Int
ern
at
i
onal
Journ
al of Ele
ctrical
an
d
Co
mput
er
En
gin
eeri
ng
(IJ
E
C
E)
Vo
l.
15
,
No.
1
,
Febr
uary
20
25
, pp.
10
27
~
1037
IS
S
N:
20
88
-
8708
, DO
I: 10
.11
591/ij
ece.v
15
i
1
.
pp
1027
-
10
37
1027
Journ
al h
om
e
page
:
http:
//
ij
ece.i
aesc
or
e.c
om
Integr
ation o
f we
b scrapi
ng, fin
e
-
t
un
i
ng, a
nd data enri
ch
m
ent
in a cont
inuous m
on
it
ori
ng cont
ext via
lar
ge lan
guage mo
del
operatio
ns
Anas B
odor
1
, Meri
em
Hnid
a
1,2
, Na
jima
Daoudi
1,3
1
IT
QAN
T
ea
m
,
Ly
Rica
Lab,
I
n
for
m
at
io
n
Sciences Sch
o
o
l,
Rab
at,
Moro
cc
o
2
RIME
Tea
m
,
Mo
h
am
m
ad
ia
Scho
o
l of E
n
g
in
eers, Mo
h
am
m
ed
V
Un
iv
ersi
ty
,
Rab
at,
Moro
cc
o
3
SSLab, E
NSIA
S,
Moh
am
m
ed
V
Un
iv
ersity
,
Rab
at,
Moro
cco
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
M
a
y 23,
2024
Re
vised
Sep 1
6,
2024
Accepte
d
Oct
1,
2024
Thi
s
pape
r
pre
s
ent
s
and
discus
ses
a
fra
m
ework
tha
t
le
v
era
ges
la
rge
-
sc
ale
la
nguag
e
mod
els
(LL
Ms
)
for
dat
a
enr
i
chm
en
t
and
continuous
moni
tori
ng
em
phasi
zi
ng
i
ts
essenti
a
l
rol
e
i
n
opti
m
iz
ing
th
e
per
for
ma
nc
e
of
depl
oyed
mode
ls.
It
int
ro
duce
s
a
com
pr
e
hensive
la
r
ge
la
ngua
ge
m
odel
op
e
rati
ons
(
LL
MO
ps
)
met
hodology
bas
ed
on
cont
inuous
moni
tori
ng
a
nd
continuous
im
prove
m
ent
of
the
da
ta,
t
he
pri
ma
ry
d
eterm
in
a
nt
of
the
mod
el
,
in
o
rde
r
to
opti
mize
th
e
pr
edi
c
ti
on
of
a
g
ive
n
phenomen
on.
To
thi
s
en
d,
f
irst
we
exa
m
ine
th
e
use
of
real
-
time
we
b
scra
ping
usin
g
tool
s
such
as
Kafka
and
Spark
Strea
m
ing
for
dat
a
ac
qu
isit
ion
and
proc
essing.
In
addition
,
we
expl
o
re
the
integra
ti
on
o
f
LL
MO
ps
for
com
ple
t
e
l
ife
cy
cle
ma
n
age
m
ent
o
f
ma
ch
ine
le
arn
ing
mode
ls
.
Focusing
on
co
nti
nuous
mon
it
o
ring
and
im
prov
em
en
t,
we
highl
ight
th
e
importance
of
th
is
appr
oac
h
for
ens
uring
opt
im
a
l
pe
rform
ance
of
depl
oyed
m
odel
s
base
d
on
dat
a
and
ma
c
hine
l
ea
rn
ing
(
ML
)
mode
l
moni
tori
ng
.
W
e
al
so
illus
tra
t
e
th
i
s
me
thodol
ogy
t
hrough
a
c
ase
st
udy
base
d
on
re
al
da
ta
fro
m
sev
era
l
r
eal
esta
t
e
li
sting
sit
es,
dem
onstra
ti
ng
h
ow
MLflow
ca
n
be
in
te
gr
a
te
d
int
o
an
L
LMOps
pipe
l
in
e
to
guar
an
tee
co
mpl
e
te
deve
lop
me
n
t
trace
ab
il
i
ty,
pro
ac
t
ive
de
te
c
ti
on
of
per
forma
n
ce
d
egr
adation
s
and
eff
ective m
o
del
li
fe
cycle
manage
m
ent
.
Ke
yw
or
d
s
:
Con
ti
nu
ou
s
m
onit
or
i
ng
Data
en
rich
me
nt
Fine
-
t
un
i
ng
LLM
O
ps
M
L
Op
s
Web
scra
ping
This
is an
open
acc
ess arti
cl
e
un
der
the
CC
BY
-
SA
l
ic
ense
.
Corres
pond
in
g
Aut
h
or
:
An
as
Bo
dor
ITQA
N
Tea
m, LyRi
ca La
b,
I
nfo
rmati
on Scie
nces
Scho
ol
Ra
bat,
M
or
occ
o
Emai
l:
anas.
bo
dor@
e
si.ac.ma
1.
INTROD
U
CTION
M
ac
hin
e
le
ar
ni
ng
op
e
rati
ons
(
M
L
O
ps
)
,
st
ands
f
or
a
m
et
hodo
l
ogy
for
ef
fici
ently
mana
ging
the
dev
el
opment
,
dep
l
oyment
an
d
mana
geme
nt
proce
sses
of
machine
le
ar
ni
ng
(
M
L
)
mode
ls,
an
d
la
rg
e
la
ngua
ge
model
op
e
rati
on
s
(
LL
M
O
ps
)
[1]
,
w
hich
e
xten
ds
t
hese
pri
nciple
s
sp
eci
fical
ly
to
la
ng
uag
e
m
odel
s
s
uch
as
gen
e
rati
ve
pr
e
-
trai
ne
d
tra
ns
f
ormer
(
GPT
)
,
ta
kin
g
i
nto
a
ccount
their
uniq
ue
re
qu
i
re
ments
[
2]
,
co
mb
ini
ng
con
ti
nu
ous
m
onit
or
i
ng
[
3]
,
model
ex
plica
bili
ty
an
d
s
ys
t
emat
ic
mana
ge
ment
of
t
he
M
L
model
li
f
ecycle
,
pro
vid
e
a
co
m
pr
e
he
ns
ive
s
olu
ti
on
for
opti
mizi
ng
the
performa
nce
of
de
ploye
d
model
s.
This
a
ppro
a
ch
reli
e
s
on
t
he
use
of
a
dv
a
nce
d
te
ch
nolo
gies
su
c
h
as
real
-
ti
me
we
b
scrap
i
ng,
Ka
f
ka
and
Sp
a
r
k
St
reamin
g
f
or
ef
f
ic
ie
nt
data
acq
uisit
ion
an
d
processi
ng.
T
he
chall
e
ng
e
of
co
ntin
uous
m
on
it
ori
ng
li
es
in
en
suring
t
he
reli
abili
ty
an
d
performa
nce
of
M
L
m
od
el
s
i
n
pro
du
ct
i
on.
This
e
ntail
s
c
onsta
nt
m
on
it
ori
ng
of
the
res
ul
ts
ge
ner
at
e
d
by
t
hese
models,
as
w
el
l
as
the
pr
oa
ct
ive
detect
io
n
of
pe
rforma
nce
dr
ifts
or
undesira
ble
be
hav
i
or
s
.
By
pl
aci
ng
con
ti
nu
ous
monit
or
i
ng
a
nd
model
e
xp
li
ca
bili
ty
at
the
he
art
of
our
me
thodo
l
ogy,
we
ai
m
t
o
guara
ntee
the
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1027
-
1037
1028
reli
abili
ty
of
pr
edict
ion
s
,
w
hile
meet
in
g
t
he
needs
of
oth
e
r
app
li
cat
io
n
do
mains.
T
his
a
ppr
oac
h
t
hu
s
prov
i
des
a
s
olid
f
ounda
ti
on
f
or
in
f
ormed
decisi
on
-
making,
es
sent
ia
l
in
a
c
onte
xt
w
her
e
data
pl
ays
a
n
inc
rea
sing
l
y
cru
ci
al
role i
n st
rategic c
ho
ic
es.
This
pap
e
r
i
ntr
oduces
an
in
novative
fr
a
mew
ork
t
hat
co
mb
i
nes
M
L
O
ps
a
nd
LL
MO
ps
to
imp
rove
M
L
models
th
r
ough
data
e
nr
ic
hme
nt
a
nd
co
ntin
uous
m
on
it
ori
ng.
For
i
ns
ta
nce
,
the
f
rame
wor
k
us
es
la
rge
la
ngua
ge
models
(
LL
Ms)
f
or
data
e
nri
chme
nt
of
re
al
-
ti
me
data
a
cqu
isi
ti
on
a
nd
processi
ng
to
facil
it
at
e
pr
e
dicti
ve
accurac
y
a
nd
e
ff
ic
ie
nc
y.
We
furthe
r
validat
e
the
fr
a
mew
ork's
ef
fecti
ve
ne
ss
th
rou
gh
a
case
stu
dy
in
t
he
real
est
at
e
sect
or,
sh
owcasi
ng
it
s
capaci
ty
to
r
efine
model
predic
ti
ons
ac
r
os
s
va
rio
us
fi
el
ds
.
More
ove
r,
our
fr
ame
w
ork
e
nsures
the
pe
rformance
of
dep
l
oy
e
d
models
vi
a
rig
orous
m
onit
or
i
ng
an
d
li
f
ecycle
ma
na
ge
ment,
set
ti
ng
a
ne
w
sta
nd
a
rd
for
inf
or
me
d
decisi
on
-
ma
king
a
nd
si
gn
i
ficantl
y
ad
va
ncin
g
the
mac
hin
e
le
arn
i
ng
op
e
rati
on
s
domain.
The
remain
de
r
of
this
arti
cl
e
is
orga
nized
as
s
ect
ion
2
rev
i
ews
r
el
at
ed
w
orks
,
sit
uatin
g
our
a
ppr
oac
h
within
the
ex
ist
ing
la
ndsca
pe
of
M
L
Op
s
,
LL
MOp
s,
a
nd
c
on
ti
nu
ou
s
m
on
it
ori
ng
pr
act
ic
es.
Sect
ion
3
introd
uces
our
theo
reti
cal
fr
a
mew
ork,
detai
li
ng
t
he
un
derpi
nn
i
ngs
of
LL
M
f
or
da
ta
en
richme
nt
,
LL
MOps
f
or
mana
ging
t
he
li
fecy
cl
e
of
la
r
ge
la
ng
ua
ge
m
od
el
s
,
a
nd
the
crit
ic
al
ro
le
of
c
on
ti
nu
ou
s
monit
or
i
ng
in
model
op
ti
miza
ti
on.
S
ect
ion
4
desc
ri
bes
t
he
pro
pos
ed
fr
a
mew
ork
for
dyna
mic
op
ti
miza
ti
on
of
M
L
m
od
el
s,
outl
ining
our
m
ulti
-
ste
p
meth
odolog
y
that
inclu
des
data
ac
qu
isi
ti
on
,
prep
r
oces
sing,
ex
plorat
ion,
m
odel
bui
lding,
evaluati
on,
an
d
dep
l
oyme
nt
with
c
on
ti
nuou
s
m
on
it
ori
ng.
Sect
ion
5
pres
ents
a
ca
se
stu
dy
to
de
monst
rate
the
pr
act
ic
al
a
ppli
cat
ion
an
d
ef
f
ect
iveness
of
our
f
rame
wor
k
in
im
pro
ving
real
est
at
e
pri
ce
pr
e
dicti
on
m
od
el
s
.
Finall
y,
s
ect
io
n
6
co
nclu
des
the
arti
cl
e
by
s
um
ma
rizi
ng
our
fin
dings
a
nd
disc
us
si
ng
t
he
impli
cat
ion
s
of
ou
r
researc
h for t
he
f
ie
ld
of mac
hi
ne
le
ar
ning
operati
on
s
in
c
on
ti
nu
ousl
y
c
hangin
g data en
vir
onments
.
2.
RELATE
D
W
ORKS
In
the
c
on
te
xt
of
arti
fici
al
int
el
li
gen
ce
(AI),
co
ntin
uous
m
od
el
m
on
it
ori
ng
play
s
a
vital
r
ole.
This
process
in
volv
es
c
on
sta
nt
obser
vatio
n
of
the
perf
or
ma
nc
e
of
de
ploye
d
models
to
qu
ic
kly
ide
ntif
y
a
ny
deterio
rati
on
i
n
t
he
acc
ur
ac
y
or
reli
abili
ty
of
pre
dicti
on
s
[4]
.
H
oweve
r,
the
su
cce
ss
of
this
m
onit
or
i
ng
is
cl
os
el
y
dep
e
nd
ent
on
the
qua
li
ty
of
th
e
un
de
rlying
data,
wh
ic
h
un
der
li
ne
s
the
im
port
ance
of
data
qual
it
y
.
P
oor
-
qual
it
y
da
ta
can
c
omp
r
om
ise
t
he
e
ff
i
ci
ency
an
d
val
idit
y
of
model
res
ults
[
5]
.
F
ur
t
her
m
ore,
MLO
ps
pr
act
ic
es
[
6]
,
a
imed
at
opti
mizi
ng
the
de
ployme
nt
an
d
ma
nag
e
ment
of
machine
le
a
rn
i
ng
models,
as
well
as
LLM
O
ps
pract
ic
es
[
7]
a
pp
li
e
d
t
o
LL
M
m
odel
s
[
8]
,
[
9]
dea
li
ng
with
natu
r
al
la
ngua
ge
pr
ocessin
g
(
NLP
)
[10
]
,
[11]
,
are
al
s
o
c
ru
ci
al
in
this
c
on
te
xt
to
bri
ng
dev
el
opment
and
pro
duct
ion
env
i
ronme
nts
even
cl
os
er
t
oget
her
.
In
te
gr
at
in
g
the
se
aspects
hel
ps
mai
ntain
model
qual
it
y
an
d
performa
nce
[
12]
,
wh
i
ch
is
esse
ntial
in
a
n
env
i
ronme
nt
wh
e
re
da
ta
an
d
co
ndit
ion
s
can
cha
nge
ra
pid
ly
[
13]
.
T
hus,
unde
rstan
di
ng
the
relat
io
ns
hi
p
betwee
n
c
on
ti
nuous
m
onit
ori
ng
,
data
qual
it
y,
M
L
Op
s
an
d
LL
MOp
s
pr
act
ic
es
is
essenti
al
to
ens
ure
reli
able
pr
e
dicti
on
s
a
nd informed
d
eci
sion
-
ma
king in
d
ive
rse
a
ppli
cat
ion
domains
.
Seve
ral
stud
ie
s
hav
e
highli
ghte
d
the
c
urren
t
ecos
ys
te
m
of
too
ls
that
s
uppo
rt
the
M
L
pip
e
li
ne.
These
too
ls
play
an
e
ssentia
l
r
ole
in
the
e
ff
ect
ive
impleme
ntati
on
of
c
on
ti
nu
ous
monit
ori
ng,
da
ta
qual
it
y,
MLO
ps
pr
act
ic
es
a
nd
LLM
O
ps
.
T
hei
r
av
ai
la
bili
ty
and
us
e
ena
ble
te
ams
to
de
velop
an
d
de
ploy
arti
fici
al
intel
lig
ence
models
faster
and
more
re
li
ably.
F
or
e
xa
mp
le
,
in
t
he
fiel
d
of
co
nt
inuous
m
on
it
ori
ng,
to
ols
s
uc
h
as
Pr
ome
the
us
[
14]
,
G
raf
a
na
[
14]
a
nd
te
nsor
bo
a
rd
[
15]
pro
vid
e
a
dvanc
ed
feat
ur
es
for
monit
ori
ng
model
performa
nce
in
real
ti
me.
T
hese
t
oo
ls
e
na
ble
te
ams
to
c
losely
m
on
it
or
ke
y
metri
cs
[
16]
su
c
h
as
preci
sion
,
rec
al
l an
d
F
-
s
c
or
e
, a
nd quickl
y detec
t an
y de
viati
on
fro
m
predefi
ned thre
sholds
.
Wh
e
n
it
c
om
e
s
to
data
qual
it
y,
to
ols
s
uc
h
as
g
reat
e
xpect
at
ion
s
[17]
,
d
a
ta
r
obot
[
18]
,
and
Trif
act
a
[19]
offer
feat
ur
es
t
o
eval
uate,
cl
ean
an
d
va
li
date
data
be
fore
it
is
us
ed
in
M
L
m
odel
s.
These
to
ols
id
entify
ou
tl
ie
rs,
dupli
cat
es,
missi
ng
values
a
nd
inco
ns
ist
encies
in
dataset
s,
helping
to
im
pro
ve
the
qu
a
li
ty
an
d
reli
abili
ty
of
model
pr
e
dicti
on
s
.
I
n
t
he
a
re
a
of
M
L
O
ps
a
nd
LL
MOp
s
pract
ic
es,
platfo
rms
su
c
h
as
K
ub
e
flo
w
[20]
,
ML
flo
w
[
21]
a
nd
S
el
don
c
or
e
[22
]
pro
vid
e
functi
onal
it
y
t
o
aut
oma
te
a
nd
or
c
he
strat
e
the
de
pl
oy
me
nt,
mana
geme
nt a
nd m
on
it
ori
ng
of
M
L
m
od
el
s
.
Th
ese
platf
orms en
a
ble tea
ms to
c
ollab
orat
e eff
ic
ie
ntly
, t
rack
t
he
evo
l
ution
of
models
a
nd
guara
ntee
th
ei
r
co
ns
ist
enc
y
and
re
li
abili
ty
in
pro
duct
io
n
e
nviro
nm
e
nt
s.
By
unde
rstan
ding
the
la
nd
sca
pe
of
a
vaila
ble
t
ools,
te
ams
can
c
hoos
e
the
s
ol
ution
s
that
be
st
meet
their
s
pecific
needs,
a
nd
im
pl
ement
rob
us
t
processes
to
guara
ntee
t
he
qual
it
y
a
nd
reli
abili
ty
of
arti
fic
ia
l
intel
li
gen
ce
m
od
el
pr
e
dicti
on
s
.
3.
THE
ORETI
C
AL F
RAME
WORK
Be
fore
ex
ploring
t
he
detai
ls
of
the
fr
a
mew
ork
that
integ
r
at
es
LLM
a
nd
M
L
m
odel
s
wi
th
real
-
ti
m
e
data
processi
ng,
as
outl
ined
in
sect
io
n
4,
it
is
im
portant
to
first
e
sta
blish
it
s
releva
nce
withi
n
t
he
broad
e
r
con
te
xt o
f
o
ur
r
esearc
h.
T
his f
rame
w
ork
is n
ot o
nl
y
a
te
c
hnic
al
co
ntributi
on but
al
s
o
a
ddr
esses
c
riti
cal
ga
ps
in
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
I
ntegr
atio
n of
we
b
scr
apin
g,
f
ine
-
tu
ning,
an
d d
ata
e
nr
ic
hm
e
nt in a c
onti
nu
ou
s
m
onit
or
in
g
…
(
An
as
Bo
dor
)
1029
current
meth
odol
og
ie
s
by
offe
rin
g
a
nove
l
appro
ac
h
t
o
ha
nd
li
ng
dyna
mic
data.
T
o
fu
ll
y
ap
preci
at
e
the
sign
ific
a
nce
of
this
i
nteg
rati
on
,
ke
y
c
onc
epts
relat
e
d
t
o
bo
t
h
m
achi
ne
le
ar
ning
a
nd
nat
ur
al
la
ngua
ge
processi
ng,
as
well
as
their
ro
le
s
in
mod
ern
data
-
dr
i
ve
n
en
vir
onme
nts,
nee
d
to
be
unde
rstood.
These
fou
nd
at
io
nal id
eas will
h
el
p high
li
ght t
he
im
porta
nce
of
our
con
t
rib
ution t
o ad
van
ci
ng r
es
earch
i
n
t
his f
i
el
d.
3.1.
LL
M
f
or
data enri
chmen
t
The
L
LM
ap
proac
h
is
im
po
rtant
f
or
e
xtra
ct
ing
in
f
or
mat
ion
from
te
xtua
l
descr
i
ptions
due
to
it
s
con
te
xtu
al
un
der
sta
nd
i
ng
ca
pab
il
it
ie
s.
LL
M
s
[
23]
li
ke
GP
T,
bid
i
recti
on
al
e
ncode
r
represe
nta
ti
on
s
fro
m
trans
forme
rs
(
BER
T
)
a
nd
Ba
rd
[
24]
,
[
25]
a
re
tr
ai
ne
d
on
e
xtensi
ve
te
xt
da
ta
set
s,
e
nab
li
ng
th
em
to
gra
sp
the
con
te
xt
of
a
giv
e
n
te
xtu
al
descr
i
ption.
T
his
c
on
te
xtu
al
co
mprehe
ns
i
on
al
lo
ws
them
to
ca
pture
impli
ci
t
meanin
gs,
w
hi
ch
is
c
ru
ci
al
f
or
preci
se
in
f
ormat
ion
e
xtracti
on.
LL
M
s
can
eff
ic
ie
ntly
pro
cess
la
rge
volu
mes
o
f
te
xt
acro
s
s
a
w
ide
ra
ng
e
of
do
mains
a
nd
s
ubje
ct
s.
The
y
can
be
re
fine
d
o
r
c
us
to
mize
d
f
or
sp
eci
fic
in
form
at
ion
extracti
on
ta
s
ks.
B
y
pro
vid
in
g
a
ddit
ion
al
t
r
ai
nin
g
data
or
sp
eci
fic
i
ns
tr
uc
ti
on
s,
us
ers
c
an
a
da
pt
the
m
od
el
to
extract
desire
d
in
formati
on
more
acc
urat
el
y
f
or
pa
rtic
ula
r
a
ppli
cat
ion
s
or
domains.
T
hese
qual
it
ie
s
make
LL
M
s
val
ua
ble
too
ls
f
or
a
wide
ra
ng
e
of
app
li
cat
io
ns
,
from
nat
ur
al
la
ngua
ge
unde
rst
and
i
ng
to
kn
owle
dge
mana
geme
nt.
LLMs are
u
se
d i
n vari
ou
s
lan
gu
a
ge
-
relat
ed
a
pp
li
cat
io
ns
[26
]
:
a.
A
ut
om
a
t
i
c
t
r
a
ns
l
a
t
i
on
[
27
]
:
L
L
Ms
c
a
n
t
r
a
ns
l
a
t
e
t
e
xt
s
f
rom
o
ne
l
a
ng
u
a
ge
t
o
a
no
t
he
r
w
i
t
h
i
m
pr
e
s
s
i
ve
a
c
c
ur
a
c
y.
b.
T
e
xt
g
e
ne
r
a
t
i
on
[
2
8]
:
L
L
Ms
c
a
n
ge
ne
r
a
t
e
bl
og
a
r
t
i
c
l
e
s
,
s
um
m
a
r
i
e
s
,
or
pr
od
uc
t
de
s
c
r
i
pt
io
ns
ba
s
e
d
on
a
s
e
t
of
ke
yw
or
ds
o
r
i
np
ut
t
e
xt
.
c.
Q
ue
s
t
i
on
a
ns
w
e
r
i
ng
[
2
9]
:
L
L
Ms
c
a
n
pr
ov
i
de
a
c
c
u
r
a
t
e
a
ns
w
e
r
s
t
o
c
om
pl
e
x
qu
e
s
t
i
on
s
ba
s
e
d
on
t
he
i
nf
or
m
a
t
i
on
a
v
a
i
l
a
bl
e
i
n
t
he
i
np
ut
t
e
xt
s
.
d.
I
nt
e
l
l
i
ge
nt
pe
r
s
on
a
l
a
s
s
i
s
t
a
nt
[30
]
:
L
L
Ms
c
a
n
f
u
nc
t
i
on
a
s
c
on
ve
r
s
a
t
i
on
a
l
a
ge
nt
s
t
o
a
s
s
i
s
t
us
e
r
s
i
n
va
r
i
o
u
s
t
a
s
ks
s
uc
h
a
s
n
ot
e
-
t
a
ki
ng
,
i
nf
o
r
m
a
t
i
on
r
e
t
r
i
e
v
a
l
,
or
e
ve
nt
pl
a
nn
i
n
g.
Data
en
rich
me
nt
is
a
cr
ucial
process
t
hat
e
nh
a
nces
t
he
va
lue
of
data
by
re
fini
ng
a
nd
au
gm
e
nting
them
with
a
ddit
ion
al
at
trib
ute
s.
By
e
nr
ic
hi
ng
data,
we
gai
n
dee
per
insig
hts
int
o
our
da
ta
set
.
Data
e
nr
i
chme
nt
involves
se
ve
r
al
commo
n
ta
sk
s
,
i
nclu
ding
add
i
ng
data,
s
egme
ntati
on,
de
riving
at
trib
ut
es,
data
im
pu
t
at
ion
,
entit
y
e
xtracti
on,
a
nd
data
c
at
egorizat
ion
.
In
this
c
onte
xt
,
N
LP
[
31]
a
nd
ma
chi
ne
le
a
rn
i
ng
te
ch
niqu
es
are
of
te
n
em
ploye
d,
par
ti
c
ularly
with
models
su
c
h
as
la
ng
uag
e
m
od
el
f
or
data
e
nr
ic
hme
nt
(LL
M
)
,
wh
ic
h
automate
and e
nh
a
nce t
hese
proces
ses.
3.2
.
LL
MOp
s
for
au
t
om
at
i
ng LL
Ms
li
fecyc
le
LLM
O
ps
is
a
n
emer
ging
met
hodolo
gy
that
ai
ms
to
strea
m
li
ne
an
d
a
uto
m
at
e
the
li
fecy
cl
e
of
LL
M
s
in
pro
du
ct
io
n,
as
this
ty
pe
of
ML
model
ca
n
ge
ner
at
e
res
ults
in
human
la
nguag
e
.
It
is
a
s
pecial
iz
at
ion
of
M
L
Op
s
a
da
pted
to
the
s
pe
ci
fic
ch
al
le
nges
of
LL
M
s
.
LL
MOps
focuses
s
pecific
al
ly
on
the
li
fecy
cl
e
mana
geme
nt of lar
ge
la
ng
uage model
s, suc
h as t
hose
us
e
d
i
n
a
uto
mati
c
N
LP.
It inclu
des speci
al
iz
ed
to
ol
s an
d
pr
act
ic
es tai
lor
ed
to the u
niqu
e chall
eng
e
s pose
d
by LL
M
s,
includ
i
ng
t
he mana
geme
nt of m
assiv
e m
odel
s,
the
gen
e
rati
on
of
qu
al
it
y
te
xt,
a
nd
the
detect
io
n
of
biases
a
nd
error
s
.
S
pecifi
c
aspects
of
L
LMOps
m
a
y
i
nclu
de
li
ng
uisti
c
data
mana
geme
nt,
l
angua
ge
mode
l
op
ti
miza
ti
on,
co
ntr
olled
te
xt
ge
ner
at
io
n
a
nd
li
nguisti
c
qual
it
y
assessme
nt.
An
im
porta
nt
par
t
of
our
met
hodolo
gy
is
t
o
integrate
LL
MOps
f
or
e
ff
ic
ie
nt
man
age
men
t
of
the
M
L
model
li
fecy
cl
e.
We
detai
l
th
e
dif
fer
e
nt
ph
a
ses
of
th
e
m
od
el
li
fecy
cl
e,
from
e
xperime
nt
at
ion
to
pr
oduc
ti
on
,
includi
ng
c
onti
nuous
m
on
it
or
ing
an
d
ver
si
on
man
age
ment
.
We
hi
gh
li
ght
the
key
feature
s
of
LL
MOp
s
that
facil
it
at
e task au
tomati
on
an
d t
he
imple
ment
at
ion
of m
od
el
dev
el
opment
best
p
r
act
ic
es.
3.3
.
Continu
ous
m
on
it
orin
g
f
or opt
im
iz
at
i
on
of
ML m
od
el
s
Con
ti
nu
ou
s
m
on
it
ori
ng
[
32]
of
M
L
m
odel
s
ai
ms
to
m
on
it
or
in
real
-
ti
me
the
pe
rfo
rma
nc
e,
be
hav
i
or,
and
data
qual
it
y
of
de
ployed
models.
This
i
nvolv
e
s
s
ys
te
mati
cal
ly
colle
ct
ing
releva
nt
metri
cs
a
nd
m
on
it
ori
ng
input
data
to
detect
cha
ng
e
s
,
data
qu
al
it
y
degra
dation,
or
co
nce
ptu
al
dri
fts.
T
his
a
ppro
ac
h
ai
ms
t
o
ens
ur
e
con
ti
nu
ous
qua
li
ty
an
d
reli
abi
li
ty
of
M
L
m
odel
s
by
e
na
blin
g
real
-
ti
me
adj
us
tme
nts
a
nd
i
mpro
veme
nts,
wh
ic
h
helps
maintai
n
their ef
fecti
ve
ne
ss and
releva
nc
e in
op
e
rati
on
al
en
vi
ronme
nt
s.
Emphasiz
in
g
it
s
essenti
al
r
ole
in
opti
mizi
ng
the
pe
rforman
ce
of
de
ploye
d
models.
We
di
scuss
key
performa
nce
metri
cs
to
m
onit
or,
an
om
al
y
analysis
te
ch
niques
an
d
c
onti
nuous
im
prov
e
ment
strat
e
gies
to
ens
ur
e
acc
urat
e
an
d
reli
able
pr
e
dicti
on
s
.
T
hanks
t
o
real
-
ti
me
loggin
g
c
apab
il
it
ie
s,
pe
r
forma
nce
met
r
ic
s
and
model
ch
aract
erist
ic
s
can
be
co
ntinuo
us
ly
monit
or
e
d.
T
hi
s
ena
bles
pr
oa
ct
ive
pro
blem
detect
io
n
a
nd
ra
pid
feedbac
k
to
de
velo
pm
e
nt
a
nd
operati
ons
te
ams.
M
et
rics
s
uch
as
mean
s
qu
a
re
e
rro
r
(
M
SE
),
coe
ff
ic
i
ent
of
determi
nation
(R²)
an
d
mea
n
ab
so
l
ute
e
rror
(
MAE)
c
a
n
be
m
on
it
or
e
d
a
nd
a
nalyze
d
in
real
ti
me
t
o
a
sses
s
model pe
rfo
rm
ance.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1027
-
1037
1030
a.
Data
m
on
it
or
in
g
−
Data
sta
ti
sti
cs
tracki
ng
:
m
onit
or
desc
ripti
ve
sta
ti
sti
cs
of
the
data,
s
uc
h
as
mea
n,
m
edian,
sta
nda
r
d
dev
ia
ti
on t
o de
te
ct
sign
ific
a
nt ch
a
ng
e
s in
the
d
at
a
distrib
ution.
−
Anomal
y
d
et
ec
ti
on
:
i
de
ntify o
utli
er poin
ts
in t
he
data t
hat c
ould im
pact
model pe
rfo
rma
nc
e.
−
Data
q
ualit
y
m
onit
or
i
ng
:
m
on
it
or
t
he
pr
e
s
ence
of
missi
ng
values
,
i
nconsiste
ncies,
an
d
oth
e
r
qual
it
y
issues i
n
the
d
a
ta
.
b.
M
odel
m
onit
ori
ng
−
M
odel
pe
rform
ance
trac
king
:
m
onit
or
me
an
s
quare
d
er
r
or
(
M
S
E),
c
oe
ff
ic
ie
nt
of
dete
rmin
at
io
n
(R²)
,
and o
t
her eval
uation met
rics
on the test
set
and pr
oductio
n data.
−
Pr
e
dicti
on
m
onit
or
i
ng
:
m
on
i
tor
t
he
model
predict
io
ns
a
nd
ide
ntify
ca
ses
w
he
re
pr
e
dicti
on
s
are
aberrant
or
ina
ccur
at
e.
−
M
odel
sta
bili
ty
trac
king:
m
on
it
or
the
e
vo
luti
on
of
mod
el
coef
fici
e
nts
and
i
de
ntify
sign
s
of
m
od
e
l
degra
dation.
3.4.
Enablin
g
A
I
e
xpl
aina
bil
ity
i
n a
r
tifici
al in
t
el
li
gence
Ex
plainable
ar
ti
fici
al
intelli
gen
ce
(
XAI)
[
33]
,
[34]
i
nv
e
sti
gates
the
exp
la
ina
bili
ty
of
mac
hine
le
arn
in
g
mode
ls
br
i
dgin
g
th
e
ga
p
betwee
n
c
omplex
m
od
el
co
mputat
ion
s
an
d
hum
an
i
nterpreta
bi
li
ty
.
Emb
e
ddin
g
a
n
exp
la
ina
bili
ty
com
pone
nt
int
o
the
la
rg
e
-
sca
le
mu
lt
i
obje
ct
ive
op
ti
miza
ti
on
prob
le
m
s
(
L
M
O
P
s
)
workflo
w
br
in
gs
s
ub
sta
ntial
ben
e
fits
that
enh
a
nce
the
f
unct
ion
al
it
y
an
d
unde
rstan
ding
of
m
achi
ne
le
arn
i
ng
models.
T
his
a
dd
it
io
n
e
nab
le
s
a
dee
per
gras
p
of
t
he
lo
gic
beh
i
nd
each
pr
edict
ion
,
facil
it
at
ing
m
ore
nu
anced
and
in
f
ormed
decisi
on
-
ma
ki
ng
processes
.
It
helps
in
un
c
ov
e
rin
g
an
d
a
ddressi
ng
po
te
n
ti
al
inacc
ur
ac
ie
s
an
d
biases
within
t
he
m
odel
's
out
pu
ts
,
th
us
e
nh
a
ncin
g
the
cre
dib
il
it
y
an
d
dep
e
nd
a
bili
ty
of
th
e
res
ults.
Mo
re
ov
e
r,
the
pro
visio
n
of
cl
ear
ex
plana
ti
on
s
al
lo
ws
f
or
a
bette
r
a
ppr
eci
at
ion
of
the
model'
s
inter
na
l
dynamics
a
nd
the
pivotal
facto
r
s
dr
i
ving
it
s
pr
edict
ion
s
.
S
uc
h
tra
nspare
nc
y
an
d
insi
gh
t
si
gn
i
ficantl
y
bo
os
t
use
r
tr
us
t
in
the
model'
s
ou
t
pu
t
s and
fo
ste
r gr
e
at
er accepta
nce
and a
pp
li
cat
io
n of t
he mo
del
acro
s
s
var
io
us
domains
.
In
te
gr
at
in
g
t
he
ex
plaina
bili
ty
m
odule
i
nto
the
M
L
O
ps
pipe
li
ne
al
lows
for
a
utomat
ic
ge
ner
at
io
n
o
f
exp
la
natio
ns
f
or
eac
h
new
predict
io
n.
E
xpla
nations
are
st
or
e
d
with
pre
di
ct
ion
s
an
d
othe
r
metri
cs,
e
na
bling
furthe
r
a
nalysi
s.
T
he
c
hoic
e
of
ex
planati
on
meth
od
a
nd
visu
al
iz
at
ion
de
pends
on
sp
e
ci
fic
nee
ds
a
nd
us
er
pr
e
fer
e
nce
s.
It
is
cru
ci
al
to
e
ns
ure
that
e
xp
l
anati
ons
are
cl
ear,
c
on
ci
se,
a
nd
eas
y
to
unde
rstan
d.
T
he
use
of
interact
ive
visua
li
zat
ion
to
ols
can als
o
ma
ke e
xp
la
natio
ns
m
or
e
enga
ging a
nd easie
r
t
o
e
xplo
re.
M
L
m
od
el
ex
planati
ons
can
be
cat
eg
or
iz
e
d
i
nto
tw
o
m
ai
n
ty
pes
:
l
oc
al
ex
planati
on
s
an
d
gl
ob
a
l
exp
la
natio
ns
[35]
,
[
36]
.
a.
Local
ex
planat
ion
s
pro
vid
e
de
ta
il
s
abo
ut
a
n
ind
ivi
du
al
pr
e
dicti
on
.
Tw
o
c
om
m
only
us
e
d
te
chn
iq
ues
for
pro
vid
in
g
loca
l
exp
la
na
ti
on
s
a
re
S
hap
le
y
a
dd
it
ive
e
xpla
na
ti
on
s
(
SHAP
)
and
l
ocal
inte
rpretable
m
od
el
-
agnostic
e
xp
la
nations
(
LI
M
E
)
[
37]
.
b.
SHAP
:
S
H
AP
cal
culat
es
the
i
mporta
nce
of
e
ach
feature
(a
r
ea
an
d
lo
cat
ion)
f
or
a
giv
e
n
pr
ic
e
pr
e
dicti
on.
It
then vis
ualiz
es the im
pact
of
each
featu
re
on the
pr
e
dicte
d pr
ic
e
us
in
g SH
AP
bar c
har
ts.
c.
LI
M
E:
LI
M
E
gen
e
ra
te
s
loc
al
ex
planati
ons
ba
sed
on
sim
ple
li
near
models
for
eac
h
pr
e
dic
ti
on
.
It
ide
ntifi
es
the m
os
t i
m
por
ta
nt f
eat
ures
f
or a
giv
e
n pr
e
di
ct
ion
a
nd expla
ins their
contri
bu
ti
on.
d.
An
c
hor
e
xpla
na
ti
on
: I
de
ntifie
s the
data exa
mp
le
s cl
os
est
t
o
a
giv
e
n pr
e
di
ct
ion
a
nd e
xpla
ins wh
y
the
y w
ere
pr
e
dicte
d
i
n
th
e same
wa
y.
e.
Global
ex
plana
ti
on
s
ai
m
to
e
xpla
in
the
ge
ne
r
al
functi
onin
g
of
t
he
m
odel
a
nd
the
facto
rs
mo
st
im
portant
to
it
s
pr
e
dicti
ons
.
T
wo
te
ch
ni
qu
e
s
c
ommo
nl
y
us
ed
to
pro
vid
e
gl
obal
ex
planati
ons
are
pe
rm
utati
on
importa
n
ce
and
par
ti
al
d
e
pe
ndence
p
l
ots.
f.
Perm
utati
on
i
mporta
nce:
Pe
rm
utati
on
im
porta
nce
meas
ures
the
im
porta
nce
of
eac
h
fe
at
ur
e
by
pe
rtu
r
bing
it
s
orde
r
a
nd
obser
ving
the
impact
on
mod
el
pe
rformanc
e.
T
his
helps
i
den
ti
f
y
w
hich
featur
e
s
ha
ve
t
he
gr
eat
est
im
pact
on ov
e
rall
m
odel
p
e
rfo
rma
nc
e.
g.
Partia
l
dep
e
nd
ence
pl
ots:
Par
ti
al
dep
en
de
nc
e
plo
ts
al
lo
w
you
t
o
vis
ualiz
e
the
eff
ect
of
a
featur
e
on
pri
ce
pr
e
dicti
on
w
hile
ho
l
ding
ot
her
featu
res
c
on
sta
nt.
T
he
y
help
t
o
un
de
rstan
d
the
i
nteracti
on
betw
ee
n
diff
e
re
nt
cha
ra
ct
erist
ic
s an
d t
heir
im
pact
on
pr
ic
e.
The
e
xpla
inabi
li
ty
modu
le
ca
n
be
us
e
d
in
two
disti
nct
wa
ys
:
as
a
se
par
a
te
com
pone
nt
or
i
nteg
rated
directl
y
int
o
th
e
model.
As
a
separ
at
e
c
omp
on
e
nt,
it
act
s
a
s
an
in
de
pende
nt
too
l
for
a
nalyzin
g
the
pr
e
di
ct
ion
s
of
a
n
al
rea
dy
t
raine
d
m
od
el
.
This
a
ppro
ac
h
offer
s
great
fle
xib
il
it
y,
as
t
he
modu
le
ca
n
be
us
e
d
wit
h
di
fferent
models
with
out
re
qu
i
rin
g
major
m
od
ific
at
ion
s.
O
n
th
e
oth
e
r
hand,
w
hen
t
he
e
xpla
inabili
ty
m
odule
i
s
integrate
d
int
o
the
m
od
el
du
rin
g
trai
ni
ng,
i
t
can
g
e
ne
rate
ex
planati
ons
directl
y
from
t
he
m
odel
it
sel
f.
T
his
integrati
on
e
na
bles
a
dee
per
analysis
of
the
decisi
ons
ma
de
by
t
he
mode
l
and
a
de
epe
r
underst
an
ding
of
it
s
inn
e
r worki
ngs
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
I
ntegr
atio
n of
we
b
scr
apin
g,
f
ine
-
tu
ning,
an
d d
ata
e
nr
ic
hm
e
nt in a c
onti
nu
ou
s
m
onit
or
in
g
…
(
An
as
Bo
dor
)
1031
3.5
.
Fine
-
t
unin
g
p
rocess
wit
hin
LL
Mo
p
s
We
the
n
e
xplo
re
data
capt
ur
e
a
nd
e
nr
ic
hm
e
nt
us
in
g
descr
i
ptions
a
sso
ci
at
ed
with
eac
h
r
ecord.
We
descr
i
be
the
pr
ocess
of
fine
-
t
un
i
ng
[
38]
,
[
39]
M
L
m
od
el
s
to
inc
orp
or
at
e
this
ad
diti
on
al
inf
ormat
ion
i
nt
o
our
dataset
,
in
or
de
r
to
imp
r
ov
e
the
accu
racy
of
our
pr
e
dicti
on
m
od
el
.
In
t
he
process
of
de
ployin
g
a
la
ngua
ge
model
-
based
a
pp
li
cat
io
n
as
e
xp
la
ine
d
by
th
e
Fig
ur
e
1,
se
ve
ral
ke
y
ste
ps
mu
st
be
ca
refu
ll
y
orchest
rated
[
40]
.
Firstl
y,
sel
ect
ing
a
n
a
ppr
opriat
e
base
m
od
e
l
[41]
is
a
f
un
dame
ntal
ste
p.
These
base
m
od
el
s
,
pret
rain
ed
o
n
la
rg
e
dataset
s,
pro
vid
e
a
so
li
d
fou
nd
at
io
n
f
or
a
var
ie
ty
of
s
ub
s
eq
ue
nt
ta
sks.
Gi
ven
the
c
omplexit
y
a
nd
high
cost of traini
ng su
ch mo
dels fro
m scr
at
c
h,
only a
few
i
ns
ti
tuti
ons h
a
ve
the
n
ecessa
ry
res
ources t
o
suc
ces
sfu
ll
y
unde
rtake
this
chall
eng
i
ng
ta
s
k.
Sec
ondly,
once
t
he
base
model
is
sel
ec
te
d,
a
c
ru
ci
al
s
te
p
is
to
fi
ne
-
t
un
e
it
sp
eci
fical
ly
for
the
e
nv
isi
on
e
d
dow
ns
trea
m
t
asks.
T
his
fi
ne
-
tu
ning
al
lo
ws
custo
mizi
ng
th
e
model
to
me
et
the
sp
eci
fic
nee
ds
of
the
a
ppli
cat
ion
i
n
quest
ion.
O
nce
t
he
fine
-
tu
ning
is
c
omplet
ed,
it
is
i
m
per
at
ive
to
c
on
du
ct
rig
orous
e
valu
at
ion
of
t
he
m
od
el
to
e
ns
ure
it
s
perf
or
m
anc
e
an
d
reli
abili
ty
i
n
real
-
w
or
ld
co
ndit
ion
s
.
Finall
y,
the
la
st
ste
p
of
the
proce
ss
in
volves
de
ployin
g
a
nd
c
onti
nuously
monit
ori
ng
the
model
in
pro
du
ct
io
n.
For
thi
s
monit
or
i
ng,
s
pecial
iz
ed
to
ol
s
are
emer
gi
ng,
su
c
h
as
Why
L
a
bs
or
Human
Lo
op,
al
lowing
trac
ki
ng
a
nd
analyzi
ng
the
model'
s
be
havi
or
i
n
a
n
ope
r
at
ion
al
e
nv
i
ronme
nt,
t
hus
e
ns
uri
ng
opti
m
al
pe
rformanc
e
an
d
proacti
ve dete
c
ti
on
of potenti
a
l degra
dation.
Figure
1.
Fine
-
tun
in
g
p
ro
ces
s
within t
he
L
L
M
f
ra
mew
ork
4.
PROP
OSE
D FRA
MEW
O
RK
In
this
sect
io
n,
we
descr
i
be
th
e
met
hodolo
gy
that
we
hav
e
a
dopted
to
buil
d
a
predict
io
n
m
od
el
f
or
a
sp
eci
fic
phe
nomen
on
:
dynam
ic
op
ti
miza
ti
on
of
ML
m
od
el
s
via
M
L
Ops
and
L
LMO
ps
(
integ
rati
on
of
we
b
scrap
i
ng,
fine
-
tun
in
g,
a
nd
da
ta
en
richme
nt
in
a
c
on
ti
nu
ous
m
onit
or
i
ng
c
on
te
xt
).
T
he
pur
pose
is
op
ti
mizi
ng
model p
re
di
ct
ion t
hro
ugh a
da
ta
en
ric
hm
e
nt step usin
g LL
M
s a
nd c
on
ti
nuous
m
on
it
ori
ng.
Ba
sed on a m
ul
ti
-
ste
p
w
orkf
l
ow that e
ncom
passes
t
he foll
ow
i
ng stages:
a.
Data
ac
qu
isi
ti
on
:
This
sta
ge
invol
ves
c
ollec
ti
ng
data
fro
m
the
ta
r
get
web
sit
e.
T
his
can
be
done
usi
ng
te
chn
iq
ues
su
c
h
as
w
e
b
sc
ra
pin
g t
o
e
xtract
re
le
van
t i
nf
ormat
ion
from
the
w
ebsite
au
t
om
at
ic
al
ly.
b.
Data
pr
e
-
proce
ssing
:
O
nce
th
e
da
ta
has
bee
n
c
ollec
te
d,
it
needs
t
o
be
cl
e
aned
a
nd
prep
ared
for
anal
ysi
s.
This
i
n
cl
udes
the
rem
oval
of
ou
tl
ie
rs,
mana
geme
nt
of
missi
ng
da
ta
,
data
nor
m
al
iz
at
ion
an
d
oth
e
r
pre
-
pr
ocessin
g t
echn
iq
ues
to
e
ns
ure t
he qu
al
i
ty of t
he data
used i
n
the
m
odel
.
c.
Data
e
xp
l
or
at
i
on
:
T
his
sta
ge
involves
e
xp
l
ori
ng
a
nd
a
naly
zi
ng
the
data
t
o
unde
rstan
d
it
s
str
uctu
re,
tre
nd
s
and
relat
ion
s
hi
ps
.
T
his
ma
y
i
nvolv
e
us
in
g
e
xp
l
or
at
ory
data
a
nalysis
te
ch
ni
qu
es
s
uc
h
a
s
data
visu
al
iz
at
ion
and stat
ist
ic
al
modeli
ng to
id
entify
k
e
y patt
ern
s
and i
ns
ig
ht
s.
d.
M
odel
bu
il
di
ng:
O
nce
the
da
ta
has
bee
n
pre
-
processe
d
a
nd
e
xplo
red,
a
pr
e
dicti
on
model
is
buil
t
us
ing
appr
opriat
e
ML
te
ch
niques
s
uch
as
li
nea
r
r
egr
es
sio
n,
deci
sion
trees
,
a
nd
ne
ural
netw
orks.
T
he
c
hoic
e
of
model
will
de
pend
on
t
he
c
har
act
erist
ic
s
of
the
data
a
nd
the
ty
pe
of
analysis
re
qu
i
r
ed.
The
ch
oic
e
of
mo
del w
il
l
depend o
n
t
he
c
harac
te
risti
cs o
f
th
e d
at
a a
nd the
pr
e
dicti
on obje
ct
ive.
e.
M
odel
e
valuati
on
:
On
ce
t
he
model
has
bee
n
buil
t,
it
is
evaluated
usi
ng
a
ppr
opriat
e
perf
ormance
meas
ur
es
su
c
h
as
mean
sq
ua
re
e
rro
r
(
M
SE
)
a
nd
c
oe
ff
ic
ie
nt
of
dete
rmin
at
io
n
(R²)
.
This
al
l
ow
s
us
to
deter
mine
the
eff
ect
ive
ness
of
the
m
odel
.
T
his
determi
nes
the
m
od
el
's
ef
fici
enc
y
a
nd
it
s
a
bili
ty
to
ma
ke
acc
urat
e
pr
e
dicti
on
s
.
f.
Dep
l
oyment a
nd m
onit
or
i
ng
:
Finall
y,
once t
he
m
odel
h
a
s bee
n
e
valuate
d and vali
date
d,
i
t can
be depl
oye
d
in
a
pr
od
uction
en
vir
onment
to
make
real
-
ti
me
pr
e
dicti
on
s
.
It
is
al
so
im
porta
nt
to
put
i
n
place
co
ntin
uous
monit
or
i
ng
m
echan
is
ms
to
ensure
that
the
model
re
mains
accu
rat
e
and
reli
able
under
c
ha
ngin
g
conditi
ons.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1027
-
1037
1032
This
F
rame
w
ork
pro
vid
es
a
struct
ur
e
d
a
nd
re
pro
duci
bl
e
fr
a
mew
ork
f
or
t
he
devel
opme
nt
an
d
evaluati
on
of
M
L
m
odel
s,
guara
nteei
ng
th
e
trans
par
e
nc
y
and
reli
abili
ty
of
the
res
ults
ob
ta
ine
d.
The
diag
ram
sh
ow
n
in
Fi
gur
e
2
re
pr
ese
nts
a
mu
lt
i
-
sta
ge
workflo
w
f
or
the
de
velo
pm
e
nt
and
e
valuati
on
of
a
predict
i
ve
ML
model.
I
n
our
appr
oach,
at
t
he
bl
ock
le
vel
(
data
e
n
ric
hm
e
nt)
t
he
us
e
of
a
LL
M
t
o
e
xplo
it
te
xtu
al
descri
ption
s
and
e
nr
ic
h
dataset
s
can
be
se
en
as
a
n
a
dap
t
able
s
olu
ti
on
f
or
va
rio
us
ap
pl
ic
at
ion
domain
s.
T
his
meth
od
ma
kes
it
po
ssi
ble
to
ta
ke
a
dvanta
ge
of
f
ree
de
scri
ptio
ns
i
n
any
domai
n
t
o
s
uppleme
nt
dataset
in
f
ormat
ion
.
Con
se
quently
,
wh
et
her
in
fina
nce,
healt
hca
re
,
ed
ucati
on
or
oth
e
r
sect
or
s
[
42]
,
this
a
ppr
oa
ch
ca
n
be
a
pp
li
ed
to
impro
ve
t
he
qual
it
y
a
nd
dive
rsity
of
a
vail
able
data.
By
integrati
ng
the
ad
va
nce
d
ca
pa
bili
ti
es
of
la
ngua
ge
models,
t
his
method
pro
ves
to
be
a
fle
xi
ble
a
nd
ada
pta
ble
s
olu
ti
on
t
o
meet
the
s
pe
ci
fic
re
qu
ir
em
ents
of
diff
e
re
nt d
at
a a
nalysis
pro
ble
ms.
Figure
2.
O
ptimi
zi
ng
model
pr
e
dicti
on
: a
fr
amew
ork
i
nteg
rati
ng
LL
M
a
nd
M
L
models
with
real
-
ti
me
data
processi
ng
5.
C
A
S
E
S
T
U
D
Y
:
I
M
P
R
O
V
E
M
E
N
T
O
F
P
R
I
C
E
P
R
E
D
I
C
T
I
O
N
M
O
D
E
L
T
R
O
U
G
H
L
L
M
,
L
L
M
O
p
s
W
I
T
H
R
E
A
L
-
T
I
M
E
D
A
T
A
P
R
O
C
E
S
S
I
N
G
As
e
xp
la
i
ned
i
n
the
prece
ding
par
a
gr
a
ph,
t
o
e
nh
a
nce
t
he
pr
e
dicti
on
s
of
the
real
est
at
e
pr
ic
e
model
[43]
,
we
a
dopt
ed
a
m
ulti
-
ste
p
ap
proac
h
deta
il
ed
in
t
he
F
ig
ur
e
3.
Fi
rstly,
we
mer
ged
the
inf
or
mati
on
e
xtracted
by
t
he
LL
M
s
model
with
the
existi
ng
feature
s,
thus
en
richi
ng
t
he
dataset
with
rele
van
t
t
extual
data.
Ne
xt,
we
trai
ned
a
new
pr
ic
e
model
usi
ng
al
gorithms
su
c
h
as
gradi
ent
bo
os
ti
ng
re
gr
ess
or
or
oth
e
rs,
i
ncor
porati
ng
th
e
enr
ic
hed
featu
res.
Fi
nally,
w
e
evaluate
d
th
e
perf
or
ma
nce
of
t
he
new
pr
ic
e
model
an
d
com
par
e
d
it
s
resu
lt
s
with
t
hose
of
t
he
ori
gin
al
m
odel
.
This
met
hodolo
gy
al
lowe
d
us
to
te
st
th
e
ef
fecti
ve
ness
of
integ
rati
ng
te
xtu
al
data ext
racted
by the
LL
M
s
model i
n
e
nha
ncin
g
the
pre
dicti
on
performa
nce
of the
real
est
at
e p
rice
model.
In
te
gr
at
in
g
a
n
M
L
Op
s
f
rame
work
base
d
on
M
L
flo
w
into
a
streami
ng
da
ta
env
ir
onme
nt
represe
nts
a
sign
ific
a
nt
a
dvance
ment
in
ma
nag
i
ng
th
e
li
fecy
cl
e
of
ML
m
odel
s.
MLfl
ow,
a
n
ope
n
-
s
ource
platfo
rm
ded
ic
at
e
d
to
t
his
ta
sk
,
offe
r
s
a
mu
lt
it
ud
e
of
functi
onal
it
ie
s
that
can
be
ta
il
or
e
d
to
meet
the
s
pecific
requireme
nts
of
streami
ng
dat
a.
By
c
ombini
ng
M
L
flo
w
with
streami
ng
da
ta
too
ls
s
uch
as
A
pach
e
Ka
f
ka
an
d
Sp
a
rk
Streami
ng
[
44]
,
it
be
c
om
es
possi
ble
to
capt
ur
e
an
d
proces
s
data
in
real
-
ti
me
[
45]
w
hile
maint
ai
nin
g
com
plete
trace
abili
ty
of
the
model
li
fec
ycl
e.
T
his
integ
r
at
ion
not
only
ena
bles
real
-
ti
me
m
onit
or
in
g
a
nd
mana
geme
nt
of
model
perf
ormance
but
al
so
facil
it
at
es
con
ti
nu
ous
de
plo
yme
nt
an
d
updates
of
m
odel
s
i
n
streami
ng
e
nviro
nm
e
nts.
P
roviding
a
c
ompre
he
ns
ive
s
ol
ution
f
or
ma
na
ging
M
L
m
odel
s
in
a
stre
aming
env
i
ronme
nt,
t
his
ap
proac
h
c
on
t
rib
utes
to
in
creasin
g
the
e
f
fici
ency
a
nd
re
li
abili
ty
of
ML
sy
ste
ms
dep
l
oyed
i
n
real
-
ti
me
sce
na
rios.
B
y
us
in
g
M
L
flo
w
t
o
ma
nag
e
m
odel
de
ployme
nt
a
nd
updates,
we
ca
n
quic
kly
de
plo
y
new
ver
si
ons
in
res
pons
e
to
c
ha
nges
i
n
data
or
busines
s
requ
irements.
M
Lf
low
pipe
li
nes
can
be
c
onfi
gure
d
t
o
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
I
ntegr
atio
n of
we
b
scr
apin
g,
f
ine
-
tu
ning,
an
d d
ata
e
nr
ic
hm
e
nt in a c
onti
nu
ou
s
m
onit
or
in
g
…
(
An
as
Bo
dor
)
1033
automate
t
he
proces
s
of
m
odel
dep
lo
yme
nt
and
r
ollback
,
e
ns
uri
n
g
a
gile
and
s
m
oo
t
h
up
da
te
s
in
a
co
ntinuo
us
streami
ng
data
env
i
ronme
nt.
Figure
3. Im
pr
ov
e
ment
of
pr
i
ce p
red
ic
ti
on
model t
r
ough
LLM
, LL
M
Ops w
it
h real
-
ti
m
e d
at
a
processi
ng
We
ha
ve
place
d
a
str
ong
f
ocus
on
data
moni
toring
us
in
g
great
exp
ect
at
io
ns
an
d
Da
ta
R
obot,
as
well
as
m
od
el
mon
it
or
in
g
us
in
g
Pr
ome
the
us
a
nd
Gr
a
fan
a
.
T
hi
s
com
pr
e
he
nsi
ve
ap
proac
h
ens
ur
es
not
only
th
e
eff
ect
ive
ma
na
geme
nt
of
model
li
fecy
cl
e
but
al
so
the
c
on
ti
nu
ous
m
on
it
ori
ng
a
nd
opti
m
iz
at
ion
of
both
data
and
m
od
el
pe
rformance
in
real
-
ti
me
sc
enar
i
os
.
W
he
n
pr
e
dicti
ng
apar
tme
nt
rea
l
est
at
e
pr
ic
e
s
fro
m
con
ti
nu
ously
s
treami
ng
data,
us
in
g
gr
eat
e
xp
ect
at
io
ns
to
monit
or
data
qual
it
y
can
be
par
ti
cula
rly
use
fu
l
in
ens
ur
in
g
reli
ab
le
pr
e
dicti
on
s
.
Indee
d,
gr
eat
exp
ect
at
io
ns
offe
r
the
possib
il
it
y
of
pr
of
il
ing
data
in
real
ti
me,
making
it
poss
ible
to
i
den
ti
f
y
an
d
m
easu
re
t
he
esse
ntial
ch
aracte
risti
cs
of
inco
min
g
data
streams
.
B
y
s
et
ti
ng
sp
eci
fic
e
xpec
ta
ti
on
s
on
the
se
data
stream
s,
s
uch
as
the
prese
nce
of
key
var
ia
bles
and
acce
ptable
val
ue
ranges,
an
d
re
gu
l
a
rly
validat
ing
t
hese
e
xp
e
ct
at
ion
s,
this
e
ns
ures
t
hat
onl
y
hi
gh
-
qu
al
it
y
data
is
us
e
d
t
o
dr
i
ve
pr
e
dicti
ve
m
od
el
s.
Furthe
rm
ore,
by
trig
ge
rin
g
al
erts
i
n
the
even
t
of
dev
ia
t
ion
s
fro
m
thes
e
ex
pectat
ion
s
,
gr
e
at
exp
ect
at
io
ns
guara
ntee
the
re
li
abili
ty
and
c
on
sist
e
ncy
of
t
he
data
use
d
in
pro
per
ty
pri
ce
predict
io
n
models,
wh
ic
h
is es
sent
ia
l fo
r
acc
ur
at
e
and
reli
able re
su
lt
s in o
ur f
ie
ld
of ap
plica
ti
on
.
To
il
lust
rate
t
he
pr
act
ic
al
ut
il
i
ty
of
t
he
e
xp
la
ina
bili
ty
modu
le
,
le
t's
examine
tw
o
po
te
ntial
us
e
scenari
os
i
n
th
e real est
at
e
domain:
a.
Local
e
xpla
nat
ion
s
f
or r
eal
es
ta
te
agen
ts:
A
r
eal
est
at
e
age
nt
can
le
ve
ra
ge
l
ocal
e
xp
la
natio
ns
t
o
unde
rstan
d
the
unde
rlying
reas
ons
f
or
a
sp
e
ci
fic
pr
ic
e
pre
dicti
on
f
or
a
pr
op
e
rty
.
Fo
r
e
xam
ple,
if
a
pro
pe
rty
is
pr
e
dicte
d
at
a
high
pr
ic
e,
the
age
nt
can
us
e
local
ex
planati
on
s
to
i
den
ti
f
y
ke
y
feat
ur
e
s
t
hat
co
ntri
bu
te
d
to
this
est
imat
e.
This
ma
y
i
nclud
e
facto
rs
suc
h
a
s
pro
per
t
y
siz
e,
locat
io
n,
an
d
s
urrou
nd
i
ng
am
eniti
es.
Su
c
h
inf
or
mati
on
ca
n
assist
t
he
a
ge
nt in bett
er a
dv
isi
ng
cli
ents
and ju
sti
fy
in
g p
r
opos
e
d pr
ic
es
.
b.
Global
ex
plan
at
ion
s
f
or
in
ve
stors
:
A
n
in
ves
tor
see
king
to
acqu
i
re
real
es
ta
te
in
a
sp
eci
f
ic
reg
io
n
ca
n
use
global
ex
plana
ti
on
s
t
o
gai
n
i
ns
ig
hts
int
o
th
e
mo
st
i
nf
l
uent
ia
l
factor
s
on
pro
per
ty
pri
ces
in
that
a
rea.
F
or
exam
ple,
by
analyzin
g
global
ex
planati
ons,
a
n
i
nv
est
or
may
disc
over
t
hat
pro
xi
mit
y
to
publ
ic
trans
portat
ion
or
the
a
vaila
bi
li
ty
of
qual
it
y
sch
oo
ls
a
re
ma
jor
deter
mina
nt
s
of
pr
ic
es
i
n
that
re
gion.
Th
is
inf
or
mati
on
ca
n gu
i
de
in
vest
ment
decisi
ons
by hig
hligh
ti
ng ma
r
ket tre
nds and
pote
ntial
o
pp
or
t
un
it
ie
s.
By
com
bin
i
ng
local
and
glob
al
exp
l
anati
ons
,
sta
kehold
ers
in
the
real
est
a
te
sect
or
can
make
m
ore
inf
ormed
decisi
ons,
t
hereby ma
ximizi
ng thei
r
c
han
ce
s
of s
uccess i
n
a
co
m
plex
and
dyn
a
mic ma
rk
et
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1027
-
1037
1034
6.
DISCU
SSI
ON
Af
te
r
c
ollec
ti
ng
the
i
niti
al
data
f
r
om
r
eal
est
at
e
li
sti
ng
we
bs
it
es
thr
ough
we
b
scra
pi
ng,
w
e
encou
ntere
d
t
he
reali
ty
of
ra
w,
oft
en
inc
omplet
e
data.
To
ov
e
rc
om
e
this
li
mit
at
ion
an
d
enh
a
nce
the
qual
it
y
of
our
dataset
,
w
e
em
barke
d
on
t
he
s
ub
se
qu
ent
phase
de
di
cat
ed
t
o
e
xtra
ct
ing
inf
ormat
ion
f
r
om
the
t
extual
descr
i
ptions
as
so
ci
at
ed
with
e
ach
l
ist
ing
s
hown
in
F
ig
ure
4.
By
usi
ng
t
he
GP
T
A
PI
,
in
si
mp
le
te
r
ms,
w
e
we
re
able
to
extra
ct
valua
ble
de
ta
il
s
su
ch
as
sp
eci
fic
pro
per
t
y
feat
ur
e
s,
avail
able
a
m
eniti
es,
surr
ou
nd
i
ng
conve
niences
,
and
m
ore.
This
ap
proac
h
t
o
e
nr
ic
hm
e
nt,
bas
ed
on
NLP
,
sig
nificantl
y
im
prov
e
d
the
qual
it
y
a
nd
dep
t
h
of
our
da
ta
set
.
Con
se
quently
,
it
pa
ve
d
the
wa
y
f
or
more
co
mpre
he
ns
ive
a
naly
se
s
an
d
m
or
e
rel
evan
t
resu
lt
s
in
the
l
at
er
sta
ges
of
our
resea
rc
h.
Fu
rt
hermo
re,
t
o
kee
p
our
dat
aset
up
to
date
,
we
im
pleme
nted
a
con
ti
nu
ous
sc
r
apin
g
p
r
ocess
us
in
g
Kafka
a
nd
S
park
Strea
ming,
e
nsuring
that
our
datas
et
consi
ste
ntly
ref
le
ct
s
the evolvi
ng r
e
al
estat
e mar
ke
t.
Subseque
ntly,
we
opte
d
for
the
us
e
of
t
he
A
utoML
[
46]
,
[47]
platf
orm,
a
po
werfu
l
to
ol
that
automa
te
s
a
si
gn
i
ficant
porti
on
of
t
he
mac
hin
e
le
ar
ning
model
de
velo
pme
nt
proc
ess.
Among
the
numer
ou
s
avail
able
opti
ons
s
uch
a
s
G
oogle
Au
t
oML,
H2O.
ai
,
A
uto
-
sk
le
ar
n,
a
nd
T
PO
T
[48
]
,
we
chose
aut
o
-
s
kl
earn
t
o
address
this
re
gr
essi
on
pro
blem.
This
platf
orm
opti
mize
s
model
perf
or
m
ance
t
o
meet
our
e
valuati
on
c
rite
ria.
Howe
ver, it
is cru
ci
al
to
em
phasi
ze that
d
es
pite t
he
ease o
f
u
se of
Au
t
oML
[49
]
, a
f
unda
mental
und
e
rst
and
i
ng
of
machi
ne
le
arn
i
ng
[50
]
co
ncep
ts
remai
ns
ind
is
pen
sa
ble
for
inter
pret
ing
a
nd
f
ully
l
ever
a
ging
the
resu
lt
s
pro
du
ce
d
by
t
hese
to
ols.
In
our
case,
sinc
e
stock
pri
ce
pr
e
dicti
on
is
e
ssentia
ll
y
a
re
gr
essi
on
pro
bl
em,
w
e
evaluate
our
m
od
el
s
us
i
ng
me
tric
s
su
c
h
a
s
root
mea
n
s
quare
d
e
rror
(R
M
SE
),
mean
ab
so
l
ut
e
per
ce
ntag
e
e
rror
% (MA
PE), a
nd
the
co
e
ff
ic
ie
nt of
determi
na
ti
on
(R2),
pr
eci
se meas
ur
es
of
pr
e
dicti
on accu
racy.
Figure
4.
Datas
et
en
ric
hm
e
nt from c
om
me
nts
u
si
ng an LL
M mo
del
The
impleme
nt
at
ion
of
this
use
case
withi
n
an
M
L
Op
s
framew
ork
has
enab
le
d
us
to
con
ti
nu
ously
monit
or
t
he
he
al
th
of
our
ca
pt
ur
e
d
data
a
nd
the
predict
io
n
qu
al
it
y
of
our
machine
le
a
rn
i
ng
model.
T
o
a
chieve
this,
we
inte
grat
ed
se
ve
ral
es
sentia
l
to
ols.
F
irstl
y,
MLfl
ow
wa
s
us
e
d
f
or
t
rack
i
ng
a
nd
tr
aci
ng
the
trai
ni
ng
of
our
m
odel
,
pr
ov
i
ding
preci
s
e
tracea
bili
ty
of
eac
h
it
erati
on
a
nd
it
s
perf
ormance
highl
igh
te
d
i
n
Fig
ure
5.
I
n
par
al
le
l,
we
e
sta
blished
a
c
on
ti
nu
ous
inte
gr
at
io
n/co
ntin
uous
dep
l
oyme
nt
(C
I/CD)
pip
el
ine
f
or
the
sou
rce
cod
e
,
en
surin
g
sm
oo
t
h
int
egr
at
io
n
of
u
pd
at
es
a
nd
modific
at
ions
into
our
pr
oductio
n
en
vi
ronme
nt.
Additi
on
al
l
y,
t
o
proacti
vely
monit
or
the
he
al
th
of
ou
r
s
ys
te
m
a
nd
det
ect
po
te
ntial
issues,
we
de
pl
oy
e
d
Pr
ome
the
us
an
d
Grafa
na.
T
he
se
to
ols
al
l
ow
us
to
disp
la
y
a
nd
monit
or
esse
ntial
metr
ic
s
in
real
-
t
im
e,
wh
il
e
config
ur
i
ng
al
erts
to
insta
ntly
noti
fy
us
of
de
viati
ons
or
crit
ic
al
sit
uations.
T
hus,
th
is
M
L
O
ps
ap
proac
h
pro
vid
es
us
with
a
r
obus
t
fr
a
mew
ork
t
o
e
ffec
ti
vely
ma
na
ge
our
m
odel
de
velo
pm
e
nt
c
yc
le
,
w
hile
e
ns
ur
ing
the
reli
abili
ty and
performa
nce
of ou
r
ML a
pp
li
c
at
ion
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
t J
Elec
&
C
omp E
ng
IS
S
N:
20
88
-
8708
I
ntegr
atio
n of
we
b
scr
apin
g,
f
ine
-
tu
ning,
an
d d
ata
e
nr
ic
hm
e
nt in a c
onti
nu
ou
s
m
onit
or
in
g
…
(
An
as
Bo
dor
)
1035
Figure
5. Ex
pe
riment
opti
miza
ti
on
a
nd metri
c analy
sis wit
h ML
flo
w
7.
CONCL
US
I
O
N
In
c
oncl
us
i
on,
the
inte
gr
at
io
n
of
M
L
O
ps
i
nto
a
co
ntin
uous
strea
min
g
data
en
vir
onm
ent
offe
rs
a
com
pr
e
he
ns
ive
an
d
a
gile appr
oach
for
ma
na
ging ML mode
ls. By m
onit
ori
ng
model pe
rfo
rma
nce in
r
eal
-
ti
me,
qu
ic
kly
detect
ing
a
nomali
es,
and
e
nab
li
ng
agile
updates,
M
L
Op
s
al
lo
ws
org
anizat
io
ns
to
mai
ntain
hi
gh
-
qu
al
it
y
m
od
el
s
an
d
ma
ke
i
nformed
decis
ion
s
in
a
dyna
mic
an
d
ev
ol
ving
e
nviro
nm
ent.
T
hro
ugho
ut
this
arti
cl
e,
we
ha
ve
ex
pl
or
e
d
th
e
chall
en
ges
of
co
ntin
uous
s
treami
ng
data
and
t
he
s
olu
ti
on
s
pro
vid
e
d
by
our
fr
ame
w
ork,
w
hich
c
ombine
s
M
L
flo
w
a
nd
oth
e
r
m
onit
ori
ng
to
ols
f
or
M
L
m
od
el
mana
geme
nt
i
n
s
uch
env
i
ronme
nts.
By
integ
rati
ng
M
L
Op
s
pri
nciples
a
nd
model
ma
na
ge
ment
t
oo
ls
into
a
data
st
reamin
g
workflo
w,
org
anizat
ion
s
ca
n
maximize
t
he
value
of
their
inv
e
stments
in
M
L
an
d
maint
ai
n
op
e
rati
onal
agili
ty
in
a
co
ns
ta
nt
l
y
c
ha
ng
i
ng
da
ta
la
ndscape
.
Additi
on
al
l
y,
def
i
ning
metri
cs
an
d
co
ntin
uous
m
on
it
or
i
ng
are
ind
is
pen
sa
ble
f
or
tran
sit
ion
in
g
from
a
tra
diti
on
al
e
xplo
rato
r
y
e
nv
i
ronme
nt
to
a
high
-
pro
duct
ion
en
vir
on
ment.
By
est
a
blishin
g
cl
ea
r
metri
cs
,
orga
nizat
ion
s
can
bette
r
un
der
sta
nd
m
ode
l
pe
rformance
,
set
be
nchmar
ks
,
a
nd
ens
ur
e
co
ntin
uous
imp
rove
ment.
Co
ntin
uous
m
on
it
ori
ng
en
sures
t
ha
t
an
y
dev
ia
t
ion
s
f
rom
e
xpect
ed
performa
nce
a
re
quic
kly
i
de
ntifie
d
a
nd
a
ddress
ed
,
mai
ntaining
the
reli
abili
ty
an
d
e
f
fecti
ven
es
s
of
M
L
models.
Com
bin
in
g
re
al
-
ti
me
we
b
scra
ping,
Kafka,
Sp
a
rk
St
reami
ng,
an
d
M
L
Op
s
i
nteg
rati
on,
our
method
ology
offer
s
a
co
mprehe
ns
ive
ap
proach
to
op
ti
mi
zi
ng
t
he
real
e
sta
te
pr
ic
e
pre
dicti
on
proces
s.
We
emp
hasize
the
imp
or
ta
nce
of
c
onti
nuous
monit
ori
ng
a
nd
co
ntin
uous
impro
v
eme
nt
to
mai
ntain
high
-
performi
ng ML m
od
el
s t
hat
are tai
lore
d
t
o
t
he
c
hangin
g re
qu
i
reme
nts of t
he real
estat
e
mar
ket.
REFERE
NCE
S
[1]
C
.
S
h
i
,
P
.
L
i
a
n
g
,
Y
.
W
u
,
T
.
Z
h
a
n
,
a
n
d
Z
.
J
i
n
,
“
M
a
x
i
m
i
z
i
n
g
u
s
e
r
e
x
p
e
r
i
e
n
c
e
w
i
t
h
L
L
M
O
p
s
-
d
r
i
v
e
n
p
e
r
s
o
n
a
l
i
z
e
d
r
e
c
o
m
m
e
n
d
a
t
i
o
n
s
y
s
t
e
m
s
,
”
A
p
p
l
i
e
d
a
n
d
C
o
m
p
u
t
a
t
i
o
n
a
l
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
6
4
,
n
o
.
1
,
p
p
.
1
0
1
–
1
0
7
,
M
a
y
2
0
2
4
,
d
o
i
:
1
0
.
5
4
2
5
4
/
2
7
5
5
-
2
7
2
1
/
6
4
/
2
0
2
4
1
3
5
3
.
[2]
A.
Bo
d
o
r,
M.
Hn
i
d
a,
an
d
D.
Naji
m
a
,
“M
LOps
:
o
v
erview
o
f
cu
rr
en
t
stat
e
an
d
futu
re
d
i
rect
io
n
s,”
in
Inn
o
va
tio
n
s
in
S
ma
rt
Cities
App
lica
tio
n
s Volume
6
,
Ch
a
m
: Sprin
g
er
Internatio
n
al P
u
b
lish
in
g
,
2
0
2
3
,
p
p
.
1
5
6
–
1
6
5
.
[3]
A.
Bo
d
o
r,
M.
Hn
id
a,
an
d
D.
Naji
m
a,
“From
d
ev
elo
p
m
e
n
t
to
d
ep
lo
y
m
en
t:
an
ap
p
roach
to
M
LOps
m
o
n
ito
ring
f
o
r
m
achi
n
e
l
earnin
g
m
o
d
el
o
p
eration
ali
zatio
n
,”
in
2
0
2
3
1
4
th
Inter
n
a
tio
n
a
l
Co
n
feren
ce
o
n
Intellig
en
t
S
ystems
:
T
h
eo
ries
a
n
d
App
lica
tio
n
s
(SITA)
,
No
v
.
2
0
2
3
,
p
p
.
1
–
7
,
d
o
i:
10
.11
0
9
/SIT
A6
0
7
4
6
.20
2
3
.10
3
7
3
7
3
3
.
[4]
E.
Zi
m
elewi
cz
et
a
l.
,
“
ML
-
en
ab
led
sy
stems
m
o
d
el
d
e
p
lo
y
m
en
t
an
d
m
o
n
ito
ring
:
st
atu
s
q
u
o
an
d
p
rob
lem
s,”
in
Lectu
re
No
tes
i
n
Bus
in
ess
I
n
fo
rma
tio
n
P
ro
cess
in
g
,
v
o
l
.
5
0
5
L
NBIP
,
2
0
2
4
,
p
p
.
1
1
2
–
1
3
1
.
[5]
M.
Priestley
,
F.
O
’do
n
n
ell,
an
d
E.
S
im
p
erl,
“A
su
rvey
o
f
d
ata
q
u
ality
re
q
u
irem
en
ts
th
at
m
atter
in
M
L
d
ev
el
o
p
m
en
t
p
ip
elin
es,”
Jo
u
rn
a
l of Da
ta
a
n
d
I
n
fo
rma
tio
n
Quality
,
v
o
l.
1
5
,
n
o
.
2
,
p
p
.
1
–
3
9
,
Ju
n
.
2
0
2
3
,
d
o
i: 10
.11
4
5
/3
5
9
2
6
1
6
.
[6]
S.
J.
W
arnett
an
d
U.
Zdu
n
,
“On
th
e
u
n
d
erstand
ab
il
ity
o
f
ML
Op
s
sy
stem
ar
ch
itectu
res
,”
IE
EE
Tra
n
sa
ctio
n
s
o
n
S
o
ftware
Eng
in
eerin
g
,
v
o
l.
5
0
,
n
o
.
5
,
p
p
.
1
0
1
5
–
1
0
3
9
,
May 2
0
2
4
,
d
o
i: 10
.1109
/TSE
.20
2
4
.3
3
6
7
4
8
8
.
[7]
A.
Ku
lk
arni,
A.
S
h
iv
an
an
d
a,
A.
Ku
lk
arni,
an
d
D.
Gu
d
i
v
ad
a,
“L
LM
s
for
en
terprise
an
d
L
L
MOps
,”
in
App
lied
Gen
era
tive
AI
fo
r
Begin
n
ers
,
Berk
ele
y
,
CA: Ap
ress
,
2
0
2
3
,
p
p
.
1
1
7
–
154.
[8]
A.
Ku
lk
arni,
A
.
S
h
iv
an
an
d
a,
A.
Ku
lk
arni,
an
d
D.
Gu
d
iv
ad
a,
“Im
p
le
m
en
t
LL
Ms
u
sin
g
Sk
learn,”
in
App
lied
Gen
era
tive
AI
fo
r
Begin
n
ers
, B
erkele
y
,
CA: Ap
ress
,
2
0
2
3
,
p
p
.
1
0
1
–
116.
[9]
V.
Ko
zo
v
,
G.
Iva
n
o
v
a,
an
d
D.
Atan
aso
v
a,
“Practica
l
ap
p
licatio
n
o
f
A
I
an
d
large
lan
g
u
ag
e
m
o
d
els
in
so
f
tware
en
g
in
eering
ed
u
catio
n
,”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l
o
f
Adva
n
ced
Co
mp
u
ter
S
cien
ce
a
n
d
App
lica
tio
n
s
,
v
o
l.
1
5
,
n
o
.
1
,
2
0
2
4
,
d
o
i:
1
0
.14
5
6
9
/IJACSA.2
0
2
4
.0
1
5
0
1
6
8
.
[10
]
G.
G.
Krish
n
a,
“
Multilin
g
u
al
NLP,
”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l
o
f
Adva
n
ce
d
Eng
in
eerin
g
a
n
d
Na
n
o
Tech
n
o
lo
g
y
,
v
o
l.
1
0
,
n
o
.
6
,
p
p
.
9
–
1
2
,
Ju
n
.
2
0
2
3
,
d
o
i: 10
.35
9
4
0
/ij
aent
.E
4
1
1
9
.06
1
0
6
2
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2088
-
8708
In
t J
Elec
&
C
omp E
ng,
V
ol.
15
, No
.
1
,
Febr
uary
20
25
:
1027
-
1037
1036
[11
]
S.
Ka
m
ath
Bark
u
r
,
P.
Sita
p
a
ra,
S
.
L
e
u
sch
n
er,
an
d
S.
Sc
h
acht
,
“Magen
ta:
m
etri
cs
an
d
ev
alu
atio
n
fr
am
e
wo
rk
fo
r
g
en
erative
ag
en
ts
b
ased
o
n
LL
Ms,”
Intellig
en
t
Hu
ma
n
S
ystems
Integ
ra
tio
n
(I
HS
I
2
0
2
4
):
Integ
ra
tin
g
Pe
o
p
le
a
n
d
Intellig
en
t
S
ystems
,
2
0
2
4
,
d
o
i: 10
.5494
1
/ah
fe
1
0
0
4
4
7
8
.
[12
]
L.
Bu
d
ach
et al.
,
“
The ef
fects of
data
qu
ality
on
M
L
-
m
o
d
el perf
o
r
m
an
ce,”
Co
RR
ab
s/2
2
0
7
.1
4
5
2
9
,
2
0
2
2
.
[13
]
R.
Ma
rpu
an
d
B.
Manju
la,
“St
rea
m
in
g
m
achi
n
e
lea
rnin
g
alg
o
rithms
with
strea
m
in
g
b
ig
d
ata
sy
stems,”
Bra
zilia
n
Jo
u
rnal
o
f
Develop
men
t
,
v
o
l.
1
0
,
n
o
.
1
,
p
p
.
3
2
2
–
3
3
9
,
Jan
.
2
0
2
4
,
d
o
i
: 10
.34
1
1
7
/b
jd
v
1
0
n
1
-
021.
[14
]
M.
Y.
E
.
Sap
u
tra,
No
p
rianto
,
S.
No
o
r
Ar
ief,
V
.
N.
W
ijay
an
in
g
rum,
a
n
d
Y.
W
.
Sy
ai
fud
in
,
“Real
-
tim
e
se
r
v
er
m
o
n
ito
ring
an
d
n
o
tification
sy
stem
with
p
ro
m
eth
eu
s,
Gr
afana,
an
d
Telegra
m
in
te
g
ration
,”
in
2
0
2
4
ASU
Int
ern
a
tio
n
a
l
Co
n
feren
ce
in
Emerg
in
g
Tech
n
o
lo
g
ies
fo
r
S
u
s
ta
in
a
b
ility
a
n
d
Intellig
en
t
S
ystems
(I
C
ETSIS
)
,
Jan
.
2
0
2
4
,
p
p
.
1
8
0
8
–
1
8
1
3
,
d
o
i:
1
0
.11
0
9
/ICET
SIS
6
1
5
0
5
.20
2
4
.10
4
5
9
4
8
8
.
[15
]
S.
C.
Hu
an
g
and
T
.
H.
L
e
,
Prin
cip
les
a
n
d
lab
s fo
r d
eep l
ea
rn
in
g
.
Un
ited
King
d
o
m
: A
cademic
Press, 20
2
1
.
[16
]
A.
Bo
d
o
r,
M
.
Hn
i
d
a,
an
d
N.
D
ao
u
d
i,
“Ma
ch
in
e
learnin
g
m
o
d
els
m
o
n
ito
ri
n
g
in
ML
Op
s
co
n
tex
t:
m
et
rics
an
d
to
o
ls,”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l of Inter
a
ct
ive Mob
ile Techn
o
lo
g
ies (iJI
M)
,
v
o
l.
1
7
,
n
o
.
2
3
,
p
p
.
1
2
5
–
1
3
9
,
Dec.
2
0
2
3
,
d
o
i: 10
.39
9
1
/ij
im
.v1
7
i2
3
.4
3
4
7
9
.
[17
]
“Gre
at
exp
ectatio
n
s
,
” http
s://g
reate
x
p
ectatio
n
s.io
/ (
acces
sed
Aug
.
0
1
,
2
0
2
4
)
.
[18
]
J.
Kr
zy
wan
sk
i
et
a
l.
,
“Au
to
ML
‐bas
ed
p
redictiv
e
f
ra
m
ewo
rk
for
p
r
ed
ictiv
e
an
aly
sis
in
ad
so
rptio
n
co
o
lin
g
an
d
d
esalin
atio
n
sy
stems,”
Ener
g
y Scien
ce & Eng
i
n
eerin
g
,
v
o
l.
1
2
,
n
o
.
5
,
p
p
.
1
9
6
9
–
1
9
8
6
,
May 2
0
2
4
,
d
o
i: 10
.
1
0
0
2
/ese3
.1
7
2
5
.
[19
]
D.
P
etrov
a
-
An
to
n
o
v
a
an
d
R.
Tanch
e
v
a,
“Da
ta
cleanin
g
:
a
case
stu
d
y
with
o
p
en
ref
in
e
an
d
tri
facta
wr
an
g
ler,
”
in
Co
mmu
n
ica
tio
n
s
in
Co
mp
u
ter a
n
d
I
n
fo
rma
tio
n
Scien
c
e
,
v
o
l.
1
2
6
6
CCIS,
2
0
2
0
,
p
p
.
3
2
–
40.
[20
]
A.
P
an
d
ey
,
M
.
So
n
awane,
an
d
S
.
M
am
tan
i,
“Deplo
y
m
en
t
o
f
ML
m
o
d
els
u
sin
g
k
u
b
eflow
o
n
d
iff
er
en
t
clo
u
d
p
rov
id
ers,”
a
rXiv
p
rep
rin
t ar
Xiv:
2
2
0
6
.13
6
5
5
,
2
0
2
2
.
[21
]
L.
Be
rberi,
V.
Koz
lo
v
,
K.
Alib
ab
aei
,
an
d
B.
Esteb
an
,
“
ML
flow
and
its us
ag
e,”
a
rXiv pr
ep
ri
n
t ar
Xiv
,
2
0
2
2
.
[22
]
“Seld
o
n
,
” http
s://www.seld
o
n
.io/ (acc
ess
ed
Aug
.
0
1
,
2
0
2
4
).
[23
]
A.
H.
Ali,
M
.
Al
ajan
b
i,
M
.
G.
Ya
seen
,
an
d
S
.
A
.
Ab
ed
,
“Ch
atg
p
t4
,
DA
LL
·E
,
Bard
,
Clau
d
e,
BERT:
o
p
en
p
o
ss
ib
ilities,”
Bab
ylo
n
ia
n
Journ
a
l of Ma
ch
in
e Lear
n
in
g
,
v
o
l.
2
0
2
3
,
p
p
.
1
7
–
1
8
,
Mar
.
2
0
2
3
,
d
o
i: 10
.58
4
9
6
/B
JML/20
2
3
/0
0
3
.
[24
]
F
.
A
l
h
a
j
,
A
.
A
l
-
H
a
j
,
A
.
S
h
a
r
i
e
h
,
a
n
d
R
.
J
a
b
r
i
,
“
I
m
p
r
o
v
i
n
g
a
r
a
b
i
c
c
o
g
n
i
t
i
v
e
d
i
s
t
o
r
t
i
o
n
c
l
a
s
s
i
f
i
c
a
t
i
o
n
i
n
t
w
i
t
t
e
r
u
s
i
n
g
B
E
R
T
o
p
i
c
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
A
d
v
a
n
c
e
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
A
p
p
l
i
c
a
t
i
o
ns
,
v
o
l
.
1
3
,
n
o
.
1
,
2
0
2
2
,
d
o
i
:
1
0
.
1
4
5
6
9
/
I
J
A
C
S
A
.
2
0
2
2
.
0
1
3
0
1
9
9
.
[25
]
E.
Yu
lian
ti,
N.
Pa
n
g
estu
,
an
d
M.
A
.
Jiwan
g
g
i,
“
Enh
an
ced
tex
trank
u
sin
g
weig
h
ted
wo
rd
e
m
b
ed
d
in
g
for
tex
t
su
m
m
ari
zatio
n
,”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l
o
f
Electric
a
l
a
n
d
Co
mp
u
ter
Eng
in
eerin
g
,
v
o
l.
1
3
,
n
o
.
5
,
p
p
.
5
4
7
2
–
5
4
8
2
,
Oct.
2
0
2
3
,
d
o
i:
1
0
.11
5
9
1
/ijece.v1
3
i5
.pp
5
4
7
2
-
5
4
8
2
.
[26
]
D.
Dillio
n
,
N.
Ta
n
d
o
n
,
Y.
Gu
,
an
d
K.
Gray,
“Can
AI
lan
g
u
ag
e
m
o
d
els
replace
h
u
m
an
p
articipan
ts?,”
T
ren
d
s
in
C
o
g
n
itiv
e
S
cien
ces
,
v
o
l.
2
7
,
n
o
.
7
,
p
p
.
5
9
7
–
6
0
0
,
Ju
l.
2
0
2
3
,
d
o
i: 10.
1
0
1
6
/j.tics.20
2
3
.0
4
.00
8
.
[27
]
Z.
He
et
a
l.
,
“Ex
p
lo
ring
h
u
m
an
-
lik
e
trans
latio
n
strat
eg
y
with
large
la
n
g
u
ag
e
m
o
d
els,”
Tra
n
sa
ctio
n
s
o
f
th
e
Asso
cia
tio
n
fo
r
Co
mp
u
ta
tio
n
a
l Lin
g
u
istics
,
v
o
l.
1
2
,
p
p
.
2
2
9
–
2
4
6
,
Mar
.
2
0
2
4
,
d
o
i: 10
.1
1
6
2
/t
acl_
a_
0
0
6
4
2
.
[28
]
I.
O.
W
ill
iam
a
n
d
M.
Alt
am
i
m
i,
“L
arge
lan
g
u
ag
e
m
o
d
el
for
crea
t
iv
e
w
riting
an
d
article
g
en
eration
,”
Inter
n
a
tio
n
a
l
Jo
u
rnal
o
f
Adva
n
ced N
a
tu
ra
l
S
cien
ces a
n
d
E
n
g
i
n
eerin
g
R
esea
rch
es
,
p
p
.
7
4
1
–
7
4
8
,
2
0
2
4
.
[29
]
D
.
H
u
a
n
g
e
t
a
l
.
,
“
D
S
Q
A
-
L
L
M
:
d
o
m
a
i
n
-
s
p
e
c
i
f
i
c
i
n
t
e
l
l
i
g
e
n
t
q
u
e
s
t
i
o
n
a
n
s
w
e
r
i
n
g
b
a
s
e
d
o
n
l
a
r
g
e
l
a
n
g
u
a
g
e
m
o
d
e
l
,
”
i
n
C
o
m
m
u
n
i
c
a
t
i
o
n
s
i
n
C
o
m
p
u
t
e
r
a
n
d
I
n
f
o
r
m
a
t
i
o
n
S
c
i
e
n
c
e
,
2
0
2
4
,
v
o
l
.
1
9
4
6
C
C
I
S
,
p
p
.
1
7
0
–
1
8
0
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
981
-
99
-
7587
-
7
_
1
4
.
[30
]
M.
Sk
o
riko
v
,
K.
N.
J.
Om
ar,
an
d
R.
Kh
an
,
“Vo
ic
e
-
c
o
n
trolled
in
tellig
en
t
p
erso
n
al
ass
istan
t,”
in
S
ma
rt
Inn
o
va
tio
n
,
S
ystems
a
n
d
Tech
n
o
lo
g
ies
,
v
o
l.
2
7
3
,
2
0
2
2
,
p
p
.
5
7
–
65.
[31
]
F.
An
to
n
iu
s
et
a
l.
,
“Inco
rpo
rating
n
atu
ral
lan
g
u
ag
e
p
rocess
in
g
in
to
v
irtual
ass
istan
ts:
an
in
tellig
en
t
ass
ess
m
en
t
stra
teg
y
for
en
h
an
cin
g
lan
g
u
ag
e
co
m
p
rehen
sio
n
,”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l
o
f
Adva
n
ced
Co
mp
u
ter
S
cien
ce
a
n
d
App
lica
tio
n
s
,
v
o
l.
1
4
,
n
o
.
1
0
,
2
0
2
3
,
d
o
i: 1
0
.14
5
6
9
/IJACSA.2
0
2
3
.0141
0
7
9
.
[32
]
R.
Bag
ai,
A.
Masr
an
i,
P.
Ran
jan
,
an
d
M.
Najana,
“I
m
p
lem
en
tin
g
co
n
tin
u
o
u
s
in
teg
ratio
n
an
d
d
ep
lo
y
m
en
t
(CI/CD)
fo
r
m
a
ch
in
e
learnin
g
m
o
d
els
o
n
AW
S,”
Int
ern
a
tio
n
a
l
Jo
u
rnal
o
f
Glo
b
a
l
In
n
o
va
tio
n
s
a
n
d
S
o
lu
tio
n
s
(I
JGIS)
,
May
2
0
2
4
,
d
o
i:
1
0
.21
4
2
8
/e9
0
1
8
9
c
8
.9cb
3
9
c5
5
.
[
33]
T.
-
C.
T.
Ch
en
,
“
Exp
lain
ab
le
artif
i
cial
in
tellig
en
ce
(
XAI)
with
ap
p
licatio
n
s,”
in
Expla
in
a
b
le
Ambien
t
In
tellig
en
ce
(X
A
mI
)
Expla
in
a
b
le A
rtificia
l I
n
tellig
en
ce A
p
p
lica
tio
n
s in
Sma
rt
Life
,
Sp
ring
er,
20
2
4
,
p
p
.
2
3
–
3
8
.
[34
]
S.
Ro
y
,
G
.
L
ab
er
g
e,
B.
Ro
y
,
F
.
Kh
o
m
h
,
A.
Nik
an
ja
m
,
an
d
S.
Mon
d
al,
“Wh
y
d
o
n
’t
XA
I
tech
n
iq
u
es
ag
ree
?
ch
arac
t
erizing
th
e
d
isag
reem
en
ts
b
etween
p
o
st
-
h
o
c
ex
p
lan
atio
n
s
o
f
d
ef
ect
p
redictio
n
s,”
in
2
0
2
2
IE
EE
Int
ern
a
tio
n
a
l
Co
n
fer
en
ce
o
n
S
o
ftw
a
re
Ma
in
ten
a
n
ce and Ev
o
lu
tio
n
(
ICS
ME
)
,
O
ct.
2
0
2
2
,
p
p
.
4
4
4
–
4
4
8
,
d
o
i: 10
.1
1
0
9
/ICSME
5
5
0
1
6
.2
0
2
2
.0005
6
.
[35
]
X.
Ko
n
g
,
S.
Liu,
a
n
d
L.
Zhu
,
“
Towar
d
h
u
m
an
-
cent
ered
XAI
in
p
r
actice:
a
su
rvey
,”
Ma
ch
in
e
Intellig
en
ce
Resea
rch
,
v
o
l.
2
1
,
n
o
.
4
,
p
p
.
7
4
0
–
7
7
0
,
Au
g
.
20
2
4
.
[36
]
S.
Ala
m
an
d
Z.
Al
tip
arm
ak
,
“XA
I
-
CF
-
ex
am
in
in
g
th
e
r
o
le
o
f
ex
p
lain
ab
le
artif
ici
al
in
tellig
en
ce
in
cy
b
er
forens
ics,”
a
rXiv
p
rep
rin
t
a
rXiv:24
0
2
.02
4
5
2
,
20
2
4
.
[37
]
L.
S
ch
u
lte,
B.
Led
el,
an
d
S.
He
rbo
ld
,
“Stu
d
y
in
g
th
e
ex
p
lan
atio
n
s
for
th
e
au
to
m
ated
p
redicti
o
n
o
f
b
u
g
an
d
n
o
n
-
b
u
g
iss
u
es
u
sing
LI
M
E
an
d
SH
AP,”
Empir
ica
l So
ftwa
re Eng
in
eerin
g
,
v
o
l.
2
9
,
n
o
.
4
,
Ju
l.
2
0
2
4
,
d
o
i: 10
.10
0
7
/s106
6
4
-
0
2
4
-
1
0
4
6
9
-
1.
[38
]
A.
Lóp
ez
-
Lóp
ez,
J
.
M
.
G
arcıa
-
Go
r
r
o
stieta,
an
d
S.
Go
n
zález
-
Lóp
ez,
“E
m
o
tio
n
d
etectio
n
i
n
ed
u
catio
n
al
d
ialo
g
u
es
b
y
trans
fer
learnin
g
,”
Jo
u
rn
a
l of Intellig
en
t & Fuz
zy S
ystems
,
p
p
.
1
–
1
1
,
Mar
.
20
2
4
,
d
o
i
: 10
.32
3
3
/JIFS
-
2
1
9
3
4
0
.
[39
]
X.
Li,
Y
.
Zhan
g
,
an
d
E.
C.
Ma
lth
o
u
se,
“Exp
lo
ri
n
g
fine
-
tu
n
in
g
C
h
atGPT
for
n
ews
recom
m
en
d
atio
n
,”
a
rXiv
p
rep
rin
t
a
rXiv:23
1
1
.05
8
5
0
.
,
2
0
2
3
.
[40
]
K.
I.
Ro
u
m
elio
tis,
N.
D.
Tselik
as,
a
n
d
D.
K.
Nasio
p
o
u
lo
s,
“Next
-
g
en
era
tio
n
sp
am
filter
in
g
:
co
m
p
arative
fine
-
tu
n
in
g
o
f
LL
Ms,
NLPs,
an
d
CN
N
m
o
d
els
for
em
ail
sp
a
m
class
ification
,”
E
lectro
n
ics
,
v
o
l.
1
3
,
n
o
.
1
1
,
May
2
0
2
4
,
d
o
i:
1
0
.33
9
0
/electron
ics1
3
1
1
2
0
3
4
.
[41
]
M.
S
eiranian
,
“La
rge
lan
g
u
ag
e
m
o
d
el
p
ara
m
ete
r
ef
fici
en
t
fine
-
tu
n
in
g
for
m
ath
em
at
ical
p
r
o
b
lem
so
lv
in
g
final
p
roject
repo
rt,
”
2024
,
d
o
i: 1
0
.13
1
4
0
/RG.2
.2.2
8
2
6
2
.8
4
8
0
6
.
[
42]
A.
Sh
a
rm
a
,
K.
K.
Up
m
an
,
D.
Sain
i
,
an
d
A
.
Raj
,
“
N
LP
an
d
it
’s
all
a
p
p
licatio
n
in
AI,
”
Tu
ijin
Jish
u
/Jo
u
rn
a
l
o
f
Pro
p
u
lsio
n
Tech
n
o
lo
g
y
,
v
o
l.
4
3
,
n
o
.
4
,
p
p
.
1
8
0
–
1
8
3
,
No
v
.
2
0
2
3
,
d
o
i
: 10
.52
7
8
3
/tjjp
t.v43.i4
.23
2
8
.
[43
]
S.
Ab
d
u
l
-
Rah
m
an
,
N.
H
.
Zulk
ifley
,
I.
Ibrahi
m
,
an
d
S.
Mutalib
,
“
Ad
v
an
ced
m
achi
n
e
learnin
g
alg
o
rithms
for
h
o
u
se
p
rice
p
redictio
n
:
case
stu
d
y
in
Ku
ala
Lumpu
r,
”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l
o
f
Adva
n
ced
Co
mp
u
ter
S
cie
n
ce
a
n
d
App
lica
ti
o
n
s
,
v
o
l.
1
2
,
n
o
.
1
2
,
2
0
2
1
,
d
o
i: 1
0
.14
5
6
9
/IJACSA.2
0
2
1
.0121
2
9
1
.
[44
]
D.
S.
Mph
a
sis
an
d
D.
Se
en
iv
asan
,
“
Real
-
ti
m
e
d
ata
p
ro
cess
in
g
with
strea
m
in
g
ET
L,
”
Articl
e
in
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l
o
f
S
cien
ce
a
n
d
R
esea
rch
,
v
o
l.
1
2
,
p
p
.
2
1
8
5
–
2
1
9
2
,
2
0
2
3
,
d
o
i: 10
.2
1
2
7
5
/SR246
1
9
0
0
0
0
2
6
.
[45
]
N.
B.
Kilaru,
“Des
ig
n
real
-
ti
m
e
d
ata
p
rocess
in
g
sy
stems
for
ai
ap
p
licatio
n
s,”
Inter
n
a
tio
n
a
l
Jo
u
rn
a
l
fo
r
Resear
ch
Pub
lica
tio
n
a
n
d
S
emin
a
r
,
v
o
l.
1
5
,
n
o
.
3
,
p
p
.
4
7
2
–
4
8
1
,
Sep
.
2
0
2
4
,
d
o
i: 10
.
3
6
6
7
6
/jrps
.v1
5
.i3.
1
5
3
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.