Int
ern
at
i
onal
Journ
al of Ele
ctrical
an
d
Co
mput
er
En
gin
eeri
ng
(IJ
E
C
E)
Vo
l.
15
,
No.
1
,
Febr
uary
20
25
, pp.
908
~
920
IS
S
N:
20
88
-
8708
, DO
I: 10
.11
591/ij
ece.v
15
i
1
.
pp
908
-
920
908
Journ
al h
om
e
page
:
http:
//
ij
ece.i
aesc
or
e.c
om
Harnessi
ng
de
ep
l
earning
for
me
dicin
al
plant
resea
rch:
a
co
m
pr
ehensi
ve
study
Vidya
Hull
eke
re Anan
da
1
,
Narasi
mha M
u
rthy
Madiw
ala
S
athyan
ar
ay
an
a R
ao
2
,
Thar
a
D
harm
ap
ur
a Kri
shn
amu
r
th
y
3
1
Dep
artm
en
t
of
Co
m
p
u
ter
Sci
en
ce
an
d
Eng
in
eering
,
Kal
p
ataru I
n
stitu
te of
Techn
o
lo
g
y
,
Tiptur
,
Visv
esv
araya
T
e
ch
n
o
lo
g
ical Univ
e
rsity
,
Belag
av
i,
Ind
ia
2
Dep
artm
en
t
of
Inf
o
rm
atio
n
Scien
ce
a
n
d
Eng
in
eering
,
BMS
Ins
titu
te
of
Te
ch
n
o
lo
g
y
an
d
Manag
em
en
t,
Ben
g
alu
r
u
,
Visv
esv
araya
Techn
o
lo
g
ical
Un
iv
ersity
,
Belag
av
i,
I
n
d
ia
3
Dep
artm
en
t
of
Inf
o
rm
atio
n
Scien
ce
a
n
d
Eng
in
eering
,
Ch
an
n
ab
asav
esh
wara
Ins
titu
te
of
Tech
n
o
lo
g
y
,
Gu
b
b
i,
Visv
esv
araya
Techn
o
lo
g
ical Univ
ersity
,
Belag
av
i,
I
n
d
ia
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
hist
or
y:
Re
cei
ved
Feb
23, 202
4
Re
vised
Ju
l
17,
2024
Accepte
d
Se
p 3, 2
024
In
toda
y’s
world
,
peop
le
are
mor
e
prone
to
dise
ase
s
due
to
food
a
dult
er
at
ion
and
pol
lut
ion
in
the
envi
ron
ment,
and
p
eopl
e
have
found
a
way
of
using
her
bal
m
edi
c
ine
as
an
a
lt
ern
at
i
ve
to
al
lop
at
hi
c
m
edi
c
ine,
espe
ci
a
ll
y
since
cor
onavi
rus
dise
ase
2019
(COV
ID
-
19)
.
Medicin
al
pl
ant
s
ar
e
th
e
source
of
her
bal
me
d
ic
in
es
tha
t
inc
r
ea
se
the
im
mun
it
y
of
hu
ma
ns.
Medi
ci
n
al
pla
nts
ar
e
used
in
ma
ny
appl
i
ca
t
ions,
li
k
e
phar
mace
ut
icals,
cosmetic
s,
and
drugs.
Medic
in
al
pla
n
t
s
are
of
gre
at
i
mport
an
ce
,
and
henc
e
th
is
work
pre
sen
ts
a
rev
ie
w
of
the
m
edi
c
ina
l
p
la
nts
g
rown
in
Karna
t
a
ka
State,
Ind
ia.
The
work
al
so
high
li
ghts
spec
ie
s
ide
n
ti
fi
c
at
ion
and
dise
a
se
de
te
c
ti
on
of
m
edi
c
ina
l
pla
nts
em
ploy
in
g
machin
e
le
arn
i
ng
and
de
ep
l
ea
r
ning
appr
o
ac
h
es.
The
pap
er
provide
s
informati
on
about
d
at
a
sets
ava
i
la
bl
e
f
or
var
ious
m
edicinal
pla
n
t
leaf
images.
Th
e
de
ep
le
a
rning
mode
ls
used
for
spec
i
es
id
ent
if
i
ca
t
ion
and
disea
se
de
tecti
o
n
in
me
d
ic
in
al
pla
nts
hav
e
be
e
n
discussed
al
o
ng
with
the
result
s
.
Ke
yw
or
d
s
:
Deep l
ear
ning
Disease
detect
ion
M
ac
hin
e lea
rn
i
ng
M
e
dicinal
p
la
nt
s
Sp
eci
es i
den
ti
f
ic
at
ion
This
is
an
open
acc
ess
arti
cl
e
un
der
the
CC
BY
-
SA
l
ic
ense
.
Corres
pond
in
g
Aut
h
or
:
Vidya
Hu
ll
eke
re
An
a
nda
Dep
a
rtme
nt
of
Com
pu
te
r
Scie
nce
a
nd
E
ng
i
ne
erin
g,
Kalpata
ru Insti
tute o
f Te
ch
no
l
ogy
,
V
isvesva
ra
ya
Tech
no
l
og
ic
al
Un
i
ver
sit
y
NH 20
6,
B
H
R
oad, Ti
ptu
r
-
572201
,
I
nd
ia
Emai
l:
vidya.
ha
@gmai
l.com
1.
INTROD
U
CTION
M
e
dicinal
pla
nt
s
play
a
pivot
al
ro
le
in
to
da
y’
s
w
or
l
d
as
t
he
y
are
the
main
c
ompone
nt
of
A
yur
ve
da.
Ayurve
da
s
olve
s
healt
h
prob
l
ems
thr
ough
a
ho
li
sti
c
ap
proa
ch
by
pr
e
ve
nting
man
y
disea
ses
an
d
hel
ping
face
po
te
ntial
chall
eng
e
s
in
t
his
world
[1]
.
Mo
dern
me
dicine
wea
ke
ns
the
immu
nity
po
we
r
of
the
huma
n
body,
wh
e
reas
t
he
A
yur
ved
ic
a
ppr
oa
ch
to
healt
h
he
lps
mai
ntain
good
healt
h
by
i
ncr
easi
ng
the
i
mmunit
y
of
the
body
natu
rall
y.
N
ow
adays,
we
ca
n
see
that
man
y
Ayurve
dic
ther
apies
treat
dise
ases
that
are
ha
rd
to
c
ur
e
in
m
od
e
r
n
medici
ne
.
In
man
y
cases
,
A
yur
ved
a
av
oids
surge
ries
a
nd
heals
a
va
riet
y
of
diseases
.
Accurat
e
ide
nt
ific
at
ion
and
m
on
it
or
in
g
of
me
dicinal
plant
sp
eci
es
is
essenti
al
to
ens
ur
e
t
he
qua
li
ty,
ef
ficacy,
and
safet
y
of
herbal
pro
du
ct
s
an
d
t
rad
it
io
nal
me
di
ci
nes,
as
me
di
ci
nal
plants
ha
ve
man
y
us
es
in
medici
ne
.
Howe
ver,
the
visu
al
simi
la
rity
an
d
sp
ect
r
um
of
medici
nal
pl
ant
bi
od
i
versi
ty
pose
sig
nifi
cant
ch
al
le
ng
e
s
f
or
co
nvent
ion
al
identific
at
ion
methods
,
oft
en
relyin
g
on
t
he
exp
e
rtise
of
hu
man
e
xp
e
rts.
A
lso,
the
ti
mely
detect
ion
of
di
seases
in
medici
nal
plants
is
cr
ucial
to
mainta
in
ing
the
pote
nc
y
an
d
inte
gr
it
y
of
the
plant
s
for
their
i
ntend
e
d
medici
nal
a
pp
l
ic
at
ion
s.
Unde
te
ct
ed
plant
diseases
can
le
a
d
to
si
gn
i
fican
t
crop
l
os
ses
a
nd
t
he
product
ion
of
su
bst
an
dard
he
rb
al
pro
du
ct
s
,
unde
rmin
i
ng
the
reli
abili
ty
an
d
tr
us
t
in
tra
diti
on
al
me
dicine
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
H
ar
ne
ssin
g de
ep
le
arni
ng for
m
e
dicinal
pl
ant rese
ar
c
h:
a compre
he
ns
iv
e stu
dy
(
Vidy
a
Hu
ll
ekere
A
na
nda
)
909
In
t
his
work,
we
ai
m
to
le
ve
rag
e
the
pow
er
of
dee
p
le
ar
ning,
a
cutti
ng
-
ed
ge
a
rtific
ia
l
intel
li
gen
ce
te
chn
iq
ue,
to
address
t
hese
chall
en
ges
a
nd
re
vo
l
utio
nize
the
way
medici
nal
plants
are
ide
ntifie
d
a
n
d
monit
or
e
d.
S
pe
ci
fical
ly,
we
se
ek
to
de
vel
op
r
obus
t
an
d
acc
urat
e
dee
p
le
arni
ng
-
base
d
a
utomat
ed
cl
assifi
c
at
ion
sy
ste
ms
e
qu
i
pped
to
ha
nd
le
the
i
den
ti
ficat
ion
of
a
ric
h
as
so
rtme
nt
of
m
edici
nal
plant
var
ie
ti
es.
E
xp
l
or
e
the
impleme
ntati
on
of
dee
p
le
ar
ni
ng
a
ppr
oac
hes
to
the
ea
rly
an
d
pr
eci
se
detec
ti
on
of
disease
s
in
me
dicinal
plants,
enab
li
ng
proac
ti
ve
inter
ven
ti
on
an
d
mana
ge
ment.
The
w
ork
e
mphasiz
e
s
the
si
gn
i
ficance
of
le
ve
rag
i
ng
dat
a
augmentat
io
n
appr
oach
es
to
al
le
viate
the
li
mit
at
ion
s
of
small
medici
na
l
plant
datas
et
s
an
d
e
nh
a
nc
e
the
gen
e
rali
zat
ion
of
dee
p
le
a
rn
i
ng
m
od
el
s
.
Investi
gate
the
pro
fici
ency
of
t
he
deep
le
ar
nin
g
-
based
ap
pr
oach
e
s
and
c
ompa
re
t
hem
to
co
nven
ti
on
a
l
mac
hin
e
le
arn
in
g
meth
od
s
,
dem
on
st
ra
ti
ng
the
a
dvan
cements
ma
de
in
this
fiel
d.
By
ac
hieving
these
ob
je
ct
iv
es,
we
ai
m
to
co
ntribute
to
the
im
prov
e
m
ent
of
t
he
me
dicinal
plant
industr
y
’
s
ef
fi
ci
ency
,
qu
al
it
y
co
ntr
ol,
a
nd
su
sta
ina
bili
ty.
The
dee
p
le
a
r
ning
-
powe
red
too
ls
an
d
te
c
hniq
ues
dev
el
op
e
d
in
this
stu
dy
ca
n
be
inte
gr
at
e
d
into
the
w
or
kf
l
ow
s
of
cult
ivators
,
pro
ducers,
an
d
heal
thcare
pr
act
it
ion
e
rs,
e
mpowe
rin
g
th
em
with
reli
a
bl
e
and
scal
a
ble
so
luti
ons
for
medici
nal
pla
nt
identific
at
io
n
an
d
disease
m
onit
ori
ng.
T
his
rese
arch
re
pr
ese
nts
a
cr
ucial
le
ap
in
ad
opti
ng
de
ep
le
ar
ning
al
gorith
ms
in
me
di
ci
nal
plant
ap
plica
ti
on
s
,
with
t
he
po
te
ntial
to
transform
tra
diti
on
al
healt
hca
re
pr
act
ic
es,
e
nh
a
nce
the
reli
a
bili
ty
of
herbal
product
s,
a
nd
pro
mo
te
the
s
us
ta
ina
bl
e
mana
ge
ment
of
me
dicinal
pl
ant
res
ources
.
The
pri
ma
ry
mo
ti
vatio
n
of
this
wor
k
is
to
le
verage
the
power
of
dee
p
le
arn
i
ng
to
nav
i
gate
the
diff
ic
ulti
es
of
accurate
i
den
ti
ficat
ion
a
nd
ti
mely
detect
ion
of
diseases
in
me
dicinal
plants
to
a
mp
li
f
y
the
eff
ic
ie
nc
y,
qu
al
it
y
con
tr
ol,
and
su
sta
ina
bi
li
ty
of
the
me
dicinal
pla
nt
industr
y
a
nd
t
r
aditi
on
al
healt
hcar
e
pr
act
ic
es.
T
he
pro
blem
ad
dre
ssed
in
this
stu
dy
is
to
ma
xim
iz
e
the
us
e
of
ayur
ved
ic
me
di
ci
nes,
so
we
ne
ed
to
identif
y
t
he
me
dicinal
plants
a
nd
s
uppress
the
at
ta
ck
of
dise
ases
on
medici
nal
plants
to
sa
ve
their
c
om
m
un
it
y
.
Deep
le
ar
ning
is
pivotal
in
i
de
ntify
i
ng
me
dicinal
pla
nt
sp
e
ci
es
an
d
detect
ing
t
heir
diseas
es.
India
is
know
n
as
popula
r
f
or
its
t
rad
it
io
na
l
healt
h
s
ys
te
ms
that
i
nclu
de
,
A
yur
ve
da,
Yoga,
U
na
ni,
Siddha,
an
d
S
owa
-
Ri
gpa
al
ong
with
H
ome
opat
hy.
Ba
se
d
on
this
s
ys
te
m
,
nowa
days
we
can
see
man
y
po
li
ci
es
and
s
ys
te
ms
na
med
A
Y
USH
wh
ic
h
is
sho
w
n
in
Fi
gure
1.
An
ci
e
nt
huma
n
ci
vili
zat
ion
use
d
t
he
Sid
dh
a
syst
em
arou
nd
800
-
700
BC
E,
the
U
nan
i
s
ys
te
m
of
medici
ne
was
us
e
d
ar
ound
460
-
377
BC
E,
Ayurve
da
wa
s
us
e
d
arou
nd
900
-
800
BC
E,
Home
op
at
hy
ar
ound
1850
CE,
a
nd
Yoga
a
nd
nat
uro
path
y
was
use
d
pa
st
ma
ny
de
cades
wh
ic
h
are
nat
ur
al
heali
ng
s
ys
te
ms
[2]
.
T
he
num
be
r
of
plant
s
pecies
us
ed
in
these
sy
ste
ms
is
s
how
n
in
Figure
2
[3]
.
India
is
one
of
the
rese
rvoir
s
of
biodive
rsity
in
t
he
w
or
l
d.
Plants
a
re
f
ound
mai
nly
in
the
Wester
n
Gh
at
s
,
N
or
t
h
-
Ea
ste
r
n
I
ndia
,
a
nd
the
Himala
ya
n
reg
i
on.
T
her
e
are
a
rou
nd
7
,
000
medici
nal
plan
t
sp
eci
es
in
I
nd
ia
,
and
a
rou
nd
19
00
in
Ka
rn
at
a
ka
[
4]
.
P
eop
le
belo
w
the
po
ver
ty
line
cannot
af
for
d
the
exp
e
ns
i
ve
heal
thcare
se
rv
ic
es
pro
vid
e
d
to
da
y
an
d
t
hey
do
not
e
ven
ha
ve
acce
ss
to
the
healt
hcar
e
ser
vi
ces,
especial
ly
in
r
emote
a
reas.
Alte
rn
at
ive
wa
ys
nee
d
to
be
fou
nd
to
meet
the
c
halle
nge
s
face
d
by
t
he
se
po
or
people.
M
e
dicinal
plants
offe
r
reme
dies
for
this
pro
blem
a
nd
man
y
healt
h
issues
c
an
be
so
lve
d
if
ta
ke
n
care
of
at
the
rig
ht
ti
me
with
the
rig
ht
medicat
i
on.
T
he
pre
dominant
portio
n
of
t
he
me
dicinal
pla
nts
is
f
ound
in
forests.
Me
dici
nal
plants
pro
vi
de
treat
me
nt
f
or
the
poor
pe
op
le
at
an
a
ffo
rd
a
ble
pr
ic
e
a
nd
t
hey
al
s
o
ge
ner
at
e
income
a
nd
e
mp
lo
ym
e
nt
if
fo
c
us
e
d
pro
pe
r
ly.
Acc
ordin
g
to
t
he
W
or
l
d
Healt
h
O
rg
a
ni
zat
ion
(
WHO
),
ab
out
80%
of
t
he
gl
ob
al
popula
ti
on
reli
es
on
tra
diti
on
al
medici
ne,
w
hich
ai
m
s
to
prom
ote
t
he
well
-
bei
ng
of
both
people
a
nd
the
plan
et
[
5]
.
90%
of
t
he
me
di
ci
nal
pla
nts
are
us
e
d
as
ra
w
dru
g
mate
rial
in
the
Indian
me
dicina
l
sy
ste
m
[
6]
.
40
%
of
the
pha
r
maceuti
cal
in
dustrie
s
a
re
us
in
g
me
dicinal
pl
ants
[7]
.
Figure
1.
Tra
di
ti
on
al
me
dicin
e
sy
ste
m
AYUS
H
Figure
2.
I
nd
ia
n
tra
diti
on
al
m
edici
ne
s
ys
te
m
with
history
a
nd
numb
e
r
of
plant
s
pecies
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
908
-
920
910
Unfortu
natel
y,
the
sect
or
of
medici
nal
plan
ts
in
our
c
ount
ry
is
not
well
orga
nized
a
nd
po
te
ntial
ly
util
iz
ed.
Nati
onal
an
d
sta
te
-
l
evel
orga
nizat
ion
s
ha
ve
to
de
sign
poli
ci
es
relat
ed
to
the
medici
nal
plan
t
sect
or
.
The
medici
nal
plant
gro
wing
ha
bitat
s
ha
ve
to
be
i
ncr
eas
ed
with
gr
eat
su
pe
r
visio
n,
a
nd
the
ra
re
m
edici
na
l
plant
sp
eci
es
t
hat
a
re
extinct
need
to
be
pr
otect
ed.
So
t
hat
I
nd
ia
ca
n
e
xpor
t
nat
ur
al
me
dicines
to
i
nter
national
mar
kets
[
8]
.
We
can
fin
d
the
app
li
cat
io
n
of
medici
nal
plan
ts
in
va
rio
us
fiel
ds
.
Fi
gure
3
sh
ows
t
he
a
pp
l
ic
at
io
n
of
me
dicinal
pl
ants
in
va
rio
us
fiel
ds
in
the
m
ark
et
.
Figure
3.
M
e
di
ci
nal
pla
nts
in
var
i
ou
s
fiel
ds
Ar
ti
fici
al
intel
li
gen
ce
is
a
ne
w
te
ch
nolo
gy
of
c
omp
uter
sc
ie
nce
that
e
vo
l
ved
67
year
s
a
go.
A
rtific
ia
l
intel
li
gen
ce
wa
s
in
ven
te
d
in
1956
by
Joh
n
Mc
Ca
rthy
[9]
.
B
ut
it
has
b
ec
ome
popula
r
in
the
past
few
de
cades.
It
is
widel
y
use
d
in
al
m
os
t
a
ll
app
li
cat
ions
tod
a
y.
M
ac
hi
ne
le
ar
ning
(ML)
a
nd
dee
p
le
arn
i
ng
(
DL
)
a
r
e
the
su
bfi
el
ds
of
Ar
ti
fici
al
In
te
l
li
gen
ce
an
d
a
re
fin
ding
great
app
li
cat
io
n
in
ma
ny
fi
el
ds
li
ke
heal
thcare,
agr
ic
ultur
e
,
ba
nk
i
ng,
s
ocial
media,
c
yber
secur
it
y,
rob
otics,
e
-
c
om
me
r
ce,
ed
ucati
on,
an
d
gaming.
In
t
his
work,
deep
le
a
rn
i
ng
te
c
hn
i
ques
us
e
d
in
sp
e
ci
es
identific
at
ion
a
nd
diseas
e
identific
at
io
n
in
me
dicinal
plant
s
are
discuss
e
d.
Natu
re
offe
rs
us
a
rema
r
kabl
e
meth
od
of
natu
rall
y
heali
ng
var
i
ous
il
ln
esses
a
nd
i
njurie
s
t
hroug
h
medici
nal
plan
ts.
M
e
dicinal
plants
play
a
r
emar
kab
le
r
ole
in
re
du
ci
ng
t
he
use
of
to
xic
su
bst
ances
in
dru
g
pro
du
ct
io
n.
Me
dicinal
pla
nts
hav
e
a
ntimi
crobial
,
antibi
otic
-
resist
ant
,
and
a
ntibact
er
ia
l
pr
operti
es.
Th
e
medici
nal
pro
pe
rtie
s
of
pla
nts
come
from
va
r
iou
s
pa
rts
of
t
he
plants
su
c
h
as
le
aves,
ste
ms
,
ba
rk,
root,
flo
wer
s
,
fruit
,
gum
,
r
hiz
om
e,
seed
,
tu
be
r,
a
nd
w
ood.
M
e
dicinal
pla
nt
s
can
be
use
d
to
incre
ase
im
munit
y,
es
peci
al
ly
in
childre
n.
We
c
an
us
e
t
hem
in
treat
ing
co
m
mon
diseases
l
ike
col
ds
,
co
ughs,
fev
e
r,
dys
enter
y,
vomit
ing,
a
nd
man
y
oth
e
rs.
T
his
s
ub
-
sect
io
n
summariz
es
va
rio
us
diseases
treat
ed
us
in
g
medici
nal
plan
ts.
O
n
e
of
t
h
e
k
e
y
d
i
s
e
a
s
e
s
t
r
e
a
t
e
d
u
s
i
n
g
m
e
d
i
c
i
n
a
l
p
l
a
n
t
s
is
r
e
l
a
t
e
d
to
s
k
i
n
.
M
a
n
y
a
l
l
o
p
a
t
h
y
d
r
u
g
s
e
s
p
e
c
i
a
l
l
y
r
e
l
a
t
e
d
to
s
k
i
n
a
r
e
m
a
d
e
of
n
a
t
u
r
a
l
c
o
m
p
o
n
e
n
t
s
a
v
a
i
l
a
b
l
e
from
m
e
d
i
c
i
n
a
l
p
l
a
n
t
s
.
T
h
e
f
i
v
e
m
o
s
t
u
s
e
d
p
l
a
n
t
f
a
m
i
l
i
e
s
in
I
n
d
i
a
n
E
t
h
n
o
d
e
r
m
a
t
o
l
o
g
y
a
r
e
E
u
p
h
o
r
b
i
a
c
e
a
e
,
F
a
b
a
c
e
a
e
,
A
p
o
c
yn
a
c
e
a
e
,
A
s
t
e
r
a
c
e
a
e
,
a
n
d
Z
i
n
g
i
b
e
r
a
c
e
a
e
.
T
h
e
s
e
f
a
m
i
l
i
e
s
a
r
e
u
s
e
d
to
c
u
r
e
d
i
s
e
a
s
e
s
s
u
c
h
as
c
u
t
s
a
n
d
w
o
u
n
d
s
,
r
i
n
g
w
o
r
m
,
s
k
i
n
d
i
s
e
a
s
e
s
,
e
c
z
e
m
a
,
s
o
r
e
s
,
s
c
a
b
i
e
s
,
l
e
u
k
o
d
e
r
m
a
,
b
u
r
n
i
n
g
a
r
e
a
s
,
w
a
r
t
s
,
h
e
r
p
e
s
,
i
n
f
e
c
t
i
v
e
h
e
p
a
t
i
t
i
s
,
c
a
r
b
u
n
c
l
e
,
i
t
c
h
i
n
g
,
p
i
m
p
l
e
,
s
o
l
e
on
l
e
g
s
,
l
e
p
r
o
s
y
,
p
s
o
r
i
a
s
i
s
,
s
k
i
n
i
n
f
e
c
t
i
o
n
,
i
n
f
l
a
m
m
a
t
o
r
y
d
i
s
e
a
s
e
s
,
a
s
t
r
i
n
g
e
n
t
,
b
o
i
l
s
,
d
a
n
d
r
u
f
f
,
d
e
r
m
a
t
i
t
i
s
,
s
k
i
n
a
l
l
e
r
g
i
e
s
,
s
w
e
l
l
i
n
g
on
h
a
n
d
s
a
n
d
l
e
g
s
,
e
a
r
a
c
h
e
,
a
b
d
o
m
i
n
a
l
c
r
a
m
p
s
,
r
a
s
h
,
s
n
a
k
e
b
i
t
e
s
,
s
y
p
h
i
l
i
s
,
a
c
n
e
,
b
i
t
e
s
,
w
h
i
t
e
s
p
o
t
of
s
k
i
n
,
w
o
r
m
y
sk
in
s
o
r
e
s
,
h
y
p
e
r
p
i
g
m
e
n
t
a
t
i
o
n
,
l
e
u
k
o
d
e
r
m
a
,
p
r
e
m
a
t
u
r
e
s
k
i
n
w
r
i
n
k
l
e
,
s
k
i
n
a
l
l
e
r
g
y
c
a
u
s
e
d
by
i
n
s
e
c
t
,
b
i
t
e
s
or
m
i
c
r
o
b
e
s
[
5
]
.
T
h
e
y
a
r
e
a
l
s
o
u
s
e
d
to
t
r
e
a
t
d
i
s
e
a
s
e
s
r
e
l
a
t
e
d
to
e
n
d
o
c
r
i
n
e
d
i
s
o
r
d
e
r
s
,
d
i
a
b
e
t
e
s
m
e
l
l
i
t
u
s
,
t
h
y
r
o
i
d
a
l
a
n
d
h
o
r
m
o
n
a
l
i
m
b
a
l
a
n
c
e
s
.
O
n
c
e
t
h
e
p
l
a
n
t
is
u
s
e
d
for
m
e
d
i
c
i
n
a
l
p
u
r
p
o
s
e
s
,
t
h
e
o
t
h
e
r
p
a
r
t
s
of
p
l
a
n
t
s
f
o
r
m
r
e
s
i
d
u
a
l
b
i
o
m
a
s
s
u
s
e
d
as
r
e
n
e
w
a
b
l
e
e
n
e
r
g
y
r
e
s
o
u
r
c
e
s
on
t
h
e
e
a
r
t
h
[10]
.
The
me
dicinal
plants
of
t
he
C
ucur
bitac
eae
fa
mil
y
c
on
ta
in
ri
ch
phyt
och
e
mica
ls
that
giv
e
thera
pe
utic
eff
ect
s.
T
hese
pla
nts
e
xhibit
the
properti
es
of
a
ntihype
r
gly
cemi
c
,
a
ntidiabeti
c,
antic
ancer
,
a
ntimi
c
robial
,
antioxi
dan
t
,
a
nalgesic,
a
nti
-
inflammat
ory,
anti
-
st
ress,
a
nd
imm
unom
odulato
ry
e
ff
e
ct
s.
T
hese
pla
nts
a
re
nu
t
riti
on
al
,
ec
onom
ic
al
,
a
nd
et
hn
ov
et
eri
na
ry
in
natu
re
[
11]
.
T
he
medici
nal
pla
nts
namel
y
L
ic
an
ia
ma
cr
ophy
ll
a
(l
eaf,
bark),
M
anil
kar
a
el
at
a
(
bark),
a
nd
Vo
uaca
poua
A
mer
ic
ana
(
ba
rk)
e
f
fici
ently
fi
gh
t
against
herpes
a
nd
c
hi
kungun
ya
dise
ases
avail
able
in
the
Amaz
on
i
an
re
gion
[
12]
.
M
edici
nal
pla
nts
ha
ve
the
be
nef
it
s
of
reducin
g
r
espirato
r
y
infe
ct
ion
s,
a
ntidia
betic
po
te
ntial
,
impro
ve
d
immu
nity,
a
ntiviral
pro
pe
rtie
s,
anti
-
inflammat
ory,
imp
rove
d
sle
ep
qual
it
y,
normali
zed
pulmo
na
ry
f
un
ct
ion
in
g,
anti
ox
i
dan
t,
m
uc
ocili
ary
c
le
aran
ce,
an
d
augmenti
ng
ph
ago
c
ytosi
s
[
13]
.
Anothe
r
im
por
ta
nt
ap
plica
ti
on
of
medici
nal
plants
i
nclu
de
s
synthesiz
i
ng
sil
ver
nano
par
t
ic
le
s.
Sil
ve
r
nano
par
ti
cl
es
(
AgNPs)
a
re
bio
synt
hesized
from
herbal
plan
ts
and
act
as
th
erap
e
utic
age
nt
s
f
or
bacteria
,
f
ungi
,
and
tu
mors
[
14]
.
M
e
dicinal
plants
play
an
imp
or
ta
nt
r
ol
e
in
re
du
ci
ng
inflammat
io
n
in
mem
ory
c
og
niti
ve
a
a
t
a
s
o
o
d
a
d
d
t
s
a
t
a
d
y
s
a
t
y
o
o
d
s
a
d
t
o
a
d
a
t
a
a
t
d
d
d
s
o
s
t
s
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
H
ar
ne
ssin
g de
ep
le
arni
ng for
m
e
dicinal
pl
ant rese
ar
c
h:
a compre
he
ns
iv
e stu
dy
(
Vidy
a
Hu
ll
ekere
A
na
nda
)
911
diseases
li
ke
A z
’
s
di
sease,
vascu
la
r
deme
ntia,
a k
s
o
’s
dis
ease,
tra
um
at
i
c
inju
ry
in
the
brai
n,
stroke,
an
d
ce
rebral
mala
ria
[
15]
.
Re
centl
y
it
has
bee
n
ob
s
er
ved
that
bio
act
ive
co
m
pone
nts
in
me
dicinal
plants
ha
ve
an
impact
on
oc
ul
ar
dis
order
s
like
infecti
ons
in
the
eye,
e
ye
diso
r
de
rs,
a
nd
vi
sion
dama
ge
w
hich
include
s
gla
uc
om
a
a
nd
di
plopia
[
16]
.
C
olon
cancer
is
a
dis
ease
cause
d
by
gut
micr
ob
i
ota.
The
disease
can
be
treat
ed
in
Ayu
rv
e
da
with
the
us
e
of
pla
nts
mainl
y
with
po
l
yphe
no
li
c
c
ompou
nds
in
cur
c
um
i
n
(Cur
cum
a
longa/T
urme
ric).
It
has
che
m
opre
ven
ti
on
prop
e
rtie
s;
it
is
antioxi
dan
t
a
nd
anti
-
infla
mmat
ory.
Aloe
ve
ra
helps
pr
e
ve
nt
the
gr
ow
t
h
of
harmf
ul
bacteria
cl
ost
ridiu
m
perfr
i
ng
e
ns.
T
he
Gl
ycyrrhiza
glab
ra
(lic
or
ic
e)
,
P
or
t
ulaca
oleracea,
a
nd
Eu
phorbia
la
t
hyrism
a
re
t
he
ot
her
pla
nts
us
e
d
in
t
he
t
reatm
ent
of
c
olon
ca
ncer
[
17]
.
Para
lysis
is
ano
t
her
im
port
ant
disease
t
ha
t
is
f
ound
in
c
om
m
on
nowa
da
ys
an
d
the
m
edic
inal
plants
distri
bu
te
d
ov
er
25
famil
ie
s
are
use
d
to
treat
diff
e
ren
t
t
yp
es
of
pa
ralysis
[18
]
.
Ov
e
r
200
pla
nt
sp
eci
es
in
the
Tibet
o
-
B
urma
n
et
hnic
gro
up
are
us
e
d
for
tre
at
ing
va
rio
us
he
al
th
issues
sp
eci
fical
ly
in
women
,
li
ke
uri
nary
prob
le
m
s,
prepa
rtum
c
are,
ge
nital
prob
le
m
s,
co
ns
ti
pation,
m
at
er
na
l
diet,
increase
d
ap
pe
ti
te
,
br
ea
st
mil
k
sti
mu
la
nt,
be
auty,
bloo
d
ci
r
culat
ion
,
bloo
d
press
ur
e
,
ba
by
healt
h
ca
re,
uter
us
involuti
on,
bl
ood
no
ur
is
hm
e
nt,
c
hild
birth
,
dizzi
ness,
me
nst
ru
al
c
ycle,
a
nd
fe
rtil
it
y.
T
he
th
ree
plant
s
us
e
d
extensi
vely
inc
lud
e
d
Bl
um
ea
B
al
samifera
of
the
A
ste
racea
e
fa
mil
y,
C
le
r
odde
ndr
um
C
ol
ebrookian
um
of
the
L
amia
ceae
fa
mil
y,
B
uddleja
A
sia
ti
ca
of
the
Scr
ophula
ria
ceae
famil
y
[
19]
.
Co
nsumi
ng
medici
na
l
pla
nts
treat
s
fati
gu
e
ca
us
e
d
due
to
post
-
c
oro
nav
ir
us
dis
ease
(
post
-
C
O
VID
)
[20]
.
Cr
ud
e
e
xtracts
of
medici
nal
plants
are
al
so
us
ed
in
c
uri
ng
ma
ny
ne
urol
og
ic
al
dis
order
s
li
ke
e
pilepsy
w
hich
is
f
ound
in
low
-
i
nc
om
e
c
ountrie
s
[21]
.
M
e
dicinal
plan
ts
al
so
fin
d
ap
plica
ti
on
in
veterinar
y
pr
act
ic
es
in
man
y
part
s
of
I
ndia
.
One
su
ch
ca
se
stu
dy
is
done
in
M
e
gh
a
la
ya
in
N
or
t
h
East
I
nd
ia
[
22]
.
M
edici
nal
pla
nts
im
pro
ve
a
ni
mal
healt
h
a
nd
reduce
t
he
ne
ed
for
sy
nt
hetic
antibi
otics
an
d
horm
on
e
s
us
ed
in
a
ni
mals
for
t
heir
grow
t
h
a
nd
re
duce
the
m
or
ta
li
ty
rate
[23
]
.
In
this
view
,
m
edici
nal
pla
nts
sti
ll
need
to
be
exp
l
or
e
d
m
or
e
to
fin
d
the
po
t
entia
l
of
me
dic
inal
plants
in
c
ur
i
ng
hum
anita
rian
disea
ses.
With
this
ex
plorat
io
n
a
nd
inte
gr
at
io
n
of
t
rad
it
io
nal
me
dicine
wit
h
t
he
moder
n
me
dic
ine
sy
ste
m
,
the
existi
ng
heal
thcare
s
ys
te
m
will
be
imp
roved
with
the
best
res
ults
an
d
ha
ve
few
e
r
si
de
ef
fe
ct
s.
Tra
diti
on
al
medici
ne
ai
ds
in
co
ns
e
rv
i
ng
harmo
nic
c
onf
ormit
y
in
nat
ure.
P
l
a
n
t
s
a
r
e
t
h
e
m
a
j
o
r
s
o
u
r
c
e
s
of
p
r
e
s
e
r
v
i
n
g
b
i
o
d
i
v
e
r
s
i
t
y
in
na
t
u
r
e
.
I
n
d
i
a
c
on
t
r
i
b
u
t
e
s
7%
of
b
i
o
d
i
v
e
r
s
i
t
y
in
t
h
e
w
o
r
l
d
.
M
e
d
i
c
i
n
a
l
p
l
a
n
t
s
p
r
i
o
r
i
t
i
z
e
b
i
o
d
i
v
e
r
s
i
t
y
c
o
n
s
e
r
v
a
t
i
o
n
t
o
o
,
a
l
o
n
g
w
i
t
h
t
h
e
d
i
s
c
o
v
e
r
y
of
f
u
t
u
r
e
l
i
f
e
-
s
a
v
i
n
g
c
o
m
p
o
u
n
d
s
[
2
4
]
.
T
h
e
r
e
a
r
e
17
,
0
0
0
to
18
,
0
0
0
f
l
o
w
e
r
i
n
g
p
l
a
n
t
s
p
e
c
i
e
s
in
I
n
d
i
a
,
out
of
w
h
i
c
h
a
r
o
u
n
d
7
,
000
a
r
e
u
s
e
d
as
m
e
d
i
c
i
n
a
l
pl
a
n
t
s
[
2
5
]
.
T
h
e
r
e
a
r
e
a
r
o
u
n
d
1
,
900
s
p
e
c
i
e
s
of
m
e
d
i
c
i
n
a
l
p
l
a
n
t
s
f
o
un
d
in
n
a
t
u
r
a
l
f
o
r
e
s
t
s
in
K
a
r
n
a
t
a
k
a
a
c
c
or
d
i
n
g
to
K
a
r
n
a
t
a
k
a
s
t
a
t
e
m
e
di
c
i
n
a
l
p
l
a
nt
s
a
u
t
h
o
r
i
t
y
(
K
a
M
p
A
)
[4].
T
h
e
l
i
s
t
of
v
a
r
i
o
u
s
m
e
d
i
c
i
n
a
l
p
l
a
n
t
s
a
v
a
i
l
a
b
l
e
in
K
a
r
n
a
t
a
k
a
[26]
a
n
d
t
h
e
p
l
a
n
t
s
u
s
e
d
to
t
r
e
a
t
di
f
f
e
r
e
n
t
di
s
e
a
s
e
s
is
m
a
d
e
a
v
a
i
l
a
b
l
e
in
t
he
l
i
n
k
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
v
i
d
y
a
h
a
1
8
/
M
e
d
i
c
i
n
a
l
-
p
l
a
n
t
s
u
s
i
n
g
t
h
e
r
e
f
e
r
e
n
c
e
s
[
5
]
,
[
1
1
]
,
[
1
8
]
,
[
2
7
]
w
i
t
h
t
h
e
f
i
l
e
n
a
m
e
“
L
s
t
of
v
a
r
i
o
u
s
m
e
d
i
c
i
n
a
l
p
l
a
n
t
s
of
K
a
r
n
a
t
a
k
a
u
s
e
d
in
c
u
r
i
n
g
h
u
m
a
n
d
i
s
e
a
s
e
s
.
”
T
h
e
t
a
b
l
e
in
t
h
e
l
i
n
k
s
h
o
w
s
m
e
d
i
c
i
n
a
l
p
l
a
n
t
s
in
K
a
r
n
a
t
a
k
a
t
h
a
t
c
a
n
be
f
o
u
n
d
e
a
s
i
l
y
a
r
o
u
n
d
us
to
t
r
e
a
t
c
o
m
m
o
n
d
i
s
e
a
s
e
s
.
2.
LIT
ERATUR
E
REVIE
W
This
subsect
io
n
of
the
pa
pe
r
pro
vid
es
a
com
pr
e
he
ns
ive
ov
e
rv
ie
w
of
the
existi
ng
r
esearch
a
nd
sch
olarly
w
ork
on
t
wo
main
areas
-
s
pecies
i
den
ti
ficat
io
n
a
nd
disease
detect
ion
of
me
di
ci
nal
pla
nts.
S
pecies
identific
at
ion
is
cr
ucial
in
me
dicinal
pla
nts
t
o
e
ns
ure
t
he
sa
fety
a
nd
ef
fici
ent
use
of
medi
ci
nal
plants
.
D
ise
ase
detect
ion
is
i
mporta
nt,
as
we
need
to
c
on
s
er
ve
me
dic
inal
plants
a
ga
inst
dif
fer
e
nt
bacteria
l
a
nd
fun
gal
diseases.
S
pecies i
de
ntific
at
ion
a
nd d
ise
ase
det
ect
ion
helps
i
n pro
per
util
iz
at
ion
of me
dicin
al
p
la
nts.
2.
1.
Specie
s
identific
at
i
on
in
medi
ci
n
al
pl
an
t
s
Sp
eci
es
i
den
ti
ficat
ion
is
cr
uc
ia
l
in
me
dicinal
plants
to
ens
ur
e
the
saf
et
y
a
nd
ef
fici
ent
us
e
of
medici
nal
plan
ts.
Di
ff
e
ren
t
m
edici
nal
plants
co
ntain
dif
fere
nt
c
ompou
nds
an
d
are
use
d
to
t
reat
a
va
riet
y
of
diseases.
Acc
urat
e
ide
ntific
at
ion
of
me
dicina
l
plants
ens
ure
s
the
co
rr
ect
usa
ge
of
me
dicin
al
plants
to
t
re
at
the
disease
a
nd
the
risks
of
side
e
ff
ect
s
ca
n
be
r
edu
ce
d.
It
al
s
o
help
s
in
kn
owing
t
he
e
xtinct
medici
nal
plan
ts
an
d
the
co
ns
e
rvat
io
n
of
su
c
h
me
dicinal
pla
nts
an
d
th
us
hel
ps
in
ens
ur
i
ng
the
a
vaila
bili
ty
of
medici
nal
plan
ts
to
a
long
e
xtent.
Ma
ny
dee
p
le
a
rni
ng
models
a
re
us
e
d
in
the
spe
ci
es
identific
a
ti
on
of
va
rio
us
plants
.
S
om
e
work
done
in
this
fie
ld
an
d
t
he
dee
p
le
arn
i
ng
m
od
e
ls
us
e
d
in
this
app
li
cat
io
n
are
li
ste
d
he
re.
The
m
odel
s
use
d
f
or
i
den
ti
f
yi
ng
medici
nal
pl
ant
sp
eci
es
in
the
w
ork
gi
ve
n
by
B
orkatull
a
et
al
.
[
28]
,
include
Ima
ge
Net
pre
-
trai
ne
d
Re
sNet
50,
D
ense
Net2
01,
V
GG1
6,
a
nd
I
nc
eptionV
3
with
RMS
prop
opti
mize
r.
The
ex
pe
rimen
t
is
ca
rr
ie
d
out
f
or
10
e
poch
s
with
a
le
ar
ning
rate
of
0.0
001.
T
he
meas
ure
of
accu
rac
y
of
the
models
inclu
de
s
72%,
97
%
,
96
%
,
an
d
95%
resp
e
ct
ively
.
Islam
et
al
.
[29]
,
us
e
t
wo
conv
olu
ti
onal
neura
l
netw
ork
(C
N
N)
pre
-
trai
ne
d
m
odel
s
name
ly
De
ns
eNet
201
a
nd
I
ncep
t
ion
Re
s
NetV
2.
T
he
accu
rac
y
f
or
t
he
trai
ning
datase
t
of
both
the
models
is
98.
46%
a
nd
92.93
%,
validat
ion
accurac
y
is
96.
30%
a
nd
90.
10%,
te
st
accurac
y
is
80.
69%
a
nd
90.
09%,
validat
io
n
pr
eci
sio
n
is
96
.81%
an
d
90.
83%,
validat
ion
recall
is
95.43
%
a
nd
87.72%
an
d
va
li
dation
F1
-
S
c
or
e
is
96.
10%
and
88.
94%
re
sp
ect
ively
,
for
bo
t
h
the
m
odel
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
908
-
920
912
Azadnia
a
nd
Kh
ei
rali
pour
[
30]
,
e
mp
l
oy
a
rtific
ia
l
neural
netw
orks
in
their
w
ork
.
T
he
trai
ni
ng,
te
sti
ng
,
a
nd
va
li
dation
data
are
60%,
20
%,
a
nd
20%
resp
ect
ivel
y.
The
model
w
as
able
to
ide
ntify
si
x
medici
nal
pla
nt
s,
he
nce
the
re
we
re
six
ne
uron
s
in
the
ou
t
pu
t
la
ye
r.
The
m
od
el
us
e
s
6
,
000
A
yur
ved
ic
pla
nt
samples.
10
ne
uro
ns
wer
e
us
e
d
in
t
he
hidde
n
la
yer.
T
he
pe
rformance
me
asur
e
s
of
the
model
a
re
c
orr
el
at
ion
coeffic
ie
nt
-
1,
100%
cl
assifi
c
at
ion
rate,
a
nd
2.35
×
10
-
6
me
an
squa
re
er
ror
w
hich
is
op
ti
mal.
A
deep
C
NN
is
us
e
d
by
Push
pa
an
d
Ra
ni
[31]
,
to
cl
assify
40
Ayu
rv
e
dic
plant
s
pe
ci
es.
T
he
m
odel
her
e
is
na
me
d
AyurPla
nt
Net,
al
so
the
pre
-
trai
ned
model
s
Re
sNet5
0
a
nd
De
ns
e
N
et
121
are
c
ompa
red
with
Re
s
N
et
34,
VGG
16,
M
obil
eNetV
3_Lar
ge
,
an
d
Ef
fici
entNetw
ork
_B4
a
nd
the
model
r
ecorde
d
an
acc
ur
ac
y
of
92.
27
%.
Viet
et
al
.
[
32]
,
in
thei
r
w
ork,
us
e
d
a
l
a
rg
e
da
ta
set
of
me
dic
inal
pla
nt
ima
ge
s.
T
he
stu
dy
a
ssessed
a
nd
op
ti
mize
d
t
he
fed
e
rated
le
ar
ni
ng
f
rame
wor
k
usi
ng
t
wo
fe
de
rated
le
ar
ning
ap
proac
hes,
F
edAv
g
a
nd
Fe
dP
r
ox,
and
f
our
sta
te
-
of
-
the
-
art
dee
p
le
arn
i
ng
net
w
orks
f
or
t
he
ta
s
k
of
cat
eg
or
iz
i
ng
me
dicinal
pl
ants.
T
he
trai
ni
ng
se
t
was
distrib
uted
in
t
wo
f
orm
s:
ind
e
pende
nt
ly
an
d
ide
ntic
al
ly
distrib
ute
d
(
IID
)
an
d
non
-
in
de
pende
nt
ly
an
d
identic
al
ly
dist
rib
uted
(
non
-
IID
).
The
opti
mal
fed
erate
d
le
arn
i
ng
s
ys
te
m
achieve
d
an
a
c
cur
ac
y
of
94.51%
a
nd
82.65%
ov
er
the
baseli
ne
on
IID
data
a
nd
Non
-
IID
data,
resp
ect
ivel
y.
F
uture
res
earc
h
cou
l
d
in
vestig
at
e
the
us
e
of
ot
her,
m
or
e
co
mp
le
x
f
e
der
at
e
d
le
ar
ning
al
go
rithms.
Govinda
pr
a
bh
u
an
d
S
um
at
hi
[33]
pro
po
s
ed
en
sem
ble
Eff
ic
ie
nt
Net
and
Xce
ption
with
Re
sNe
t
(EE
XR)
model
an
d
em
ploye
d
the
M
e
nd
el
e
y
dataset
that
c
onta
ins
1
,
800
images
of
18
m
edici
nal
pla
nt
s
pecies
in
their
work.
The
model
ac
hieve
d
an
a
cc
ur
ac
y
of
96.71
%
an
d
er
ror
r
at
e
of
3.24
%
f
or
the
pla
nt
da
ta
set
.
Dey
et
al
.
[34]
trai
ne
d
an
d
evaluate
d
the
performa
nce
of
se
ven
dee
p
le
arn
i
ng
m
od
el
s
V
GG1
6,
V
G
G19,
Den
s
eNet
201,
Re
sNet5
0V2,
Xcep
ti
on,
In
c
e
ption
Re
s
NetV
2,
a
nd
In
ce
ptionV
3
to
ide
ntify
a
nd
cl
assif
y
inter
-
famil
y
a
nd
int
er
-
s
pecies
var
i
at
ion
s
of
me
dicinal
plants
.
D
ense
Net
sho
w
ed
promisin
g
resu
lt
s
with
99.
64%
accurac
y.
T
he
f
utu
re
w
ork
addresses
the
chall
enges
of
automatic
plan
t
identific
at
io
n
in
div
e
rse
re
gions,
exp
a
ndin
g
the
dataset
,
en
ha
nc
ing
the
r
obust
ness
of
the
a
ppr
oac
h,
a
nd
t
r
anslat
ing
t
he
r
esearch
fin
dings
int
o
pr
act
ic
al
real
-
world
ide
ntific
at
ion
s
olu
ti
ons.
Wang
et
al
.
[
35]
ide
ntifie
d
and
qua
ntifie
d
two
medici
na
l
plant
spe
ci
es,
an
d
the
a
uthors
us
e
d
a
com
bin
at
io
n
of
dee
p
le
ar
ning
and
unman
ne
d
aerial
ve
hicle
rem
ote
se
ns
in
g
(
U
AV
RS
)
to
achieve
qu
a
ntit
at
ive
detect
ion
of
the
fl
ow
e
rs
of
t
hese
two
pla
nt
s
pecies.
Y
OL
Ov7
a
nd
YO
L
Ov5
n
we
re
e
mp
lo
ye
d
in
the
work
wh
e
re
YOLO
v7
s
howe
d
best
resu
lt
s
of
97%
accurac
y
a
nd
YO
L
O
v5n
wit
h
93.40%
accu
racy.
Sh
a
rma
a
nd
V
ardha
n
[
36]
propose
d
the
MTJNet
m
odel
to
e
valuate
an
I
nd
ia
n
me
dicin
al
le
af
datase
t
in
their
stu
dy.
The
pr
opos
e
d
M
TJ
Net
achie
ved
a
pr
eci
si
on
of
99.60%,
re
cal
l
of
99.
62%
,
accur
acy
of
99.
71%,
and
F1
-
Sc
ore
of
99.
58%.
T
he
e
xp
e
rime
ntal
resu
lt
s
s
ho
wed
that
the
M
TJ
Net
sta
ti
sti
cal
ly
ou
tp
er
f
ormed
pr
e
valent
mod
el
s.
Fu
t
ur
e
w
ork
incl
ud
e
s
de
pl
oy
i
ng
the
mod
el
in
real
-
w
or
l
d
a
pp
li
cat
ions
and
ex
plorin
g
t
ran
s
fer
le
arn
in
g
a
nd
domain
ada
ptati
on.
Fr
om
the
c
urre
nt
sta
te
-
of
-
t
he
-
art,
it
is
evide
nt
that
dee
p
le
arn
i
ng
models
are
wi
dely
us
e
d
in
s
pecies
identific
at
ion
wh
ic
h
overc
ome
s
t
he
c
onve
ntion
al
mac
hi
ne
le
ar
ning
te
chn
i
qu
e
s
[37
]
.
The
popula
r
dee
p
le
arn
in
g
m
odel
s
us
e
d
in
t
his
a
rea
inclu
de
A
NN,
CN
N,
a
nd
pre
-
trai
ne
d
m
od
el
s
li
ke
Re
s
Net,
De
ns
e
Net
,
V
GG,
In
ce
ptio
nV3,
M
TJ
Net,
Xce
pt
ion
,
an
d
Mo
bileNet
out
of
th
ese
De
ns
e
Net
sh
ows
pr
om
isi
ng
re
su
lt
s.
Th
e
sta
te
-
of
-
the
-
art
pre
-
trai
ned
dee
p
le
arn
in
g
mode
l
Eff
ic
ie
nt
NetB
0,
E
ff
ic
ie
ntNetV
2
-
S,
vision
tra
ns
f
orme
r,
a
n
d
bid
irect
io
nal
e
ncode
r
ima
ge
t
ran
s
f
or
me
r
are
al
so
us
e
d
[
38]
.
Acc
ordin
g
to
the
s
urve
y,
we
f
ound
that
the
la
ck
of
dataset
s
is
the
ga
p
i
den
ti
fi
ed
an
d
oth
e
r
models
li
ke
fe
der
at
e
d
le
ar
ning,
a
nd
t
ransfe
r
le
arn
in
g
ca
n
be
use
d
oth
e
r
tha
n
pre
-
trai
ned
m
od
el
s
.
2.
2.
Dise
as
e
d
etectio
n
in
me
dici
na
l
pla
nt
s
Eve
n
t
hough
medici
nal
pla
nt
s
are
use
d
to
treat
man
y
di
seases,
t
hey
a
re
pro
ne
to
di
seases
li
ke
human
s.
M
e
di
ci
nal
pla
nts
are
majo
rly
a
f
fected
by
f
ungal
di
seases
[
39]
.
T
he
re
a
re
ma
ny
ot
her
diseases
c
ause
d
by
pests
in
me
dicinal
plants
,
inf
or
mati
on
a
bout
im
portant
medici
nal
pla
nt
s
that
are
gro
wn
in
Ka
rn
at
a
ka
sta
te
in
India
al
ong
with
pests
that
cause
the
disease
and
par
ts
of
the
plant
th
at
are
aff
ect
ed
is
giv
en
in
t
he
link
https:
//
git
hub.
c
om
/v
idy
aha1
8/Medici
nal
-
pl
ants
with
the
f
il
e
name
“L
st
of
imp
or
ta
nt
medici
nal
pla
nt
s
of
Karnata
ka
at
ta
cked
by
va
rio
us
p sts”
.
It
is
importa
nt
to
mana
ge
th
ese
diseases
to
ensure
the
he
al
th
and
pro
du
ct
ivit
y
of
medi
ci
nal
plants
and
to
protect
the
bi
oacti
ve
co
mpo
unds
in
t
hem.
Id
e
ntific
at
ion
of
dis
eases
in
plant
s
is
very
imp
or
ta
nt;
especial
ly
in
t
he
cat
e
gor
y
of
me
dicinal
plants.
By
detect
ing
the
disease
in
me
dicinal
plants,
we
ca
n
ta
ke
appr
opriat
e
m
e
asur
e
s
to
c
on
tr
ol
the
same
a
nd
sav
e
the
plan
t
fr
om
bei
ng
da
mage
d
or
dy
i
ng.
Als
o,
as
m
edici
nal
plants
are
us
e
d
in
ma
ny
a
ppli
cat
ion
s
as
dis
cusse
d
in
the
intr
oductio
n
se
ct
ion
,
the
qual
it
y
of
t
he
pla
nt
is
of
gr
eat
im
portan
ce
to
preser
ve
the
qual
it
y
of
the
products
li
ke
herbal
medici
nes
a
nd
oth
e
r
pro
duct
s
li
ke
cosmeti
cs.
Ea
rly
detect
io
n
of
disease
hel
ps
in
a
voidin
g
the
sp
rea
ding
of
the
disease
to
ot
her
par
ts
of
the
pla
nt.
It
al
so
helps
in
av
oid
in
g
t
he
use
of
fe
rtil
iz
ers
to
co
ntr
ol
plant
disease
by
usi
ng
bio
l
og
ic
al
ly
avail
able
m
anures
li
ke
cow
dung
and
oth
e
r
pr
oducts
from
nee
m
plants
.
The
r
eby,
the
qu
al
it
y
of
the
plant
as
well
as
the
so
il
is
al
so
preser
ve
d.
Deep
le
ar
ning
te
chnolo
gy
ha
s
its
eff
ect
in
the
fiel
d
of
plant
disease
detect
ion
no
wad
a
ys.
Few
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
H
ar
ne
ssin
g de
ep
le
arni
ng for
m
e
dicinal
pl
ant rese
ar
c
h:
a compre
he
ns
iv
e stu
dy
(
Vidy
a
Hu
ll
ekere
A
na
nda
)
913
works
t
hat
ha
ve
bee
n
done
in
ide
ntify
i
ng
pla
nt
disease
s
an
d
the
dee
p
le
a
rn
i
ng
m
odel
s
us
e
d
in
disease
detect
ion
of
plants
are
disc
usse
d
her
e
.
Andrew
et
al
.
[40]
in
t
heir
st
udy
us
e
d
the
publicl
y
a
vaila
ble
Plant
Vill
age
dataset
,
whic
h
co
ntains
54,30
5
ima
ge
samples
of
dif
fer
e
nt
pla
nt
disease
s
pecies
in
38
cl
asses.
The
researc
he
r
s
us
e
d
De
ns
eN
et
-
121,
Re
sNet
-
50,
V
GG
-
16,
a
nd
I
ncep
ti
on
V4.
The
De
ns
e
Net
-
121
model
a
chieve
d
t
he
hi
gh
est
cl
assifi
cat
io
n
accurac
y
of
99.
81%
an
d
F1
-
Sc
or
e
of
0.998,
ou
t
performi
ng
t
he
ot
her
pre
-
trai
ned
mod
el
s.
The
Re
s
N
et
-
50
model
achie
ve
d
an
acc
ur
ac
y
of
99.
83%
a
nd
a
m
od
el
l
os
s
of
0.0
27.
In
c
omparis
on,
the
I
nc
eptio
nV4
model
reache
d
97.
59%
accu
racy,
a
nd
the
VGG
-
16
model
ha
d
a
lo
wer
accu
racy
of
84.27%.
Diykh
et
al
.
[41]
us
e
d
RGB
d
r
one
ima
gery
data
from
P
rince
E
dwar
d
Is
la
nd
,
Ca
na
da
to
pr
e
dict
the
normali
zed
di
f
fer
e
nce
veget
at
ion
i
nd
e
x
(
NDVI).
The
resea
rch
e
rs
pro
pose
d
a
novel
fr
a
m
ewor
k
that
i
ntegr
at
es
empirical
cu
r
ve
le
t
transform
and
a
De
ns
e
Net
dee
p
le
ar
ning
m
od
el
.
T
he
pr
opos
e
d
Den
s
eNet
-
base
d
m
od
el
achieve
d
t
he
hi
gh
est
str
uctural
simi
la
rity
i
ndex
(S
S
IM
=
0.98)
an
d
t
he
lo
west
mean
s
quared
er
r
or
(
M
S
E=1
20
)
in
NDVI
pr
e
di
ct
ion
.
T
he
model
al
s
o
s
howe
d
an
accu
rac
y
of
97%
in
pr
e
dicti
ng
N
D
VI
from
the
RGB
dro
ne
imager
y.
Th
e
draw
bac
k
is
that
the
m
odel
w
as
only
te
ste
d
on
a
small
dataset
.
A
lom
et
al
.
[
42]
in
t
he
work,
us
e
d
B
rassic
a
Na
pus
ra
pes
eed
s
pecies,
c
ollec
te
d
f
r
om
agr
ic
ultur
a
l
fiel
ds
.
The
st
udy
ad
opte
d
f
ive
c
on
te
m
po
r
ary
dee
p
le
ar
ni
ng
-
base
d
CN
N
models:
De
ns
eN
et
201,
V
GG1
9,
In
ce
ptio
nV3,
Xcep
ti
on,
an
d
Re
sNet5
0.
T
he
De
ns
e
Net2
01
model
has
the
hi
gh
est
a
ccur
ac
y
of
10
0%
for
flo
wer
s
a
nd
97%
for
both
pac
kets
a
nd
le
aves
.
T
he
s
ys
te
m
is
a
bi
nary
cl
assifi
cat
ion
an
d
ca
nnot
sp
eci
fy
m
ulti
-
cl
ass
s
pecies.
Aishwar
ya
an
d
Re
ddy
[
43]
in
the
st
udy,
c
reated
a
c
omp
reh
e
ns
ive
data
set
of
gro
undn
ut
le
af
images.
The
s
tudy
util
iz
ed
a
tri
-
CN
N
ar
c
hitec
ture
c
onsist
ing
of
De
nse
Net1
69,
I
nce
ption,
a
nd
Xc
eption,
wh
ic
h
are
pre
-
trai
ned
on
the
Ima
geN
et
dataset
.
The
pro
posed
met
hod
ac
hieve
d
an
accu
racy
rate
of
98.46%
.
On
the
pota
to
le
af
dataset
,
t
he
accu
racy
rate
was
96.
05
%
,
and
on
t
he
gra
pe
le
af
dataset
,
it
was
99.32%
.
The
pro
po
se
d
e
ns
e
mb
le
strat
e
gy
dem
onstrat
ed
s
up
e
rio
r
perfor
mance
c
ompa
r
ed
to
tra
diti
on
a
l
te
chn
iq
ues
.
To
s
ummari
ze
,
mac
hin
e
le
a
rn
i
ng
al
gorith
ms
use
d
f
or
disease
detect
ion
inclu
de
suppo
rt
vect
or
machine
s,
random
f
orest
s,
a
rtific
ia
l
neural
netw
orks
,
de
ep
belie
f
ne
tw
orks,
an
d
dee
p
CN
N
with
t
raine
d
models
s
uc
h
as
V
G
G16,
In
c
eptionV
4,
Re
s
Net5
0,
Re
sNet
101,
Re
s
Net1
52,
Ale
xN
et
,
G
oogleNet,
DenseNet
[40],
[
44]
,
[
45
]
.
Re
ce
ntly,
t
r
ansf
e
r
le
ar
ning
eme
r
ged
as
a
ne
w
fiel
d
to
en
han
ce
the
performa
nce
of
dee
p
le
arn
in
g
m
ode
ls
[46]
.
Ne
w
te
chnolo
gy
in
DL
li
ke
at
t
ention
mec
ha
nis
ms
can
be
us
e
d
an
d
these
at
te
ntion
mecha
nisms
w
ere
i
nteg
rated
into
Mo
bileNe
tV2,
E
ff
ic
ie
nt
NetV
2,
an
d
S
huff
le
NetV
2
[
47]
.
T
he
w
ork
in
the
fiel
d
of
pla
nt
disease
detect
ion
ha
s
been
c
arr
ie
d
out
on
man
y
a
vaila
bl
e
dataset
s
li
ke
plant
vill
age
dataset
,
PlantD
oc
,
a
nd
Kaggle
,
a
nd
done
f
or
man
y
oth
e
r
cr
ops,
but
not
sp
eci
fical
ly
done
f
or
medici
nal
plan
ts.
It
is
good
to
de
velo
p
m
or
e
e
ff
ic
ie
nt
so
l
utions
by
evaluati
ng
the
model
on
a
la
rg
e
r
an
d
more
div
e
rse
da
ta
set
with
diff
e
re
nt
cr
ops.
Howe
ver,
t
he
work
in
t
he
fi
el
d
of
me
dici
nal
plants
is
minimal
a
nd
r
equ
i
res
at
te
ntion.
Pr
e
vious
stud
ie
s
sho
w
t
hat
the
re
a
re
li
mit
ed
dataset
s
for
me
dicinal
plants
es
pecial
ly
f
or
disease
detect
ion.
Add
it
ion
al
dataset
s
nee
d
to
be
buil
t
to
acce
le
rate
the
researc
h
in
the
fiel
ds
of
me
dicinal
plants.
Data
au
gme
nt
at
ion
te
chn
iq
ues
ma
y
be
us
ed
to
enh
a
nce
t
he
da
ta
set
siz
e
ava
il
able
for
me
di
ci
nal
plants,
wh
ic
h
im
pro
ve
s
the
gen
e
rali
zat
ion
of
deep
le
ar
ning
models.
By
a
pp
l
ying
t
he
de
ep
le
a
rn
i
ng
te
c
hnolog
y,
we
c
an
ma
ximize
t
he
us
e
of
medici
nal
plants
as
the
y
ha
ve
am
ple
us
e
in
the
fiel
d
of
medici
ne
.
Be
yond
dee
p
le
ar
ning
te
c
hn
i
qu
e
s,
phyto
c
hemical
analy
sis
co
uld
be
us
e
d
to
get
accu
rate
res
ults
f
or
disease
de
te
ct
ion
bu
t,
it
ta
kes
m
or
e
ti
m
e
an
d
effor
t
to
im
ple
ment.
By
le
ve
rag
i
ng
t
he
ca
pa
bili
ti
es
of
de
ep
le
ar
ning
for
sp
eci
es
i
den
t
ific
at
ion
an
d
di
sease
detect
ion,
me
dicinal
plant
-
base
d
industri
es
can
en
ha
nc
e
their
eff
ic
ie
ncy
,
qual
it
y,
and
s
us
ta
ina
bili
ty,
ulti
mate
ly
be
ne
fiti
ng
both
the
pro
ducers
an
d
the
c
on
s
ume
rs
of
he
r
bal
m
edici
nes
a
nd
pro
duct
s.
In
the
f
utu
r
e,
we
ma
y
w
ork
on
m
od
el
s
li
ke
gr
a
ph
-
base
d
de
ep
le
ar
ning
a
nd
lo
ng
s
hort
-
te
rm mem
ory ne
tworks
(
L
ST
M)
.
3.
METHO
D
This
sect
io
n
pro
vid
es
an
e
xp
e
rime
ntal
set
up
that
c
onsist
s
of
di
ff
e
r
ent
ste
ps
us
e
d
f
or
s
pecies
identific
at
ion
a
nd
disease
det
ect
ion
of
medi
ci
nal
plants
.
Fi
gure
4
prov
i
de
s
the
ov
e
rv
ie
w
of
the
process
.
The
workflo
w
m
odel
f
or
the
pr
opos
e
d
s
ys
te
m
c
on
ta
ini
ng
s
peci
es
ide
ntific
at
io
n
a
nd
disease
detect
ion
is
show
n
in
Figure
4.
T
he
model
sta
rts
w
it
h
the
data
co
ll
ect
ion
sta
ge
,
the
data
ca
n
be
ta
ke
n
from
t
he
sta
ndar
d
pu
blic
dataset
s
a
nd
al
so
real
-
ti
me
da
ta
can
b
e
us
ed
he
nce
data
ca
n
be
colle
ct
ed
from
m
ulti
so
ur
ce.
T
he
ne
xt
st
ep
is
data
prep
r
oces
sing
w
hich
inc
lud
es
data
a
ugmentat
io
n,
nor
mali
zat
ion
,
a
nd
se
gm
e
ntati
on.
The
t
hir
d
ste
p
is
the
model
sel
ect
io
n
phase,
a
ny
ne
ur
al
net
wor
k
model
ca
n
be
e
mp
lo
ye
d
he
re.
The
f
our
th
ste
p
is
t
he
trai
ni
ng
ph
a
se
wh
ic
h
incl
ud
es
trai
ning
the
se
le
ct
ed
ne
ur
al
ne
twork
model
by
sp
li
tt
ing
t
he
dataset
into
t
r
ai
nin
g
an
d
validat
ion
dataset
s.
The
f
ifth
ste
p
is
t
he
e
valuati
on
phas
e
w
he
re
t
he
t
ra
ined
ne
ural
n
et
work model
is
test
ed
a
nd
e
valuate
d
fo
r
go
od
pe
rfo
rma
nce
us
i
ng
metri
cs
li
ke
co
nfusion
met
rics,
F1
-
Sc
ore
,
a
nd
a
rea
unde
r
curve.
O
n
su
c
cessf
ul
te
sti
ng
,
the
m
od
el
can
be
use
d
f
or
s
pecies
ide
ntific
at
ion
an
d
disease
de
te
ct
ion
.
If
the
m
od
el
pe
rfo
r
mance
needs
to
be
imp
rove
d
f
urt
he
r,
t
he
trai
ni
ng
of
t
he
m
od
el
is
require
d
a
nd
hen
ce
we
ha
ve
the
lo
op
f
r
om
t
he
evaluati
on
pha
se to t
he
trai
nin
g p
hase
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
908
-
920
914
Figure
4.
W
ork
flo
w
diagr
a
m
3
.
1.
D
atase
ts
for
medi
ci
na
l
plants
It
is
very
hard
and
re
quires
a
lot
of
ti
me
a
nd
effo
rt
to
colle
ct
the
data
re
quire
d
to
trai
n
t
he
m
achi
ne
le
arn
in
g
an
d
de
ep
le
a
rn
i
ng
m
od
el
s
.
Fe
w
res
earche
rs
ha
ve
worked
on
this
an
d
c
ontrib
ute
d
to
the
datase
ts
f
or
medici
nal
plan
ts.
This
sect
io
n
giv
es
detai
ls
ab
ou
t
the
dat
aset
s
that
ar
e
exclusi
vely
a
va
il
able
for
me
dicinal
plants.
3
.
1.1.
Kag
gle
da
t
as
e
t
This
dataset
c
on
ta
in
s
images
of
m
edici
nal
plant
s
pecies
Ca
tharan
t
hus
R
os
eus
,
Kala
nc
ho
e
P
in
nar
a
,
Lo
ng
e
vity
S
pi
nach,
Te
rmin
al
ia
B
el
li
rica,
Terminali
a
C
he
bula
,
Ce
ntell
a
A
sit
ic
a,
Azad
ira
chta
I
nd
ic
a,
O
ci
mu
m
T
en
nifloru
m,
Cym
bopogo
n
C
it
ratus,
E
upho
r
bia
T
it
hymal
oid
es
.
Th
e
dat
aset
con
ta
in
s
5
,
000
im
ages
of
wh
ic
h
70
%
is
us
e
d
as
trai
ning
dat
a
co
ntainin
g
3
,
500
image
s,
20
%
of
data
is
us
e
d
as
te
sti
ng
data
c
onta
ining
1
,
000
ima
ges
,
and
10
%
as
validat
ion
data
c
onta
inin
g
500
i
mages
[
28].
Tit
le
:
M
edici
na
l
plant
raw
URL:
http
s:/
/www.k
a
ggle
.com/
dsv/4
510170
DOI:
10.
34
740/
KAGG
L
E/DS
V/4510
170
3
.
1
.
2.
Men
dele
y
data
se
t
The
dataset
c
onsist
s
of
two
c
la
sses,
the
me
dicinal
le
af
dataset
,
an
d
the
medici
nal
plan
t
dataset
wit
h
80
plant
s
peci
es,
6
,
900
imag
es,
a
nd
40
pla
nt
s
pecies,
5
,
900
ima
ges
res
pecti
vely
.
T
he
pla
nts
incl
ud
e
Al
oe
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
H
ar
ne
ssin
g de
ep
le
arni
ng for
m
e
dicinal
pl
ant rese
ar
c
h:
a compre
he
ns
iv
e stu
dy
(
Vidy
a
Hu
ll
ekere
A
na
nda
)
915
barba
den
sis
mil
le
r,
P
hy
ll
a
nthus
E
mb
li
c
a,
Mo
rin
da
Ci
trifolia
,
Tin
os
po
ra
Co
r
dif
olia,
Ficus
R
el
igiosa,
Eu
phorbia
Hi
rta,
Ba
mbus
oid
e
ae
,
Pipe
r
Be
tl
e,
Ba
co
pa
M
on
nieri,
Ecl
ipta
P
ro
st
rate,
Ci
nna
mo
m
um
Ca
mphora,
Ri
ci
nu
s
Com
munis,
Ci
trus
M
e
dica,
C
offe
a
,
Mur
ray
a
K
oen
i
gii,
C
os
tu
s
I
gne
us
,
A
rto
carpus
Heterophyll
us
,
Jasmin
um
,
Zin
gib
e
r
O
ff
ic
inal
e,
Psidi
um
G
ua
ja
va,
La
wson
ia
In
er
mis,
Hibiscus
a
nd
ma
ny
oth
e
rs.
T
he
data
was
c
ollec
te
d
in
M
ysu
ru
a
nd
Ker
al
a
reg
i
ons
[48]
.
Tit
le
:
In
dia
n
m
edici
nal lea
ves
image
dataset
s
URL:
http
s:/
/data
.mendele
y.c
om
/data
set
s/
748f8jk
phb
DOI:
10.
17
632/
748f8jk
phb.3
3
.
1
.
3.
ME
D11
7_Medici
n
al
p
lant l
eaf d
atas
et
The
dataset
c
onta
ins
117
different
sp
eci
es
of
77,50
0
t
otal
medici
nal
plan
t
images.
T
he
U
-
N
et
m
ode
l
was
use
d
for
t
he
se
gm
e
ntati
on
of
the
ima
ge
s
in
the
pre
pro
cessi
ng
sta
ge.
Waters
hed
seg
mentat
io
n
te
ch
niques
wer
e
al
so
us
e
d
al
ong
with
U
-
Net.
T
he
cl
ass
of
each
pla
nt
c
on
ta
in
s
179
to
1
,
300
s
pecies
[
49]
.
Database
name
s:
MED
117_L
eaf
Sp
eci
es
I
t
he
databa
se
w
hich
ha
s
t
wo
s
ubf
old
er
s
nam
el
y,
Ra
w
le
af
image
set
of
Me
dicinal
plants
_v2
a
nd
Se
gme
nted
le
a
f
set
usi
ng
U
-
NE
T
se
gm
e
ntati
on.
URL:
http
s:/
/data
.mendele
y.c
om
/data
set
s/
dtv
bwr
hz
nz/4
DOI:
10.
17
632/
dtv
bw
rh
z
nz.4
2.
1
.
4.
Medici
n
al
le
af
d
atase
t
The
dataset
c
on
sist
s
of
30
sp
eci
es
of
medici
nal
plants
suc
h
as
S
antal
um
Albu
m,
M
unti
ngia
Ca
la
bu
ra
,
Ama
ran
t
hu
s
Viri
di
s,
Aza
dirac
hta
Indica,
Ci
tr
us
Lemo
n,
Ficus
Auriculat
a
,
a
nd
ma
ny
more
.
Each
sp
eci
es
has
60
to
100
ima
ges
of
hi
gh
qual
it
y.
It
is
a
vaila
ble
on
the
M
e
ndel
ey
platfo
rm
[
50]
.
URL:
http
s:/
/data
.mendele
y.c
om
/data
set
s/
nnytj2v3
n5
/
1
DOI:
10.
17
632/
nnytj2v3
n5.1
3
.
1
.
5.
B
D
Medi
Le
av
es
:
a
le
af
im
ag
es
d
atase
t
f
or
B
angla
de
shi
medi
ci
na
l
pla
nts
iden
tifi
cat
i
on
The
dataset
c
on
sist
s
of
2
,
029
ori
gi
nal
i
mages
an
d
38
,
606
a
ugmente
d
ima
ges
of
t
he
le
a
ves
of
commo
nly
f
ound
te
n
me
dicinal
plants
in
Ba
ng
la
desh.
T
he
dataset
is
in
the
M
en
dele
y
platfo
rm
.
It
con
ta
in
s
two
cat
eg
ori
es
namely
BD
Me
diLeaves
au
gme
nted
d
at
aset
and
B
D
M
edi
Leaves
or
i
gin
a
l
dataset
for
tr
ai
nin
g,
te
sti
ng
,
a
nd
va
li
dation.
T
he
pl
ants
inclu
de
Hibisc
us
Rosa
-
Sinensi
s,
Ce
nt
el
la
Asiat
ic
a,
Ph
yllant
uhus
E
mb
li
ca,
Kalanc
ho
e
Pi
nnat
a,
M
ika
nia
M
ic
ra
nth
a,
Az
adirac
hta
I
ndic
a,
Te
rmin
al
ia
Ar
j
un
a
,
J
us
ti
ci
a
A
dh
at
oda,
O
ci
mu
m
Ten
uifloru
m,
a
nd
Ca
lotr
op
is
Giga
ntean
[
29]
.
URL:
http
s:/
/data
.mendele
y.c
om
/data
set
s/
gk5x6k8x
r5
/
1
DOI:
10.
17
632/
gk5x6k8x
r5.1
3
.
2.
Deep
le
ar
ning
m
odel
s
Deep
le
a
rn
i
ng
was
propose
d
by
Ri
na
Dec
hter
in
1986.
The
fi
rst
dee
p
-
le
arn
i
ng
al
gor
it
hm
s
we
r
e
publishe
d
by
I
vakh
nenk
o
a
nd
Lapa
in
1967
[
51]
.
It
c
onsist
s
of
th
ree
la
yer
s
,
an
in
pu
t
la
ye
r,
a
hidden
la
ye
r
,
a
nd
an
outp
ut
la
ye
r,
an
d
ope
rates
with
i
nput
a
nd
weig
hts.
N
ow
a
da
ys
,
deep
le
ar
ning
has
become
incr
ea
sing
l
y
pr
e
valent
a
nd
is
being
a
ppli
ed
in
al
m
os
t
al
l
app
li
cat
ions.
Plant
s
pecies
identific
at
ion
a
nd
pla
nt
diseas
e
detect
ion
are
vi
ta
l
app
li
cat
ions
that
us
e
dee
p
le
ar
ning
models.
T
he
re
a
r
e
man
y
dee
p
l
earn
i
ng
arc
hitec
tures
desig
ne
d
by
va
rio
us
pionee
r
s
who
are
w
or
king
in
t
his
fi
el
d.
The
top
de
ep
le
a
rn
i
ng
a
rch
it
ect
ures
i
nc
lud
e:
i)
co
nvolu
ti
on
al
neural
net
w
orks
(CN
N)
,
ii
)
arti
fici
al
ne
ural
netw
orks
(
ANN)
,
ii
i)
lo
ng
s
hort
-
te
r
m
memor
y
netw
orks
(LST
M
)
, iv) r
ec
urre
nt
ne
ur
al
netw
orks
(RN
N)
, v)
g
e
ner
at
ive
a
dv
ersar
ia
l n
et
w
orks
(GAN)
, vi)
rad
ia
l
basis
functi
on
netw
orks
(RB
FN
)
,
vii)
mu
lt
i
la
yer
pe
rcep
t
r
on
(
M
L
P)
,
viii
)
sel
f
-
orga
nizi
ng
ma
ps
(SO
M
)
,
i
x)
deep
belie
f
n
et
works
(
DB
N)
,
x) r
est
rict
ed
B
oltzma
nn
mach
ines
(RB
M
)
, a
nd x
i
)
a
uto
e
nc
od
e
rs
(AE)
.
M
a
ny
machi
ne
le
arn
in
g
a
nd
deep
le
a
rn
i
ng
al
gorithms
a
r
e
us
e
d,
to
na
me
a
fe
w
s
upports
vect
or
machine
(
SVM),
ra
ndom
forest
(RF
),
per
ce
ptr
on
,
ba
ckpr
op
a
gatio
n
al
gorithm
,
r
egr
es
sio
n
te
ch
niques,
Ba
yesian
cl
ass
ifie
r,
a
nd
ne
ural
netw
orks.
T
he
neural
net
works
gaine
d
high
im
portan
ce
an
d
c
onvoluti
on
a
l
neural
netw
orks
a
re
popula
r
ly
use
d
in
sp
e
ci
es
identific
at
ion
a
nd
diseas
e
detect
io
n
in
plant
s.
M
a
ny
models
work
based
on
the
a
bove
-
me
ntion
e
d
arc
hitec
tures.
In
t
his
work,
we
ha
ve
co
ns
ide
re
d
m
edici
nal
plants
an
d
discusse
d
w
ork
do
ne
in
sp
ec
ie
s
identific
at
ion
an
d
disease
detect
ion
in
medici
nal
plan
ts.
The
majo
rity
of
the
pap
e
rs
in
vo
l
ve
d
in
t
he
st
udy
hav
e
us
ed
C
N
N
models
[
52]
.
A
few
of
the
CNN
m
od
el
s
use
d
in
dee
p
le
a
rn
i
n
g
and
thei
r
years
of
i
nv
e
ntio
n
a
re
giv
e
n
in
Fig
ur
e
5.
Amo
ng
the
m
odel
s
i
de
ntifie
d
f
rom
t
he
stu
dy,
De
ns
e
Net
is
more
popula
r
as
it
obta
ins
good
resu
lt
s
for
our
ob
je
ct
ives.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
908
-
920
916
Figure
5.
Dee
p
le
arn
i
ng
m
od
e
ls
base
d
on
co
nvol
ution
al
ne
ural
n
et
w
orks
4.
RESU
LT
S
A
ND
DI
SCUS
S
ION
In
this
sect
io
n,
we
discuss
t
he
res
ults
of
var
i
ou
s
machi
ne
le
arn
i
ng
a
nd
dee
p
le
a
rn
i
ng
m
od
el
s
us
e
d
in
sp
eci
es
ide
ntif
ic
at
ion
an
d
di
sease
detect
io
n
of
me
dicina
l
plants.
M
a
ny
co
nventio
na
l
machine
le
a
rn
i
ng
te
chn
iq
ues
li
ke
rand
om
f
orest
,
suppo
rt
vecto
r
mac
hin
e,
a
nd
oth
e
rs
ha
ve
be
en
use
d.
H
owever,
dee
p
le
ar
nin
g
models
giv
e
pr
om
isi
ng
res
ults
co
mp
a
red
to
machine
le
ar
ni
ng
m
odel
s,
part
ic
ularly
ne
ur
al
net
work
s
.
T
he
stu
dy
fou
nd
that
m
odel
s
li
ke
Re
s
Net,
De
ns
e
Net,
VGG
16,
I
nc
eptionV
3,
A
N
N,
an
d
AyurP
la
ntNet
a
re
m
aj
or
ly
employe
d
f
or
plant
spe
ci
es
identific
at
io
n.
Among
these
Den
s
eNet
out
pe
rforms
al
l
othe
r
models
with
99.64%
accurac
y,
a
nd
M
TJ
Net
with
99.71%
acc
ur
a
cy.
F
or
plant
di
sease
detect
ion
va
rio
us
dee
p
le
ar
ning
ap
proach
e
s
li
ke
I
nce
ptionV4,
Re
s
Net,
V
GGNet,
Ale
xNet
,
G
oogleN
et
,
O
verfeat
,
V
GG,
a
nd
Dens
eNet
ar
e
em
pl
oy
e
d.
In
these
m
odel
s,
Den
s
eNet
outp
erforms
al
l
ot
he
r
m
odel
s
w
ith
99.
8%
acc
ur
ac
y.
M
a
ny
w
orks
ha
ve
been
do
ne
on
s
pecies
id
entifi
cat
ion
but
the
ab
ove
stu
dy
li
sts
so
me
of
t
he
wor
k
carried
out
on
sp
eci
es
ide
ntifi
cat
ion
of
va
rio
us
medici
nal
pl
ants.
T
he
c
omparati
ve
anal
ysi
s
of
va
rio
us
de
ep
le
arn
in
g
m
odel
s
in
medici
nal
plant
sp
e
ci
es
identific
at
io
n
is
giv
e
n
in
Ta
ble
1
an
d
Fig
ure
5.
Ta
ble
1
s
hows
t
he
models
a
nd
dat
aset
us
e
d,
the
numb
e
r
of
e
po
chs,
the
acc
ur
a
cy
ac
hieve
d,
a
nd
the
re
fer
e
nc
es
use
d
to
s
ummari
ze
the
anal
ys
is
of
var
i
ou
s
m
od
el
s
.
Figure
6
s
how
s
the
grap
hical
representat
io
n
of
the
c
ompa
r
at
ive
analysis
of
var
i
ou
s
models
us
e
d
in
the
st
udy.
F
rom
this
,
it
is
e
vi
den
t
t
hat
A
N
N
a
nd
De
ns
e
N
et
models
outp
erform
oth
e
r
models
with
100%
a
nd
97%
accu
racy
resp
ect
ivel
y.
T
he
co
mp
a
rati
ve
analysis
of
t
he
m
od
el
s
us
e
d
f
or
disease
detect
ion
is
gi
ven
i
n
Table
2
w
hich
co
ntains
in
f
ormat
ion
li
ke
m
od
el
s
,
dataset
s,
num
be
r
of
e
poch
s,
te
st
a
nd
validat
io
n
acc
ur
ac
y,
and
re
fer
e
nces
.
The
w
ork
nee
ds
t
o
be
e
xten
de
d
for
medici
na
l
plant
s
pecie
s
to
protect
the
m
f
rom
disea
s
es
that
are
bein
g
at
ta
cked. Fi
gure
7
s
hows
t
he gra
ph
ic
al
r
eprese
ntat
ion
of the
com
par
at
ive
an
al
ysi
s g
ive
n
i
n
Ta
bl
e 2
.
Table
1.
C
omp
arati
ve
a
nalysi
s
of
var
i
ou
s
d
e
ep
le
ar
ning
me
thods
in
plant
s
pecies
ide
ntific
at
ion
Mod
el
u
sed
Dataset
Epo
ch
s
Accuracy
Refer
en
ces
Res
Net5
0
Ban
g
lad
esh
i
m
ed
icin
al
p
lan
t
d
ataset
10
72
[28
]
Den
seNet2
0
1
Ban
g
lad
esh
i
m
ed
icin
al
p
lan
t
d
ataset
10
97
[28
]
VGG1
6
Ban
g
lad
esh
i
m
ed
icin
al
p
lan
t
d
ataset
10
96
[28
]
Incep
tio
n
V3
Ban
g
lad
esh
i
m
ed
icin
al
p
lan
t
d
ataset
10
95
[28
]
Den
seNet2
0
1
BDMed
iLeaves
20
8
0
.69
[29
]
Incep
tio
n
Res
NetV2
BDMed
iLeaves
20
9
0
.09
[29
]
ANN
Real
tim
e
d
ata
20
100
[30
]
Ay
u
r
-
Plan
tNet
Real
tim
e
d
ata
-
9
2
.27
[31
]
Fed
erate
d
lea
rnin
g
IID
an
d
NON
II
D
5
9
4
.51
[32
]
EE
XR
Mend
eley
d
ataset
50
9
6
.71
[33
]
Den
seNet2
0
1
Medicin
al
p
lan
t
d
a
taset
20
9
9
.64
[34
]
YOLOv7
Cu
sto
m
d
ataset
-
97
[35
]
YOLOv5
Cu
sto
m
d
ataset
-
9
3
.4
[35
]
MT
JNet
Ind
ian
m
ed
icin
al
l
eaf
d
ataset
-
9
9
.71
[36
]
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
H
ar
ne
ssin
g de
ep
le
arni
ng for
m
e
dicinal
pl
ant rese
ar
c
h:
a compre
he
ns
iv
e stu
dy
(
Vidy
a
Hu
ll
ekere
A
na
nda
)
917
Figure
6. Com
par
is
on of
dif
f
eren
t
dee
p
le
ar
ning a
ppr
oach
e
s for
pla
nt sp
ec
ie
s
identific
at
ion
Figure
7. Com
par
is
on of
dif
f
eren
t
dee
p
le
ar
ning a
ppr
oach
e
s for
pla
nt d
ise
ase detect
io
n
Table
2.
C
omp
arati
ve
a
nalysi
s
of
var
i
ou
s
de
ep
le
ar
ning
me
thods
in
plant
disease
detect
ion
Mod
el
u
sed
Dataset
Epo
ch
s
Test
accur
acy
Valid
atio
n
accurac
y
Refere
n
ce
Incep
tio
n
V4
Plan
tVillag
e
30
9
8
.08
9
8
.02
[45
]
VGG
n
et
(16
)
Plan
tVillag
e
30
8
1
.83
8
1
.92
[45
]
Res
Net
(50
)
Plan
tVillag
e
30
9
9
.59
9
9
.67
[45
]
Res
Net
(10
1
)
Plan
tVillag
e
30
9
9
.66
9
9
.66
[45
]
Res
Net
(15
2
)
Plan
tVillag
e
30
9
9
.59
9
9
.68
[45
]
Den
seNet
(12
1
)
Plan
tVillag
e
30
9
9
.75
9
9
.76
[45
]
Alex
Net
Realtime
d
ata
47
9
9
.06
-
[44
]
Alex
NetOWTBn
Realtime
d
ata
46
9
9
.44
-
[44
]
Go
o
g
LeNet
Realtime
d
ata
45
9
7
.27
-
[44
]
Ov
erf
eat
Realtime
d
ata
45
9
8
.96
-
[44
]
VGG
Realtime
d
ata
48
9
9
.48
-
[44
]
Incep
tio
n
V4
Plan
tv
illag
e
30
9
7
.59
8
8
.7
[40
]
VGG
-
16
Plan
tVillag
e
30
8
2
.75
9
0
.1
[40
]
ReNet
-
50
Plan
tVillag
e
30
9
8
.73
9
3
.5
[40
]
Den
seNet
-
121
Plan
tVillag
e
30
9
9
.81
9
9
.8
[40
]
Den
seNet
b
ased
m
o
d
el
RGB
Dron
e
i
m
ag
e
d
ata
100
0
97
[41
]
Den
seNet2
0
1
Brass
ica
Nap
u
s
d
at
a
10
0
0
.98
[42
]
Tri
-
CN
N
a
rchitect
u
re
Im
ag
e
N
et
d
ataset
20
9
9
.39
9
8
.46
[43
]
Evaluation Warning : The document was created with Spire.PDF for Python.