I
n
d
u
str
ia
l E
lectro
n
ics
,
v
o
l.
6
2
,
n
o
.
5
,
p
p
.
2
7
9
5
–
2
8
0
6
,
M
ay
20
1
5
,
d
o
i:
1
0
.11
0
9
/TI
E.
2
0
1
4
.2364
9
8
3
.
[17
]
J.
W
.
Ko
lar
an
d
T
.
Friedli,
“The
ess
en
ce
o
f
th
ree
-
p
h
ase
PFC
re
ctife
r
sy
stems
-
Pa
rt
I,
”
IE
EE
Tra
n
sa
ctio
n
s
o
n
Pow
er
Electro
n
ics
,
v
o
l.
2
8
,
n
o
.
1
,
p
p
.
1
7
6
–
1
9
8
,
Jan
.
2
0
1
3
,
d
o
i: 10
.11
0
9
/TPE
L.
2
0
1
2
.21
9
7
8
6
7
.
[18
]
T.
Friedli
,
M.
H
ar
tm
an
n
,
an
d
J.
W
.
Ko
lar,
“The
ess
en
ce
o
f
th
ree
-
p
h
ase
PFC
rectifer
sy
stems
-
Pa
rt
II
,”
I
EE
E
Tra
n
sa
ctio
n
s
o
n
Pow
er Electro
n
ics
,
vo
l.
2
9
,
n
o
.
2
,
p
p
.
5
4
3
–
5
6
0
,
Feb
.
2
0
1
4
,
d
o
i: 10
.11
0
9
/TPE
L.
2
0
1
3
.22
5
8
4
7
2
.
[19
]
M.
S.
Ali,
L
.
W
an
g
,
H.
Alq
u
h
ay
z,
O
.
U.
Reh
m
an
,
an
d
G.
Ch
en
,
“Per
for
m
an
ce
i
m
p
rov
em
e
n
t
o
f
th
ree
-
p
h
ase
b
o
o
st
p
o
wer
facto
r
co
rr
ectio
n
re
ctifie
r
th
rou
g
h
co
m
b
in
ed
p
aram
et
ers
o
p
ti
m
izatio
n
o
f
p
rop
o
rtion
al
-
in
teg
ral
an
d
repetitiv
e
co
n
tro
ller,
”
IE
EE
Ac
cess
,
v
o
l.
9
,
p
p
.
5
8
8
9
3
–
5
8
9
0
9
,
2
0
2
1
,
d
o
i:
1
0
.11
0
9
/ACC
ESS.
2
0
2
1
.3
0
7
3
0
0
4
.
[20
]
H.
Luo
,
T.
Zang
,
S.
Ch
en
,
an
d
B.
Z
h
o
u
,
“An
ad
ap
tiv
e
o
ff
-
ti
m
e
co
n
trolled
DCM
flyb
ack
P
FC
co
n
v
erter
with
u
n
ity
p
o
wer
facto
r
an
d
hig
h
ef
ficiency
,”
IE
EE
A
cc
ess
,
v
o
l.
9
,
p
p
.
2
2
4
9
3
–
2
2
5
0
2
,
2
0
2
1
,
d
o
i: 1
0
.11
0
9
/ACC
ESS.
2
0
2
1
.3055
2
4
8
.
[21
]
K.
Cao
,
X.
Liu,
M.
He,
X.
Meng
,
an
d
Q.
Zho
u
,
“
Ac
tiv
e
-
clam
p
reso
n
a
n
t
p
o
wer
fa
cto
r
c
o
rr
ectio
n
co
n
v
erte
r
with
o
u
tp
u
t
ripp
le
su
p
p
ressio
n
,”
IE
E
E
Ac
cess
,
v
o
l.
9
,
pp
.
5
2
6
0
–
5
2
7
2
,
2
0
2
1
,
d
o
i: 10
.11
0
9
/ACC
ESS.
2
0
2
0
.30
4
8
0
1
2
.
[22
]
A.
S.
Sa
m
o
sir,
N
.
F.
N.
Taufiq
,
A.
J
.
Sh
afie,
an
d
A.
H
.
M.
Yati
m
,
“Si
m
u
l
atio
n
an
d
im
p
lem
e
n
tatio
n
o
f
in
terlea
v
ed
b
o
o
st
DC
-
D
C
co
n
v
erter
for
fuel
cell
ap
p
licatio
n
,”
I
n
tern
a
tio
n
a
l
Jo
u
rnal
o
f
Pow
er
Electr
o
n
ics
a
n
d
Drive
S
ystems
,
v
o
l.
1
,
n
o
.
2
,
p
p
.
1
6
8
–
1
7
4
,
2
0
1
1
,
d
o
i: 1
0
.11
5
9
1
/ijp
ed
s.v
1
i2
.1
2
6
.
[23
]
L.
El
Ch
aar
,
Pow
e
r electro
n
ics Ha
n
d
b
o
o
k
.
Califo
rnia:
Academic
Pr
ess
,
2
0
1
1
.
[24
]
V.
T.
Ran
g
an
ath
an
,
“Po
wer
el
ectro
n
ics,”
in
S
a
d
h
a
n
a
-
Acad
emy
Pro
ce
ed
in
g
s
in
Eng
in
eerin
g
S
cien
ces
,
2
0
0
8
,
v
o
l.
3
3
,
n
o
.
5
,
p
p
.
4
5
5
–
4
5
7
,
d
o
i:
1
0
.12
0
1
/9
7
8
0
4
2
9
2
9
0
6
1
9
-
8.
[25
]
N.
Moh
an
,
“Po
we
r
elect
ron
ics
-
a
fi
rst
co
u
rse,”
Jo
u
rn
a
l
o
f
Ch
emical
Inf
o
rma
tio
n
a
n
d
Mo
d
elin
g
,
v
o
l.
5
3
,
n
o
.
9
,
p
p
.
1
6
8
9
–
1
6
9
9
,
2013.
[26
]
A.
Em
ad
i,
A
.
Kh
a
lig
h
,
Z.
Nie,
an
d
Y.
J.
Le
e,
“Integ
r
ated
p
o
wer
el
ectr
o
n
ic
co
n
v
erter
s
an
d
d
ig
ital
co
n
trol,”
Integ
ra
ted
Pow
er
Electro
n
ic
Co
n
verters
an
d
Digita
l Co
n
tro
l
,
p
p
.
1
–
3
3
9
,
2
0
1
7
,
d
o
i: 10
.1
2
0
1
/
9
7
8
1
4
3
9
8
0
0
7
0
6
.
BIOGR
AP
HI
ES OF
A
UTH
ORS
Nu
r
Vidia
Lak
smi
B.
rec
e
iv
ed
her
B
.
A.Sc.
degr
ee
from
El
e
ct
roni
c
Enginee
r
i
n
g
Polyte
chnic
Ins
ti
tute
of
Surab
aya
,
Indon
esia,
in
2015
and
her
M.Sc.
d
egr
ee
from
th
e
Depa
rtment
of
E
le
c
tri
c
al
Engi
n
eering,
N
at
ion
al
T
ai
wan
Univ
ersity
of
Sci
ence
and
Technol
ogy
(NTUS
T),
T
ai
w
an
in
2018
.
Cu
rre
ntl
y
,
she
is
a
l
ecture
r
in
th
e
Dep
art
m
ent
o
f
Elec
tri
c
al
Engi
ne
eri
ng,
Suraba
ya
State
Un
ive
rsity
,
Surab
a
ya,
Indon
esia.
Her
rese
arc
h
intere
sts
in
cl
ude
power
el
e
ct
roni
c
s,
mo
tor
driv
es,
and
the
appl
i
ca
t
i
on
of
con
trol
th
eor
ie
s.
She
ca
n
be
contac
t
ed
at
em
a
il
:
nurvid
i
al
aksmi
@un
esa
.
ac
.
id.
Evaluation Warning : The document was created with Spire.PDF for Python.