I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
pu
t
er
Science
Vo
l.
3
7
,
No
.
3
,
Ma
r
ch
20
2
5
,
p
p
.
1
5
4
3
~
1
554
I
SS
N:
2
502
-
4
7
52
,
DOI
: 1
0
.
1
1
5
9
1
/ijee
cs
.v
3
7
.
i
3
.
pp
1
5
4
3
-
1
5
5
4
1543
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ee
cs
.
ia
esco
r
e.
co
m
Authen
ticated
im
a
g
e
encryp
tion
us
ing
ro
bust
cha
o
tic
ma
ps
a
nd
enha
nced
a
dv
a
nc
ed
encryp
tion
sta
nda
rd
Rupa
lib
e
n
V.
Cho
t
he,
Su
nit
a
P.
Ug
a
le,
Dines
h
M.
C
ha
n
dwa
dk
a
r,
Sh
ra
dd
ha
V.
Sh
el
k
e
D
e
p
a
r
t
me
n
t
of
El
e
c
t
r
o
n
i
c
s
a
n
d
T
e
l
e
c
o
mm
u
n
i
c
a
t
i
o
n
En
g
i
n
e
e
r
i
n
g
,
K.
K.
W
a
g
h
I
n
st
i
t
u
t
e
of
E
n
g
i
n
e
e
r
i
n
g
E
d
u
c
a
t
i
o
n
a
n
d
R
e
sea
r
c
h
,
S
a
v
i
t
r
i
b
a
i
P
h
u
l
e
P
u
n
e
U
n
i
v
e
r
si
t
y
,
P
u
n
e
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l
4
,
2
0
2
4
R
ev
is
ed
Sep
19
,
2
0
2
4
Acc
ep
ted
Oct
7
,
2
0
2
4
Th
e
a
b
il
it
y
of
a
d
v
a
n
c
e
d
e
n
c
ry
p
ti
o
n
sta
n
d
a
r
d
(AES
)
a
lg
o
rit
h
m
to
p
ro
tec
t
in
fo
rm
a
ti
o
n
sy
ste
m
s
h
a
s
g
iv
e
n
c
ry
p
to
g
ra
p
h
y
a
n
e
w
d
ime
n
si
o
n
.
Re
c
e
n
t
e
n
c
ry
p
ti
o
n
a
p
p
r
o
a
c
h
e
s
to
e
n
h
a
n
c
e
ra
n
d
o
m
n
e
ss
in
c
lu
d
e
th
e
u
se
of
c
h
a
o
ti
c
a
lg
o
rit
h
m
s,
wh
ic
h
p
ro
v
id
e
re
si
sta
n
c
e
to
d
iffere
n
ti
a
l
a
tt
a
c
k
s.
We
h
a
v
e
p
ro
p
o
se
d
th
e
a
p
p
li
c
a
ti
o
n
of
ro
b
u
s
t
c
h
a
o
ti
c
m
a
p
s
in
t
h
e
b
lo
c
k
c
ip
h
e
r
to
d
e
sig
n
a
se
c
u
re
a
u
th
e
n
ti
c
a
ted
e
n
c
ry
p
ti
o
n
sc
h
e
m
e
to
g
e
t
a
d
v
a
n
tag
e
s
of
b
o
t
h
.
Th
e
c
h
a
o
ti
c
se
q
u
e
n
c
e
is
g
e
n
e
ra
ted
u
s
in
g
h
y
p
e
rb
o
li
c
tan
g
e
n
t
map
a
n
d
a
d
d
e
d
to
in
p
u
t
ima
g
e
in
it
iall
y
to
i
n
c
re
a
se
ra
n
d
o
m
n
e
ss
.
Th
e
b
a
sic
2
5
6
-
b
it
A
ES
k
e
y
is
g
e
n
e
ra
ted
u
sin
g
t
h
e
ro
b
u
st
Re
n
y
i
m
o
d
u
l
o
map
.
An
a
d
d
it
i
o
n
a
l
1
2
8
-
b
it
k
e
y
e
n
h
a
n
c
e
s
se
c
u
rit
y
.
In
ste
a
d
of
sta
ti
c
v
a
lu
e
s
u
se
d
in
AES
,
d
y
n
a
m
ic
in
it
ializa
ti
o
n
v
e
c
to
r
(IV)
,
d
iffere
n
t
fo
r
e
v
e
ry
ima
g
e
will
be
g
e
n
e
ra
ted
.
Th
e
re
su
lt
s
a
re
m
a
th
e
m
a
ti
c
a
ll
y
v
e
rifi
e
d
u
sin
g
v
a
rio
u
s
se
c
u
rit
y
p
a
ra
m
e
ters
.
Th
e
a
lg
o
rit
h
m
p
r
o
v
i
d
e
s
lo
we
r
v
a
l
u
e
s
of
p
e
a
k
si
g
n
a
l
-
to
-
n
o
ise
ra
ti
o
(P
S
NR)
(7
.
8
1
to
9
.
1
0
d
B)
fo
r
e
n
c
ry
p
ted
ima
g
e
s
a
n
d
h
i
g
h
e
r
d
issim
il
a
rit
ies
b
e
tw
e
e
n
in
p
u
t
a
n
d
e
n
c
ry
p
ted
ima
g
e
h
ist
o
g
ra
m
s.
Th
u
s,
it
is
h
i
g
h
ly
re
sista
n
t
to
sta
ti
stica
l
a
tt
a
c
k
s.
Th
e
e
x
p
e
rime
n
tal
re
su
lt
s
a
n
d
t
h
e
ir
c
o
m
p
a
riso
n
p
r
o
v
e
th
e
s
u
p
e
rio
r
it
y
of
o
u
r
p
ro
p
o
se
d
c
r
y
p
t
o
sy
ste
m
a
g
a
in
st
sta
ti
stica
l,
d
if
fe
re
n
ti
a
l
a
n
d
b
ru
te
-
fo
rc
e
a
tt
a
c
k
s.
Th
u
s,
t
h
e
n
o
v
e
l
m
u
lt
i
-
c
h
a
o
ti
c
AES
-
G
CM
(
g
a
l
o
is/co
u
n
ter
m
o
d
e
)
a
lg
o
rit
h
m
can
be
u
se
d
f
o
r
c
o
lo
r
i
m
a
g
e
e
n
c
ry
p
ti
o
n
in
m
il
i
tary
a
n
d
in
d
u
strial
a
p
p
li
c
a
ti
o
n
s
d
e
m
a
n
d
in
g
h
i
g
h
d
a
ta
se
c
u
rit
y
a
n
d
a
u
t
h
e
n
ti
c
a
ti
o
n
.
K
ey
w
o
r
d
s
:
Ad
v
an
ce
d
e
n
cr
y
p
tio
n
s
tan
d
ar
d
Au
th
en
ticated
en
cr
y
p
tio
n
C
o
lo
r
im
ag
e
en
cr
y
p
tio
n
C
r
y
p
to
g
r
ap
h
y
R
o
b
u
s
t
ch
ao
tic
m
ap
s
T
h
is
is
an
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r
th
e
CC
BY
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
R
u
p
alib
en
V.
C
h
o
th
e
Dep
ar
tm
en
t
of
E
lectr
o
n
ics
an
d
T
elec
o
m
m
u
n
icatio
n
E
n
g
in
ee
r
in
g
K.
K.
W
ag
h
I
n
s
titu
te
of
E
n
g
in
ee
r
in
g
E
d
u
ca
tio
n
a
n
d
R
esear
ch
,
Sav
itrib
ai
Ph
u
le
Pu
n
e
Un
iv
er
s
ity
Pu
n
e,
I
n
d
ia
E
m
ail:
r
v
ch
o
th
e@
k
k
wag
h
.
ed
u
.
in
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
s
ec
u
r
ity
o
f
d
ata
is
a
m
aj
o
r
co
n
ce
r
n
i
n
th
e
a
d
v
an
ce
d
c
o
m
m
u
n
icatio
n
n
etwo
r
k
s
.
E
n
c
r
y
p
tio
n
is
em
p
lo
y
ed
to
s
af
eg
u
a
r
d
th
e
i
n
f
o
r
m
atio
n
a
n
d
m
ain
tain
its
co
n
f
id
en
tiality
.
Ad
v
an
ce
d
en
c
r
y
p
t
io
n
s
tan
d
ar
d
(
AE
S)
is
wid
ely
r
ec
o
g
n
ized
as th
e
i
n
d
u
s
tr
y
s
tan
d
ar
d
f
o
r
en
cr
y
p
tio
n
d
u
e
to
its
u
n
iq
u
e
b
len
d
o
f
f
lex
ib
ilit
y
an
d
s
ec
u
r
ity
.
Ma
n
y
s
tu
d
ies
ar
e
b
ein
g
co
n
d
u
cted
to
f
u
lly
u
tili
ze
th
e
p
o
te
n
tial
o
f
AE
S
in
v
ar
io
u
s
s
ec
u
r
ity
ap
p
licatio
n
s
ev
er
s
in
ce
th
e
Natio
n
al
I
n
s
titu
te
o
f
Stan
d
ar
d
s
an
d
T
ec
h
n
o
lo
g
y
(
N
I
ST)
r
ec
o
g
n
ized
it
as
th
e
n
ex
t g
en
er
atio
n
s
ec
u
r
it
y
alg
o
r
ith
m
.
Sm
ar
t
g
r
id
co
m
m
u
n
icatio
n
s
,
wir
eless
m
u
ltime
d
ia
s
en
s
o
r
n
etwo
r
k
s
(
W
MSN)
,
s
m
ar
t
ca
r
d
s
,
web
s
er
v
er
s
,
an
d
in
ter
n
et
o
f
t
h
in
g
s
(
I
o
T
)
-
en
ab
le
d
h
ea
lth
ca
r
e
in
f
r
astru
ctu
r
e
[
1
]
ar
e
s
o
m
e
o
f
th
e
ar
ea
s
wh
er
e
en
h
an
ce
d
AE
S is
b
ein
g
r
esear
ch
ed
an
d
u
s
ed
.
Au
th
en
ticated
e
n
c
r
y
p
tio
n
(
A
E
)
s
y
s
tem
s
ar
e
o
f
ten
em
p
lo
y
ed
in
t
r
an
s
p
o
r
t
lay
er
s
ec
u
r
ity
(
T
L
S)
a
n
d
I
Ps
ec
.
T
L
S
1
.
3
,
th
e
m
o
s
t
r
ec
en
t
v
er
s
io
n
,
n
o
l
o
n
g
e
r
s
u
p
p
o
r
ts
n
o
n
-
AE
s
ch
em
es
[
2
]
.
T
h
e
Un
ited
States
NI
ST
ad
o
p
ted
th
e
g
al
o
is
/co
u
n
ter
m
o
d
e
(
GC
M)
[
3
]
to
o
f
f
er
a
f
ast
m
eth
o
d
f
o
r
au
th
en
ticated
cr
y
p
to
g
r
ap
h
y
.
GC
M
h
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
7
,
No
.
3
,
Ma
r
ch
20
2
5
:
1
543
-
1
5
5
4
1544
b
ee
n
u
s
ed
i
n
a
n
u
m
b
er
o
f
s
tan
d
ar
d
s
,
in
clu
d
in
g
th
e
I
E
E
E
8
0
2
.
1
AE
f
o
r
m
ed
ia
ac
ce
s
s
co
n
tr
o
l
(
MA
C
)
,
th
e
I
E
E
E
P1
6
1
9
.
1
f
o
r
s
to
r
a
g
e
d
e
v
ices
an
d
th
e
I
E
T
F
R
FC
4
1
0
6
f
o
r
I
Ps
ec
en
ca
p
s
u
latin
g
s
ec
u
r
ity
p
ay
lo
a
d
[
4
]
.
An
ad
d
itio
n
al
au
t
h
en
ticated
d
ata
(
AAD)
,
in
itializatio
n
v
ec
to
r
,
p
lain
tex
t,
an
d
an
AE
S
k
ey
a
r
e
th
e
in
p
u
ts
to
th
e
GC
M.
T
h
e
o
u
t
p
u
t
c
o
n
s
is
ts
o
f
an
au
th
e
n
ticatio
n
tag
wh
ich
is
u
s
ed
at
th
e
r
ec
eiv
er
to
co
n
f
ir
m
th
e
a
u
th
en
ticity
o
f
th
e
AAD
an
d
th
e
ci
p
h
er
tex
t
[
3
]
.
T
h
e
r
esear
ch
er
s
h
av
e
im
p
r
o
v
ed
th
r
o
u
g
h
p
u
t
o
f
A
E
S
b
y
al
g
o
r
ith
m
i
c
m
o
d
if
icatio
n
s
[
5
]
,
[
6
]
.
T
h
e
AE
S
-
GC
M
en
cr
y
p
tio
n
alg
o
r
ith
m
was
m
o
d
if
ied
b
y
r
o
tatin
g
t
h
e
i
n
itializatio
n
v
ec
t
o
r
(
I
V)
to
r
aise th
e
r
an
d
o
m
n
ess
[
7
]
.
C
o
m
p
ar
ed
to
th
e
co
n
v
en
tio
n
a
l
en
cr
y
p
tio
n
,
wh
ic
h
h
as
a
p
o
o
r
d
if
f
u
s
io
n
ef
f
ec
t,
th
e
c
h
ao
s
th
eo
r
y
h
as
b
ee
n
b
elie
v
ed
to
b
e
an
ef
f
ec
ti
v
e
m
eth
o
d
.
T
h
ese
ch
a
o
tic
s
y
s
tem
s
ar
e
v
er
y
s
en
s
itiv
e
to
d
es
ig
n
p
a
r
am
eter
s
an
d
in
itial
v
alu
es.
C
h
ao
tic
m
ap
s
ar
e
u
s
ed
to
p
r
o
v
id
e
r
a
n
d
o
m
s
eq
u
en
ce
s
th
at
en
ab
le
p
r
ec
is
e
en
cr
y
p
tio
n
,
b
u
t
th
e
ch
ao
tic
tech
n
iq
u
es
with
p
o
o
r
er
g
o
d
icity
a
r
e
v
u
ln
er
ab
le
to
a
ttack
s
[
8
]
.
T
h
e
o
u
tp
u
t
o
f
two
ch
ao
tic
m
ap
s
wer
e
co
m
b
in
ed
in
o
r
d
e
r
to
cr
ea
te
a
h
y
b
r
id
c
h
ao
tic
m
a
p
.
T
h
e
h
y
b
r
id
c
h
ao
tic
m
ap
o
u
tp
er
f
o
r
m
s
t
h
e
s
in
g
le
c
h
ao
tic
en
cr
y
p
tio
n
in
ter
m
s
o
f
s
ec
u
r
it
y
[
9
]
.
Ar
n
o
ld
tr
an
s
f
o
r
m
s
a
n
d
f
r
ac
tio
n
al
o
r
d
er
ch
ao
tic
s
eq
u
en
ce
wer
e
u
s
ed
to
en
cr
y
p
t th
e
d
ata.
B
u
t th
e
v
alid
ity
o
f
th
e
alg
o
r
ith
m
is
to
b
e
v
e
r
if
ied
in
d
etai
l
[
1
0
]
.
Kar
i
et
a
l
.
[
1
1
]
in
tr
o
d
u
ce
d
a
n
o
v
el
im
ag
e
en
c
r
y
p
tio
n
alg
o
r
it
h
m
in
wh
ich
Ar
n
o
ld
’
s
ca
t m
ap
is
u
s
ed
f
o
r
co
n
f
u
s
io
n
an
d
th
e
co
m
b
in
ati
o
n
o
f
s
in
e,
lo
g
is
tic,
a
n
d
te
n
t
m
ap
p
r
o
v
id
es
d
if
f
u
s
io
n
.
Sin
e
m
ap
was
u
s
ed
f
o
r
p
ar
allel
p
er
m
u
tatio
n
an
d
d
if
f
u
s
io
n
o
f
p
ix
el
v
alu
es
in
[
1
2
]
.
Xian
et
a
l
.
[
1
3
]
i
n
tr
o
d
u
ce
d
ch
ao
tic
s
u
b
-
b
lo
ck
s
cr
am
b
lin
g
u
s
in
g
s
p
ir
al
tr
a
n
s
f
o
r
m
atio
n
,
an
d
d
i
g
it
s
elec
tio
n
d
if
f
u
s
io
n
,
r
e
q
u
ir
in
g
th
e
attac
k
er
to
b
r
ea
k
ea
c
h
alg
o
r
ith
m
i
n
d
iv
id
u
ally
.
Mo
n
d
al
an
d
Sin
g
h
[
1
4
]
,
a
lig
h
t
-
w
eig
h
t,
ch
a
o
tic
m
ap
-
b
ased
co
n
ce
p
t
was
p
u
t
in
t
o
p
r
ac
tice.
T
h
e
y
wer
e
ab
le
to
e
x
ec
u
te
s
u
b
s
titu
tio
n
a
n
d
t
r
an
s
p
o
s
itio
n
o
f
t
h
e
im
ag
e
p
i
x
els
in
a
s
in
g
le
s
ca
n
,
wh
ich
d
ec
r
ea
s
ed
tim
e
co
m
p
le
x
ity
.
T
h
e
n
o
v
el
b
lo
ck
-
b
ased
e
n
cr
y
p
ti
o
n
in
cl
u
d
es
u
s
ed
o
f
o
p
tical
s
ig
n
als
[
1
5
]
,
f
r
ac
tio
n
al
f
o
u
r
ier
tr
an
s
f
o
r
m
b
ased
l
o
g
is
tic
m
ap
[
1
6
]
a
n
d
Fib
o
n
ac
ci
s
e
q
u
en
ce
[
1
7
]
,
[
1
8
]
t
o
r
ai
s
e
s
ec
u
r
ity
.
R
esear
ch
o
n
h
y
p
er
-
ch
ao
tic
alg
o
r
ith
m
s
in
clu
d
es th
e
d
esig
n
o
f
f
o
u
r
th
o
r
d
e
r
s
y
s
tem
s
f
o
r
m
ed
ical
im
ag
e
en
cr
y
p
tio
n
[
1
9
]
,
[
2
0
]
.
T
h
e
liter
atu
r
e
in
clu
d
es
th
e
wo
r
k
o
n
eith
er
im
p
r
o
v
ed
AE
S
o
r
ch
ao
tic
en
cr
y
p
tio
n
.
T
h
e
p
r
e
v
io
u
s
r
esear
ch
wo
r
k
o
n
AE
S+ch
ao
s
is
n
o
t
ex
p
lo
r
e
d
to
its
f
u
ll
p
o
ten
tial
an
d
d
o
e
s
n
o
t
in
cl
u
d
e
a
u
th
en
ticatio
n
[
2
1
]
–
[
2
3
]
.
Als
o
,
less
s
ec
u
r
ity
an
d
lo
s
s
o
f
im
a
g
e
attr
ib
u
tes ar
e
m
ajo
r
c
o
n
ce
r
n
s
.
T
he
s
u
m
m
ar
y
of
s
h
o
r
tco
m
in
g
s
of
p
r
e
v
io
u
s
r
esear
ch
wo
r
k
f
o
c
u
s
in
g
on
b
lo
ck
a
n
d
c
h
ao
tic
en
cr
y
p
tio
n
:
a)
Fo
r
s
o
m
e
AE
S
r
elate
d
im
p
lem
en
tatio
n
s
,
r
esis
tan
ce
to
attac
k
s
is
not
test
ed
.
b)
In
ch
a
o
s
-
b
ased
im
a
g
e
en
c
r
y
p
tio
n
,
m
o
s
t
of
t
h
e
r
esear
c
h
is
b
ased
on
m
ed
ical
g
r
ay
s
ca
le
im
ag
es.
C
o
lo
r
im
ag
e
en
cr
y
p
tio
n
is
n
o
t
in
clu
d
ed
.
c)
T
h
e
ch
ao
tic
en
c
r
y
p
tio
n
r
esear
ch
d
o
es
n
o
t
in
clu
d
e
a
s
ch
em
e
with
Au
th
en
ticatio
n
.
d)
T
h
e
in
itial
co
n
d
itio
n
s
of
a
ch
ao
tic
s
y
s
tem
do
not
d
e
p
en
d
on
th
e
in
p
u
t
im
ag
e,
wh
ich
m
a
k
es
th
e
s
y
s
tem
weak
ag
ain
s
t
d
if
f
er
e
n
tial
attac
k
s
.
T
h
e
im
ag
e
attr
ib
u
tes
m
ay
be
lo
s
t
d
u
r
in
g
en
cr
y
p
tio
n
.
e)
T
h
e
s
ec
u
r
ity
ag
ain
s
t
s
tatis
tic
al
attac
k
s
is
h
am
p
er
e
d
b
ec
au
s
e
h
is
to
g
r
am
of
th
e
en
c
r
y
p
te
d
im
ag
e
is
not
u
n
if
o
r
m
.
R
ec
en
t
r
esear
ch
f
o
cu
s
ed
o
n
c
o
m
p
ar
in
g
b
lo
ck
cip
h
er
with
ch
ao
tic
an
d
h
y
b
r
id
ch
a
o
tic
s
y
s
tem
s
.
T
h
e
s
tu
d
y
d
em
o
n
s
tr
ated
th
at
AE
S
is
im
m
u
n
e
to
s
tatis
tical
attac
k
s
,
it
h
as
lo
wer
p
ea
k
s
ig
n
al
-
to
-
n
o
is
e
r
atio
(
PS
NR
)
an
d
m
o
r
e
d
if
f
er
e
n
ce
b
etwe
en
h
is
to
g
r
am
s
o
f
in
p
u
t
an
d
en
cr
y
p
ted
im
ag
es.
T
h
e
h
y
b
r
id
c
h
ao
tic
m
ap
s
ar
e
m
o
r
e
r
esil
ien
t to
tar
g
eted
p
lain
tex
t
attac
k
s
o
r
d
if
f
er
e
n
tial a
ttack
s
[
2
4
]
.
T
h
u
s
,
b
o
t
h
b
lo
c
k
cip
h
er
a
n
d
ch
ao
tic
s
ch
em
es
ar
e
p
r
o
v
id
in
g
ad
v
a
n
tag
es
ag
ain
s
t
d
if
f
er
en
t
lev
els
o
f
atta
ck
s
.
Fo
r
th
is
r
ea
s
o
n
,
th
e
d
e
v
elo
p
m
en
t
o
f
n
ew
alg
o
r
ith
m
f
ac
ilit
atin
g
au
th
e
n
ticated
b
lo
ck
en
cr
y
p
tio
n
al
o
n
g
with
ad
v
an
tag
es
o
f
ch
a
o
tic
en
cr
y
p
tio
n
,
p
r
o
v
id
in
g
r
esis
tan
ce
to
b
o
th
d
if
f
er
en
tia
l
an
d
s
tatis
tical
attac
k
s
,
is
o
f
in
ter
est.
T
h
e
u
n
p
r
ed
ictab
le
n
atu
r
e
o
f
ch
a
o
tic
s
y
s
tem
s
en
h
an
ce
s
th
e
co
m
p
l
ex
ity
an
d
wid
e
n
s
th
e
k
ey
s
p
ac
e
o
f
tr
ad
itio
n
al
AE
S
-
GC
M
f
o
r
en
h
an
cin
g
th
e
s
ec
u
r
ity
.
T
h
e
f
o
llo
win
g
is
a
r
esear
ch
co
n
tr
ib
u
tio
n
of
th
e
wo
r
k
:
a)
T
h
e
h
y
b
r
id
im
p
lem
en
tatio
n
of
au
th
en
ticated
b
lo
c
k
cip
h
e
r
en
c
r
y
p
tio
n
al
o
n
g
with
c
h
ao
tic
im
p
r
o
v
em
e
n
ts
b)
I
n
cr
ea
s
ed
r
a
n
d
o
m
n
ess
u
s
in
g
h
y
p
er
b
o
lic
tan
g
en
t
m
a
p
c)
Secr
et
k
ey
g
en
e
r
atio
n
u
s
in
g
r
o
b
u
s
t
R
en
y
i
-
m
o
d
u
lo
m
ap
d)
Un
iq
u
e
ch
a
o
tic
IV
g
en
e
r
atio
n
u
s
in
g
p
ar
am
eter
s
f
r
o
m
i
n
p
u
t
i
m
ag
e
d
ata
e)
Ad
d
itio
n
al
1
2
8
-
b
it
k
e
y
f
o
r
im
p
r
o
v
e
d
s
ec
u
r
ity
f)
Su
b
s
titu
tio
n
box
is
s
h
u
f
f
led
u
s
in
g
Ar
n
o
l
d
cat
m
ap
f
o
r
e
n
h
an
c
ed
s
ec
u
r
ity
g)
Au
th
en
ticated
en
cr
y
p
tio
n
-
v
er
if
icatio
n
u
s
in
g
tag
at
t
h
e
r
ec
ei
v
er
h)
An
aly
s
is
of
th
e
o
b
tain
e
d
r
esu
lt
s
s
h
o
ws
th
e
ex
ce
llen
t
p
er
f
o
r
m
an
ce
an
d
r
o
b
u
s
tn
ess
to
attac
k
s
i)
Ap
p
licab
le
not
o
n
ly
to
g
r
ay
s
ca
le
im
ag
es
but
also
to
co
l
o
u
r
i
m
ag
es
T
h
e
p
ap
er
is
ar
r
an
g
e
d
as
f
o
llo
ws:
t
he
s
ec
tio
n
2
p
r
o
v
id
es
d
etail
d
escr
ip
tio
n
of
p
r
o
p
o
s
ed
alg
o
r
ith
m
with
b
lo
ck
d
iag
r
am
s
an
d
e
q
u
atio
n
s
.
T
h
e
s
ec
tio
n
3
p
r
esen
ts
r
esu
lts
in
ter
m
s
of
m
at
h
em
at
ical
p
ar
am
eter
s
a
n
d
v
is
u
al
r
ep
r
esen
tatio
n
alo
n
g
w
ith
d
is
cu
s
s
io
n
an
d
co
m
p
ar
is
o
n
with
p
r
ev
i
o
u
s
r
esu
lts
.
Sectio
n
4
c
o
n
clu
d
es
th
e
r
esear
ch
wo
r
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
A
u
th
en
tica
ted
ima
g
e
en
cryp
ti
o
n
u
s
in
g
r
o
b
u
s
t c
h
a
o
tic
ma
p
s
a
n
d
… (
R
u
p
a
lib
en
V
.
C
h
o
th
e
)
1545
2.
M
E
T
H
O
D:
T
H
E
P
RO
P
O
S
E
D
AL
G
O
RI
T
H
M
AE
S
-
GC
M
is
a
b
lo
ck
en
cr
y
p
tio
n
alg
o
r
ith
m
o
f
f
er
in
g
d
at
a
in
teg
r
ity
an
d
au
th
en
ticatio
n
b
o
th
.
It
co
m
b
in
es
u
n
iv
er
s
al
h
ash
in
g
o
v
er
th
e
b
in
ar
y
f
ield
GF
(2
1
2
8
)
with
a
b
l
o
ck
cip
h
er
r
u
n
n
i
n
g
in
co
u
n
ter
m
o
d
e.
AE
S
p
r
o
v
id
es
h
ig
h
s
ec
u
r
ity
ag
ain
s
t
s
tati
s
tical
attac
k
s
.
T
h
e
ad
v
an
tag
es
of
ch
a
o
tic
s
y
s
t
em
s
in
clu
d
e
h
ig
h
r
an
d
o
m
n
ess
an
d
s
en
s
itiv
ity
to
in
itial
co
n
d
itio
n
s
an
d
co
n
tr
o
l
p
ar
am
eter
s
.
To
g
et
ad
v
an
tag
es
of
b
o
th
to
p
r
o
v
i
d
e
h
ig
h
s
ec
u
r
ity
al
o
n
g
with
a
u
th
e
n
ticatio
n
,
a
n
o
v
el
alg
o
r
ith
m
is
d
esig
n
ed
.
T
h
e
alg
o
r
ith
m
r
eq
u
i
r
es
f
o
llo
win
g
in
p
u
ts
:
p
lain
tex
t
P
(
o
r
in
p
u
t
c
o
lo
r
im
ag
e)
s
p
lit
in
to
b
lo
ck
s
of
128
-
b
it
s
eq
u
en
ce
s
,
an
I
V,
AAD
an
d
th
e
s
ec
r
et
k
ey
K.
C
h
ao
t
ic
s
eq
u
en
ce
is
g
en
er
ated
u
s
in
g
h
y
p
er
b
o
lic
tan
g
e
n
t
m
ap
(
ex
p
lain
ed
in
s
ec
tio
n
2
.
1
)
an
d
in
p
u
t
im
ag
e
is
in
itially
XORed
with
it
to
in
cr
ea
s
e
r
a
n
d
o
m
n
ess
.
C
h
ao
tic
AE
S
k
ey
is
g
en
er
ated
u
s
in
g
r
o
b
u
s
t
R
en
y
i
m
o
d
u
lo
m
ap
(
e
x
p
lain
ed
in
s
ec
tio
n
2
.
2
)
.
Un
iq
u
e
IV
is
g
en
er
ated
f
r
o
m
th
e
im
ag
e
d
ata
(
ex
p
lain
ed
in
s
ec
tio
n
2
.
3
)
.
T
r
ad
itio
n
al
AE
S
S
-
b
o
x
is
r
ea
r
r
a
n
g
ed
f
o
r
ad
d
itio
n
al
s
ec
u
r
it
y
(
ex
p
lain
ed
i
n
s
ec
tio
n
2
.
4
)
.
T
h
e
au
th
en
ticatio
n
tag
is
co
r
r
ec
t
ly
m
atch
in
g
at
th
e
r
ec
eiv
er
f
o
r
all
im
ag
es.
T
h
e
s
i
m
u
l
at
i
o
n
is
p
e
r
f
o
r
m
e
d
o
n
M
A
T
L
AB
R
2
0
2
3
a
.
Fi
g
u
r
e
1
p
r
e
s
e
n
ts
t
h
e
p
i
ct
u
r
e
o
f
M
A
T
L
AB
s
i
m
u
l
at
i
o
n
.
F
i
g
u
r
e
2
p
r
esen
ts
th
e
b
lo
ck
d
iag
r
am
o
f
o
v
er
all
en
cr
y
p
tio
n
.
Fig
u
r
e
1
.
MA
T
L
AB
s
im
u
latio
n
of
c
o
lo
r
im
a
g
e
e
n
cr
y
p
tio
n
2
.
1
.
Cha
o
t
ic
s
equence
g
en.
u
s
ing
hy
perbo
lic
t
a
ng
ent
m
a
p
a
nd
XO
R
wit
h
inp
ut
im
a
g
e
Hy
p
er
b
o
lic
tan
g
en
t
m
ap
is
u
s
ed
to
g
en
er
ate
th
e
ch
a
o
tic
b
eh
av
io
r
.
T
h
e
r
esear
ch
in
[
2
5
]
,
[
2
6
]
d
em
o
n
s
tr
at
es
th
e
u
s
e
of
h
y
p
er
b
o
lic
tan
g
e
n
t
f
u
n
ctio
n
to
in
cr
e
ase
r
an
d
o
m
n
ess
in
th
e
im
ag
e
.
T
h
is
m
ap
is
u
s
ed
to
g
e
n
e
r
a
t
e
r
a
n
d
o
m
s
t
r
e
a
m
of
b
it
s
.
I
n
s
t
e
a
d
of
u
s
i
n
g
j
u
s
t
p
r
es
e
n
t
v
a
l
u
e
to
g
e
n
e
r
a
t
e
s
e
q
u
e
n
c
e
,
p
as
t
tw
o
v
a
l
u
e
s
,
a
n
d
−
1
of
c
h
a
o
t
ic
m
a
p
a
r
e
u
s
e
d
b
e
c
a
u
s
e
t
h
e
p
e
r
f
o
r
m
a
n
c
e
o
f
t
h
is
m
e
t
h
o
d
is
v
e
r
i
f
i
e
d
u
s
i
n
g
N
I
ST
t
es
t
s
i
n
[
2
7
]
.
Alg
o
r
ith
m
of
g
en
e
r
atin
g
b
it
s
tr
ea
m
f
o
r
XOR
o
p
er
ati
o
n
:
a)
R
ea
d
th
e
co
lo
r
im
a
g
e
I
with
s
i
ze
(
M,
N,
3
)
.
b)
Gen
er
ate
a
v
ec
to
r
A
of
len
g
th
M×
N×
3
an
d
co
n
v
er
t
in
te
g
er
s
with
v
alu
es
[
0
;
2
5
5
]
to
b
its
.
c)
C
alcu
late
len
g
th
of
v
ec
t
o
r
A
as
len
(
A)
.
I
n
itialize
th
e
ch
a
o
tic
k
ey
s
a
=3
0
0
,
b
=
1
an
d
0
=
1
.
d)
I
ter
ate
th
e
f
o
llo
win
g
s
tep
s
len
(
A)
tim
es,
wh
er
e
a,
b
an
d
x
0
ar
e
th
e
in
itial
p
ar
am
eter
s
.
x
n
an
d
x
n
−
1
ar
e
th
e
ch
ao
tic
m
ap
v
alu
es.
⌊
x
⌋
in
d
icate
s
th
e
n
ea
r
est
in
teg
er
less
th
an
or
eq
u
al
to
x
.
=
ta
n
h
(
(
(
−
1
)
)
)
+
=
⌊
(
×
−
1
,
2
)
⌋
}
n
=
2
,
3
,
…
,
[
l
e
n
(
A
)
+
1
]
(1
)
e)
XOR
g
en
er
ated
b
it
s
tr
ea
m
with
th
e
im
ag
e
v
ec
to
r
of
s
tep
2.
f)
Pro
v
id
e
th
e
r
esu
ltan
t
v
ec
to
r
=
(
⨁
)
f
o
r
AE
S
en
cr
y
p
tio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
7
,
No
.
3
,
Ma
r
ch
20
2
5
:
1
543
-
1
5
5
4
1546
2
.
2
.
K
ey
K1
g
ener
a
t
io
n
us
ing
ro
bu
s
t
Reny
i
m
o
du
lo
m
a
p
C
h
ao
tific
atio
n
can
be
ap
p
lied
to
an
y
one
-
d
im
e
n
s
io
n
al
m
ap
to
in
cr
ea
s
e
its
co
m
p
lex
ity
by
in
v
o
lv
in
g
th
e
r
em
ain
d
er
o
p
er
ato
r
.
T
h
e
r
esu
ltin
g
m
ap
ca
n
ac
h
iev
e
in
cr
ea
s
ed
s
tatis
tical
r
an
d
o
m
n
ess
[2
8
]
,
[
2
9
]
.
Mo
y
s
is
et
a
l.
[
3
0
]
,
s
tated
th
e
b
it
g
en
er
at
o
r
u
s
in
g
n
o
n
lin
ea
r
h
ash
in
g
is
p
r
o
v
ed
to
p
r
o
v
id
e
r
esis
tan
ce
to
b
r
u
te
f
o
r
ce
attac
k
s
b
ec
a
u
s
e
of
its
s
u
f
f
icien
tly
h
i
g
h
k
e
y
s
p
ac
e.
So
,
it
is
u
s
ed
h
er
e
to
g
en
er
ate
2
5
6
-
b
it
ch
a
o
tic
AE
S
k
ey
.
R
o
b
u
s
t
R
en
y
i
m
o
d
u
l
o
m
ap
is
u
s
ed
as
a
s
o
u
r
ce
f
o
r
th
e
b
it
g
en
er
at
o
r
.
T
h
e
in
itial
v
ar
ia
b
les
u
s
ed
ar
e:
a=
5
,
b
=7
,
r
=
1
0
,
k
=
9
.
9
9
with
x
r
an
g
in
g
in
[
0
,
1
)
.
=
1
[
_
ℎ
64
⁄
]
∶
(
2
)
=
(
(
×
)
,
1
)
=
(
+
+
×
,
1
)
(
3
)
1
=
_
_
[
(
⌊
10
10
×
⌋
,
2
32
)
,
32
]
(
4
)
2
=
_
_
[
(
⌊
10
10
×
⌋
,
2
32
)
,
32
]
(
5
)
_
64
_
=
[
1
,
2
]
(
6
)
2
.
3
.
G
ener
a
t
io
n
of
ini
t
ia
liza
t
io
n v
ec
t
o
r
T
h
e
IV
is
g
e
n
er
ated
f
r
o
m
th
e
i
m
ag
e
p
ix
el
v
alu
es
an
d
d
im
e
n
s
io
n
s
.
T
h
u
s
,
a
to
tally
d
i
f
f
er
en
t
v
alu
e
will
be
g
en
er
ated
f
o
r
e
v
er
y
im
a
g
e
ev
en
with
s
am
e
d
im
en
s
io
n
s
.
T
h
is
m
eth
o
d
ca
n
also
b
e
u
s
ed
to
g
en
er
ate
in
itial
k
ey
o
f
h
y
p
er
ch
a
o
tic
s
y
s
tem
[
1
7
]
.
Alg
o
r
ith
m
to
g
en
er
ate
96
b
it
IV
f
r
o
m
in
p
u
t
im
ag
e:
a)
Acc
ep
t
th
e
co
lo
r
im
a
g
e
I
as
th
e
in
p
u
t.
b)
Get
th
e
h
eig
h
t
(
M)
an
d
wid
t
h
(
N)
of
th
e
p
lain
tex
t
im
ag
e
I
(
i
m
ag
e
d
im
en
s
io
n
s
:
M×
N×
3
)
.
c)
C
o
n
v
er
t
th
e
im
ag
e
ar
r
ay
to
a
v
ec
to
r
V.
Ass
ig
n
l
IV
,
len
g
th
of
IV
as
96.
d)
C
alcu
late
∑
(
)
+
(
∗
)
∗
=
1
2
23
+
(
∗
)
f
r
o
m
th
e
im
a
g
e,
wh
er
e,
V(
i)
ar
e
im
a
g
e
p
ix
el
v
alu
e
s
.
e)
Mu
ltip
ly
it
with
th
e
co
n
s
tan
t
10
10
.
f)
To
co
n
v
er
t
th
e
v
alu
es
with
in
r
an
g
e
of
0
to
2
5
5
,
d
iv
id
e
by
2
5
6
an
d
f
in
d
th
e
r
em
ain
d
er
.
g)
I
ter
ate
th
e
p
r
o
ce
s
s
(l
IV
)
tim
es
an
d
co
n
v
er
t
th
e
r
esu
lt
to
b
it
s
tr
e
am
of
96
b
its
.
h)
C
o
n
v
er
t
th
e
b
i
n
ar
y
v
ec
to
r
to
h
ex
an
d
p
r
o
v
id
e
as
I
V.
Fin
al
IV
o
b
tain
ed
ca
n
be
g
iv
e
n
as
=
_
_
[
(
(
∑
(
)
+
(
∗
)
∗
=
1
2
23
+
(
∗
)
∗
10
10
)
,
256
)
]
(
7
)
2
.
4
.
S
-
bo
x
s
hu
f
f
lin
g
T
h
e
u
s
e
o
f
b
asic
an
d
m
o
d
if
ied
Ar
n
o
ld
ca
t
m
ap
ca
n
b
e
o
b
s
er
v
ed
in
p
r
e
v
io
u
s
r
esear
ch
[
1
0
]
,
[
2
4
]
.
I
t
is
u
s
ed
to
r
an
d
o
m
ly
r
ea
r
r
a
n
g
e
th
e
o
r
ig
in
al
s
u
b
s
titu
tio
n
box
of
AE
S.
Ar
n
o
ld
cat
m
ap
can
be
r
ep
r
esen
ted
u
s
in
g
:
=
13
+
(
,
29
)
(
8
)
=
7
+
(
,
47
)
(
9
)
(
′
′
)
=
(
1
(
×
)
+
1
)
(
)
16
(
1
0
)
W
h
er
e,
T
is
s
u
m
of
all
s
-
b
o
x
v
alu
es.
Or
ig
in
al
p
o
s
itio
n
is
(
,
)
an
d
th
e
s
h
if
ted
p
o
s
itio
n
will
be
(
′
,
′
)
.
Dif
f
u
s
io
n
an
d
co
n
f
u
s
io
n
o
p
e
r
atio
n
s
ar
e
ess
en
tial
f
o
r
cr
y
p
to
g
r
ap
h
ic
alg
o
r
ith
m
s
to
ac
h
iev
e
h
ig
h
s
ec
u
r
ity
.
T
o
en
c
r
y
p
t
t
h
e
b
lo
c
k
o
f
d
ata
,
ea
ch
b
asic
r
o
u
n
d
o
f
AE
S
u
s
es
th
e
f
o
llo
win
g
f
o
u
r
tr
an
s
f
o
r
m
atio
n
s
as
s
h
o
wn
in
Fig
u
r
e
3
:
b
y
te
s
u
b
s
titu
tio
n
u
s
in
g
s
h
u
f
f
led
s
-
box,
b
ased
o
n
a
m
atr
ix
to
r
ep
lace
a
b
y
te
with
an
o
th
er
d
ata.
C
y
clic
s
h
if
t
o
f
r
o
ws,
wh
ich
in
v
o
lv
es
s
h
if
tin
g
o
f
b
y
t
es
o
f
th
e
s
tate
cy
clica
lly
to
t
h
e
lef
t
as
p
er
r
o
w
n
u
m
b
er
.
Mix
in
g
c
o
lu
m
n
s
,
co
l
u
m
n
-
wis
e
m
u
ltip
licatio
n
an
d
a
d
d
itio
n
with
r
o
u
n
d
k
e
y
.
M
u
ltip
le
s
im
ilar
r
o
u
n
d
s
ar
e
in
co
r
p
o
r
ated
in
AE
S
en
cr
y
p
tio
n
.
T
h
e
c
o
r
e
f
u
n
ctio
n
in
AE
S
-
GC
M
i
s
Galo
i
s
co
u
n
ter
(
GC
T
R
)
,
wh
ich
i
s
p
r
esen
ted
in
Fig
u
r
e
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
A
u
th
en
tica
ted
ima
g
e
en
cryp
ti
o
n
u
s
in
g
r
o
b
u
s
t c
h
a
o
tic
ma
p
s
a
n
d
… (
R
u
p
a
lib
en
V
.
C
h
o
th
e
)
1547
2
.
5
.
Alg
o
rit
hm
f
o
r
o
v
er
a
ll
e
ncry
ptio
n
a)
R
ea
d
th
e
co
lo
r
im
a
g
e
I
with
s
i
ze
(
M,
N,
3
)
.
b)
I
n
itialize
th
e
k
ey
s
f
o
r
ch
ao
tic
m
ap
s
an
d
s
et
au
th
e
n
ticatio
n
ta
g
b
it
-
len
g
th
(
9
6
b
its
)
.
c)
Gen
er
ate
th
e
r
an
d
o
m
b
it
s
tr
ea
m
an
d
XOR
it
with
im
ag
e
v
ec
t
o
r
to
in
c
r
ea
s
e
r
an
d
o
m
n
ess
b
ef
o
r
e
ac
tu
al
en
cr
y
p
tio
n
(
s
h
o
wn
in
Fig
u
r
e
2)
(
ex
p
lain
e
d
in
s
ec
tio
n
2
.
1
)
.
=
(
⨁
)
(
1
1
)
d)
Gen
er
ate
s
ec
r
et
k
ey
K
1
u
s
in
g
R
en
y
i
-
m
o
d
u
l
o
m
ap
(
s
ec
tio
n
2
.
2
)
.
Select
128
b
it
ad
d
itio
n
al
k
e
y
K
2
f
o
r
AE
S.
e)
Gen
er
ate
ch
ao
tic
IV
is
f
r
o
m
th
e
im
ag
e
p
ix
el
v
alu
es
an
d
d
im
e
n
s
io
n
s
(
s
ec
tio
n
2
.
3
)
.
f)
I
n
itialize
th
e
co
u
n
ter
an
d
c
o
n
c
aten
ate
g
en
er
ated
IV
with
co
u
n
ter
.
0
=
∥
0
31
1
=
(
−
1
)
,
=
1
,
2
,
.
.
,
(
1
2
)
g)
I
n
itialize
th
e
s
-
box
a
n
d
s
h
u
f
f
l
e
it
u
s
in
g
Ar
n
o
ld
cat
m
ap
(
s
e
ctio
n
2
.
4
)
.
It
will
be
u
s
ed
f
o
r
AE
S
en
cr
y
p
tio
n
p
r
o
ce
s
s
(
Fig
u
r
e
3
)
.
h)
Gen
er
ate
h
ash
s
u
b
-
k
ey
u
s
in
g
AE
S
en
cr
y
p
tio
n
of
s
tr
ea
m
of
128
b
it
ze
r
o
s
(
s
h
o
wn
in
Fig
u
r
e
5
)
.
Use
s
ec
r
et
k
ey
K
1
.
E
n
c
r
y
(
X,
K)
in
d
icate
s
AE
S
en
cr
y
p
tio
n
of
t
h
e
b
lo
c
k
X
with
th
e
k
ey
K.
=
(
0
128
,
1
)
(
1
3
)
i)
Pro
v
id
e
s
ec
r
et
k
ey
K
1
,
ad
d
itio
n
al
k
ey
K
2
,
im
a
g
e
v
ec
to
r
an
d
P
(
f
r
o
m
s
tep
6)
to
GC
T
R
f
u
n
ct
io
n
.
j)
GC
T
R
in
clu
d
es
(
s
h
o
wn
in
Fig
u
r
e
4)
(
is
th
e
IV
with
co
u
n
ter
-
g
en
er
ated
in
s
tep
6
)
:
=
(
,
1
,
2
)
ℎ
=
⨁
}
i
=
1
,
2
,
.
.
.
,
n
(
1
4
)
k)
AAD,
cip
h
er
tex
t
an
d
len
g
th
s
of
b
o
th
ar
e
au
th
e
n
ticated
u
s
in
g
GHASH
f
u
n
ctio
n
.
T
h
e
c
o
n
ca
ten
atio
n
of
C
ip
h
er
,
len
(
C
ip
h
er
)
,
AAD
an
d
len
(
AAD)
is
d
iv
id
e
d
in
1
2
8
-
b
it
b
lo
ck
s
.
ℎ
_
=
∥
ℎ
∥
(
)
∥
(
ℎ
)
(
1
5
)
l)
GHASH
in
clu
d
es
(
s
h
o
wn
in
Fig
u
r
e
5
)
:
ℎ
_
=
ℎ
_
⨁
(
ℎ
_
−
1
×
)
(
1
6
)
A
uth
_
Ta
g
=
G
C
TR
(
ℎ
_
,
0
,
1
,
2
)
(
1
7
)
T
ag
is
also
ca
lc
u
lated
at
th
e
r
e
ce
iv
er
en
d
u
s
in
g
s
im
ilar
p
r
o
ce
s
s
an
d
co
m
p
ar
ed
with
th
e
r
ec
e
iv
ed
t
ag
.
In
ca
s
e
of
m
is
m
atch
,
th
e
d
ec
r
y
p
ted
d
ata
is
d
is
ca
r
d
ed
.
Fig
u
r
e
2.
Au
t
h
en
ticated
en
c
r
y
p
tio
n
b
lo
c
k
d
iag
r
am
I
n
p
u
t
c
o
l
o
r
i
ma
g
e
I
C
h
a
o
t
i
c
se
q
u
e
n
c
e
g
e
n
.
u
si
n
g
H
y
p
e
r
b
o
l
i
c
Ta
n
g
e
n
t
M
a
p
(
)
G
C
TR
S
-
b
o
x
S
h
u
f
f
l
i
n
g
u
s
i
n
g
A
r
n
o
l
d
C
a
t
m
a
p
C
h
a
o
t
i
c
I
V
g
e
n
e
r
a
t
i
o
n
K
e
y
K
1
g
e
n
.
u
si
n
g
R
e
n
y
i
M
o
d
u
l
o
M
a
p
Ex
t
r
a
1
2
8
-
b
i
t
k
e
y
K
2
G
H
A
S
H
A
A
D
,
l
e
n
(
A
A
D
)
,
l
e
n
(
C
i
p
h
e
r
)
G
C
TR
I
V
‖
C
0
A
u
t
h
.
Ta
g
H
C
i
p
h
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
7
,
No
.
3
,
Ma
r
ch
20
2
5
:
1
543
-
1
5
5
4
1548
Fig
u
r
e
3
.
Ad
v
an
ce
d
en
cr
y
p
tio
n
s
tan
d
ar
d
e
n
cr
y
p
tio
n
Fig
u
r
e
4
.
Galo
is
co
u
n
ter
(
GC
T
R
)
b
lo
ck
d
iag
r
am
Fig
u
r
e
5
.
Galo
is
ha
sh
(
GHAS
H)
g
en
er
atio
n
f
o
r
au
th
e
n
ticatio
n
3.
RE
SU
L
T
S
AND
D
I
SCU
SS
I
O
N
T
h
e
s
am
p
le
L
en
a,
Pep
p
er
an
d
B
ab
o
o
n
im
ag
es
ar
e
tak
e
n
f
r
o
m
USC
-
SIPI
d
atab
ase,
b
ec
au
s
e
th
ey
ar
e
s
tan
d
ar
d
im
ag
es
u
s
ed
by
m
o
s
t
r
esear
ch
er
s
.
T
h
is
s
ec
tio
n
p
r
e
s
en
ts
all
d
etails
of
th
e
s
tat
is
ti
ca
l
p
ar
am
eter
s
an
d
th
e
r
esu
lts
o
b
tain
ed
.
T
h
e
in
ter
p
r
etatio
n
an
d
th
e
an
al
y
s
is
ar
e
also
p
r
esen
ted
.
3
.
1
.
H
is
t
o
g
ra
m
a
na
ly
s
is
T
h
e
in
ten
s
ity
o
f
p
ix
els
in
an
im
ag
e
is
d
is
p
lay
ed
th
r
o
u
g
h
a
h
is
to
g
r
am
.
T
h
e
o
r
ig
in
al
an
d
en
cr
y
p
ted
im
ag
es
as
well
as
th
eir
h
is
to
g
r
am
s
ar
e
p
r
esen
ted
in
Fig
u
r
e
6
.
Fig
u
r
e
6
(
a)
s
h
o
ws
t
h
e
ac
tu
al
i
m
ag
es,
Fig
u
r
e
6
(
b
)
in
clu
d
es
th
eir
h
is
to
g
r
am
s
,
Fig
u
r
e
6
(
c)
s
h
o
ws
th
e
cip
h
e
r
i
m
ag
es,
an
d
ass
o
ciate
d
h
is
to
g
r
am
s
ar
e
a
d
d
ed
i
n
Fig
u
r
e
6
(
d
)
.
As
s
h
o
wn
,
th
e
en
cr
y
p
ted
im
ag
es
ar
e
r
an
d
o
m
a
n
d
n
o
is
y
.
T
h
e
h
is
to
g
r
am
of
th
e
ac
tu
al
in
p
u
t
im
ag
e
s
h
o
ws
co
n
ce
n
tr
atio
n
s
of
p
ix
el
s
at
s
p
ec
if
ic
lev
els
an
d
th
e
h
is
to
g
r
am
v
alu
es
of
th
e
e
n
cr
y
p
ted
o
u
tp
u
t
ar
e
u
n
if
o
r
m
.
Sin
ce
th
e
cip
h
er
im
a
g
e'
s
h
is
to
g
r
am
m
ak
es
it
d
if
f
icu
lt
to
an
ticip
ate
th
e
ac
tu
al
d
ata,
th
e
m
eth
o
d
o
f
f
er
s
s
tr
o
n
g
s
ec
u
r
ity
a
g
ain
s
t
h
is
to
g
r
am
attac
k
s
.
I
n
p
u
t
d
a
t
a
,
K
e
y
s
K
e
y
t
r
a
n
sf
o
r
ma
t
i
o
n
,
A
d
d
r
o
u
n
d
k
e
y
1
1
r
o
u
n
d
s
S
u
b
b
y
t
es
S
h
i
f
t
_
r
o
w
s
M
i
x
_
c
o
l
u
m
n
s
s
Add
r
ound
ke
y
S
u
b
b
y
t
e
s
S
h
i
f
t
r
o
w
s
A
d
d
K
e
y
2
A
d
d
r
o
u
n
d
k
e
y
I
V
‖
C
o
u
n
t
e
r
1
A
ES
En
c
r
y
p
t
i
o
n
K
e
y
s
C
i
p
h
e
r
1
1
I
V
‖
C
o
u
n
t
e
r
2
AES
En
c
r
y
p
t
i
o
n
C
i
p
h
e
r
2
2
I
V ‖
C
o
u
n
t
e
r
N
A
ES
En
c
r
y
p
t
i
o
n
C
i
p
h
e
r
N
K
e
y
s
K
e
y
s
C
i
p
h
e
r
,
l
e
n
(
C
i
p
h
e
r
)
,
A
A
D
,
l
e
n
(
AA
D)
d
i
v
i
d
e
d
i
n
1
2
8
-
b
i
t
b
l
o
c
k
s
M
u
l
t
wit
h
H
M
u
l
t
w
i
t
h
H
M
u
l
t
w
i
t
h
H
A
ES
E
n
c
r
y
p
t
i
o
n
0
128
H
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
A
u
th
en
tica
ted
ima
g
e
en
cryp
ti
o
n
u
s
in
g
r
o
b
u
s
t c
h
a
o
tic
ma
p
s
a
n
d
… (
R
u
p
a
lib
en
V
.
C
h
o
th
e
)
1549
L
en
a
Pep
p
er
B
ab
o
o
n
(
a)
(
b
)
(
c)
(
d
)
Fig
u
r
e
6
.
O
r
ig
i
n
al
an
d
en
cr
y
p
t
ed
im
ag
es
with
th
eir
h
is
to
g
r
a
m
s
:
(
a)
in
p
u
t
im
a
g
es (
b
)
i
n
p
u
t
im
ag
e
h
is
to
g
r
am
s
(
c)
cip
h
er
im
ag
es (
d
)
cip
h
er
im
ag
e
h
is
to
g
r
am
s
3
.
2
.
I
nfo
r
m
a
t
io
n e
ntr
o
py
E
n
tr
o
p
y
H
is
th
e
s
tatis
tical
p
a
r
am
eter
u
s
ed
to
an
aly
s
e
co
n
f
u
s
io
n
.
It
h
as
a
m
ax
im
u
m
v
alu
e
of
8.
If
M
is
th
e
to
tal
co
u
n
t
of
p
ix
els
in
t
h
e
im
ag
e,
a
n
d
p
i
is
th
e
p
o
s
s
ib
ilit
y
of
p
ix
el
r
ed
u
n
d
an
c
y
,
en
tr
o
p
y
can
be
g
iv
e
n
by
E
n
tr
opy
H
=
−
∑
p
i
l
og
p
i
M
i
=
1
(
1
8
)
As
it
can
be
s
ee
n
f
r
o
m
T
a
b
le
1,
t
h
e
cip
h
er
im
a
g
e'
s
en
tr
o
p
y
v
alu
es
a
r
e
ap
p
r
o
ac
h
in
g
8.
T
h
u
s
,
it
p
r
o
v
es
th
at
p
ix
el
v
alu
es
of
cip
h
er
im
ag
e
a
r
e
r
an
d
o
m
l
y
d
is
tr
ib
u
ted
.
So
,
it
is
q
u
ite
d
if
f
icu
lt
to
d
er
iv
e
th
e
ac
tu
al
im
ag
e
f
r
o
m
th
e
cip
h
er
im
a
g
e.
3
.
3
.
Ana
ly
s
is
of
encr
y
ptio
n
qu
a
lity
us
ing
m
a
x
im
um
dev
i
a
t
io
n
Ma
x
im
u
m
d
ev
iatio
n
ev
al
u
ates
th
e
d
if
f
er
en
ce
in
p
ix
el
v
alu
es.
Fo
r
h
ig
h
s
ec
u
r
ity
,
p
lain
an
d
cip
h
er
im
ag
es
s
h
o
u
ld
be
en
tire
l
y
d
if
f
er
en
t
.
So
,
th
e
m
a
x
im
u
m
d
e
v
ia
tio
n
b
etwe
en
in
p
u
t
an
d
cip
h
er
im
ag
es
s
h
o
u
ld
be
h
ig
h
.
Hig
h
v
alu
es
f
o
r
cip
h
er
im
ag
es
(
2
3
2
to
2
5
4
)
as
s
h
o
wn
in
T
ab
le
1
p
r
o
v
e
r
o
b
u
s
tn
ess
of
th
e
alg
o
r
ith
m
ag
ain
s
t
att
a
ck
s
.
It
is
ev
alu
ated
u
s
in
g
:
.
.
=
0
+
255
2
+
∑
254
=
1
(
1
9
)
wh
er
e
D
i
is
th
e
d
if
f
er
e
n
ce
in
t
h
e
h
is
to
g
r
am
v
alu
es
b
etwe
en
t
h
e
in
p
u
t
a
n
d
th
e
cip
h
er
im
ag
es
at
in
d
ex
i.
3
.
4
.
F
re
qu
ency
(
M
o
no
bit)
t
e
s
t
s
ug
g
este
d
by
NIS
T
s
t
a
t
is
t
i
ca
l
t
est
s
uite
T
h
e
r
a
n
d
o
m
n
ess
in
th
e
en
cr
y
p
ted
im
ag
es
c
an
be
m
ea
s
u
r
ed
u
s
in
g
NI
ST
s
tatis
tical
test
s
u
ite.
Fo
r
th
e
r
an
d
o
m
s
eq
u
en
ce
,
p
-
v
alu
e
s
h
o
u
ld
be
m
o
r
e
th
an
th
e
s
ig
n
if
i
ca
n
t
lev
el
of
0
.
0
1
.
O
u
r
r
esu
lts
ar
e
s
u
m
m
ar
ize
d
in
T
ab
le
1.
T
h
e
p
-
v
alu
es
(
>0
.
0
1
)
p
r
o
v
e
th
at
o
u
r
s
y
s
tem
is
p
r
o
d
u
cin
g
th
e
cip
h
er
im
a
g
e
with
s
u
f
f
icien
t
r
an
d
o
m
n
ess
.
T
ab
le
1.
E
n
tr
o
p
y
,
m
ax
im
u
m
d
ev
iatio
n
,
p
-
v
alu
e
an
al
y
s
is
an
d
MSE
r
esu
lts
S
r
.
N
o
.
I
mag
e
En
t
r
o
p
y
M
a
x
.
d
e
v
i
a
t
i
o
n
p
-
v
a
l
u
e
(
N
I
S
T
t
e
st
)
M
S
E
f
o
r
c
i
p
h
e
r
i
m
a
g
e
s
M
S
E
(
D
e
c
r
y
.
)
R
G
B
En
c
r
y
.
i
ma
g
e
s
D
e
c
r
y
.
i
ma
g
e
s
R
G
B
R
G
B
1
B
a
b
o
o
n
7
.
9
9
9
3
7
.
9
9
9
3
7
.
9
9
9
3
2
5
3
0
0
.
5
6
3
7
8
.
6
5
1
8
e
+
0
3
7
.
7
4
3
9
e
+
0
3
9
.
4
9
6
8
e
+
0
3
0
0
0
2
P
e
p
p
e
r
7
.
9
9
9
4
7
.
9
9
9
3
7
.
9
9
9
4
2
3
2
0
0
.
5
6
3
7
8
.
0
0
0
6
e
+
0
3
1
.
1
2
6
8
e
+
0
4
1
.
1
1
3
4
e
+
0
4
0
0
0
3
Le
n
a
7
.
9
9
5
4
7
.
9
9
6
0
7
.
9
9
5
9
2
5
4
0
0
.
3
1
7
3
1
.
0
7
5
9
e
+
0
4
8
.
9
3
2
8
e
+
0
3
7
.
1
9
3
0
e
+
0
3
0
0
0
3
.
5
.
Ana
ly
s
is
of
m
ea
n sq
ua
re
er
ro
r
T
ab
le
1
in
d
icate
s
m
ea
n
s
q
u
a
r
e
er
r
o
r
(
MSE
)
r
esu
lts
f
o
r
s
a
m
p
le
im
ag
es.
T
h
e
Av
alan
c
h
e
im
p
ac
t
is
ass
es
s
ed
by
MSE
.
It
s
h
o
ws
th
at
ev
en
with
m
in
o
r
c
h
an
g
es
to
th
e
in
p
u
t
d
ata
or
th
e
k
e
y
,
t
h
e
alg
o
r
ith
m
c
an
y
ield
a
s
ig
n
if
ican
t
v
ar
iatio
n
in
th
e
e
n
cr
y
p
ted
im
a
g
e.
T
h
e
h
ig
h
v
alu
e
b
etwe
en
in
p
u
t
an
d
en
c
r
y
p
t
ed
im
ag
es
(
b
etwe
e
n
7
.
1
9
3
0
e+
0
3
to
1
.
1
2
6
8
e+
0
4
)
i
n
d
icate
d
is
s
im
ilar
ity
b
etwe
en
b
o
th
[
3
1
]
.
W
h
er
ea
s
,
b
etwe
en
i
n
p
u
t
an
d
d
ec
r
y
p
ted
im
ag
es,
MSE
is
ze
r
o
in
d
icatin
g
th
e
ex
tr
ac
tio
n
of
co
r
r
ec
t
o
r
i
g
in
al
im
ag
e
with
o
u
t
an
y
lo
s
s
[
3
2
]
.
If
M
an
d
N
ar
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
7
,
No
.
3
,
Ma
r
ch
20
2
5
:
1
543
-
1
5
5
4
1550
th
e
n
u
m
b
er
of
ad
jace
n
t
p
i
x
e
ls
in
th
e
im
ag
es,
I
n
p
u
t
_
im
a
g
e(
i,j)
an
d
C
ip
h
er
_
im
ag
e(
i,j)
in
d
icate
in
p
u
t
an
d
en
cr
y
p
ted
im
ag
e
p
i
x
el
v
alu
es
at
lo
ca
tio
n
(
i,
j)
,
MSE
can
be
c
alcu
lated
u
s
in
g
:
=
∑
∑
[
_
(
,
)
−
ℎ
_
(
,
)
]
2
=
1
=
1
∗
(
2
0
)
3
.
6
.
Ana
ly
s
is
o
f
c
o
rr
ela
t
io
n
co
ef
f
icient
s
To
r
esis
t
s
tatis
tical
attac
k
s
,
a
d
jace
n
t
p
ix
els
of
e
n
cr
y
p
ted
i
m
ag
e
s
h
o
u
ld
be
u
n
co
r
r
elate
d
.
T
ab
le
2
p
r
esen
ts
th
e
co
r
r
elatio
n
co
e
f
f
i
cien
ts
in
h
o
r
izo
n
tal,
v
e
r
tical,
an
d
d
iag
o
n
al
d
ir
ec
tio
n
s
.
T
h
e
v
alu
es
ar
e
b
etwe
en
−
1
an
d
1
.
T
h
e
a
d
jace
n
t
p
i
x
els
o
f
cip
h
er
im
ag
es
a
r
e
wea
k
ly
lin
k
ed
,
s
o
th
e
v
alu
es
ar
e
clo
s
e
to
ze
r
o
.
Fig
u
r
e
7
p
r
esen
ts
v
is
u
al
co
r
r
elatio
n
d
is
tr
ib
u
tio
n
o
f
L
en
a
im
ag
e.
Fig
u
r
e
s
7
(
a)
-
(
c)
s
h
o
w
h
o
r
izo
n
tal,
v
er
tical
an
d
d
iag
o
n
a
l
co
r
r
elatio
n
a
n
aly
s
is
f
o
r
o
r
ig
i
n
al
L
en
a
im
ag
e
r
esp
ec
tiv
ely
.
Fig
u
r
e
s
7
(
d
)
-
(
f
)
s
h
o
w
h
o
r
iz
o
n
tal,
v
er
tical
an
d
d
iag
o
n
al
co
r
r
elatio
n
a
n
aly
s
is
f
o
r
en
c
r
y
p
ted
i
m
ag
e
r
esp
ec
tiv
ely
.
T
h
e
s
ca
tter
ed
g
r
ap
h
s
f
o
r
th
e
cip
h
er
im
a
g
es
d
em
o
n
s
tr
ate
th
at
th
is
m
eth
o
d
o
f
f
er
s
s
tr
o
n
g
r
esis
tan
ce
ag
ain
s
t
attac
k
s
b
ased
on
co
r
r
elatio
n
.
T
ab
le
2
.
C
o
r
r
elatio
n
co
ef
f
icien
t
v
alu
es
f
o
r
in
p
u
t
a
n
d
cip
h
er
i
m
ag
es
I
mag
e
C
h
a
n
n
e
l
of
i
ma
g
e
C
o
r
r
e
l
a
t
i
o
n
c
o
e
f
f
i
c
i
e
n
t
s
f
o
r
i
n
p
u
t
i
ma
g
e
C
o
r
r
e
l
a
t
i
o
n
c
o
e
f
f
i
c
i
e
n
t
s
f
o
r
c
i
p
h
e
r
i
m
a
g
e
H
o
r
i
.
V
e
r
t
.
D
i
a
g
.
H
o
r
i
.
V
e
r
t
.
D
i
a
g
.
B
a
b
o
o
n
R
0
.
9
2
3
1
0
.
8
6
6
0
0
.
8
5
4
3
0
.
0
0
2
5
-
0
.
0
0
0
5
-
0
.
0
0
1
3
G
0
.
8
6
5
5
0
.
7
6
5
0
0
.
7
3
4
8
-
0
.
0
0
0
5
-
0
.
0
0
1
6
-
0
.
0
0
1
1
B
0
.
9
0
7
3
0
.
8
8
0
9
0
.
8
3
9
9
-
0
.
0
0
1
0
0
.
0
0
5
8
0
.
0
0
0
1
P
e
p
p
e
r
R
0
.
9
6
3
5
0
.
9
6
6
3
0
.
9
5
6
4
-
0
.
0
0
0
3
-
0
.
0
0
1
2
-
0
.
0
0
0
3
G
0
.
9
8
1
1
0
.
9
8
1
8
0
.
9
6
8
7
0
.
0
0
0
1
0
.
0
0
3
6
0
.
0
0
2
8
B
0
.
9
6
6
5
0
.
9
6
6
4
0
.
9
4
7
8
0
.
0
0
0
1
0
.
0
0
1
3
-
0
.
0
0
2
8
Le
n
a
R
0
.
9
3
1
7
0
.
9
6
6
8
0
.
9
0
2
9
0
.
0
0
9
7
-
0
.
0
0
3
8
-
0
.
0
2
0
0
G
0
.
9
3
5
7
0
.
9
6
9
2
0
.
9
0
9
8
-
0
.
0
0
1
3
0
.
0
0
7
8
-
0
.
0
0
1
7
B
0
.
8
8
0
0
0
.
9
3
8
8
0
.
8
3
4
2
0
.
0
0
2
3
-
0
.
0
0
4
0
0
.
0
0
7
1
(
a)
(
b
)
(
c)
(
d
)
(
e)
(f)
Fig
u
r
e
7
.
Vis
u
al
co
r
r
elatio
n
d
i
s
tr
ib
u
tio
n
of
L
en
a
im
ag
e:
(
a)
h
o
r
izo
n
tal
,
(
b
)
v
e
r
tical
,
(
c)
d
iag
o
n
al
co
r
r
elatio
n
d
is
tr
ib
u
tio
n
f
or
in
p
u
t
im
ag
e,
(
d
)
h
o
r
izo
n
tal
,
(
e
)
v
er
tical
,
a
n
d
(f)
d
iag
o
n
al
co
r
r
elatio
n
d
is
tr
ib
u
tio
n
f
or
cip
h
er
im
ag
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
A
u
th
en
tica
ted
ima
g
e
en
cryp
ti
o
n
u
s
in
g
r
o
b
u
s
t c
h
a
o
tic
ma
p
s
a
n
d
… (
R
u
p
a
lib
en
V
.
C
h
o
th
e
)
1551
3
.
7
.
Ana
ly
s
is
of
inco
ns
is
t
ency
of
pix
els
us
ing
pea
k
t
o
s
ig
n
a
l no
is
e
ra
t
io
T
ab
le
3
s
h
o
ws
PS
NR
v
alu
es
f
o
r
en
cr
y
p
ted
a
n
d
d
ec
r
y
p
te
d
im
ag
es.
L
o
wer
(
<1
0
d
B
)
PS
NR
v
alu
es
o
b
tain
ed
b
etwe
en
th
e
in
p
u
t
an
d
en
cr
y
p
ted
im
ag
es
in
d
icate
l
ess
n
o
is
e
r
atio
in
en
cr
y
p
ted
i
m
ag
es
[
2
4
]
.
T
h
u
s
,
it
is
h
ig
h
ly
r
esis
tan
t
to
s
tatis
tic
al
attac
k
s
.
T
h
e
i
n
f
in
ite
v
al
u
es
f
o
r
d
ec
r
y
p
ted
im
ag
es
in
d
icat
e
th
at
th
e
im
ag
e
is
r
ec
o
n
s
tr
u
cted
p
r
o
p
er
ly
.
PS
NR
is
d
eter
m
in
ed
m
ath
em
atica
lly
as
[
3
1
]
:
=
10
∗
l
og
10
(
255
)
2
(
)
(
2
1
)
3
.
8
.
Str
uc
t
ura
l sim
ila
rit
y
ind
ex
m
ea
s
ure
Stru
ctu
r
al
s
im
ilar
ity
in
d
ex
m
ea
s
u
r
e
(
SS
I
M
)
co
m
p
ar
es
t
wo
im
ag
es
b
ased
on
th
r
ee
p
ar
am
eter
s
:
co
n
tr
ast,
lu
m
in
an
ce
a
n
d
s
tr
u
c
tu
r
e.
SS
I
M=
1
r
ep
r
esen
ts
s
im
ilar
ity
b
etwe
en
b
o
t
h
im
ag
es,
wh
ile
a
v
alu
e
of
0
in
d
icate
s
th
at
b
o
th
im
a
g
es
ar
e
d
if
f
er
e
n
t
[
3
2
]
.
It
r
an
g
es
b
et
wee
n
0
an
d
1.
T
ab
le
3
r
ep
r
e
s
en
ts
SS
I
M
v
alu
es.
C
lo
s
e
to
ze
r
o
v
alu
es
f
o
r
en
cr
y
p
ted
im
ag
es
an
d
o
n
e
f
o
r
d
ec
r
y
p
ted
im
a
g
es
p
r
o
v
e
t
h
e
co
r
r
ec
tn
ess
of
th
e
alg
o
r
ith
m
.
3
.
9
.
K
ey
s
ens
it
iv
it
y
a
na
ly
s
is
An
en
cr
y
p
tio
n
al
g
o
r
ith
m
s
h
o
u
ld
h
av
e
a
k
e
y
s
p
ac
e
of
at
l
ea
s
t
2
100
to
r
ed
u
ce
r
is
k
of
B
r
u
te
-
f
o
r
ce
attac
k
s
.
Her
e
th
e
k
ey
s
p
ac
e
of
2
256
alo
n
g
with
ex
tr
a
128
-
b
i
t
k
ey
is
u
s
ed
.
T
h
e
ch
ao
tic
m
ap
p
ar
am
eter
s
also
s
er
v
e
as
k
ey
s
en
h
an
cin
g
th
e
s
ec
u
r
ity
p
e
r
f
o
r
m
an
ce
.
T
h
u
s
,
t
h
e
s
y
s
tem
is
s
af
e
ag
ain
s
t
b
r
u
te
-
f
o
r
ce
attac
k
s
.
Fo
r
ch
ec
k
in
g
k
ey
s
en
s
itiv
ity
,
256
-
b
it
k
ey
is
in
cr
em
en
ted
by
1
an
d
u
s
ed
f
o
r
d
ec
r
y
p
tio
n
.
T
h
u
s
,
th
e
k
ey
was
m
o
d
if
ied
by
t
h
e
f
ac
to
r
of
1
2
256
⁄
.
T
h
e
im
ag
e
was
not
c
o
r
r
ec
tly
d
ec
r
y
p
ted
u
s
in
g
it.
So
,
it
can
be
c
o
n
clu
d
e
d
th
at
th
e
cr
y
p
to
s
y
s
tem
is
s
ec
u
r
e
ev
en
if
th
e
attac
k
er
h
as
s
o
m
e
p
ar
tial
in
f
o
r
m
atio
n
of
th
e
k
ey
.
T
ab
le
3.
An
aly
s
is
of
i
n
co
n
s
is
ten
cy
of
p
ix
els
u
s
in
g
PS
NR
an
d
SS
I
M
I
mag
e
P
S
N
R
S
S
I
M
F
o
r
e
n
c
r
y
.
i
ma
g
e
s
F
o
r
d
e
c
r
y
.
i
ma
g
e
s
F
o
r
e
n
c
r
y
.
i
ma
g
e
s
F
o
r
d
e
c
r
y
.
i
ma
g
e
s
R
G
B
R
G
B
R
G
B
R
G
B
B
a
b
o
o
n
8
.
7
5
9
8
8
.
7
7
3
1
8
.
7
5
2
7
I
n
f
i
n
i
t
e
I
n
f
i
n
i
t
e
I
n
f
i
n
i
t
e
0
.
0
1
0
2
0
.
0
0
8
8
0
.
0
0
7
7
1
1
1
P
e
p
p
e
r
9
.
0
9
9
6
9
.
0
9
4
1
9
.
1
0
9
8
I
n
f
i
n
i
t
e
I
n
f
i
n
i
t
e
I
n
f
i
n
i
t
e
0
.
0
1
0
7
0
.
0
0
8
6
0
.
0
0
7
4
1
1
1
Le
n
a
7
.
8
1
3
2
7
.
8
8
5
2
7
.
8
5
6
0
I
n
f
i
n
i
t
e
I
n
f
i
n
i
t
e
I
n
f
i
n
i
t
e
0
.
0
0
8
2
0
.
0
1
1
6
0
.
0
0
9
9
1
1
1
3
.
1
0
.
Dis
cus
s
io
n
T
h
e
au
th
o
r
s
in
p
r
ev
i
o
u
s
r
esear
ch
m
en
tio
n
ed
th
at
th
e
m
ajo
r
i
s
s
u
es
th
at
th
e
h
y
b
r
id
ch
ao
tic
a
p
p
r
o
ac
h
es
m
u
s
t
tack
le
is
t
o
m
ai
n
tain
th
e
p
ictu
r
e
attr
ib
u
tes
th
at
ar
e
lik
el
y
to
b
e
lo
s
t
d
u
r
in
g
d
e
cr
y
p
tio
n
[
7
]
.
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
h
as
ac
h
iev
e
d
in
f
in
ite
PS
N
R
f
o
r
d
ec
r
y
p
te
d
im
a
g
es.
T
h
u
s
,
o
u
r
m
eth
o
d
p
r
ese
r
v
es
im
ag
e
v
is
u
al
p
r
o
p
er
ties
af
ter
e
n
cr
y
p
tio
n
an
d
ac
h
iev
es p
r
o
p
er
r
ec
o
n
s
tr
u
cti
o
n
o
f
o
r
ig
in
al
im
a
g
e
with
o
u
t a
n
y
lo
s
s
.
Als
o
,
lo
wer
PS
NR
f
o
r
cip
h
er
im
ag
es
an
d
to
tally
d
if
f
er
en
t
h
is
to
g
r
a
m
s
o
f
ac
tu
al
an
d
en
c
r
y
p
ted
im
a
g
es
p
r
o
v
e
th
at
th
e
alg
o
r
ith
m
is
s
ec
u
r
e
a
g
ain
s
t
s
tatis
t
ical
attac
k
s
[
2
4
]
.
R
ec
en
t
r
esear
ch
[
3
2
]
,
[
3
3
]
in
clu
d
in
g
m
e
d
ical
im
ag
e
en
cr
y
p
tio
n
wo
r
k
s
o
n
g
r
ay
s
ca
le
im
ag
es.
Ou
r
alg
o
r
ith
m
ca
n
b
e
u
s
ed
in
co
lo
r
im
ag
es r
elate
d
a
p
p
lic
atio
n
s
to
o
.
I
n
th
e
p
r
esen
ted
r
esu
lts
,
f
o
r
ev
er
y
cip
h
e
r
im
ag
e,
t
h
e
SS
I
M
is
ex
tr
em
ely
n
ea
r
to
0
,
th
e
PS
NR
is
b
elo
w
1
0
d
B
,
an
d
th
e
MSE
is
q
u
ite
h
ig
h
.
T
h
is
in
d
icate
s
a
s
u
b
s
tan
tial
d
if
f
er
en
ce
b
etwe
en
th
e
ac
tu
al
an
d
cip
h
er
im
ag
es.
T
h
u
s
,
it is
d
if
f
icu
lt to
d
er
iv
e
o
r
i
g
in
al
d
a
ta
f
r
o
m
th
e
e
n
cr
y
p
ted
o
n
e.
Als
o
,
f
o
r
th
e
d
e
cr
y
p
ted
im
ag
es,
th
e
m
ax
im
u
m
d
ev
iatio
n
an
d
MSE
v
alu
es
ar
e
ze
r
o
,
th
e
SS
I
M
v
al
u
es
ar
e
1
an
d
co
r
r
elatio
n
co
ef
f
icien
ts
ar
e
clo
s
e
to
0
.
T
h
ese
p
ar
am
eter
s
p
r
o
v
e
a
g
o
o
d
r
e
p
r
o
d
u
ctio
n
o
f
th
e
d
e
cr
y
p
ted
im
ag
es
with
o
u
t
lo
s
s
.
T
h
e
r
esu
lts
ar
e
in
ag
r
ee
m
en
t w
ith
p
r
ev
io
u
s
r
esear
ch
wo
r
k
s
[
2
4
]
,
[
3
2
]
.
Ou
r
alg
o
r
ith
m
en
ab
les
g
r
ea
t
r
an
d
o
m
izatio
n
o
f
th
e
im
ag
e
d
at
a
b
y
u
s
in
g
v
ar
io
u
s
ch
ao
tic
p
ar
am
eter
s
as
s
ec
r
et
k
ey
s
.
T
h
e
ch
ao
tic
k
ey
s
o
f
in
itializatio
n
v
ec
to
r
d
ep
en
d
o
n
o
r
ig
in
al
im
ag
e
p
a
r
a
m
eter
s
,
m
ak
in
g
th
e
alg
o
r
ith
m
r
esis
tan
t
to
d
if
f
er
e
n
tial
attac
k
s
.
T
h
e
s
y
s
tem
p
er
f
o
r
m
an
ce
is
co
m
p
ar
ed
with
p
r
ev
io
u
s
r
esea
r
ch
i
n
T
ab
le
4
.
T
ab
le
5
c
o
m
p
ar
es
th
e
en
tr
o
p
y
v
alu
es
u
s
in
g
d
if
f
er
e
n
t
alg
o
r
ith
m
s
f
o
r
th
e
L
en
a
im
ag
e.
C
lo
s
e
to
id
ea
l
en
tr
o
p
y
an
d
lo
we
r
co
r
r
elatio
n
o
f
cip
h
e
r
im
a
g
es
ac
h
iev
e
d
b
y
o
u
r
al
g
o
r
ith
m
p
r
o
v
e
th
at
it
is
p
r
o
v
id
i
n
g
h
ig
h
e
r
s
ec
u
r
ity
.
Fu
tu
r
e
s
tu
d
ies
m
a
y
e
x
p
lo
r
e
t
h
e
cr
ea
tio
n
o
f
cr
y
p
t
o
-
co
d
in
g
alg
o
r
ith
m
s
co
m
b
in
in
g
er
r
o
r
co
r
r
ec
tin
g
ch
an
n
el
c
o
d
es
with
e
n
cr
y
p
tio
n
.
T
h
e
s
ec
u
r
ity
o
f
o
u
r
alg
o
r
ith
m
is
v
er
if
ied
u
s
in
g
s
tatis
tical
p
ar
am
eter
s
as
d
o
n
e
in
[
3
4
]
,
[
3
5
]
.
As
AE
S
-
GC
M
[
3
]
is
alr
ea
d
y
em
p
lo
y
ed
in
s
ec
u
r
ity
s
tan
d
ar
d
s
,
th
e
ch
ao
tic
m
ap
s
ca
n
b
e
ea
s
ily
in
teg
r
ated
f
o
r
ad
v
an
ce
d
a
p
p
lic
atio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
7
,
No
.
3
,
Ma
r
ch
20
2
5
:
1
543
-
1
5
5
4
1552
T
ab
le
4
.
C
o
m
p
a
r
is
o
n
of
r
esu
lts
f
o
r
Pep
p
er
im
a
g
e
I
mag
e
R
e
f
.
En
t
r
o
p
y
C
o
r
r
e
l
a
t
i
o
n
c
o
e
f
f
i
c
i
e
n
t
s
(
C
i
p
h
e
r
i
m
a
g
e
)
R
G
B
V
e
r
t
i
c
a
l
H
o
r
i
z
o
n
t
a
l
D
i
a
g
o
n
a
l
P
r
o
p
o
se
d
a
l
g
o
r
i
t
h
m
7
.
9
9
9
4
7
.
9
9
9
3
7
.
9
9
9
4
R:
-
0
.
0
0
1
2
G:
0
.
0
0
3
6
B:
0
.
0
0
1
3
R:
-
0
.
0
0
0
3
G:
0
.
0
0
0
1
B:
0
.
0
0
0
1
R:
-
0
.
0
0
0
3
G:
0
.
0
0
2
8
B:
-
0
.
0
0
2
8
[
3
6
]
7
.
9
9
7
3
R:
0
.
0
2
3
1
G:
0
.
0
2
2
0
B:
0
.
0
1
2
1
R:
-
0
.
0
0
0
9
G:
-
0
.
0
0
5
3
B:
-
0
.
0
0
5
6
R:
-
0
.
0
0
0
3
G:
-
0
.
0
0
4
5
B:
-
0
.
0
0
3
5
[
3
7
]
7
.
9
9
8
9
0
.
0
0
2
0
-
0
.
0
0
3
5
0
.
0
0
1
6
[
3
8
]
7
.
9
9
7
4
-
0
.
0
0
1
8
-
0
.
0
0
2
5
0
.
0
0
3
0
T
ab
le
5
.
C
o
m
p
a
r
is
o
n
with
p
r
e
v
io
u
s
wo
r
k
f
o
r
L
en
a
im
ag
e
I
mag
e
R
e
f
e
r
e
n
c
e
s
R
G
B
[
3
9
]
7
.
7
2
2
8
[
4
0
]
7
.
9
9
1
3
[
4
1
]
7
.
9
9
1
3
7
.
9
9
1
4
7
.
9
9
1
6
[
1
6
]
7
.
5
7
9
7
.
6
3
2
1
7
.
5
5
8
9
[
1
5
]
7
.
7
7
7
1
7
.
7
1
9
0
7
.
7
1
5
0
O
u
r
me
t
h
o
d
7
.
9
9
5
4
7
.
9
9
6
0
7
.
9
9
5
9
4.
CO
NCLU
SI
O
N
T
h
e
p
u
r
p
o
s
e
of
th
e
p
r
esen
ted
r
esear
ch
was
to
d
ev
elo
p
a
n
o
v
el
im
ag
e
en
cr
y
p
tio
n
s
ch
em
e
co
m
b
in
in
g
th
e
ch
ao
s
s
eq
u
e
n
ce
s
with
th
e
im
p
r
o
v
ed
Galo
is
co
u
n
ter
mode
of
AE
S
to
p
r
o
v
id
e
h
i
g
h
er
s
ec
u
r
ity
with
au
th
en
ticatio
n
.
T
h
e
ch
a
o
tic
alg
o
r
ith
m
s
ar
e
s
en
s
itiv
e
to
in
iti
al
co
n
d
itio
n
s
an
d
co
n
tr
o
l
p
ar
am
eter
s
,
wh
ich
ar
e
u
s
ed
as
th
e
k
ey
s
of
b
lo
ck
en
cr
y
p
tio
n
alg
o
r
ith
m
s
to
m
ak
e
th
em
r
esis
t
th
e
d
if
f
er
en
tial
at
tack
s
.
T
h
e
cr
y
p
to
s
y
s
tem
is
im
p
lem
en
ted
an
d
test
ed
u
s
in
g
v
a
r
io
u
s
s
ec
u
r
ity
p
ar
am
ete
r
s
lik
e
en
tr
o
p
y
,
h
is
to
g
r
a
m
an
d
m
ath
em
atica
l
as
well
as
v
is
u
a
l
an
aly
s
is
of
co
r
r
elatio
n
.
PS
NR
v
alu
e
an
d
s
tr
u
ctu
r
al
s
im
ilar
ity
in
d
ex
m
ea
s
u
r
e
v
alu
es
d
em
o
n
s
tr
ate
th
e
r
o
b
u
s
tn
ess
of
th
e
al
g
o
r
ith
m
ag
ain
s
t
sta
ti
stica
l
attac
k
s
.
T
h
e
NI
ST
Fre
q
u
en
c
y
test
of
s
tatis
t
ical
test
s
u
ite
is
al
s
o
s
u
cc
ess
f
u
l.
T
h
e
p
r
o
p
o
s
ed
cr
y
p
to
s
y
s
tem
is
s
ec
u
r
e
ev
en
if
th
e
attac
k
er
h
as
p
ar
tial
k
n
o
wled
g
e
of
th
e
k
ey
.
T
h
u
s
,
th
e
m
u
lti
-
ch
ao
tic
AE
S
-
GC
M
p
r
o
v
id
es
h
ig
h
s
ec
u
r
ity
ag
ain
s
t
all
d
if
f
er
en
tial,
s
tatis
t
ical
an
d
b
r
u
te
-
f
o
r
ce
attac
k
s
.
So
,
it
is
s
u
itab
le
f
o
r
t
h
e
co
n
f
id
e
n
tial
d
ata
tr
an
s
m
is
s
io
n
.
As
TLS
1
.
3
is
d
ec
lin
in
g
s
u
p
p
o
r
t
to
n
o
n
-
a
u
th
en
ticated
en
cr
y
p
tio
n
m
eth
o
d
s
,
th
e
p
r
o
p
o
s
ed
al
g
o
r
it
h
m
with
ch
ao
tic
im
p
r
o
v
em
e
n
ts
can
be
ea
s
ily
a
d
o
p
ted
f
o
r
d
ata
s
ec
u
r
ity
with
au
th
en
ticatio
n
.
Fro
m
th
e
p
er
s
p
ec
tiv
e
of
p
r
esen
ted
wo
r
k
,
th
e
au
th
o
r
s
p
lan
to
im
p
l
em
en
t
th
e
h
y
p
er
c
h
ao
tic
m
ap
s
with
b
lo
ck
co
d
es.
T
h
e
er
r
o
r
c
o
r
r
ec
tin
g
co
d
es
can
also
be
co
m
b
in
e
d
with
en
c
r
y
p
t
io
n
alg
o
r
ith
m
in
f
u
tu
r
e
to
en
h
a
n
ce
th
e
p
er
f
o
r
m
a
n
ce
.
RE
F
E
R
E
NC
E
S
[
1
]
S
.
D
a
s
a
n
d
S
.
N
a
mas
u
d
r
a
,
“
A
n
o
v
e
l
h
y
b
r
i
d
e
n
c
r
y
p
t
i
o
n
me
t
h
o
d
t
o
se
c
u
r
e
h
e
a
l
t
h
c
a
r
e
d
a
t
a
i
n
I
o
T
-
e
n
a
b
l
e
d
h
e
a
l
t
h
c
a
r
e
i
n
f
r
a
st
r
u
c
t
u
r
e
,
”
C
o
m
p
u
t
e
rs
a
n
d
E
l
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
,
v
o
l
.
1
0
1
,
p
.
1
0
7
9
9
1
,
J
u
l
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
mp
e
l
e
c
e
n
g
.
2
0
2
2
.
1
0
7
9
9
1
.
[
2
]
E.
R
e
sc
o
r
l
a
,
“
T
h
e
t
r
a
n
sp
o
r
t
l
a
y
e
r
se
c
u
r
i
t
y
(
TLS)
p
r
o
t
o
c
o
l
v
e
r
s
i
o
n
1
.
3
,
”
A
u
g
.
2
0
1
8
.
d
o
i
:
1
0
.
1
7
4
8
7
/
R
F
C
8
4
4
6
.
[
3
]
M
.
D
w
o
r
k
i
n
,
“
S
P
8
0
0
-
3
8
D
:
r
e
c
o
mm
e
n
d
a
t
i
o
n
f
o
r
b
l
o
c
k
c
i
p
h
e
r
m
o
d
e
s
o
f
o
p
e
r
a
t
i
o
n
:
G
a
l
o
i
s/
c
o
u
n
t
e
r
m
o
d
e
(
G
C
M
)
a
n
d
G
M
A
C
,
”
N
I
S
T
S
p
e
c
i
a
l
Pu
b
l
i
c
a
t
i
o
n
,
v
o
l
.
8
0
0
,
n
o
.
3
8
D
.
p
p
.
1
–
3
9
,
2
0
0
7
.
[
4
]
J.
V
i
e
g
a
a
n
d
D
.
M
c
G
r
e
w
,
“
Th
e
u
se
o
f
G
a
l
o
i
s
/
c
o
u
n
t
e
r
m
o
d
e
(
G
C
M
)
i
n
I
P
s
e
c
e
n
c
a
p
s
u
l
a
t
i
n
g
s
e
c
u
r
i
t
y
p
a
y
l
o
a
d
(
E
S
P
)
,
”
R
F
C
4
1
0
6
,
N
e
t
w
o
r
k
W
o
r
k
i
n
g
G
r
o
u
p
,
Ju
n
.
2
0
0
5
.
d
o
i
:
1
0
.
1
7
4
8
7
/
r
f
c
4
1
0
6
.
[
5
]
J.
S
.
B
a
l
a
d
h
a
y
a
n
d
E.
M
.
D
e
Lo
s
R
e
y
e
s,
“
A
ES
-
1
2
8
r
e
d
u
c
e
d
-
r
o
u
n
d
p
e
r
mu
t
a
t
i
o
n
b
y
r
e
p
l
a
c
i
n
g
t
h
e
M
i
x
C
o
l
u
m
n
s
f
u
n
c
t
i
o
n
,
”
I
n
d
o
n
e
si
a
n
J
o
u
r
n
a
l
o
f
El
e
c
t
ri
c
a
l
E
n
g
i
n
e
e
r
i
n
g
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
3
3
,
n
o
.
3
,
p
p
.
1
6
4
1
–
1
6
5
2
,
M
a
r
.
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
e
c
s.
v
3
3
.
i
3
.
p
p
1
6
4
1
-
1
6
5
2
.
[
6
]
R
.
V
C
h
o
t
h
e
,
S
.
P
.
U
g
a
l
e
,
D
.
M
.
C
h
a
n
d
w
a
d
k
a
r
,
a
n
d
S
.
V
S
h
e
l
k
e
,
“
A
c
o
m
b
i
n
e
d
c
r
y
p
t
o
g
r
a
p
h
y
a
n
d
e
r
r
o
r
c
o
r
r
e
c
t
i
o
n
sy
st
e
m b
a
s
e
d
o
n
e
n
h
a
n
c
e
d
A
ES
a
n
d
LD
P
C
,
”
i
n
2
0
2
3
7
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
O
n
C
o
m
p
u
t
i
n
g
,
C
o
m
m
u
n
i
c
a
t
i
o
n
,
C
o
n
t
r
o
l
An
d
A
u
t
o
m
a
t
i
o
n
(
I
C
C
U
BEA)
,
A
u
g
.
2
0
2
3
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
C
U
B
EA
5
8
9
3
3
.
2
0
2
3
.
1
0
3
9
2
2
1
8
.
[
7
]
A
.
S
.
B
a
d
e
r
a
n
d
A
.
M
.
S
a
g
h
e
e
r
,
“
M
o
d
i
f
i
c
a
t
i
o
n
o
n
A
ES
-
G
C
M
t
o
i
n
c
r
e
men
t
c
i
p
h
e
r
t
e
x
t
r
a
n
d
o
m
n
e
s
s,”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
Ma
t
h
e
m
a
t
i
c
a
l
S
c
i
e
n
c
e
s
a
n
d
C
o
m
p
u
t
i
n
g
,
v
o
l
.
4
,
n
o
.
4
,
p
p
.
3
4
–
4
0
,
N
o
v
.
2
0
1
8
,
d
o
i
:
1
0
.
5
8
1
5
/
i
j
msc
.
2
0
1
8
.
0
4
.
0
3
.
[
8
]
Y
.
M
a
,
C
.
L
i
,
a
n
d
B
.
O
u
,
“
C
r
y
p
t
a
n
a
l
y
si
s
o
f
a
n
i
m
a
g
e
b
l
o
c
k
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
se
d
o
n
c
h
a
o
t
i
c
ma
p
s,”
J
o
u
r
n
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
r
i
t
y
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
5
4
,
p
.
1
0
2
5
6
6
,
O
c
t
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
i
sa
.
2
0
2
0
.
1
0
2
5
6
6
.
[
9
]
S
.
J.
S
h
e
e
l
a
,
K
.
V
S
u
r
e
s
h
,
a
n
d
D
.
Ta
n
d
u
r
,
“
I
mag
e
e
n
c
r
y
p
t
i
o
n
b
a
se
d
o
n
mo
d
i
f
i
e
d
H
e
n
o
n
ma
p
u
s
i
n
g
h
y
b
r
i
d
c
h
a
o
t
i
c
s
h
i
f
t
t
r
a
n
sf
o
r
m,
”
Mu
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
7
7
,
n
o
.
1
9
,
p
p
.
2
5
2
2
3
–
2
5
2
5
1
,
O
c
t
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
1
0
4
2
-
0
1
8
-
5
7
8
2
-
2.
[
1
0
]
C
.
C
h
e
n
,
H
.
Z
h
a
n
g
,
a
n
d
B
.
W
u
,
“
I
ma
g
e
e
n
c
r
y
p
t
i
o
n
b
a
s
e
d
o
n
A
r
n
o
d
t
r
a
n
sf
o
r
m
a
n
d
f
r
a
c
t
i
o
n
a
l
c
h
a
o
t
i
c
,
”
S
y
m
m
e
t
ry
,
v
o
l
.
1
4
,
n
o
.
1
,
p
.
1
7
4
,
Ja
n
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
s
y
m
1
4
0
1
0
1
7
4
.
[
1
1
]
A
.
P.
K
a
r
i
,
A
.
H.
N
a
v
i
n
,
A
.
M
.
B
i
d
g
o
l
i
,
a
n
d
M
.
M
i
r
n
i
a
,
“
A
n
e
w
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
s
c
h
e
me
b
a
se
d
o
n
h
y
b
r
i
d
c
h
a
o
t
i
c
ma
p
s,
”
Mu
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
8
0
,
n
o
.
2
,
p
p
.
2
7
5
3
–
2
7
7
2
,
2
0
2
1
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
4
2
-
0
2
0
-
0
9
6
4
8
-
1.
[
1
2
]
L.
L
i
u
,
Y
.
L
e
i
,
a
n
d
D
.
W
a
n
g
,
“
A
f
a
s
t
c
h
a
o
t
i
c
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
sc
h
e
me
w
i
t
h
s
i
mu
l
t
a
n
e
o
u
s
p
e
r
mu
t
a
t
i
o
n
-
d
i
f
f
u
si
o
n
o
p
e
r
a
t
i
o
n
,
”
I
E
E
E
Ac
c
e
ss
,
v
o
l
.
8
,
p
p
.
2
7
3
6
1
–
2
7
3
7
4
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
0
.
2
9
7
1
7
5
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.