I
n
t
e
r
n
at
ion
al
Jou
r
n
al
of
E
lec
t
r
ical
an
d
Com
p
u
t
e
r
E
n
gin
e
e
r
in
g
(
I
JE
CE
)
Vol.
15
,
No.
1
,
F
e
br
ua
r
y
20
25
,
pp.
260
~
279
I
S
S
N:
2088
-
8708
,
DO
I
:
10
.
11591/i
jec
e
.
v
15
i
1
.
pp
2
60
-
279
260
Jou
r
n
al
h
omepage
:
ht
tp:
//
ij
e
c
e
.
iaes
c
or
e
.
c
om
A
d
ap
t
iv
e
c
o
n
t
r
ol
t
e
c
h
n
iq
u
e
s f
or
i
m
p
r
ovi
n
g an
t
i
-
lo
c
k
b
r
ak
i
n
g
syste
m
p
e
r
f
or
m
an
c
e
i
n
d
iv
e
r
s
e
f
r
i
c
t
io
n
s
c
e
n
ar
io
s
M
oh
am
m
e
d
F
ad
h
l
Abd
u
ll
a
h
1
,
Geha
d
Ali
Abd
u
l
r
ah
m
an
Qas
e
m
1
,
M
az
e
n
F
ar
id
2
,
3
,
4
,
Heng
S
ion
g
L
im
2
,
Chi
n
P
oo
L
e
e
3
,
Nas
r
Als
ak
k
af
1
1
F
a
c
ul
ty
of
E
ngi
ne
e
r
in
g a
nd C
omput
in
g, U
ni
ve
r
s
it
y of
S
c
ie
nc
e
a
nd T
e
c
hnol
ogy, Ad
e
n, Y
e
me
n
2
F
a
c
ul
ty
of
E
ngi
ne
e
r
in
g a
nd T
e
c
hnol
ogy, M
ul
ti
me
di
a
U
ni
v
e
r
s
it
y, M
e
la
ka
, M
a
la
ys
ia
3
F
a
c
ul
ty
of
I
nf
or
ma
ti
on S
c
ie
nc
e
a
nd T
e
c
hnol
ogy, M
ul
ti
me
di
a
U
ni
ve
r
s
it
y, M
e
la
ka
,
M
a
la
ys
i
a
4
D
e
pa
r
tm
e
nt
of
C
omput
e
r
S
c
ie
nc
e
,
F
a
c
ul
ty
of
E
duc
a
ti
on, L
a
hi
j
U
ni
ve
r
s
it
y, L
a
hi
j,
Y
e
me
n
Ar
t
icle
I
n
f
o
AB
S
T
RA
CT
A
r
ti
c
le
h
is
tor
y
:
R
e
c
e
ived
M
a
y
22,
2024
R
e
vis
e
d
S
e
p
6,
2024
Ac
c
e
pted
Oc
t
1,
2024
A
n
t
i
-
l
o
c
k
b
rak
i
n
g
s
y
s
t
ems
(A
BS)
en
h
a
n
ce
v
eh
i
cl
e
s
afet
y
b
y
p
re
v
en
t
i
n
g
w
h
ee
l
l
o
c
k
-
u
p
,
b
u
t
t
h
ei
r
effec
t
i
v
en
e
s
s
d
e
p
en
d
s
o
n
t
i
re
-
r
o
ad
fri
c
t
i
o
n
.
T
rad
i
t
i
o
n
al
b
ra
k
i
n
g
s
y
s
t
ems
s
t
ru
g
g
l
e
t
o
mai
n
t
ai
n
effect
i
v
e
p
erf
o
rman
ce
d
u
e
t
o
t
h
e
ri
s
k
o
f
w
h
ee
l
l
o
ck
-
u
p
o
n
v
ary
i
n
g
ro
a
d
s
u
rfac
es
,
affect
i
n
g
v
eh
i
c
l
e
s
t
a
b
i
l
i
t
y
an
d
co
n
t
r
o
l
.
T
h
i
s
s
t
u
d
y
p
re
s
en
t
s
a
n
o
v
el
me
t
h
o
d
t
o
i
m
p
ro
v
e
A
BS
effi
ci
e
n
cy
acro
s
s
v
ary
i
n
g
fri
ct
i
o
n
co
n
d
i
t
i
o
n
s
.
T
h
e
p
ro
p
o
s
ed
ap
p
ro
ac
h
emp
l
o
y
s
a
feed
b
ack
c
o
n
t
ro
l
mech
an
i
s
m
t
o
d
y
n
am
i
cal
l
y
ad
j
u
s
t
t
h
e
b
ra
k
i
n
g
fo
rce
o
f
each
w
h
eel
b
as
e
d
o
n
t
h
e
p
re
v
ai
l
i
n
g
fri
c
t
i
o
n
c
o
e
ffi
ci
e
n
t
.
Sp
ec
i
fi
ca
l
l
y
,
w
e
i
n
c
o
rp
o
rat
e
a
P
-
co
n
t
ro
l
l
er
i
n
t
h
e
i
n
p
u
t
s
i
g
n
al
an
d
t
w
o
ad
d
i
t
i
o
n
a
l
P
-
co
n
t
ro
l
l
er
s
as
o
u
t
p
u
t
an
d
i
n
p
u
t
p
arame
t
ers
fo
r
fr
i
ct
i
o
n
.
By
man
i
p
u
l
a
t
i
n
g
t
h
e
p
r
o
p
o
rt
i
o
n
al
co
n
t
r
o
l
v
a
l
u
es
,
k
ey
p
aramet
er
s
s
u
ch
as
w
h
ee
l
s
p
ee
d
,
s
t
o
p
p
i
n
g
d
i
s
t
an
ce,
an
d
s
l
i
p
rat
e
ca
n
b
e
effect
i
v
e
l
y
ma
n
ag
e
d
.
N
o
t
ab
l
y
,
o
u
r
i
n
v
es
t
i
g
at
i
o
n
rev
ea
l
s
i
n
t
ri
g
u
i
n
g
i
n
t
er
act
i
o
n
s
b
et
w
ee
n
t
h
e
p
r
o
p
o
rt
i
o
n
al
co
n
t
ro
l
s
,
h
i
g
h
l
i
g
h
t
i
n
g
t
h
e
co
m
p
l
e
x
i
t
y
o
f
A
BS
o
p
t
i
mi
za
t
i
o
n
.
T
h
e
met
h
o
d
w
a
s
ev
al
u
at
e
d
t
h
r
o
u
g
h
s
i
mu
l
at
i
o
n
s
acro
s
s
v
ar
i
o
u
s
fri
c
t
i
o
n
c
o
n
d
i
t
i
o
n
s
,
co
m
p
ari
n
g
i
t
t
o
c
o
n
v
en
t
i
o
n
al
A
BS
i
n
t
erms
o
f
b
rak
e
p
erfo
rm
an
ce,
s
t
ab
i
l
i
t
y
,
an
d
s
t
o
p
p
i
n
g
d
i
s
t
an
ce
s
.
T
h
e
res
u
l
t
s
i
n
d
i
ca
t
e
t
h
a
t
t
h
e
p
ro
p
o
s
e
d
met
h
o
d
s
i
g
n
i
f
i
ca
n
t
l
y
en
h
an
ce
s
A
BS
p
erfo
rma
n
ce
acro
s
s
v
ary
i
n
g
fri
ct
i
o
n
co
eff
i
ci
e
n
t
s
;
h
o
w
ev
er,
ad
d
i
t
i
o
n
a
l
res
earch
i
s
w
arra
n
t
e
d
t
o
ad
d
re
s
s
s
t
o
p
p
i
n
g
d
i
s
t
an
ce
an
d
t
i
me
i
s
s
u
es
,
p
ar
t
i
c
u
l
ar
l
y
i
n
s
n
o
w
y
a
n
d
i
c
y
co
n
d
i
t
i
o
n
s
.
K
e
y
w
o
r
d
s
:
Anti
-
lock
br
a
king
s
ys
tems
F
r
iction
c
oe
f
f
icie
nts
S
im
ulation
S
tabili
ty
S
toppi
ng
dis
tanc
e
Ve
hicle
dyna
mi
c
s
W
he
e
l
s
li
p
Th
i
s
i
s
a
n
o
p
en
a
c
ces
s
a
r
t
i
c
l
e
u
n
d
e
r
t
h
e
CC
B
Y
-
SA
l
i
ce
n
s
e.
C
or
r
e
s
pon
din
g
A
u
th
or
:
He
ng
S
iong
L
im
F
a
c
ult
y
of
E
nginee
r
ing
a
nd
T
e
c
hnology
,
M
ult
im
e
d
ia
Unive
r
s
it
y
B
ukit
B
e
r
ua
ng,
75450
M
e
laka
,
M
a
lays
ia
E
mail:
hs
li
m@m
mu
.
e
du.
my
1.
I
NT
RODU
C
T
I
ON
Anti
-
lock
br
a
king
s
ys
tems
(
AB
S
)
s
ys
tems
ha
ve
im
pr
ove
d
c
a
r
s
a
f
e
ty
by
pr
e
ve
nti
ng
whe
e
l
lock
-
up
dur
ing
br
a
king
mane
uve
r
s
.
T
he
y
wor
k
to
s
hor
ten
s
toppi
ng
dis
tanc
e
s
a
nd
he
lp
dr
iver
s
maintain
c
ontr
o
l
of
their
ve
hicle
s
on
s
li
ppe
r
y
s
ur
f
a
c
e
s
by
a
djus
ti
ng
the
a
mount
of
pr
e
s
s
ur
e
a
ppli
e
d
dur
ing
br
a
king.
How
e
ve
r
,
va
r
iable
f
r
iction
c
oe
f
f
icie
nts
c
a
n
r
e
duc
e
the
e
f
f
icie
nc
y
o
f
AB
S
,
r
e
s
ult
ing
in
de
c
r
e
a
s
e
d
b
r
a
king
pe
r
f
or
ma
nc
e
a
nd
s
igni
f
ica
nt
s
a
f
e
ty
r
is
ks
.
T
he
r
e
f
or
e
,
it
is
ne
c
e
s
s
a
r
y
to
unde
r
s
tand
a
nd
ove
r
c
ome
the
c
ha
ll
e
nge
s
pos
e
d
by
c
ha
nging
f
r
iction
c
ondit
ions
to
e
nha
nc
e
the
s
a
f
e
ty
a
nd
ove
r
a
ll
e
f
f
e
c
ti
ve
ne
s
s
of
AB
S
de
vice
s
.
T
he
e
f
f
icie
nc
y
of
a
ve
hicle
's
br
a
ke
s
is
gr
e
a
tl
y
a
f
f
e
c
ted
by
f
r
iction
c
oe
f
f
icie
nts
,
whic
h
a
r
e
im
por
tant
in
s
tud
ying
the
int
e
r
a
c
ti
on
be
twe
e
n
the
ti
r
e
s
a
nd
the
d
r
ivi
ng
s
ur
f
a
c
e
.
T
he
s
e
c
oe
f
f
icie
nts
r
e
pr
e
s
e
nt
the
f
o
r
c
e
r
e
s
ult
ing
f
r
om
the
whe
e
l's
int
e
r
a
c
ti
on
with
the
r
oa
d
in
pr
opor
t
ion
to
t
he
ve
r
ti
c
a
l
load
o
f
the
ti
r
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
E
lec
&
C
omp
E
ng
I
S
S
N:
2088
-
8708
A
dapti
v
e
c
ontr
ol
tec
hniques
for
impr
ov
ing
anti
-
loc
k
br
ak
ing
s
y
s
tem
…
(
M
ohamm
e
d
F
adhl
A
bdull
ah
)
261
AB
S
typi
c
a
ll
y
c
ons
is
ts
of
c
omponents
s
uc
h
a
s
whe
e
l
s
pe
e
d
s
e
ns
or
s
,
a
n
e
lec
tr
on
ic
c
ont
r
ol
unit
(
E
C
U)
,
a
nd
a
b
r
a
ke
pr
e
s
s
ur
e
modul
a
tor
.
How
e
ve
r
,
de
s
igni
ng
AB
S
is
c
ompl
e
x
due
to
mea
s
ur
e
me
nt
nois
e
,
unc
e
r
tainti
e
s
,
a
nd
nonli
ne
a
r
it
ies
.
R
oa
d
c
ondit
ion
va
r
iations
c
a
us
e
s
igni
f
ica
nt
c
ha
nge
s
in
br
a
king
pr
e
s
s
ur
e
,
whe
e
l
s
li
p,
a
nd
ti
r
e
-
r
oa
d
f
r
iction
pa
r
a
mete
r
s
,
r
e
qu
ir
ing
pr
e
c
is
e
e
s
ti
mation.
T
he
r
e
f
or
e
,
va
r
ious
metho
ds
ha
ve
be
e
n
de
ve
loped
to
c
ontr
ol
AB
S
e
f
f
e
c
ti
ve
ly
unde
r
diver
s
e
c
ondit
ions
a
nd
e
nha
nc
e
it
s
f
unc
ti
ona
li
t
y.
M
os
t
r
e
s
e
a
r
c
h
f
oc
us
e
s
on
whe
e
l
s
li
p
c
ontr
ol
a
s
the
pr
im
a
r
y
va
r
iable
a
f
f
e
c
ted
by
di
f
f
e
r
e
nt
b
r
a
king
s
c
e
na
r
ios
a
nd
r
oa
d
c
ondit
ions
.
AB
S
de
s
ign
c
ha
ll
e
nge
s
include
ve
hicle
dyna
mi
c
s
du
r
ing
b
r
a
king,
ti
r
e
f
o
r
c
e
s
a
tur
a
ti
on
unc
e
r
tainti
e
s
,
a
nd
va
r
iations
in
ve
hicle
pa
r
a
met
e
r
s
a
nd
ti
r
e
-
r
oa
d
f
r
iction
.
Add
r
e
s
s
ing
thes
e
c
ha
ll
e
nge
s
ne
c
e
s
s
it
a
t
e
s
r
obus
t
c
ontr
oll
e
r
de
ve
lopm
e
nt
,
lea
ding
to
pr
opos
e
d
a
ppr
oa
c
he
s
li
ke
f
uz
z
y
logi
c
c
ontr
ol
ler
s
a
nd
ga
in
s
c
he
duli
ng
[
1]
–
[
3]
.
S
o
me
s
tudi
e
s
c
ombi
ne
the
s
e
methods
to
im
p
r
ove
pe
r
f
or
manc
e
[
4]
,
though
th
e
y
of
ten
de
mand
s
igni
f
ica
nt
memor
y
s
tor
a
ge
.
S
e
ve
r
a
l
f
a
c
tor
s
,
including
ti
r
e
s
tanda
r
ds
,
c
a
r
s
ize
,
c
li
mate
,
a
nd
r
oa
d
c
ondit
ions
,
im
pa
c
t
the
a
ve
r
a
ge
f
r
iction
c
oe
f
f
icie
nt.
AB
S
a
ppli
c
a
ti
ons
a
r
e
e
nginee
r
e
d
a
nd
a
djus
ted
to
f
unc
ti
on
op
ti
mally
withi
n
a
s
pe
c
if
ic
r
a
nge
of
a
dhe
s
ion
c
oe
f
f
icie
nts
unde
r
s
tanda
r
d
op
e
r
a
ti
ng
c
ondit
ions
.
Ne
ve
r
thele
s
s
,
a
br
oa
d
r
a
nge
of
f
r
iction
c
oe
f
f
icie
nts
is
f
r
e
que
ntl
y
e
nc
ounter
e
d
in
r
e
a
l
-
wor
l
d
s
it
ua
ti
ons
,
whic
h
c
a
n
s
e
ve
r
e
ly
li
mi
t
the
e
f
f
e
c
ti
v
e
ne
s
s
of
the
br
a
king
s
ys
tem.
R
e
duc
e
d
f
r
iction
c
oe
f
f
icie
nts
incr
e
a
s
e
the
li
ke
li
hood
of
whe
e
l
lock
-
up
dur
ing
br
a
king,
pa
r
ti
c
ular
ly
on
we
t
o
r
icy
r
oa
ds
,
r
e
duc
ing
ve
hicl
e
c
ontr
ol
a
nd
lengthe
ning
s
toppi
ng
dis
tanc
e
s
.
C
onve
r
s
e
ly,
high
f
r
iction
c
oe
f
f
icie
nts
,
f
ound
on
dr
y
,
we
ll
-
maintaine
d
highwa
ys
,
f
or
e
xa
mpl
e
,
may
induce
e
a
r
l
y
whe
e
l
lock
-
up,
r
e
s
tr
icting
the
ve
hicle
's
mobi
l
it
y
a
nd
pote
nti
a
ll
y
c
a
us
ing
a
los
s
of
c
ontr
ol.
T
hus
,
it
is
vit
a
l
t
o
de
s
ign
s
olut
ions
that
will
boos
t
the
e
f
f
icie
nc
y
of
AB
S
a
c
r
os
s
the
f
ull
r
a
nge
of
f
r
iction
c
oe
f
f
icie
nts
e
nc
ounter
e
d
in
c
omm
on
dr
ivi
ng
s
c
e
na
r
ios
.
I
n
thi
s
wor
k
,
we
pr
opos
e
a
nove
l
method
to
e
n
ha
nc
e
AB
S
e
f
f
icie
nc
y
by
e
mpl
oying
a
f
e
e
dba
c
k
c
ontr
ol
mec
ha
nis
m
that
dyna
mi
c
a
ll
y
a
djus
ts
the
br
a
king
f
o
r
c
e
ba
s
e
d
on
the
pr
e
va
il
ing
f
r
iction
c
oe
f
f
icie
nt.
T
his
a
ppr
oa
c
h
incor
por
a
tes
a
P
-
c
ontr
oll
e
r
a
nd
a
ddi
ti
ona
l
P
-
c
ontr
oll
e
r
s
f
or
inpu
t
a
nd
output
pa
r
a
mete
r
s
r
e
late
d
to
f
r
iction
.
T
h
e
r
e
s
t
o
f
th
is
a
r
t
ic
le
is
o
r
ga
n
iz
e
d
a
s
f
ol
l
ows
:
s
e
c
t
io
n
2
r
e
vie
ws
r
e
la
ted
wo
r
k
.
S
e
c
t
io
n
3
ou
tl
i
ne
s
the
m
o
ti
va
ti
on
a
n
d
o
bj
e
c
ti
ve
s
.
S
e
c
t
io
n
4
de
ta
il
s
t
he
m
e
th
od
e
m
pl
oye
d
.
S
e
c
t
io
n
5
de
s
c
r
ib
e
s
t
he
AB
S
.
S
e
c
ti
on
6
pr
e
s
e
nts
the
s
im
ulation
r
e
s
ult
s
.
S
e
c
ti
on
7
dis
c
us
s
e
s
thes
e
r
e
s
ult
s
.
F
inally
,
s
e
c
ti
on
8
c
onc
ludes
the
pa
pe
r
.
2.
RE
L
AT
E
D
WORK
M
a
ny
s
tudi
e
s
h
a
ve
be
e
n
c
onduc
ted
to
f
ind
s
ol
uti
ons
to
pr
oblems
r
e
late
d
to
c
ha
nging
f
r
iction
c
oe
f
f
icie
nts
a
nd
im
pr
oving
AB
S
pe
r
f
o
r
manc
e
.
T
h
e
s
e
s
olut
ions
include
ha
r
dwa
r
e
a
nd
s
of
twa
r
e
e
nha
nc
e
ments
a
im
e
d
a
t
im
pr
oving
c
ontr
ol
tec
hniques
a
nd
the
in
ter
a
c
ti
on
be
twe
e
n
br
a
king
s
ys
tems
a
nd
their
c
om
pone
nts
.
T
e
c
hnologi
c
a
l
a
dva
nc
e
ments
e
mpl
oy
be
tt
e
r
s
e
ns
or
s
,
a
c
tuator
s
,
a
nd
br
a
ke
s
ys
tem
de
s
igns
to
de
li
ve
r
mor
e
a
c
c
ur
a
te
r
e
a
dings
a
nd
f
a
s
ter
r
e
a
c
ti
on
ti
mes
.
T
he
e
v
a
luation
of
the
AB
S
a
lgor
it
hm's
pe
r
f
o
r
manc
e
will
be
ba
s
e
d
on
the
f
oll
owing
metr
ics
.
C
onve
r
s
e
ly,
a
dva
nc
e
m
e
nts
in
s
of
twa
r
e
pe
r
tain
to
the
de
ve
lopm
e
nt
of
int
r
ica
te
c
ontr
ol
a
lgor
it
hms
c
a
pa
ble
of
r
e
a
l
-
ti
me
a
djus
tm
e
nts
to
e
f
f
e
c
ti
ve
ly
a
da
pt
to
va
r
ying
f
r
iction
c
ondit
ions
[
5]
–
[
8
]
.
Ulum
a
nd
P
a
tr
iaw
a
n
[
9]
ha
ve
de
mons
tr
a
ted
the
s
upe
r
ior
it
y
of
AB
S
s
ys
tems
ove
r
non
-
AB
S
s
ys
tems
in
ter
ms
of
s
toppi
ng
dis
tanc
e
s
by
c
r
e
a
ti
ng
a
nd
im
p
leme
nti
n
g
a
n
AB
S
b
r
a
king
s
ys
tem
us
ing
S
im
uli
nk
s
of
twa
r
e
.
I
n
both
we
t
a
nd
dr
y
s
c
e
na
r
ios
,
the
a
ugmente
d
c
oe
f
f
icie
n
t
of
f
r
iction
f
or
the
whe
e
ls
in
the
AB
S
s
ys
tem
lea
ds
to
de
c
r
e
a
s
e
d
s
toppi
ng
dis
tanc
e
s
[
10]
.
M
or
e
ove
r
,
the
AB
S
s
ys
tem
e
nha
nc
e
s
br
a
ke
c
ontr
ol
by
e
na
bli
ng
dyna
mi
c
a
djus
tm
e
nts
of
the
ve
hicle
's
dyna
mi
c
s
[
11]
.
S
a
vit
s
ki
e
t
al
.
[
12
]
de
ve
loped
f
ou
r
c
ontr
oll
e
r
a
r
c
hit
e
c
tur
e
s
f
or
a
c
onti
nuous
whe
e
l
s
li
p
c
ont
r
ol
s
ys
tem
f
or
e
lec
tr
ic
ve
hicle
s
(
E
Vs
)
e
quipped
with
i
ntegr
a
ted
whe
e
l
mot
ion
s
e
ns
or
s
(
I
W
M
s
)
.
T
he
y
a
p
pli
e
d
the
s
li
ding
mode
a
ppr
oa
c
h
f
or
opti
mal
s
li
p
s
e
a
r
c
hi
ng,
ove
r
c
omi
ng
the
li
mi
tations
of
pr
e
vious
s
tud
ies
.
T
he
c
ontr
oll
e
r
s
,
whic
h
include
va
r
iable
s
tr
uc
tur
e
pr
o
por
ti
ona
l
-
int
e
gr
a
l
(
VSP
I
)
,
f
ir
s
t
-
or
de
r
s
li
ding
mod
e
(
S
M
)
,
int
e
gr
a
l
S
M
,
a
nd
S
M
with
a
c
onti
nuous
twis
ti
ng
a
lgor
it
hm
(
C
T
A)
,
we
r
e
de
ve
loped
ba
s
e
d
on
e
xpe
r
im
e
ntal
r
e
s
ult
s
.
T
he
r
e
s
ult
s
de
mons
tr
a
ted
that
the
VSP
I
c
ontr
ol
pr
e
s
e
r
ve
s
whe
e
l
s
li
p,
a
djus
ts
f
or
dis
tur
ba
nc
e
s
,
a
nd
a
ll
ows
f
or
e
a
s
y
a
djus
tm
e
nt
in
I
W
M
c
ont
r
ol
[
1
2]
.
S
u
ll
ivan
e
t
al
.
[
13]
de
ve
loped
the
dua
l
c
o
ntr
ol
f
o
r
e
xplor
a
ti
on
a
nd
e
xploi
tation
(
DC
E
E
)
s
tr
a
tegy
to
a
ddr
e
s
s
the
AB
S
pr
oblem.
T
he
M
a
gic
F
or
mu
la
ti
r
e
model
e
nha
nc
e
d
s
toppi
ng
ti
me
a
nd
dis
tanc
e
by
up
to
1
5%
a
nd
8.
5
%
,
r
e
s
pe
c
ti
ve
ly,
c
ompar
e
d
to
e
xt
r
e
me
s
e
e
king
tec
hniques
.
T
he
DC
E
E
tec
hnique
is
e
f
f
e
c
ti
ve
a
c
r
os
s
va
r
ious
dr
ivi
ng
c
ondit
ions
,
including
low
a
nd
high
s
pe
e
ds
,
a
s
we
ll
a
s
on
s
now,
we
t,
a
nd
dr
y
r
oa
d
s
with
c
ha
nging
s
ur
f
a
c
e
s
.
F
utur
e
s
tudi
e
s
may
f
oc
us
on
e
xpa
nding
the
pr
e
diction
hor
izon
to
im
p
r
ove
s
tabili
ty
a
nd
tr
a
ns
ient
ti
r
e
be
ha
vior
[
13]
.
I
n
the
ir
wor
k,
M
a
ntr
ipr
a
ga
da
a
nd
Kuma
r
[
14
]
inves
ti
ga
ted
how
va
r
ious
ti
r
e
pr
ope
r
ti
e
s
a
f
f
e
c
t
the
e
f
f
icie
nc
y
of
a
l
gor
it
hms
us
e
d
to
mana
ge
AB
S
.
Autho
r
s
e
xplor
e
d
a
ll
p
os
s
ibl
e
c
ombi
na
ti
ons
of
the
f
ou
r
p
r
im
a
r
y
lon
git
udinal
c
ha
r
a
c
ter
is
ti
c
s
by
us
ing
the
magic
f
or
mul
a
6.
1
ti
r
e
model
to
c
r
e
a
te
thous
a
nds
of
vir
tual
ti
r
e
s
.
F
or
c
ompr
e
he
ns
ive
s
im
ulations
of
ve
hicle
dyna
mi
c
s
,
they
de
ve
loped
a
nd
int
e
gr
a
ted
two
AB
S
c
ontr
oll
e
r
s
with
I
P
G
c
a
r
make
r
.
A
s
e
ns
it
ivi
ty
s
tudy,
ba
s
e
d
on
c
ondi
ti
ona
l
va
r
ianc
e
a
ppli
e
d
to
211
,
250
s
im
ulation
r
uns
,
r
e
ve
a
ls
that
the
AB
S
s
toppi
ng
dis
tanc
e
is
he
a
vil
y
inf
luenc
e
d
by
the
ti
r
e
pe
a
k
f
r
iction
c
oe
f
f
icie
nt
a
nd
the
s
ha
pe
f
a
c
tor
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2088
-
8708
I
nt
J
E
lec
&
C
omp
E
ng
,
Vol
.
15
,
No.
1
,
F
e
br
ua
r
y
20
25
:
260
-
279
262
T
he
s
im
ulation
f
indi
ngs
indi
c
a
te
that
ti
r
e
pa
r
a
mete
r
s
C
a
nd
D
c
ontr
ibut
e
a
ppr
oxim
a
tely
80
%
–
93%
to
s
toppi
ng
dis
tanc
e
,
r
e
ga
r
dles
s
of
the
AB
S
metho
d
us
e
d
[
14]
.
Adva
nc
e
ments
in
s
e
ns
or
s
ha
ve
s
ig
nif
ica
ntl
y
s
im
pli
f
ied
the
mea
s
ur
e
ment
of
c
r
it
ica
l
ve
hicle
d
yna
mi
c
s
pa
r
a
mete
r
s
,
s
uc
h
a
s
ve
hicle
s
pe
e
d
a
nd
f
r
iction
c
oe
f
f
icie
nt.
As
a
r
e
s
ult
,
the
AB
S
s
ys
tem
now
be
ne
f
it
s
f
r
om
e
nha
nc
e
d
c
ont
r
ol
c
a
pa
bil
it
ies
.
I
n
r
e
s
e
a
r
c
h
c
onduc
ted
by
W
e
i
[
15
]
,
innovative
a
pp
r
oa
c
he
s
we
r
e
de
ve
loped
to
e
va
luate
a
dhe
s
ion
a
nd
ve
locity
c
o
e
f
f
icie
nts
withi
n
AB
S
c
ontr
oll
e
r
s
.
T
he
e
f
f
ica
c
y
of
thes
e
a
ppr
oa
c
he
s
wa
s
va
li
da
ted
thr
ough
s
uc
c
e
s
s
f
ul
a
ppli
c
a
ti
on
to
r
e
a
l
-
wor
ld
a
utom
obil
e
AB
S
tes
t
da
ta.
C
ons
e
que
ntl
y,
thes
e
tec
hnologi
e
s
im
pr
ove
AB
S
c
ont
r
ol
by
e
na
bli
ng
pr
e
c
is
e
pr
e
dictions
of
the
ve
hicle
's
tr
a
ve
l
s
pe
e
d
a
nd
f
r
ictional
f
or
c
e
c
oe
f
f
icie
nts
.
M
im
s
e
t
al
.
[
16
]
publ
is
he
d
a
r
e
s
e
a
r
c
h
pa
pe
r
that
include
d
two
s
tudi
e
s
f
oc
us
e
d
on
de
ve
lopi
ng
a
nd
e
va
luating
a
dr
ivi
ng
s
im
ulator
a
nd
int
e
r
a
c
ti
ve
e
xe
r
c
is
e
f
or
a
n
e
mer
ge
nc
y
br
a
king
tas
k
with
ha
pti
c
AB
S
f
e
e
dba
c
k.
T
he
s
im
ulator
a
nd
int
e
r
a
c
ti
ve
e
xe
r
c
is
e
a
r
e
de
s
igned
to
pr
ovide
a
s
a
f
e
a
nd
r
e
pe
a
table
e
nvir
onment.
T
he
int
e
r
a
c
ti
ve
e
xe
r
c
is
e
,
P
e
da
ls
E
mer
ge
nc
y
S
top,
us
e
s
im
a
ge
s
of
pe
da
ls
ins
tea
d
of
a
dr
ivi
ng
s
c
e
ne
to
pr
e
ve
nt
s
im
ulator
s
ickne
s
s
.
I
n
the
f
ir
s
t
s
tudy,
pa
r
ti
c
ipan
ts
we
r
e
r
e
quir
e
d
to
p
r
e
s
s
the
br
a
ke
pe
da
l
in
a
manne
r
c
ons
is
tent
with
e
mer
ge
nc
y
br
a
king
whe
n
AB
S
a
c
ti
va
ted.
85%
o
f
pa
r
t
icipa
nts
s
uc
c
e
s
s
f
ull
y
c
ompl
e
ted
the
tas
k
withi
n
the
f
i
r
s
t
f
our
tr
ials
,
with
a
n
a
ve
r
a
ge
o
f
th
r
e
e
tr
ials
.
T
he
s
e
c
ond
s
tudy
e
xplor
e
d
r
e
f
ineme
nts
to
the
int
e
r
a
c
ti
ve
e
xe
r
c
is
e
,
r
e
qui
r
ing
pa
r
ti
c
ipants
to
pa
s
s
thr
e
e
out
of
f
our
tr
ials
.
T
he
r
e
s
ult
s
s
ugge
s
t
that
th
e
pe
da
ls
e
mer
ge
nc
y
s
top
int
e
r
a
c
ti
ve
e
xe
r
c
is
e
c
a
n
be
a
n
e
f
f
e
c
ti
ve
tool
f
or
d
r
iver
s
to
ga
in
e
xpe
r
ienc
e
with
e
m
e
r
ge
nc
y
br
a
king
a
nd
ha
pti
c
AB
S
f
e
e
dba
c
k
[
16]
.
T
o
e
nha
nc
e
us
e
r
s
a
f
e
ty
a
nd
im
pleme
nt
AB
S
tec
hnology,
W
u
e
t
al
.
[
17]
uti
li
z
e
d
a
djus
table
whe
e
lcha
ir
s
.
T
he
y
e
mpl
oye
d
f
lexible
f
uz
z
y
-
ne
ur
a
l
r
e
a
s
oning
s
ys
tems
,
whic
h
a
r
e
tec
hniques
f
or
p
r
e
di
c
ti
ng
the
f
r
iction
c
oe
f
f
icie
nt.
T
he
objec
ti
ve
of
Uz
unov
e
t
a
l
.
[
10]
wa
s
to
e
va
luate
the
a
dhe
s
ion
pr
ope
r
ti
e
s
of
ti
r
e
s
on
r
oa
d
s
ur
f
a
c
e
s
in
a
utom
obil
e
s
e
quipped
with
AB
S
.
T
he
r
e
s
e
a
r
c
he
r
s
f
ound
that,
a
c
r
os
s
va
r
ious
s
ur
f
a
c
e
s
,
a
n
incr
e
a
s
e
in
the
ini
ti
a
l
ve
locity
led
to
a
r
e
duc
ti
on
in
the
c
oe
f
f
icie
nt
of
f
r
iction
.
E
l
-
B
a
kkour
i
e
t
al
.
[
18]
p
r
opos
e
d
a
n
output
-
f
e
e
dba
c
k
a
da
pti
ve
c
ontr
oll
e
r
f
o
r
AB
S
.
T
his
c
ontr
oll
e
r
is
de
s
igned
to
pr
e
c
is
e
ly
tr
a
c
k
the
i
de
a
l
s
li
p
c
oe
f
f
icie
nt
while
a
da
pti
ng
to
ne
w
r
oa
d
c
ondit
ions
.
I
ts
va
li
da
ti
on,
c
onduc
ted
us
ing
a
pr
oc
e
s
s
or
-
in
-
the
-
loop
s
e
tup,
de
mons
tr
a
ted
e
xc
e
pti
ona
l
pe
r
f
or
manc
e
in
ter
ms
o
f
s
tabili
ty
,
t
r
a
c
king
a
c
c
ur
a
c
y,
r
obus
tne
s
s
,
a
nd
pr
a
c
ti
c
a
l
a
ppli
c
a
bil
it
y
[
18]
.
Ya
ng
e
t
al
.
[
7]
e
mp
loyed
logi
c
thr
e
s
hold
c
ontr
ol
a
nd
pha
s
e
plane
t
he
or
y
to
inves
ti
ga
te
the
r
e
lations
hip
be
twe
e
n
s
li
p
r
a
te
a
n
d
br
a
king
to
r
que
dur
ing
AB
S
br
a
king
.
T
he
y
pr
opos
e
d
a
c
ontr
ol
tec
hnique
f
or
c
oor
dinating
r
e
ge
ne
r
a
ti
ve
b
r
a
king
s
ys
tems
(
R
B
S
)
a
nd
AB
S
,
ther
e
by
im
pr
ovi
ng
br
a
ke
e
ne
r
gy
r
e
c
ove
r
y
e
f
f
icie
nc
y.
A
c
ompa
r
a
ti
ve
s
im
ul
a
ti
on
a
s
s
e
s
s
e
d
the
br
a
king
c
a
pa
bil
it
y
of
e
lec
tr
ic
c
a
r
s
with
va
r
ying
a
dhe
s
ion
c
oe
f
f
icie
nts
.
T
he
pr
opos
e
d
c
oor
dinate
d
c
ontr
o
l
tec
hnique
e
nha
nc
e
d
b
r
a
king
e
ne
r
gy
r
e
c
ove
r
y
e
f
f
icie
nc
y
by
23.
08
%
to
38.
54
%
c
om
pa
r
e
d
to
s
tanda
r
d
s
ys
tems
,
lea
ding
to
im
pr
ove
d
br
a
king
pe
r
f
or
manc
e
,
r
e
duc
e
d
br
a
king
d
is
tanc
e
,
a
nd
s
hor
te
r
br
a
king
ti
me
[
7]
.
3.
M
OT
I
VA
T
I
ON
AN
D
OB
JE
CT
I
VE
S
T
his
r
e
s
e
a
r
c
h
a
ddr
e
s
s
e
s
the
ur
ge
nt
ne
e
d
to
e
nh
a
nc
e
the
s
a
f
e
ty
a
nd
e
f
f
e
c
ti
ve
ne
s
s
of
a
utom
oti
ve
br
a
king
s
ys
tems
.
AB
S
s
ys
tems
ha
ve
s
igni
f
ica
ntl
y
r
e
duc
e
d
a
c
c
ident
r
a
tes
a
nd
im
pr
ove
d
ve
hicle
c
ontr
o
l
dur
ing
br
a
king.
How
e
ve
r
,
va
r
iations
in
the
c
oe
f
f
icie
nt
of
f
r
iction
be
twe
e
n
the
r
oa
d
s
ur
f
a
c
e
a
nd
the
wh
e
e
ls
c
a
n
im
pa
c
t
the
pe
r
f
or
manc
e
of
the
AB
S
s
ys
tem.
T
he
main
objec
ti
ve
s
a
r
e
to
r
e
f
ine
c
ontr
ol
a
lgor
it
hms
t
o
ha
ndle
dif
f
e
r
e
nt
f
r
iction
c
oe
f
f
icie
nts
a
nd
to
us
e
s
im
ulation
tool
s
to
opti
mi
z
e
b
r
a
king
e
f
f
o
r
t
dis
tr
ibut
i
on.
T
he
e
f
f
e
c
ti
ve
ne
s
s
of
the
p
r
opos
e
d
im
pr
ove
ments
wil
l
be
a
s
s
e
s
s
e
d
us
ing
a
high
-
f
idelit
y
ve
hicle
pe
r
f
or
manc
e
model,
f
oc
us
ing
on
c
r
i
ti
c
a
l
pa
r
a
mete
r
s
s
uc
h
a
s
s
toppi
ng
dis
tanc
e
,
ve
hicle
s
tabili
ty,
a
nd
br
a
ke
e
f
f
icie
nc
y.
T
he
opti
mi
z
e
d
AB
S
s
ys
tem
will
be
f
ur
the
r
r
e
f
ined
us
ing
s
im
ulation
-
ba
s
e
d
a
ppr
oa
c
he
s
to
a
c
hieve
opti
mal
pe
r
f
or
manc
e
.
4.
M
E
T
HO
D
T
he
pr
opos
e
d
s
tudy
will
us
e
s
im
ulation
to
inves
ti
ga
te
the
e
f
f
e
c
ti
ve
ne
s
s
of
s
pe
c
if
ic
AB
S
tec
hnology
unde
r
va
r
ious
f
r
iction
c
ondit
ions
.
T
he
ve
hicle
dyna
mi
c
s
models
that
will
f
or
m
the
ba
s
is
of
the
s
im
ulation
will
include
the
f
oll
owing
f
e
a
tur
e
s
:
a.
Ve
hicle
:
A
qua
r
ter
-
c
a
r
model
wil
l
be
us
e
d
in
our
r
e
s
e
a
r
c
h
;
b.
W
he
e
ls
:
C
ons
ider
ing
the
e
f
f
e
c
ts
of
va
r
ious
f
r
ictio
n
c
oe
f
f
icie
nts
on
the
r
oa
d,
we
s
ha
ll
model
the
whe
e
ls
.
T
he
s
tate
of
the
r
oa
d
s
ur
f
a
c
e
f
r
e
que
ntl
y
a
f
f
e
c
ts
the
ti
r
e
f
r
iction
c
oe
f
f
icie
nt
;
c.
AB
S
tec
hnology:
T
his
mec
ha
nis
m
will
s
e
r
ve
a
s
the
c
ontr
ol
unit
,
c
a
lcula
ti
ng
the
br
a
king
f
o
r
c
e
t
o
be
a
ppli
e
d
to
e
a
c
h
whe
e
l.
T
he
s
im
ulation
c
a
n
be
us
e
d
to
e
va
luate
the
pe
r
f
o
r
manc
e
of
AB
S
tec
hnology
in
va
r
ious
s
c
e
na
r
ios
,
including:
a.
W
e
t
r
oa
ds
:
T
he
f
r
iction
r
a
te
on
the
s
ur
f
a
c
e
will
be
r
e
duc
e
d
to
s
im
ulate
we
t
c
ondit
ions
;
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
E
lec
&
C
omp
E
ng
I
S
S
N:
2088
-
8708
A
dapti
v
e
c
ontr
ol
tec
hniques
for
impr
ov
ing
anti
-
loc
k
br
ak
ing
s
y
s
tem
…
(
M
ohamm
e
d
F
adhl
A
bdull
ah
)
263
b.
Gr
a
ve
l:
T
he
f
r
iction
c
oe
f
f
icie
nt
o
f
the
pa
ve
ment
c
a
n
be
de
c
r
e
a
s
e
d
to
s
im
ulate
gr
a
ve
l
c
ondit
ions
;
c.
T
ur
ns
:
T
o
r
e
pli
c
a
te
tu
r
ning
r
e
s
ult
s
,
the
ve
hicle
wi
ll
br
a
ke
while
d
r
ivi
ng
.
T
he
f
oll
owing
mea
s
ur
e
s
s
hould
be
us
e
d
to
a
s
s
e
s
s
the
s
uc
c
e
s
s
of
a
c
quis
it
ion
a
nd
be
ne
f
it
-
s
ha
r
ing
methods
:
a.
B
r
a
king
dis
tanc
e
:
T
he
a
mount
o
f
t
im
e
it
take
s
f
or
t
he
ve
hicle
to
c
ome
to
a
c
ompl
e
te
s
top
;
b.
S
top
ti
me:
T
he
du
r
a
ti
on
r
e
quir
e
d
f
o
r
the
ve
hicle
to
c
ome
to
a
c
ompl
e
te
s
top
;
c.
W
he
e
l
lock
-
up:
T
he
a
mount
o
f
ti
me
e
a
c
h
whe
e
l
is
locke
d
whe
n
c
omi
ng
to
a
s
top.
T
he
f
oll
owing
is
a
l
is
t
of
the
tec
hniques
that
we
r
e
e
mpl
oye
d
to
f
in
is
h
thi
s
r
e
s
e
a
r
c
h:
a.
R
e
late
d
wor
k:
T
he
pe
r
ti
ne
nt
li
ter
a
tur
e
will
be
tho
r
oughly
e
xa
mi
ne
d
in
or
de
r
to
c
ompi
le
inf
o
r
matio
n
on
AB
S
,
f
r
iction
c
oe
f
f
icie
nts
,
a
nd
how
thes
e
f
a
c
tor
s
a
f
f
e
c
t
br
a
king
e
f
f
e
c
ti
ve
ne
s
s
;
b.
Da
ta
c
oll
e
c
ti
on
a
nd
a
na
lys
is
:
T
he
s
tudy
a
im
s
to
a
s
s
e
s
s
AB
S
pe
r
f
or
manc
e
by
a
na
lyzing
ve
hicle
c
ha
r
a
c
ter
is
ti
c
s
,
r
e
gulate
d
f
r
iction
c
oe
f
f
icie
nts
,
a
nd
AB
S
c
ontr
ol
s
ys
tems
,
identif
ying
pa
tt
e
r
ns
a
nd
c
or
r
e
lations
;
c.
De
ve
lopi
ng
ve
hicle
dyna
mi
c
s
s
ys
tems
:
A
ve
hicle
moveme
nt
model
will
be
c
r
e
a
ted
us
ing
M
AT
L
A
B
or
S
im
uli
nk,
incor
por
a
ti
ng
t
ir
e
c
onne
c
ti
on,
a
nti
-
lock
br
a
king
c
ontr
ol
mec
ha
nis
m,
a
nd
f
r
iction
c
oe
f
f
icie
nt
e
f
f
e
c
ts
;
d.
AB
S
methodology
a
ppli
c
a
ti
on:
T
he
AB
S
a
pp
r
oa
c
h
will
be
uti
li
z
e
d
a
s
a
c
ontr
o
ll
e
r
in
the
ve
hicle
's
dr
ivi
ng
s
im
ulation,
uti
li
z
ing
a
s
pe
c
ialize
d
method
to
a
da
pt
to
c
ha
nge
s
in
f
r
ict
ion
c
oe
f
f
icie
nts
;
e.
As
s
e
s
s
ing
AB
S
pe
r
f
or
manc
e
:
AB
S
pe
r
f
o
r
manc
e
w
il
l
be
e
va
luate
d
unde
r
va
r
ious
f
r
iction
c
ondit
ions
u
s
ing
a
c
ompr
e
he
ns
ive
s
im
ulation
tec
hnique,
f
oc
us
ing
on
c
r
it
ica
l
pe
r
f
or
manc
e
met
r
ics
li
ke
s
toppi
ng
dis
tanc
e
,
whe
e
l
s
li
p,
a
nd
ve
hicle
s
e
c
ur
it
y
;
f.
E
va
luation
of
e
f
f
e
c
ti
ve
ne
s
s
:
T
he
upda
ted
AB
S
s
ys
tems
will
unde
r
go
c
ompar
a
ti
ve
tes
ts
unde
r
va
r
ious
f
r
iction
c
ondit
ions
,
a
s
s
e
s
s
ing
pe
r
f
or
manc
e
metr
ics
li
ke
s
toppi
ng
dis
tanc
e
,
ti
r
e
s
li
p,
a
nd
ve
hicle
ba
lan
c
e
to
e
va
luate
their
e
f
f
e
c
ti
ve
ne
s
s
;
g.
R
e
s
ult
a
na
ly
s
is
a
nd
c
onc
lu
s
ion:
M
a
king
inf
e
r
e
nc
e
s
a
bout
the
r
e
s
e
a
r
c
h
objec
ti
ve
s
will
ne
e
d
a
n
a
n
a
lys
is
of
the
s
im
ulation
da
ta
a
nd
c
ons
ider
a
ti
on
of
the
out
c
omes
.
E
va
luation
a
nd
r
e
s
e
a
r
c
h
will
be
done
on
the
im
pr
ove
d
AB
S
s
ys
tem's
pe
r
f
or
manc
e
a
t
di
f
f
e
r
e
nt
f
r
iction
c
oe
f
f
icie
nts
.
T
he
s
tudy
l
im
it
s
,
pr
a
c
ti
c
a
l
a
ppli
c
a
ti
on
s
ugge
s
ti
ons
,
a
nd
pr
os
pe
c
ts
f
or
mo
r
e
r
e
s
e
a
r
c
h
will
a
ll
be
include
d
in
the
c
onc
lus
ion.
5.
AN
T
I
-
L
OCK
B
RA
KI
NG
S
YST
E
M
I
n
a
n
AB
S
s
ys
tem,
a
c
r
uc
ial
ve
hicle
s
a
f
e
ty
c
omp
one
nt,
plays
a
n
e
s
s
e
nti
a
l
r
ole
in
pr
e
ve
nti
ng
whe
e
l
lock
-
up
dur
ing
r
a
pid
b
r
a
king
s
it
ua
ti
ons
,
ther
e
by
s
igni
f
ica
ntl
y
e
nha
nc
ing
the
ve
hicle
's
ove
r
a
ll
s
tabili
ty
a
nd
s
tee
r
ing
c
a
pa
bil
it
ies
[
9
]
,
[
19
]
.
T
his
s
ys
tem
is
de
s
igned
to
e
f
f
e
c
ti
ve
ly
c
ounter
a
c
t
whe
e
l
lock
-
up
by
pr
ompt
ly
a
nd
c
onti
nuous
ly
a
djus
ti
ng
br
a
ke
pr
e
s
s
ur
e
,
a
ll
owi
ng
the
whe
e
ls
to
r
otate
f
r
e
e
ly
a
nd
maintaining
a
c
ons
is
tent
leve
l
of
tr
a
c
ti
on
with
the
r
oa
d
s
ur
f
a
c
e
.
AB
S
a
c
hi
e
ve
s
thi
s
by
e
mpl
oying
a
dyna
mi
c
c
a
li
br
a
ti
on
te
c
hnique,
whic
h
e
na
bles
the
br
a
ke
c
a
li
pe
r
to
a
da
pt
s
e
a
ml
e
s
s
l
y
to
the
ve
hicle
's
e
ve
r
-
c
ha
nging
dyna
mi
c
s
[
20]
,
[
2
1]
.
5.
1.
T
r
ad
it
ion
a
l
c
on
t
r
ol
s
t
r
at
e
gies
an
d
li
m
i
t
at
io
n
s
I
n
nor
mal
b
r
a
king
(
without
a
n
AB
S
s
ys
tem)
,
p
r
e
s
s
ing
the
br
a
ke
pe
da
l
c
a
us
e
s
the
br
a
ke
pa
ds
to
c
lamp
f
ir
ml
y
onto
the
whe
e
l
dis
c
s
,
whic
h
c
a
n
r
e
s
ult
in
the
whe
e
ls
locking
up
r
e
ga
r
dles
s
of
the
ve
hicle
's
s
pe
e
d.
W
he
n
the
whe
e
ls
s
top
r
otating,
they
c
a
n
no
longer
be
s
tee
r
e
d,
lea
ding
to
a
los
s
of
c
ontr
o
l
a
s
the
ve
hicle
c
onti
nue
s
to
s
li
de
due
to
mom
e
ntum
.
T
his
s
it
ua
ti
on
of
ten
r
e
s
ult
s
in
s
e
ve
r
e
a
c
c
idents
,
a
s
il
lus
tr
a
ted
in
F
igur
e
1
[
22]
.
F
igur
e
1.
B
r
a
king
with
a
nd
withou
t
AB
S
[
22]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2088
-
8708
I
nt
J
E
lec
&
C
omp
E
ng
,
Vol
.
15
,
No.
1
,
F
e
br
ua
r
y
20
25
:
260
-
279
264
5.
2.
Com
p
o
n
e
n
t
s
of
t
h
e
AB
S
s
ys
t
e
m
T
he
AB
S
s
ys
tem
incor
por
a
tes
s
e
ve
r
a
l
c
r
i
ti
c
a
l
c
omponents
,
including
s
e
ns
or
s
to
mon
it
or
whe
e
l
s
pe
e
d,
a
n
E
C
U
to
int
e
r
pr
e
t
da
ta,
a
hydr
a
uli
c
modul
a
tor
f
or
br
a
ke
pr
e
s
s
ur
e
a
djus
tm
e
nt,
a
nd
s
olenoid
va
lves
f
or
quick
br
a
ke
r
e
lea
s
e
.
S
pe
c
if
ica
ll
y
,
the
AB
S
s
ys
tem
ha
s
f
our
major
c
omponents
[
23]
,
[
24]
:
a.
S
pe
e
d
s
e
ns
or
s
:
S
pe
e
d
s
e
ns
or
s
,
s
uc
h
a
s
toot
he
d
w
he
e
ls
or
e
lec
tr
omagne
ti
c
c
oil
s
,
pr
oduc
e
s
ignals
f
r
om
a
magne
ti
c
f
ield
s
ur
r
ounding
the
whe
e
l,
c
r
e
a
ti
ng
vo
lt
a
ge
c
ha
nge
s
.
T
he
c
ont
r
oll
e
r
e
va
luate
s
thes
e
input
s
to
pr
e
dict
whe
e
l
a
c
c
e
ler
a
ti
on
a
nd
de
c
e
ler
a
ti
on
;
b.
V
a
l
v
e
s
:
A
B
S
b
r
a
k
e
l
i
n
e
s
f
e
a
t
u
r
e
v
a
l
v
e
s
t
h
a
t
w
o
r
k
i
n
t
h
r
e
e
p
o
s
i
t
i
o
n
s
:
o
p
e
n
,
i
s
o
l
a
t
e
d
,
a
n
d
r
e
l
e
a
s
e
d
.
V
a
l
v
e
c
l
o
g
g
i
n
g
i
s
a
t
y
p
i
c
a
l
p
r
o
b
l
e
m
w
i
t
h
A
B
S
s
y
s
t
e
m
s
,
r
e
d
u
c
i
n
g
t
h
e
s
y
s
t
e
m
'
s
c
a
p
a
c
i
t
y
t
o
o
p
e
n
,
s
h
u
t
,
o
r
c
h
a
n
g
e
p
o
s
i
t
i
o
n
s
.
A
m
a
l
f
u
n
c
t
i
o
n
i
n
g
v
a
l
v
e
m
a
y
p
r
e
v
e
n
t
t
h
e
s
y
s
t
e
m
f
r
o
m
m
o
d
u
l
a
t
i
n
g
v
a
l
v
e
s
a
n
d
r
e
g
u
l
a
t
i
n
g
b
r
a
k
i
n
g
p
r
e
s
s
u
r
e
;
c.
P
umps
:
T
he
pump
r
e
s
tor
e
s
hydr
a
uli
c
br
a
king
pr
e
s
s
ur
e
f
oll
owing
va
lve
r
e
lea
s
e
,
mana
ge
d
by
the
c
ontr
oll
e
r
,
to
pr
e
ve
nt
whe
e
l
s
li
ppa
ge
by
a
lt
e
r
ing
pu
mp
s
tatus
t
o
maintain
the
op
ti
mum
p
r
e
s
s
ur
e
leve
l
;
d.
T
he
E
C
U:
T
he
AB
S
s
ys
tem's
c
ontr
oll
e
r
,
a
n
E
C
U
,
e
mpl
oys
whe
e
l
s
pe
e
d
s
e
ns
or
s
to
de
tec
t
t
r
a
c
ti
on
los
s
,
li
mi
t
br
a
ke
f
or
c
e
,
a
nd
a
c
ti
va
te
the
AB
S
modul
a
tor
,
r
e
gulating
b
r
a
king
va
lve
p
r
e
s
s
ur
e
.
5.
3.
T
h
e
wor
k
of
t
h
e
an
t
i
-
lock
b
r
ak
in
g
s
ys
t
e
m
T
he
E
C
U
of
the
AB
S
r
e
a
ds
s
ignals
f
r
om
e
a
c
h
whe
e
l's
s
pe
e
d
s
e
ns
or
s
.
W
he
n
the
dr
iver
a
ppli
e
s
the
br
a
ke
s
s
udde
nly,
the
whe
e
l
de
c
e
ler
a
tes
r
a
pidl
y,
incr
e
a
s
ing
the
r
is
k
of
whe
e
l
lock
-
up.
T
o
c
ounter
thi
s
,
the
E
C
U
de
tec
ts
the
s
udde
n
r
e
duc
ti
on
in
whe
e
l
s
pe
e
d
a
nd
ins
tr
uc
ts
the
va
lve
to
c
los
e
,
r
e
duc
ing
the
b
r
a
ke
pa
d
pr
e
s
s
ur
e
a
nd
pr
e
ve
nti
ng
whe
e
l
lock
.
As
the
whe
e
l
be
gins
to
a
c
c
e
ler
a
te
a
ga
in,
the
E
C
U
s
ignals
the
va
lve
to
ope
n,
incr
e
a
s
ing
br
a
ke
pa
d
p
r
e
s
s
ur
e
a
nd
s
lowing
t
he
whe
e
l
down.
T
his
c
yc
le
of
b
r
a
ke
a
ppli
c
a
ti
on
a
n
d
r
e
lea
s
e
oc
c
ur
s
a
ppr
oxim
a
tely
15
ti
mes
pe
r
s
e
c
ond
dur
ing
he
a
vy
br
a
king,
e
f
f
e
c
ti
ve
ly
pr
e
ve
nti
ng
whe
e
l
l
oc
k
a
nd
r
e
duc
ing
ve
hicle
s
li
ding
.
W
i
th
AB
S
,
d
r
iver
s
c
a
n
mane
uve
r
the
c
a
r
while
br
a
king
,
s
igni
f
ica
ntl
y
low
e
r
ing
the
li
ke
li
hood
of
c
oll
is
ions
[
24]
,
[
25
]
.
5.
4.
Clas
s
if
icat
io
n
of
t
h
e
an
t
i
-
lock
b
r
ak
in
g
s
ys
t
e
m
T
he
AB
S
s
ys
tem
is
c
la
s
s
if
ied
int
o
thr
e
e
c
a
tegor
i
e
s
ba
s
e
d
on
the
numb
e
r
of
c
ha
nne
ls
it
include
s
.
E
a
c
h
type
of
AB
S
r
e
s
ponds
to
dif
f
e
r
e
nt
c
r
it
e
r
ia,
with
the
f
our
-
c
ha
nne
l
AB
S
pr
ovidi
ng
the
highes
t
leve
l
of
pe
r
f
or
manc
e
a
nd
s
a
f
e
ty.
a.
F
our
-
c
ha
nne
l
AB
S
s
ys
te
ms
:
AB
S
tec
hnology,
wid
e
ly
us
e
d,
is
a
f
ou
r
-
c
ha
nne
l
s
ys
tem
that
modul
a
tes
e
a
c
h
whe
e
l
s
e
pa
r
a
tely
dur
ing
br
a
king
,
e
nha
nc
ing
both
e
f
f
icie
nc
y
a
nd
s
a
f
e
ty
;
b.
T
hr
e
e
-
c
ha
nne
l
AB
S
:
T
hr
e
e
-
c
ha
nne
l
A
B
S
is
a
c
o
s
t
-
e
f
f
e
c
ti
ve
a
lt
e
r
na
ti
ve
to
f
our
-
c
ha
nne
l
AB
S
.
I
t
us
e
s
a
s
ingl
e
s
e
ns
or
to
c
ontr
ol
both
r
e
a
r
whe
e
ls
,
whic
h
li
mi
ts
AB
S
int
e
r
ve
nti
on
du
r
ing
s
e
ve
r
e
b
r
a
king
;
c.
One
-
c
ha
nn
e
l
AB
S
:
One
-
c
ha
nne
l
AB
S
,
the
lowe
s
t
opti
on
,
is
us
e
d
in
c
omm
e
r
c
ial
ve
hicle
s
with
a
s
ingl
e
s
e
ns
or
a
t
the
r
e
a
r
a
xle
,
f
oc
us
ing
on
the
r
e
a
r
whe
e
ls
dur
ing
ha
r
d
br
a
king.
5.
5.
A
M
a
t
h
e
m
at
ical
of
an
t
i
-
lock
b
r
ak
in
g
s
ys
t
e
m
A
mathe
matica
l
model
is
o
f
ten
us
e
d
to
s
im
ulate
h
ow
a
n
AB
S
s
ys
tem
ope
r
a
tes
.
T
his
model
typi
c
a
ll
y
include
s
c
omponents
s
uc
h
a
s
s
pe
e
d
s
e
n
s
or
s
,
a
c
o
ntr
ol
unit
,
a
nd
a
c
tuator
s
.
T
he
mathe
matica
l
model
he
lps
in
unde
r
s
tanding
the
s
ys
tem's
ope
r
a
ti
on
a
nd
the
im
p
a
c
t
of
va
r
ious
f
a
c
tor
s
on
it
s
pe
r
f
or
manc
e
.
T
h
is
inf
or
mation
is
c
r
uc
ial
f
or
de
s
igni
ng
a
nd
im
pr
oving
the
AB
S
s
y
s
tem.
T
ypica
ll
y,
s
e
ve
r
a
l
c
ha
r
a
c
ter
is
ti
c
s
a
r
e
us
e
d
to
c
a
li
br
a
te
AB
S
s
ys
tems
.
T
he
s
e
s
e
tt
ings
,
including
the
r
a
tes
of
br
a
king
p
r
e
s
s
ur
e
r
e
duc
ti
on
a
nd
r
e
s
tor
a
ti
on
a
s
we
ll
a
s
the
thr
e
s
hold
s
pe
e
d
that
tr
igger
s
s
ys
tem
a
c
ti
va
ti
on,
de
t
e
r
mi
ne
how
the
AB
S
s
ys
tem
f
unc
ti
ons
.
5.
5.
1.
T
h
e
ve
h
icle
m
od
e
li
n
g
Ve
hicle
modeling
c
ompr
is
e
s
thr
e
e
e
s
s
e
nti
a
l
c
omponents
:
ve
hicle
dyna
mi
c
s
,
whe
e
l
dyna
mi
c
s
,
a
nd
br
a
king
s
ys
tem
dyna
mi
c
s
.
Ve
hicle
dyna
mi
c
s
invol
ve
s
modeling
the
ove
r
a
ll
mot
ion,
ha
ndli
ng,
a
nd
r
e
s
pons
e
to
e
xter
na
l
f
or
c
e
s
s
uc
h
a
s
a
e
r
odyna
mi
c
s
a
nd
r
oa
d
c
ondit
ions
.
W
he
e
l
dyna
mi
c
s
f
oc
us
e
s
on
indi
vidu
a
l
whe
e
l
be
ha
vior
s
,
including
ti
r
e
c
ha
r
a
c
ter
is
ti
c
s
,
r
oa
d
in
ter
a
c
ti
ons
,
a
nd
the
e
f
f
e
c
ts
of
b
r
a
king
a
nd
c
or
n
e
r
ing
on
tr
a
c
ti
on
a
nd
s
tabili
ty.
B
r
a
king
s
ys
tem
dyna
mi
c
s
model
the
c
omponents
a
nd
int
e
r
a
c
ti
ons
withi
n
the
br
a
king
s
ys
tem,
including
br
a
ke
mec
ha
nis
ms
,
hydr
a
uli
c
s
ys
tems
,
a
nd
c
ont
r
ol
unit
s
li
ke
AB
S
,
whic
h
a
r
e
c
r
uc
ial
f
or
a
na
lyzing
br
a
king
e
f
f
icie
nc
y,
s
toppi
ng
dis
tanc
e
s
,
a
nd
ve
hicle
s
tabili
ty.
a.
Ve
hicle
dyna
mi
c
s
model
T
he
s
im
pli
f
ied
ve
hicle
's
e
qua
ti
on
of
mo
ti
on
c
a
n
be
r
e
pr
e
s
e
nted
us
ing
Ne
wton's
s
e
c
ond
law
:
×
̇
=
−
(
1)
whe
r
e
,
is
ve
hicle
ve
locity,
is
r
oa
d
f
r
iction
f
o
r
c
e
,
a
nd
is
tot
a
l
mas
s
of
the
qua
r
ter
ve
hicle
.
B
a
s
e
d
on
C
oulom
b's
law
,
the
r
oa
d
f
r
iction
f
or
c
e
is
de
ter
m
ined:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
E
lec
&
C
omp
E
ng
I
S
S
N:
2088
-
8708
A
dapti
v
e
c
ontr
ol
tec
hniques
for
impr
ov
ing
anti
-
loc
k
br
ak
ing
s
y
s
tem
…
(
M
ohamm
e
d
F
adhl
A
bdull
ah
)
265
=
µ
(
)
×
(
2)
whe
r
e
,
is
tot
a
l
nor
mal
f
or
c
e
(
r
oa
d
r
e
a
c
ti
on)
a
nd
µ
(
)
is
r
oa
d
a
dhe
s
ion
c
oe
f
f
icie
nts
.
T
he
tot
a
l
nor
mal
f
or
c
e
can
be
e
xpr
e
s
s
e
d
by
(
3
)
:
=
=
×
(
3)
whe
r
e
,
is
ve
hicle
we
ight
,
a
nd
is
the
g
r
a
vit
a
ti
ona
l
a
c
c
e
ler
a
ti
on.
R
e
plac
ing
(
4
)
in
(
3)
gives
th
e
e
xpr
e
s
s
ion
of
the
f
r
iction
f
or
c
e
as
(
4
)
:
=
µ
(
)
×
×
(
4)
then
,
×
̇
=
−
µ
(
)
×
=
−
µ
(
)
×
×
(
5)
thus
,
̇
=
−
µ
(
)
×
×
=
−
µ
(
)
×
(
6)
By
int
e
gr
a
ti
on
of
(
6)
,
we
ge
t
on
the
ve
hicle
s
pe
e
d.
One
wa
y
to
e
xpr
e
s
s
the
qua
r
ter
ve
hicle
's
ove
r
a
ll
mas
s
is
as
:
=
+
1
4
(
7)
whe
r
e
,
is
ti
r
e
mas
s
,
a
nd
is
ve
hicle
mas
s
.
b.
W
he
e
l
dyna
mi
c
s
model
T
he
de
s
ign
unde
r
c
ons
ider
a
ti
on
is
ba
s
e
d
on
a
qua
r
t
e
r
ve
hicle
model,
a
s
de
picte
d
in
F
igur
e
2
.
T
his
c
onc
e
pt
ha
s
be
e
n
uti
li
z
e
d
pr
e
vious
ly
f
o
r
de
s
igni
ng
the
AB
S
c
ontr
oll
e
r
.
T
he
e
qua
ti
on
o
f
mot
ion
f
o
r
the
r
otational
DO
F
a
t
whe
e
l
leve
l,
a
s
pe
r
Ne
wton's
s
e
c
ond
law
,
is
g
iven
by
(
8)
:
×
̇
=
−
(
8)
whe
r
e
,
is
ti
r
e
to
r
que
,
whic
h
c
a
n
be
mathe
matica
ll
y
s
tate
d
a
s
(
9)
:
=
×
=
µ
(
)
×
×
(
9)
then
,
×
̇
=
µ
(
)
×
×
−
(
10)
×
̇
=
µ
(
)
×
×
×
−
(
11)
F
igur
e
2.
Qua
r
ter
c
a
r
b
r
a
king
model
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2088
-
8708
I
nt
J
E
lec
&
C
omp
E
ng
,
Vol
.
15
,
No.
1
,
F
e
br
ua
r
y
20
25
:
260
-
279
266
T
he
e
qua
ti
on
of
whe
e
l
s
pe
e
d:
T
o
f
ind
the
e
qua
ti
on
of
whe
e
l
s
pe
e
d,
we
in
tegr
a
te
of
the
(
12)
:
̇
=
1
(
µ
(
)
×
×
×
−
(
12)
whe
r
e
,
is
whe
e
l
mom
e
nt
o
f
iner
ti
a
,
is
whe
e
l
s
pe
e
d,
is
whe
e
l
r
a
dius
,
is
br
a
king
tor
que
,
a
nd
is
r
oa
d
f
r
iction
f
or
c
e
.
c.
R
e
lative
s
li
p
T
he
AB
S
s
ys
tem
mus
t
c
ontr
ol
r
e
lative
s
li
p
a
r
ound
a
n
opti
mal
goa
l.
T
he
r
e
lative
s
li
p
e
qua
ti
on
is
wr
it
ten
a
s
(
13)
:
=
1
−
(
13)
whe
r
e
,
is
a
ngular
s
pe
e
d
of
the
whe
e
l,
a
nd
is
a
ngular
s
pe
e
d
of
the
ve
hicle
.
T
he
whe
e
l
a
ngular
s
pe
e
d
is
c
a
lcula
ted:
=
−
(
14)
a
nd
,
ve
hicle
a
ngular
s
pe
e
d
is
c
a
lcula
ted:
=
(
15)
whe
r
e
,
is
ti
r
e
tor
que
,
br
a
king
tor
que
a
nd
whe
e
l
r
otational
iner
ti
a
.
d.
S
li
p
r
a
ti
o
T
he
s
li
p
r
a
ti
o
is
the
dif
f
e
r
e
nc
e
be
twe
e
n
the
ve
hicle
li
ne
a
r
s
pe
e
d
a
nd
the
whe
e
l
a
ngular
s
pe
e
d,
indi
c
a
ted
by
(
)
.
I
t
is
c
r
e
a
ted
a
s
(
16)
:
=
−
×
(
16)
e.
S
li
p
r
a
te
Dif
f
e
r
e
nti
a
ti
ng
the
(
16)
with
r
e
s
pe
c
t
to
ti
me
(
t
)
,
ge
t:
̇
=
̇
(
1
−
)
−
×
̇
(
17)
W
he
r
e
,
is
the
ve
hicle
li
ne
a
r
s
pe
e
d,
is
whe
e
l
r
a
dius
,
a
nd
is
whe
e
l
a
ngular
s
pe
e
d.
f.
F
r
iction
model
T
he
r
e
is
a
ve
r
y
br
oa
d
r
a
nge
of
va
r
iation
in
the
f
r
iction
c
oe
f
f
icie
nt,
whic
h
de
pe
nds
on
thi
ngs
li
ke
:
i)
T
he
s
tate
of
the
r
oa
d's
s
ur
f
a
c
e
(
dr
y
or
we
t)
,
ii
)
Angle
of
s
ide
-
s
li
p
on
ti
r
e
s
,
ii
i)
the
type
of
ti
r
e
(
winter
or
s
umm
e
r
)
,
iv)
ve
hicle
s
pe
e
d,
v)
the
s
li
p
r
a
ti
o
be
twe
e
n
the
ti
r
e
a
nd
the
r
oa
d,
a
nd
vi)
the
s
tate
of
the
e
nvir
onment,
including
tempe
r
a
tur
e
a
nd
humi
dit
y.
W
e
will
s
olely
c
ons
ider
the
f
luctua
ti
on
of
the
f
r
iction
c
oe
f
f
icie
nt
f
unc
ti
on
on
the
longi
tudi
na
l
whe
e
l
s
li
p
f
or
our
s
im
ulation.
T
he
s
table
z
one
of
the
f
r
iction
c
oe
f
f
icie
nt
is
s
hown
in
F
igur
e
3
[
26]
.
W
he
n
a
pplyi
ng
br
a
ke
s
,
a
whe
e
l
s
li
p
of
100%
c
a
us
e
s
the
whe
e
l
to
lock
ye
t
ke
e
ps
the
c
a
r
going.
T
he
whe
e
l
a
nd
the
c
a
r
move
a
t
the
s
a
me
s
pe
e
d
whe
n
ther
e
is
no
s
li
de
.
W
he
e
l
s
li
p
of
a
bout
20%
is
the
idea
l
f
r
iction
c
oe
f
f
icie
nt.
T
he
r
e
a
r
e
two
z
one
s
on
the
f
r
iction
c
oe
f
f
icie
nt
c
ur
ve
:
a.
S
tabili
ty
z
one
:
whe
r
e
the
f
r
iction
c
oe
f
f
icie
nt
incr
e
a
s
e
s
with
the
whe
e
l
s
li
p
incr
e
a
s
e
.
b.
Uns
table
z
one
:
whe
r
e
the
f
r
iction
c
oe
f
f
icie
nt
de
c
r
e
a
s
e
s
with
the
whe
e
l
s
li
p
incr
e
a
s
e
.
T
he
f
r
iction
c
oe
f
f
icie
nt
de
c
r
e
a
s
e
s
a
s
the
whe
e
l
s
li
ps
int
o
a
n
uns
table
r
e
gion,
c
a
us
ing
the
whe
e
l
to
lock
a
nd
r
e
s
ult
ing
in
s
kiddi
ng
a
nd
ve
hicle
ins
tabili
ty.
E
a
c
h
type
of
r
oa
d
ha
s
a
unique
f
r
iction
c
ur
ve
.
C
ons
oli
da
ted
methods
f
or
modeling
the
ti
r
e
-
r
oa
d
f
r
iction
c
oe
f
f
icie
nt
include
the
P
a
c
e
jka
model,
a
ls
o
known
a
s
the
magic
f
or
mul
a
,
a
nd
the
B
uc
kha
r
dt
model.
T
he
e
qua
ti
on
gove
r
ning
thi
s
ti
r
e
model
is
given
by:
µ
(
)
=
.
(
.
(
1
−
−
(
.
)
−
.
)
(
18)
W
he
r
e
,
is
the
whe
e
l
s
li
p,
a
nd
,
,
,
a
r
e
the
e
mpi
r
ica
l
c
oe
f
f
icie
nts
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
E
lec
&
C
omp
E
ng
I
S
S
N:
2088
-
8708
A
dapti
v
e
c
ontr
ol
tec
hniques
for
impr
ov
ing
anti
-
loc
k
br
ak
ing
s
y
s
tem
…
(
M
ohamm
e
d
F
adhl
A
bdull
ah
)
267
F
igur
e
3.
F
r
iction
c
oe
f
f
icie
nt
s
tabili
ty
z
one
[
26]
De
pe
nding
on
the
va
lue
of
the
c
oe
f
f
icie
nts
A,
B
,
C
a
nd
D,
the
e
mpi
r
ica
l
f
or
mul
a
(
16)
c
a
n
be
us
e
d
to
r
e
pr
e
s
e
nt
the
f
r
iction
c
oe
f
f
icie
nt
f
or
dif
f
e
r
e
nt
r
oa
d
types
/s
tate
s
.
T
he
va
lues
of
the
B
ur
c
kha
r
dt's
c
ons
tants
f
or
va
r
ious
r
oa
d
c
ondit
ions
a
r
e
s
hown
in
the
T
a
ble
1.
Ac
c
or
ding
to
(
18)
,
C
ur
ve
s
s
howing
the
li
nk
be
twe
e
n
s
li
p
a
nd
c
oe
f
f
icie
nt
of
f
r
iction
f
or
va
r
ious
r
oa
d
c
ondit
ions
we
r
e
c
r
e
a
ted
us
ing
s
im
ulation,
a
s
s
hown
in
F
igur
e
4.
T
a
ble
1.
S
ur
f
a
c
e
pa
r
a
mete
r
s
f
or
dif
f
e
r
e
nt
r
oa
d
c
on
dit
ions
T
ype
of
r
oa
ds
A
B
C
D
D
r
y c
onc
r
e
te
0.9
1.07
0.2723
0.0026
W
e
t
a
s
pha
lt
0.7
1.07
0.5
0.003
S
now
0.3
1.07
0.1773
0.006
I
c
e
0.1
1.07
0.83
0.007
F
igur
e
4.
W
he
e
l
s
li
p
r
a
ti
o
ve
r
s
us
r
oa
d
c
oe
f
f
icie
nt
f
r
iction
5.
5.
2.
P
ar
am
e
t
e
r
s
of
m
od
e
l
T
a
ble
2
outl
ines
the
ke
y
pa
r
a
mete
r
s
uti
li
z
e
d
in
the
AB
S
model
s
im
ulation,
whic
h
a
r
e
e
s
s
e
nti
a
l
f
or
a
c
c
ur
a
tely
e
va
luating
s
ys
tem
pe
r
f
or
manc
e
.
Ke
y
pa
r
a
mete
r
s
include
ve
hicle
mas
s
,
whe
e
l
iner
ti
a
,
whe
e
l
r
a
dius
,
ini
ti
a
l
s
pe
e
d,
br
a
king
tor
que
,
s
li
p
r
a
ti
o,
a
nd
c
ons
tants
f
or
r
oa
d
c
ondit
ions
a
nd
c
ontr
ol
s
e
tt
ings
.
T
he
s
e
f
a
c
tor
s
a
r
e
c
r
uc
ial
a
s
they
dir
e
c
tl
y
inf
luenc
e
br
a
king
e
f
f
e
c
ti
ve
ne
s
s
,
s
toppi
ng
dis
tanc
e
s
,
a
nd
the
ove
r
a
ll
s
tabili
ty
of
the
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
S
N
:
2088
-
8708
I
nt
J
E
lec
&
C
omp
E
ng
,
Vol
.
15
,
No.
1
,
F
e
br
ua
r
y
20
25
:
260
-
279
268
ve
hicle
unde
r
va
r
ious
c
ondit
ions
.
B
y
s
im
ulating
thes
e
pa
r
a
mete
r
s
,
r
e
s
e
a
r
c
he
r
s
c
a
n
be
tt
e
r
unde
r
s
tand
the
AB
S
's
pe
r
f
or
manc
e
a
c
r
os
s
dif
f
e
r
e
nt
s
c
e
na
r
ios
a
nd
identif
y
potential
a
r
e
a
s
f
or
im
pr
ove
ment.
5.
6.
S
im
u
lat
ion
of
AB
S
T
he
qua
r
ter
-
c
a
r
model,
a
s
de
s
c
r
ibed
in
the
li
ter
a
tur
e
,
r
e
pr
e
s
e
nts
a
s
im
pli
f
ied
ve
hicle
a
nd
whe
e
l
c
ombi
na
ti
on
us
e
d
in
the
s
im
ulation.
T
his
model
a
s
s
umes
that
a
ve
hicle
with
a
s
ingl
e
whe
e
l
a
c
c
ount
f
or
one
-
qua
r
ter
of
it
s
tot
a
l
mas
s
.
Additi
ona
ll
y,
it
dis
r
e
ga
r
ds
the
e
f
f
e
c
ts
of
the
s
us
pe
ns
ion
s
ys
tem
a
nd
f
oc
us
e
s
s
olely
on
longi
tudi
na
l
ve
hicle
dyna
mi
c
s
.
T
a
ble
2
.
P
a
r
a
mete
r
s
us
e
d
in
the
AB
S
model
S
ymbol
V
a
lu
e
D
e
s
c
r
ip
ti
on
m
v
1370 [
K
g]
T
ot
a
l
ve
hi
c
le
ma
s
s
J
ω
5 [
kg·
m
2
]
W
he
e
l
in
e
r
ti
a
R
r
0.33 [
m]
W
he
e
l
r
a
di
us
v
0
88
[
m/
s
]
I
ni
ti
a
l
ve
hi
c
le
s
pe
e
d
F
N
∗
g
[
N
]
N
or
ma
l
f
or
c
e
ω
0
v
0
/
[
r
a
d/
s
]
W
he
e
l
s
pe
e
d a
ngul
a
r
g
9.81 [
m/
s
2
]
G
r
a
vi
ta
ti
ona
l
a
c
c
e
le
r
a
ti
on
K
f
1 [
-
]
F
or
c
e
a
nd T
or
que
T
b
ma
x
1500 [
N
·
m]
M
a
xi
mum
br
a
ki
ng t
or
que
a
ppl
ie
d t
o t
he
w
he
e
ls
TB
0.01 [
S
]
H
ydr
a
ul
ic
L
a
g
λ
d
0.2 [
-
]
D
e
s
ir
e
d s
li
p
C
tr
l
1 or
0
W
it
h A
B
S
→
1
a
nd W
it
hout
A
B
S
→
0
K
1000
P
r
opor
ti
ona
l
ga
in
R
oa
d t
ype
1, ,2, 3, or
4 [
-
]
C
ons
ta
nt
f
or
r
oa
d s
e
tt
in
g
-
1
,
2
,
&
3
1, 2, …, N [
-
]
P
-
c
ont
r
ol
le
r
A
, B
, C
, a
nd D
-
T
he
c
ons
t
a
nt
s
w
hi
c
h de
p
e
nd on r
oa
d c
ondi
ti
ons
e
2.2204*10
-
16
D
iv
is
io
n by z
e
r
o pr
ot
e
c
ti
on c
ons
ta
nt
5.
6.
1.
M
od
e
ll
in
g
of
AB
S
F
igur
e
5
il
lus
tr
a
tes
a
s
im
ulation
of
a
n
AB
S
,
whe
r
e
the
br
a
king
pr
oc
e
s
s
tar
ge
ts
a
de
s
ir
e
d
r
e
lative
s
li
p
a
s
a
ke
y
pa
r
a
mete
r
.
T
he
AB
S
c
ontr
ol
s
ignal
de
ter
mi
ne
s
if
the
s
ys
tem
is
a
c
ti
ve
,
a
nd
the
P
-
c
ontr
oll
e
r
ge
ne
r
a
tes
a
c
ontr
ol
s
ignal
ba
s
e
d
on
the
dif
f
e
r
e
nc
e
be
twe
e
n
the
de
s
ir
e
d
s
li
p
a
nd
the
a
c
tual
s
li
p
.
T
his
c
ontr
ol
s
ignal
is
us
e
d
to
c
a
lcula
te
the
ti
r
e
tor
que
,
inf
luenc
ing
the
whe
e
l
s
pe
e
d
a
nd
ve
hicle
s
pe
e
d
.
T
he
s
e
s
pe
e
ds
a
r
e
us
e
d
to
c
omput
e
the
s
toppi
ng
dis
tanc
e
a
nd
r
e
lative
s
li
p
,
whic
h
is
f
e
d
ba
c
k
int
o
the
s
ys
tem.
T
he
f
r
iction
model
us
e
s
the
r
e
lative
s
li
p
to
de
ter
mi
ne
the
f
r
iction
c
oe
f
f
icie
nt,
c
a
lcula
ti
ng
the
f
r
iction
f
or
c
e
ba
s
e
d
on
the
ve
hicle
's
nor
mal
f
or
c
e
.
T
he
f
r
iction
f
or
c
e
,
togethe
r
with
the
ve
hicle
mas
s
,
de
ter
mi
ne
s
the
ve
hicle
's
a
c
c
e
ler
a
ti
on,
whic
h
is
int
e
gr
a
ted
to
obtain
the
ve
hicle
s
pe
e
d
a
nd,
s
ubs
e
que
ntl
y,
the
s
toppi
ng
dis
tanc
e
.
T
his
c
los
e
d
-
loop
s
ys
tem
dyna
mi
c
a
ll
y
a
djus
ts
the
br
a
king
f
or
c
e
to
maintain
the
de
s
ir
e
d
s
li
p
r
a
ti
o,
opti
mi
z
ing
br
a
king
pe
r
f
or
manc
e
a
nd
mi
nim
izing
s
toppi
ng
dis
tanc
e
.
F
igur
e
5.
B
lock
diagr
a
m
of
modeling
a
n
AB
S
Evaluation Warning : The document was created with Spire.PDF for Python.
I
nt
J
E
lec
&
C
omp
E
ng
I
S
S
N:
2088
-
8708
A
dapti
v
e
c
ontr
ol
tec
hniques
for
impr
ov
ing
anti
-
loc
k
br
ak
ing
s
y
s
tem
…
(
M
ohamm
e
d
F
adhl
A
bdull
ah
)
269
5.
6.
2.
B
lock
d
iagram
o
f
ve
h
icle
m
o
d
e
l
F
igur
e
6
s
hows
a
s
im
ulation
of
a
ve
hicle
model
il
lus
tr
a
ti
ng
the
r
e
lations
hip
a
mong
f
unda
menta
l
f
or
c
e
s
c
r
it
ica
l
f
or
c
ompr
e
he
nding
ve
hicle
pe
r
f
or
manc
e
a
nd
s
a
f
e
ty.
I
t
highl
ight
s
how
f
r
iction
f
or
c
e
,
whic
h
oppos
e
s
mot
ion
be
twe
e
n
ti
r
e
a
nd
r
oa
d
s
ur
f
a
c
e
s
,
dir
e
c
tl
y
inf
luenc
e
s
both
a
c
c
e
ler
a
ti
on
a
nd
br
a
king
c
a
pa
bil
it
ies
.
T
he
c
onc
e
pt
of
s
li
p
is
il
lus
tr
a
ted,
de
mons
tr
a
ti
ng
the
los
s
of
tr
a
c
ti
on
whe
n
f
r
ictional
gr
ip
dim
ini
s
he
s
,
ther
e
by
c
ompr
omi
s
ing
s
tee
r
ing
a
nd
br
a
king
c
ontr
ol.
W
e
ight
,
r
e
pr
e
s
e
nted
a
s
gr
a
vit
a
ti
ona
l
f
or
c
e
,
c
ontr
ibut
e
s
to
the
nor
mal
f
or
c
e
that
dicta
tes
f
r
iction,
inf
luenc
e
d
s
igni
f
ica
ntl
y
by
the
ve
hicle
's
mas
s
a
nd
gr
a
vit
y.
Ve
hicle
mas
s
,
in
tur
n,
a
f
f
e
c
ts
iner
ti
a
,
r
e
quir
ing
gr
e
a
ter
f
or
c
e
to
c
ha
nge
the
mot
ion
of
he
a
vier
ve
hicle
s
.
S
pe
e
d
is
s
hown
to
im
pa
c
t
kinetic
e
ne
r
gy
a
nd
mom
e
ntum
,
c
or
r
e
lating
dir
e
c
tl
y
with
s
toppi
ng
dis
tanc
e
s
a
nd
the
ne
c
e
s
s
a
r
y
br
a
king
f
or
c
e
s
.
Angula
r
ve
locity,
r
e
pr
e
s
e
nti
ng
r
otational
s
pe
e
d,
is
c
r
uc
ial
f
or
unde
r
s
tanding
whe
e
l
dyna
mi
c
s
withi
n
the
s
im
ulation.
F
inally,
the
s
im
ulation
unde
r
s
c
or
e
s
the
c
r
it
ica
l
r
ole
of
s
toppi
ng
dis
tanc
e
,
whic
h
de
pe
nds
on
s
pe
e
d,
f
r
iction
leve
ls
,
a
nd
dr
iver
r
e
a
c
ti
on
ti
mes
,
e
mphas
izing
the
dyna
mi
c
int
e
r
a
c
ti
ons
e
s
s
e
nti
a
l
f
or
s
a
f
e
a
nd
e
f
f
e
c
ti
ve
ve
hicle
ope
r
a
ti
on.
F
igur
e
6.
B
lock
diagr
a
m
of
ve
hicle
model
5.
6.
3.
B
lock
d
iagram
o
f
whee
l
m
od
e
l
F
igur
e
7
il
lus
tr
a
tes
a
s
im
ulation
of
a
whe
e
l
model,
pr
ovidi
ng
a
de
tailed
de
piction
of
the
e
s
s
e
nti
a
l
c
omponents
a
nd
int
e
r
a
c
ti
ons
withi
n
a
whe
e
l
br
a
ke
s
ys
tem.
I
t
e
mphas
ize
s
the
dyna
mi
c
int
e
r
play
of
f
or
c
e
,
tor
que
,
a
nd
c
ontr
ol
mec
ha
nis
ms
c
r
uc
ial
f
or
ve
hicle
mot
ion.
T
he
s
ys
tem
is
e
nginee
r
e
d
to
mana
ge
whe
e
l
r
otational
s
pe
e
d
us
ing
a
hydr
a
uli
c
lag
br
a
ke
,
whic
h
int
r
oduc
e
s
a
c
ontr
oll
e
d
de
lay
to
e
nha
nc
e
br
a
king
pr
e
c
is
ion
a
nd
s
moot
hne
s
s
.
At
the
c
or
e
of
thi
s
c
onf
igur
a
ti
on
is
a
c
ontr
oll
e
r
that
a
na
lyze
s
input
s
s
uc
h
a
s
whe
e
l
s
pe
e
d
a
nd
hydr
a
uli
c
pr
e
s
s
ur
e
to
de
ter
mi
ne
the
opti
mal
br
a
king
f
or
c
e
a
nd
tor
que
,
c
r
uc
ial
f
or
maintaining
ve
hicle
s
tabili
ty
a
nd
pr
e
ve
nti
ng
s
kiddi
ng
dur
ing
br
a
king.
T
he
diagr
a
m
s
ugge
s
ts
that
a
r
otational
a
c
tuator
c
onve
r
ts
hydr
a
uli
c
pr
e
s
s
ur
e
int
o
mec
ha
nica
l
f
or
c
e
,
a
pplyi
ng
br
a
king
f
or
c
e
to
br
a
ke
pa
ds
or
s
hoe
s
.
T
his
de
s
ign
e
ns
ur
e
s
e
f
f
icie
nt
de
c
e
ler
a
ti
on
while
maintaining
c
ons
is
tent
tr
a
c
ti
on
a
nd
s
tabili
ty,
e
s
s
e
nti
a
l
f
or
s
a
f
e
dr
ivi
ng
unde
r
diver
s
e
c
ondit
ions
.
F
igur
e
7.
B
lock
diagr
a
m
of
whe
e
l
model
Evaluation Warning : The document was created with Spire.PDF for Python.