I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
2
,
A
p
r
il
20
25
,
p
p
.
2
3
6
4
~
2
3
7
1
I
SS
N:
2088
-
8
7
0
8
,
DOI
:
1
0
.
1
1
5
9
1
/ijece.
v
15
i
2
.
pp
2
3
6
4
-
2
3
7
1
2364
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
A new
data
impu
t
a
tion techni
que
for ef
ficien
t
used
car price
foreca
sting
Cha
rlène
B
éa
t
rice
B
ri
dg
e
-
Nduwim
a
na
1
,
Aziz
a
E
l O
ua
a
zizi
1,
2
,
M
a
j
id B
eny
a
k
hlef
2
1
La
b
o
r
a
t
o
r
y
f
o
r
A
r
t
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
,
D
a
t
a
S
c
i
e
n
c
e
a
n
d
Em
e
r
g
i
n
g
S
y
st
e
ms,
F
e
s
N
a
t
i
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
l
i
e
d
S
c
i
e
n
c
e
s,
S
i
d
i
M
o
h
a
m
e
d
B
e
n
A
b
d
e
l
l
a
h
U
n
i
v
e
r
s
i
t
y
,
F
e
s,
M
o
r
o
c
c
o
2
La
b
o
r
a
t
o
r
y
o
f
E
n
g
i
n
e
e
r
i
n
g
S
c
i
e
n
c
e
s
,
P
o
l
y
d
i
sc
i
p
l
i
n
a
r
y
F
a
c
u
l
t
y
o
f
Ta
z
a
,
S
i
d
i
M
o
h
a
me
d
B
e
n
A
b
d
e
l
l
a
h
U
n
i
v
e
r
s
i
t
y
,
M
o
r
o
c
c
o
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l 6
,
2
0
2
4
R
ev
is
ed
No
v
9
,
2
0
2
4
Acc
ep
ted
No
v
2
0
,
2
0
2
4
Th
is
re
se
a
rc
h
p
re
se
n
ts
a
n
in
n
o
v
a
ti
v
e
m
e
th
o
d
o
l
o
g
y
fo
r
a
d
d
re
ss
in
g
m
issin
g
d
a
ta
c
h
a
ll
e
n
g
e
s,
sp
e
c
ifi
c
a
ll
y
a
p
p
li
e
d
to
p
re
d
icti
n
g
th
e
re
sa
le
v
a
lu
e
o
f
u
se
d
v
e
h
icle
s.
T
h
e
stu
d
y
in
te
g
ra
tes
a
tailo
re
d
fe
a
tu
re
se
lec
ti
o
n
a
l
g
o
rit
h
m
with
a
s
o
p
h
i
s
t
i
c
a
t
e
d
i
m
p
u
t
a
t
i
o
n
s
t
r
a
te
g
y
u
t
i
l
i
z
i
n
g
t
h
e
H
i
s
t
G
r
a
d
i
e
n
t
B
o
o
s
t
i
n
g
R
e
g
r
e
ss
o
r
to
e
n
h
a
n
c
e
e
fficie
n
c
y
a
n
d
a
c
c
u
ra
c
y
wh
il
e
m
a
in
tai
n
in
g
d
a
ta
fid
e
li
t
y
.
Th
e
a
p
p
ro
a
c
h
e
ffe
c
ti
v
e
l
y
re
so
lv
e
s
d
a
ta
p
re
p
ro
c
e
ss
in
g
a
n
d
m
iss
in
g
v
a
l
u
e
imp
u
tati
o
n
issu
e
s
i
n
c
o
m
p
lex
d
a
tas
e
ts.
A
c
o
m
p
re
h
e
n
si
v
e
flo
wc
h
a
rt
d
e
l
in
e
a
tes
th
e
p
r
o
c
e
ss
fro
m
in
it
ial
d
a
ta ac
q
u
isit
i
o
n
a
n
d
in
teg
ra
ti
o
n
t
o
u
lt
ima
te
p
re
p
ro
c
e
ss
in
g
ste
p
s,
e
n
c
o
m
p
a
ss
in
g
fe
a
tu
re
e
n
g
i
n
e
e
rin
g
,
d
a
ta
p
a
rti
ti
o
n
in
g
,
m
o
d
e
l
train
in
g
,
a
n
d
imp
u
tati
o
n
p
ro
c
e
d
u
re
s.
Th
e
re
su
lt
s
d
e
m
o
n
stra
te
th
e
su
p
e
rio
ri
ty
o
f
t
h
e
HistGr
a
d
ien
tB
o
o
sti
n
g
Reg
re
ss
o
r
fo
r
imp
u
tat
io
n
o
v
e
r
c
o
n
v
e
n
ti
o
n
a
l
m
e
th
o
d
s,
wit
h
b
o
o
ste
d
m
o
d
e
ls
e
x
trem
e
g
ra
d
ien
t
b
o
o
stin
g
(XG
Bo
o
st)
re
g
re
ss
o
r
a
n
d
g
ra
d
ien
t
b
o
o
sti
n
g
re
g
re
ss
o
r
e
x
h
i
b
it
i
n
g
e
x
c
e
p
ti
o
n
a
l
p
e
rfo
rm
a
n
c
e
in
p
rice
fo
re
c
a
stin
g
.
W
h
il
e
th
e
st
u
d
y
’s
p
o
ten
ti
a
l
l
imitatio
n
s
in
c
lu
d
e
g
e
n
e
ra
li
z
a
b
il
it
y
a
c
ro
ss
d
iv
e
rse
d
a
tas
e
ts,
it
s
a
p
p
li
c
a
ti
o
n
s
in
c
lu
d
e
e
n
h
a
n
c
in
g
p
r
icin
g
m
o
d
e
ls
i
n
t
h
e
a
u
to
m
o
ti
v
e
se
c
to
r
a
n
d
imp
ro
v
in
g
d
a
ta
q
u
a
li
t
y
i
n
larg
e
-
sc
a
le m
a
rk
e
t
a
n
a
ly
se
s.
K
ey
w
o
r
d
s
:
Featu
r
e
en
g
in
ee
r
i
n
g
I
m
p
u
tatio
n
Miss
in
g
v
alu
es
Pre
p
r
o
ce
s
s
in
g
R
eg
r
ess
io
n
Used
ca
r
f
o
r
ec
asti
n
g
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
C
h
ar
lèn
e
B
éa
tr
ice
B
r
id
g
e
-
Nd
u
wim
an
a
L
ab
o
r
ato
r
y
f
o
r
Ar
tific
ial
I
n
tell
ig
en
ce
,
Data
Scien
ce
an
d
E
m
e
r
g
in
g
Sy
s
tem
s
,
Fes
Natio
n
al
Sch
o
o
l o
f
Ap
p
lied
Scien
ce
s
,
Sid
i M
o
h
am
ed
B
en
Ab
d
ellah
Un
iv
er
s
ity
Fes
,
Mo
r
o
cc
o
E
m
ail: c
h
ar
len
eb
ea
tr
ice.
b
r
id
g
e
n
d
u
wim
an
a@
u
s
m
b
a.
ac
.
m
a
1.
I
NT
RO
D
UCT
I
O
N
Han
d
lin
g
m
ass
iv
e
d
atasets
w
ith
m
is
s
in
g
v
alu
es
is
a
p
r
ev
alen
t
ch
allen
g
e
in
m
o
d
er
n
d
ata
an
aly
s
is
,
n
ec
ess
itatin
g
in
n
o
v
ativ
e
s
o
lu
t
io
n
s
.
Miss
in
g
v
alu
es
o
f
ten
r
e
s
u
lt
f
r
o
m
th
e
ex
p
o
n
en
tial
g
r
o
wth
o
f
d
ata
s
o
u
r
ce
s
an
d
th
e
in
h
e
r
en
t
i
n
co
m
p
lete
n
e
s
s
o
f
d
ata
co
llectio
n
p
r
o
ce
s
s
es.
Ad
v
a
n
ce
d
tec
h
n
o
lo
g
ies
an
d
an
aly
tical
m
eth
o
d
s
,
in
clu
d
in
g
m
ac
h
in
e
lear
n
i
n
g
a
n
d
s
tatis
tical
tech
n
iq
u
es,
ar
e
cr
u
cial
f
o
r
m
a
n
ag
in
g
lar
g
e
-
s
c
ale
d
ata
ef
f
icien
tly
an
d
im
p
u
tin
g
m
is
s
in
g
v
alu
es
ef
f
ec
tiv
ely
.
T
h
e
co
m
p
le
x
ity
an
d
v
o
l
u
m
e
o
f
d
ata
r
eq
u
ir
e
r
o
b
u
s
t
an
d
s
ca
lab
le
s
o
lu
tio
n
s
to
en
s
u
r
e
ac
cu
r
ate
a
n
aly
s
is
an
d
d
e
r
iv
e
m
ea
n
in
g
f
u
l
in
s
ig
h
ts
.
R
ec
en
tly
,
p
r
ed
ictin
g
th
e
r
esale
v
alu
e
o
f
u
s
ed
v
eh
icles
(
PR
VUV)
h
as
g
ain
ed
im
p
o
r
tan
ce
.
Used
ca
r
s
a
les
r
ep
r
esen
t
a
s
ig
n
if
ican
t
s
ec
to
r
,
y
et
f
o
r
ec
asti
n
g
d
em
an
d
r
e
m
ain
s
ch
allen
g
in
g
d
u
e
to
v
a
r
io
u
s
f
ac
to
r
s
,
s
u
ch
a
s
u
n
iq
u
e
ch
ar
ac
te
r
is
tics
,
lim
it
ed
d
ata
av
ailab
ilit
y
,
an
d
d
y
n
am
ic
m
a
r
k
et
c
o
n
d
iti
o
n
s
.
Acc
u
r
ate
f
o
r
ec
asti
n
g
m
eth
o
d
s
ar
e
ess
en
tial
f
o
r
o
p
t
im
izin
g
s
ales
an
d
in
v
en
to
r
y
m
an
a
g
em
en
t.
C
u
r
r
en
t
r
esear
ch
o
n
im
p
u
tatio
n
m
eth
o
d
s
f
o
r
m
is
s
in
g
d
ata
h
ig
h
lig
h
ts
th
e
ev
o
l
v
in
g
lan
d
s
ca
p
e
o
f
d
ata
p
r
ep
r
o
ce
s
s
in
g
tech
n
iq
u
es.
Mo
d
er
n
ap
p
r
o
ac
h
es
f
o
c
u
s
o
n
p
r
es
er
v
in
g
s
tatis
tical
r
elatio
n
s
h
ip
s
an
d
ac
co
u
n
tin
g
f
o
r
u
n
ce
r
tain
ty
with
in
th
e
d
ata.
Simp
ly
d
is
ca
r
d
in
g
in
co
m
p
lete
ca
s
es
ca
n
lead
to
a
s
ig
n
if
ica
n
t
lo
s
s
o
f
v
alu
ab
le
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
n
ew d
a
ta
imp
u
ta
tio
n
tec
h
n
i
q
u
e
fo
r
efficien
t u
s
ed
ca
r
p
r
ic
e
…
(
C
h
a
r
lèn
e
B
éa
tr
ice
B
r
id
g
e
-
N
d
u
w
ima
n
a
)
2365
in
f
o
r
m
atio
n
.
T
h
er
e
f
o
r
e,
e
m
p
lo
y
in
g
m
u
ltiv
ar
ia
b
le
im
p
u
tatio
n
tech
n
iq
u
es,
wh
ich
p
r
o
d
u
ce
m
u
ltip
le
im
p
u
tatio
n
s
b
ased
o
n
o
th
er
o
b
s
er
v
ed
attr
ib
u
tes,
is
ad
v
is
ab
le.
Stu
d
ies
[
1
]
,
[
2
]
d
em
o
n
s
tr
ate
th
at
ad
v
an
ce
d
m
eth
o
d
s
,
s
u
ch
as
m
u
ltip
le
im
p
u
tatio
n
b
y
ch
ain
e
d
eq
u
atio
n
s
(
MI
C
E
)
an
d
m
ac
h
in
e
lear
n
in
g
-
b
ased
a
p
p
r
o
ac
h
es
lik
e
r
an
d
o
m
f
o
r
est
(
R
F)
im
p
u
tatio
n
an
d
k
-
n
ea
r
est
n
eig
h
b
o
r
s
(
KNN)
im
p
u
t
atio
n
,
o
f
te
n
o
u
tp
er
f
o
r
m
t
r
ad
itio
n
al
m
eth
o
d
s
i
n
m
an
ag
in
g
co
m
p
lex
m
is
s
in
g
d
ata
p
atter
n
s
.
T
h
ese
tech
n
iq
u
e
s
h
av
e
s
h
o
wn
p
r
o
m
is
e
in
m
ain
tain
in
g
s
tatis
tica
l
p
o
wer
an
d
r
e
d
u
cin
g
b
ias
in
s
u
b
s
eq
u
en
t
an
aly
s
es,
p
ar
ticu
l
ar
ly
in
lar
g
e
-
s
ca
le
d
atasets
with
m
ix
ed
v
ar
iab
le
ty
p
es.
Fu
r
th
er
m
o
r
e,
m
eticu
lo
u
s
f
ea
tu
r
e
s
elec
tio
n
[
3
]
is
cr
itical
f
o
r
p
r
ice
p
r
ed
ictio
n
in
r
eg
r
ess
io
n
m
o
d
els
u
s
in
g
m
ac
h
in
e
lear
n
i
n
g
alg
o
r
ith
m
s
.
T
o
u
n
d
er
s
co
r
e
th
e
im
p
o
r
tan
ce
o
f
f
ea
tu
r
e
s
ele
ctio
n
,
m
eth
o
d
s
lik
e
s
em
i
-
lo
g
ar
ith
m
ic
h
ed
o
n
ic
r
e
g
r
ess
io
n
[
4
]
h
a
v
e
b
ee
n
u
s
ed
i
n
th
e
liter
atu
r
e
to
i
d
en
tify
c
h
ar
ac
ter
is
tics
with
p
o
s
itiv
e
ef
f
ec
ts
,
in
clu
d
in
g
d
iesel
en
g
in
es,
s
p
ec
if
ic
co
lo
r
s
(
b
lack
an
d
g
r
e
y
)
,
au
t
o
m
atic
tr
an
s
m
is
s
io
n
s
,
co
u
n
tr
y
an
d
y
ea
r
o
f
m
an
u
f
ac
t
u
r
e,
s
u
n
r
o
o
f
s
,
an
d
en
g
in
e
cy
lin
d
e
r
s
p
ec
if
icatio
n
s
.
R
esear
ch
h
as
p
r
o
p
o
s
ed
v
ar
io
u
s
s
o
lu
tio
n
s
,
s
u
ch
as
m
u
lti
-
s
tag
e
s
y
s
tem
s
th
at
o
f
f
er
f
u
n
ctio
n
a
liti
es
lik
e
web
s
ite
f
ilter
in
g
,
tr
ain
in
g
,
d
at
a
p
r
ep
ar
atio
n
,
p
r
e
d
ictio
n
,
an
d
v
eh
icle
s
tate
ad
ju
s
tm
en
ts
to
ad
d
r
ess
ir
r
eg
u
lar
ities
[
5
]
.
T
h
ese
s
y
s
tem
s
u
tili
ze
r
u
l
e
-
b
ased
in
teg
r
ati
o
n
a
n
d
e
n
co
m
p
ass
ev
alu
atio
n
f
r
am
ewo
r
k
s
[
6
]
,
m
ar
k
et
v
alu
e
esti
m
atio
n
f
o
r
u
s
ed
v
eh
icles
[
7
]
,
f
air
p
r
ice
f
o
r
ec
asti
n
g
m
o
d
els
[
8
]
,
a
n
d
v
id
eo
-
b
ased
c
ar
m
o
d
el
d
etec
tio
n
s
y
s
tem
s
[
9
]
.
Ad
d
itio
n
ally
,
d
i
v
er
s
e
ap
p
licatio
n
s
d
em
o
n
s
tr
ate
th
e
ex
ten
s
iv
e
u
s
e
o
f
m
ac
h
i
n
e
lear
n
in
g
in
t
h
e
au
to
m
o
tiv
e
in
d
u
s
tr
y
.
I
n
s
tu
d
ies
r
elate
d
to
PR
VU
V,
it
h
as
b
ee
n
o
b
s
er
v
e
d
th
at
f
o
r
ec
asti
n
g
ca
n
b
e
ef
f
ec
tiv
el
y
co
n
d
u
cte
d
u
s
in
g
tr
a
d
itio
n
al
r
eg
r
ess
io
n
m
o
d
els,
s
u
ch
as
ar
tific
ial
n
eu
r
al
n
etwo
r
k
s
,
b
o
o
s
ted
m
o
d
els,
lin
ea
r
r
eg
r
ess
io
n
,
a
n
d
r
eg
r
ess
io
n
tr
ee
s
[
1
0
]
–
[
1
2
]
.
Ho
wev
er
,
d
ec
is
io
n
tr
ee
s
a
n
d
n
aïv
e
B
ay
es
m
o
d
e
ls
ar
e
g
e
n
er
ally
n
o
t
s
u
itab
le
f
o
r
co
n
tin
u
o
u
s
-
v
alu
ed
d
ata
wh
en
th
e
n
u
m
b
er
o
f
o
b
s
er
v
atio
n
s
is
s
m
all.
T
h
e
c
h
a
l
l
e
n
g
e
o
f
m
is
s
i
n
g
d
a
t
a
c
a
n
s
i
g
n
i
f
i
c
a
n
t
l
y
i
m
p
ac
t
t
h
e
ac
c
u
r
a
c
y
a
n
d
e
f
f
i
c
ac
y
o
f
a
n
al
y
ti
c
a
l
t
a
s
k
s
a
n
d
s
t
at
is
t
i
ca
l
a
n
a
l
y
s
es
.
T
h
i
s
is
s
u
e
is
a
d
d
r
e
s
s
e
d
i
n
s
e
c
t
i
o
n
2
,
w
h
e
r
e
w
e
i
n
t
r
o
d
u
c
e
a
f
ea
t
u
r
e
s
e
l
e
c
t
i
o
n
m
e
t
h
o
d
as
a
p
r
e
p
r
o
c
e
s
s
i
n
g
s
t
e
p
a
n
d
d
is
c
u
s
s
i
m
p
u
t
a
ti
o
n
t
e
c
h
n
i
q
u
es
f
o
r
r
e
g
r
e
s
s
i
o
n
a
n
al
y
s
is
o
n
a
d
a
t
as
et
o
f
u
s
e
d
c
a
r
s
i
n
t
h
e
U
n
i
t
e
d
S
t
at
e
s
.
O
u
r
p
r
o
p
o
s
e
d
f
r
a
m
e
w
o
r
k
c
o
m
b
i
n
e
s
t
h
e
s
e
s
t
r
at
e
g
i
e
s
t
o
e
f
f
e
c
ti
v
e
l
y
h
a
n
d
l
e
m
i
s
s
i
n
g
d
a
t
a
.
A
k
e
y
c
o
n
t
r
i
b
u
t
i
o
n
,
d
e
t
a
il
e
d
i
n
t
h
i
s
s
e
c
t
i
o
n
,
is
t
h
e
a
d
a
p
t
a
t
i
o
n
o
f
a
s
p
e
c
i
f
i
c
s
t
r
u
c
t
u
r
e
t
o
m
a
n
a
g
e
m
i
s
s
i
n
g
v
a
l
u
es
i
n
a
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
p
r
o
j
e
c
t
.
W
e
p
r
o
p
o
s
e
a
t
w
o
-
s
t
e
p
p
r
o
c
e
s
s
:
f
i
r
s
t
,
u
t
i
li
z
i
n
g
a
n
o
p
t
i
m
a
l
p
r
e
d
i
c
to
r
f
o
r
o
b
s
e
r
v
e
d
d
a
t
a
w
i
t
h
o
u
t
m
is
s
i
n
g
v
a
l
u
e
s
t
o
s
e
q
u
e
n
t
i
a
l
l
y
p
r
e
d
i
ct
v
a
r
i
a
b
l
es
w
it
h
m
i
s
s
i
n
g
v
a
l
u
e
s
a
n
d
r
e
i
n
te
g
r
a
t
e
t
h
e
m
i
n
t
o
t
h
e
i
n
i
ti
a
l
d
a
t
a
s
et
;
s
e
c
o
n
d
,
a
p
p
l
y
i
n
g
a
c
o
m
b
i
n
a
t
i
o
n
o
f
i
m
p
u
t
a
t
i
o
n
m
e
t
h
o
d
s
d
e
p
e
n
d
i
n
g
o
n
t
h
e
v
a
r
i
a
b
l
e
t
y
p
e
(
n
u
m
e
r
i
c
a
l
o
r
c
a
t
e
g
o
r
i
c
a
l
)
.
T
h
i
s
p
r
e
-
l
e
a
r
n
i
n
g
i
m
p
u
t
a
t
i
o
n
i
s
a
n
o
t
a
b
l
e
asp
e
c
t
o
f
o
u
r
a
p
p
r
o
a
c
h
wi
t
h
s
i
g
n
i
f
i
c
a
n
t
p
r
a
ct
i
c
al
i
m
p
l
i
c
a
ti
o
n
s
,
w
h
i
c
h
w
e
w
i
ll
d
is
c
u
s
s
f
u
r
t
h
e
r
.
Se
c
t
i
o
n
3
e
x
p
l
o
r
e
s
t
h
e
p
e
r
f
o
r
m
a
n
c
e
r
es
u
l
ts
o
f
th
e
v
a
r
i
o
u
s
m
e
t
h
o
d
s
e
m
p
l
o
y
e
d
i
n
s
e
c
t
i
o
n
2
,
a
n
d
s
e
c
t
i
o
n
4
c
o
n
c
l
u
d
e
s
o
u
r
s
t
u
d
y
,
h
i
g
h
l
i
g
h
t
i
n
g
t
h
e
e
f
f
e
c
t
i
v
e
n
es
s
o
f
t
h
e
p
r
o
p
o
s
e
d
i
m
p
u
t
a
t
i
o
n
t
e
c
h
n
i
q
u
e
a
n
d
p
r
o
v
id
i
n
g
f
u
t
u
r
e
d
i
r
e
c
t
i
o
n
s
f
o
r
f
u
r
t
h
e
r
e
n
h
a
n
c
i
n
g
t
h
e
i
m
p
u
t
a
t
i
o
n
p
r
o
c
e
s
s
.
2.
M
E
T
H
O
DS A
ND
M
A
T
E
R
I
AL
S
2
.
1
.
Da
t
a
prepro
ce
s
s
ing
Un
d
er
s
tan
d
in
g
th
e
d
at
as
et
i
s
cr
u
c
ia
l
f
o
r
an
y
d
a
ta
s
c
ien
ce
p
r
o
je
ct
.
T
h
i
s
p
r
o
ce
s
s
in
v
o
lv
e
s
d
ef
in
in
g
th
e
d
a
ta
s
o
u
r
ce
,
ex
p
lo
r
in
g
i
t
s
att
r
ib
u
te
s
,
an
d
an
aly
zi
n
g
f
e
at
u
r
e
r
e
la
tio
n
s
h
ip
s
to
id
e
n
t
if
y
u
n
d
er
ly
in
g
p
at
ter
n
s
o
r
co
r
r
e
la
tio
n
s
.
S
ta
ti
s
ti
ca
l
an
d
m
a
ch
i
n
e
l
ea
r
n
in
g
a
lg
o
r
ith
m
s
[
1
3
]
,
[
1
4
]
ca
n
p
r
o
v
id
e
in
s
i
g
h
t
s
to
g
u
id
e
th
e
p
r
ep
r
o
c
e
s
s
in
g
an
d
m
o
d
e
ll
in
g
s
tag
e
s
.
I
t
is
e
s
s
en
ti
al
to
p
er
f
o
r
m
c
er
t
ain
p
r
ep
r
o
c
es
s
in
g
a
ct
io
n
s
b
ef
o
r
e
im
p
u
ta
tio
n
to
ad
d
r
e
s
s
s
p
ec
if
ic
l
im
i
ta
t
io
n
s
[
1
5
]
–
[
1
7
]
,
s
u
c
h
a
s
h
ig
h
s
en
s
i
ti
v
i
ty
to
o
u
t
li
er
s
,
s
el
ec
t
io
n
o
f
co
n
d
i
tio
n
in
g
v
ar
i
ab
le
s
af
f
ec
te
d
b
y
im
p
u
ta
tio
n
m
e
th
o
d
s
,
an
d
tr
an
s
f
o
r
m
a
tio
n
o
f
o
r
d
i
n
al
o
r
ca
t
eg
o
r
ic
al
v
alu
es
.
T
h
e
d
a
ta
s
e
t
in
it
ia
lly
co
n
s
i
s
ts
o
f
3
,
0
0
0
,
0
4
0
en
tr
ie
s
an
d
6
6
f
e
atu
r
e
s
,
s
o
u
r
c
ed
f
r
o
m
Kag
g
le
d
a
ta
s
e
t
(
h
ttp
s
:
/
/
w
w
w
.
ka
g
g
l
e.
co
m/
d
a
ta
s
e
t
s
/a
n
a
n
a
y
mi
ta
l
/u
s
-
u
s
ed
-
ca
r
s
-
d
a
ta
s
e
t
)
.
T
h
e
d
a
ta
wa
s
co
l
lec
te
d
u
s
in
g
a
cu
s
to
m
web
cr
a
w
ler
th
a
t
ex
tr
ac
t
ed
i
n
f
o
r
m
at
io
n
f
r
o
m
th
e
C
ar
g
u
r
u
s
i
n
v
en
to
r
y
in
S
ep
tem
b
er
2
0
2
0
,
m
ak
in
g
i
t
s
u
ita
b
l
e
f
o
r
ex
p
e
r
im
en
ta
l p
u
r
p
o
s
e
s
.
T
o
o
p
tim
ize
o
u
r
r
eg
r
ess
io
n
m
o
d
el
f
o
r
v
eh
icle
p
r
ice
p
r
e
d
ictio
n
,
we
im
p
lem
e
n
ted
a
f
ea
tu
r
e
s
elec
tio
n
m
eth
o
d
with
m
u
ltip
le
f
u
n
ctio
n
alities
aim
ed
at
id
en
tify
in
g
an
d
r
em
o
v
i
n
g
r
e
d
u
n
d
an
t
o
r
i
r
r
el
ev
an
t
f
ea
tu
r
es.
T
h
is
ap
p
r
o
ac
h
ad
d
r
ess
es th
e
cr
itical
q
u
esti
o
n
o
f
wh
ich
v
e
h
icle
attr
ib
u
tes s
h
o
u
ld
b
e
i
n
clu
d
e
d
in
th
e
m
o
d
el:
a.
I
d
en
tify
in
g
co
lu
m
n
s
with
a
h
i
g
h
p
er
ce
n
tag
e
o
f
m
is
s
in
g
d
ata
(
ab
o
v
e
a
2
0
% th
r
esh
o
ld
)
,
b.
Dete
ctin
g
co
lu
m
n
s
with
a
s
in
g
le
u
n
i
q
u
e
v
alu
e
f
in
d
in
g
co
llin
ea
r
v
ar
ia
b
les
with
a
h
ig
h
co
r
r
elatio
n
co
ef
f
icien
t (
ab
o
v
e
a
9
0
% th
r
es
h
o
ld
)
,
c.
C
o
m
b
in
in
g
th
ese
co
n
d
itio
n
s
to
id
en
tify
f
ea
t
u
r
es f
o
r
r
em
o
v
al
,
d.
R
em
o
v
in
g
th
e
id
e
n
tifie
d
f
ea
t
u
r
es
,
e.
Vis
u
alizin
g
th
e
d
ata
u
s
in
g
h
is
to
g
r
am
s
f
o
r
m
is
s
in
g
v
alu
es
an
d
u
n
iq
u
e
v
alu
es,
an
d
h
ea
t
m
ap
s
f
o
r
f
u
r
th
er
in
s
ig
h
ts
.
Su
b
s
eq
u
en
tly
,
we
ap
p
lie
d
co
n
s
is
ten
t
f
o
r
m
attin
g
to
f
ea
tu
r
es,
u
s
ed
s
tan
d
ar
d
izatio
n
o
r
n
o
r
m
a
lizatio
n
tech
n
iq
u
es
f
o
r
n
u
m
er
ical
v
ar
iab
les,
an
d
ap
p
lied
ap
p
r
o
p
r
iate
e
n
co
d
in
g
m
eth
o
d
s
f
o
r
ca
te
g
o
r
ical
f
ea
t
u
r
es
to
en
s
u
r
e
d
ata
co
n
s
is
ten
cy
an
d
c
o
m
p
atib
ilit
y
f
o
r
m
o
d
el
tr
ain
in
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
3
6
4
-
2
3
7
1
2366
2
.
2
.
I
m
pu
t
a
t
io
n
prio
r
t
o
a
na
ly
s
is
Mo
s
t
s
tatis
t
ical
m
o
d
els
an
d
m
ac
h
in
e
lear
n
in
g
alg
o
r
ith
m
s
ar
e
n
o
t d
esig
n
ed
to
h
an
d
le
in
c
o
m
p
lete
d
ata.
T
h
er
e
ar
e
th
r
ee
m
ec
h
a
n
is
m
s
o
f
m
is
s
in
g
d
ata
[
1
8
]
:
m
is
s
in
g
co
m
p
letely
at
r
an
d
o
m
(
MCAR
)
,
m
is
s
in
g
at
r
an
d
o
m
(
MA
R
)
,
an
d
m
is
s
in
g
n
o
t
at
r
an
d
o
m
(
MN
AR
)
.
MCA
R
in
d
icate
s
th
at
m
is
s
in
g
n
ess
i
s
i
n
d
ep
en
d
en
t
o
f
b
o
th
o
b
s
er
v
ed
a
n
d
u
n
o
b
s
er
v
ed
d
a
ta.
I
n
co
n
tr
ast,
MA
R
an
d
M
NAR
im
p
ly
th
at
m
is
s
in
g
n
ess
is
r
elate
d
to
th
e
o
b
s
er
v
ed
d
ata
o
r
th
e
m
is
s
in
g
v
alu
es
th
em
s
elv
es.
C
a
teg
o
r
izin
g
m
is
s
in
g
d
ata
is
ch
allen
g
in
g
s
in
ce
m
is
s
in
g
v
alu
es
o
f
ten
r
elate
to
n
o
n
-
m
is
s
in
g
v
ar
iab
les.
I
t
is
g
en
er
ally
ad
v
is
ab
le
to
tr
ea
t
m
is
s
in
g
d
ata
as
MA
R
,
p
o
s
itio
n
ed
b
etwe
en
t
h
ese
m
ec
h
an
is
m
s
.
T
h
e
s
elec
tio
n
o
f
im
p
u
tatio
n
m
et
h
o
d
s
d
ep
en
d
s
o
n
t
h
e
m
ec
h
an
is
m
s
an
d
p
atter
n
s
o
f
m
is
s
in
g
d
ata.
No
s
in
g
le
m
eth
o
d
is
s
u
itab
le
f
o
r
all
s
ce
n
ar
io
s
.
I
m
p
u
tatio
n
tech
n
iq
u
es
ar
e
ca
teg
o
r
ized
as
s
in
g
le
(
e.
g
.
,
m
ea
n
/m
o
d
e/co
n
s
tan
t,
r
eg
r
ess
io
n
,
an
d
hot
-
d
e
ck
)
o
r
m
u
ltip
le.
Sin
g
le
im
p
u
t
atio
n
r
ep
lace
s
ea
c
h
m
is
s
in
g
v
alu
e
o
n
ce
,
as
in
s
tu
d
ies
[
1
7
]
,
[
1
9
]
,
[
2
0
]
,
wh
ich
in
clu
d
e
m
eth
o
d
s
lik
e
iter
ati
v
e
im
p
u
te
r
,
KNN
im
p
u
ter
,
K
-
m
ea
n
s
clu
s
ter
in
g
,
m
ea
n
im
p
u
tatio
n
,
an
d
d
ec
is
io
n
t
r
ee
s
(
C
A
R
T
)
.
Mu
ltip
le
im
p
u
tatio
n
,
o
n
th
e
o
th
er
h
an
d
,
c
r
ea
tes
s
ev
er
al
d
atasets
with
d
if
f
er
en
t
im
p
u
ted
v
alu
es
th
at
ar
e
later
co
m
b
in
ed
.
An
e
x
am
p
le
o
f
m
u
ltip
le
im
p
u
tatio
n
ca
n
b
e
f
o
u
n
d
in
[
2
1
]
,
wh
er
e
th
e
class
ce
n
ter
m
is
s
in
g
v
alu
e
im
p
u
tatio
n
(
C
C
MV
I
)
m
eth
o
d
is
en
h
an
ce
d
a
n
d
m
er
g
e
d
with
o
t
h
er
ap
p
r
o
ac
h
es,
s
u
ch
as im
p
u
t
in
g
b
ased
o
n
th
e
n
ea
r
est cla
s
s
ce
n
ter
an
d
u
s
in
g
th
e
m
ea
n
o
f
class
ce
n
ter
s
to
ad
d
r
e
s
s
m
is
s
in
g
v
alu
es in
th
e
test
d
a
taset.
Fo
r
o
u
r
s
tu
d
y
,
we
ex
p
lo
r
ed
th
e
m
u
ltip
le
im
p
u
tatio
n
ap
p
r
o
ac
h
.
T
h
e
n
o
tatio
n
o
f
ea
ch
ex
p
er
i
m
en
t
is
in
th
e
f
o
r
m
“
(
_
)
”
to
s
p
ec
if
y
th
e
im
p
u
tatio
n
m
eth
o
d
b
y
d
ata
ty
p
e.
Fo
r
all
ca
teg
o
r
ical
v
alu
e
s
,
we
ap
p
lied
(
)
wh
er
e
v
alu
es a
r
e
r
ep
lace
d
b
y
th
eir
m
o
d
e.
a.
(
)
_
(
)
(
_
)
:
W
e
r
ep
lace
d
b
o
th
n
u
m
er
ica
l
an
d
ca
teg
o
r
ical
m
is
s
in
g
d
ata
u
s
in
g
(
)
[
2
0
]
.
A
s
tr
aig
h
tf
o
r
war
d
an
d
wid
ely
u
s
ed
m
eth
o
d
.
P
ar
ticu
lar
ly
f
o
r
ca
teg
o
r
ical
v
ar
iab
les
wh
er
e
t
h
e
m
o
s
t
f
r
eq
u
en
t
v
alu
e
(
m
o
d
e)
is
s
u
b
s
titu
ted
.
b.
(
(
)
)
_
(
)
(
_
)
:
(
(
)
)
[
1
9
]
is
a
f
lex
ib
le
to
o
l
o
f
f
er
in
g
v
ar
i
o
u
s
esti
m
atio
n
s
tr
ateg
ies.
I
t
p
er
f
o
r
m
s
iter
ativ
e
im
p
u
tatio
n
f
o
r
n
u
m
er
ical
v
alu
es,
r
ef
in
in
g
v
alu
es
u
n
til
c
o
n
v
er
g
en
ce
o
r
a
s
p
ec
if
ied
m
ax
im
u
m
n
u
m
b
er
o
f
iter
atio
n
s
,
u
s
in
g
(
)
as
th
e
esti
m
ato
r
.
C
ateg
o
r
ical
m
is
s
in
g
v
alu
es a
r
e
im
p
u
ted
u
s
in
g
(
)
.
c.
(
)
_
(
)
(
_
)
:
(
)
[
1
9
]
id
en
tifie
s
th
e
K
n
ea
r
est
n
eig
h
b
o
r
s
(
we
u
s
e
k
=
5
)
b
y
co
m
p
u
tin
g
th
e
d
is
tan
ce
b
etwe
en
in
co
m
p
lete
a
n
d
co
m
p
lete
d
ata
p
o
i
n
ts
,
ty
p
ically
u
s
in
g
E
u
clid
ea
n
d
is
tan
ce
.
I
t
esti
m
ates
th
e
n
u
m
er
ical
m
is
s
in
g
v
alu
es b
ase
d
o
n
th
ese
K
n
eig
h
b
o
r
s
’
v
alu
e
s
,
p
r
o
v
id
in
g
an
e
f
f
ec
tiv
e
s
o
lu
ti
o
n
.
d.
(
)
_
(
)
(
_
)
:
T
h
i
s
r
e
g
r
e
s
s
i
o
n
i
m
p
u
t
at
i
o
n
m
e
t
h
o
d
u
s
e
s
c
o
m
p
l
et
e
d
a
t
a
t
o
f
o
r
m
u
l
a
t
e
r
e
g
r
e
s
s
i
o
n
e
q
u
a
t
i
o
n
s
,
w
h
i
c
h
a
r
e
t
h
e
n
e
m
p
l
o
y
e
d
t
o
p
r
e
d
i
c
t
a
n
d
f
i
l
l
i
n
m
is
s
i
n
g
d
a
t
a
v
a
l
u
e
s
.
W
e
s
e
l
e
ct
e
d
t
h
e
H
is
tG
r
a
d
i
e
n
tB
o
o
s
t
i
n
g
R
e
g
r
es
s
o
r
(
)
r
e
g
r
e
s
s
i
o
n
m
e
t
h
o
d
,
a
r
a
r
e
l
y
e
x
p
l
o
r
e
d
s
o
l
u
t
i
o
n
f
o
r
d
a
t
a
i
m
p
u
ta
t
io
n
i
n
t
h
e
l
i
t
e
r
at
u
r
e
,
a
s
ci
t
e
d
i
n
[
2
2
]
–
[
2
4
]
.
“
Ou
r
s
”
as sh
o
wn
in
Fig
u
r
e
1
i
s
ex
p
lain
ed
b
elo
w:
a.
Data
s
et
p
r
ep
ar
atio
n
:
−
Featu
r
e
e
n
g
in
ee
r
i
n
g
: A
p
p
l
y
th
e
f
ea
tu
r
e
s
elec
tio
n
m
eth
o
d
to
r
em
o
v
e
2
6
d
etec
ted
f
ea
tu
r
es
−
Data
o
r
g
an
izatio
n
:
Stan
d
a
r
d
iz
e
n
u
m
er
ical
v
a
r
iab
les
an
d
ap
p
ly
(
)
f
o
r
ca
teg
o
r
ical
v
ar
iab
les
−
s
p
lit:
cr
ea
te
o
n
e
d
ataset
with
m
is
s
in
g
v
alu
es a
n
d
an
o
th
er
wi
th
o
u
t m
is
s
in
g
v
alu
es.
b.
I
m
p
u
tatio
n
p
r
o
ce
s
s
:
Fo
r
ea
ch
m
is
s
in
g
f
ea
tu
r
e
(
“
_
”
,
“
_
”
,
“
ℎ
”
,
“
”
,
“
_
”
):
−
Sep
ar
ate
th
e
tar
g
et
v
a
r
iab
le
f
r
o
m
f
ea
tu
r
es in
t
h
e
n
o
n
-
m
is
s
in
g
d
ataset
−
T
r
ain
1
0
m
o
d
els
with
s
p
ec
i
f
ied
p
ar
a
m
eter
s
(
_
=
0
.
1
,
_
=
100
,
_
ℎ
=
15
,
_
_
=
30
,
2
_
=
0
.
1
,
_
=
128
,
_
=
,
_
=
0
.
15
,
_
_
_
ℎ
=
10
,
an
d
=
’
_
_
_
’
)
−
Pre
d
ict
m
is
s
in
g
v
alu
es
u
s
in
g
tr
ain
ed
m
o
d
els
o
n
th
e
d
ata
s
et
with
m
is
s
in
g
v
alu
es
(
ex
clu
d
in
g
o
n
e
p
r
ed
icted
f
ea
t
u
r
e)
−
Av
er
ag
e
th
e
p
r
ed
ictio
n
s
f
r
o
m
all
m
o
d
els
−
Fil
l in
m
is
s
in
g
v
alu
es in
th
e
o
r
ig
in
al
−
C
o
n
ca
ten
ate
th
e
f
illed
with
th
e
n
o
n
-
m
is
s
in
g
−
So
r
t b
y
in
d
ex
to
r
esto
r
e
th
e
o
r
i
g
in
al
o
r
d
e
r
c.
Fin
al
p
r
ep
r
o
ce
s
s
in
g
:
B
ased
o
n
a
liter
atu
r
e
r
ev
iew,
we
r
em
o
v
ed
1
4
ad
d
itio
n
al
f
e
atu
r
es,
r
esu
ltin
g
in
a
to
tal
o
f
4
0
f
ea
tu
r
es r
em
o
v
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
n
ew d
a
ta
imp
u
ta
tio
n
tec
h
n
i
q
u
e
fo
r
efficien
t u
s
ed
ca
r
p
r
ic
e
…
(
C
h
a
r
lèn
e
B
éa
tr
ice
B
r
id
g
e
-
N
d
u
w
ima
n
a
)
2367
2
.
3
.
L
ea
rning
mo
dels
a
nd
p
er
f
o
rma
nce
m
et
rics
T
h
e
p
r
o
p
o
s
ed
m
o
d
el
is
d
esig
n
ed
to
ad
d
r
ess
co
m
p
le
x
,
n
o
n
-
lin
ea
r
r
elatio
n
s
h
ip
s
t
h
at
b
asic
r
eg
r
ess
io
n
m
eth
o
d
s
o
f
ten
f
ail
to
ca
p
tu
r
e,
wh
ile
en
s
u
r
in
g
a
r
ea
s
o
n
ab
le
d
eg
r
ee
o
f
s
tab
ilit
y
.
Ou
r
ap
p
r
o
ac
h
u
tili
ze
s
a
r
an
g
e
o
f
ad
v
an
ce
d
p
r
ed
ictio
n
tech
n
iq
u
es,
in
clu
d
in
g
e
n
s
em
b
le
m
eth
o
d
s
,
tr
ee
-
b
ased
alg
o
r
ith
m
s
,
an
d
b
o
o
s
tin
g
s
tr
ateg
ies.
T
o
ev
alu
ate
th
e
ef
f
ec
tiv
en
ess
an
d
r
o
b
u
s
tn
ess
o
f
th
ese
m
o
d
els
wh
en
ap
p
lied
to
o
u
r
d
ataset,
we
p
er
f
o
r
m
a
co
m
p
ar
ativ
e
an
aly
s
is
o
f
s
ix
m
o
d
els,
alo
n
g
s
id
e
a
lin
ea
r
-
b
ased
r
id
g
e
r
eg
r
ess
io
n
m
o
d
el
s
er
v
i
n
g
as
a
b
aselin
e.
a.
E
x
tr
a
tr
ee
s
r
eg
r
ess
o
r
(
E
x
tr
aT
r
R
eg
)
[
1
0
]
:
An
en
s
em
b
le
m
eth
o
d
th
at
ag
g
r
eg
ates
f
u
lly
g
r
o
w
n
d
ec
is
io
n
tr
ee
s
to
r
ed
u
ce
v
a
r
ian
ce
a
n
d
b
ias.
I
t
is
co
m
p
u
tatio
n
ally
ef
f
icien
t,
s
u
itab
le
f
o
r
lar
g
e
d
atasets
,
a
n
d
d
em
o
n
s
tr
ates
h
ig
h
ac
cu
r
ac
y
.
b.
B
ag
g
in
g
r
eg
r
ess
o
r
(
B
ag
g
R
eg
)
[
2
5
]
:
An
en
s
em
b
le
m
eth
o
d
th
at
r
ed
u
ce
s
v
ar
ia
n
ce
an
d
is
r
o
b
u
s
t
ag
ain
s
t
o
v
er
f
itti
n
g
,
m
ak
in
g
it p
ar
ticu
la
r
ly
ef
f
ec
tiv
e
f
o
r
h
ig
h
-
v
ar
ian
ce
,
lo
w
-
b
ias m
o
d
els lik
e
d
ec
is
io
n
tr
ee
s
.
c.
eXtr
em
e
g
r
ad
ie
n
t
b
o
o
s
tin
g
r
e
g
r
ess
o
r
(
XGBR
eg
)
[
2
2
]
,
[
2
3
]
,
[
2
5
]
:
A
s
ca
lab
le
a
n
d
e
f
f
icien
t
im
p
lem
en
tatio
n
o
f
g
r
ad
ien
t
b
o
o
s
tin
g
,
f
o
c
u
s
in
g
o
n
s
p
ee
d
an
d
p
er
f
o
r
m
a
n
ce
.
I
t
o
f
f
er
s
r
e
g
u
lar
izatio
n
,
p
ar
a
llel
p
r
o
ce
s
s
in
g
,
in
ter
n
al
h
an
d
lin
g
o
f
m
is
s
in
g
v
alu
es,
an
d
cu
s
to
m
izab
le
h
y
p
e
r
p
ar
am
eter
s
.
d.
R
id
g
e
r
eg
r
ess
o
r
(
R
id
g
e)
[
2
2
]
:
A
lin
ea
r
r
eg
r
ess
io
n
m
o
d
el
wi
th
L
2
r
eg
u
lar
izatio
n
th
at
m
itig
ates
o
v
er
f
itti
n
g
an
d
is
s
u
itab
le
f
o
r
h
ig
h
-
d
im
e
n
s
io
n
al
d
ata.
I
t h
elp
s
ad
d
r
ess
m
u
ltico
llin
ea
r
ity
b
y
ad
d
in
g
a
p
e
n
alty
to
th
e
s
ize
o
f
th
e
co
e
f
f
icien
ts
.
e.
Dec
is
io
n
tr
ee
r
eg
r
ess
o
r
(
Dec
i
s
io
n
T
r
)
[
1
0
]
,
[
2
5
]
,
[
2
6
]
:
A
n
o
n
-
p
ar
am
etr
ic
m
o
d
el
th
at
s
p
lits
th
e
d
ata
in
to
s
u
b
s
ets
b
ased
o
n
in
p
u
t
f
ea
tu
r
es,
f
o
r
m
in
g
a
tr
ee
wh
er
e
ea
ch
leaf
r
ep
r
esen
ts
p
r
ed
icted
v
al
u
es.
I
t
is
ea
s
y
to
in
ter
p
r
et
an
d
ca
n
ca
p
tu
r
e
n
o
n
-
l
in
ea
r
r
elatio
n
s
h
ip
s
b
u
t is p
r
o
n
e
to
o
v
er
f
itti
n
g
.
f.
Gr
ad
ien
t
b
o
o
s
tin
g
r
eg
r
ess
o
r
(
GB
R
eg
)
[
2
5
]
–
[
2
7
]
:
An
a
d
d
itiv
e
m
o
d
el
b
u
ilt
in
a
f
o
r
war
d
s
tag
e
-
wis
e
m
an
n
er
,
o
p
tim
izin
g
f
o
r
a
d
if
f
e
r
en
tiab
le
lo
s
s
f
u
n
ctio
n
.
I
t
is
h
ig
h
l
y
ac
cu
r
ate
b
u
t
ca
n
o
v
e
r
f
it
if
n
o
t
p
r
o
p
er
ly
r
eg
u
lar
ized
,
m
ak
in
g
it su
itab
le
f
o
r
r
e
g
r
ess
io
n
p
r
o
b
lem
s
r
eq
u
i
r
in
g
h
ig
h
p
r
ed
ictiv
e
p
er
f
o
r
m
a
n
ce
.
g.
R
an
d
o
m
f
o
r
est
r
eg
r
ess
o
r
(
R
F)
[
2
5
]
,
[
2
6
]
:
A
d
ec
is
io
n
tr
ee
en
s
em
b
le
tr
ain
ed
u
s
in
g
th
e
b
ag
g
in
g
m
eth
o
d
,
wh
er
e
ea
ch
tr
ee
is
tr
ain
ed
o
n
a
b
o
o
ts
tr
ap
s
am
p
le
o
f
th
e
d
ata
.
I
t
r
ed
u
ce
s
o
v
er
f
itti
n
g
,
is
r
o
b
u
s
t
to
n
o
is
e,
an
d
p
r
o
v
id
es f
ea
t
u
r
e
im
p
o
r
tan
ce
s
co
r
es.
Fig
u
r
e
1
.
Flo
wch
ar
t
o
f
th
e
p
r
o
p
o
s
ed
d
ata
im
p
u
tatio
n
m
o
d
el
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
3
6
4
-
2
3
7
1
2368
Fo
r
p
er
f
o
r
m
an
ce
e
v
alu
atio
n
[
1
]
,
we
u
s
e
th
e
R
2
-
s
co
r
e
r
eg
r
ess
io
n
m
etr
ic
as
in
(
1
)
,
wh
ich
is
a
m
ea
s
u
r
e
o
f
h
o
w
well
th
e
m
o
d
el
e
x
p
lai
n
s
th
e
v
ar
iab
ilit
y
o
f
th
e
r
esp
o
n
s
e
v
ar
iab
le.
An
R2
-
s
co
r
e
clo
s
e
to
1
0
0
%
in
d
icate
s
a
h
ig
h
lev
el
o
f
ac
cu
r
ac
y
in
p
r
ed
ictio
n
s
.
Ho
wev
er
,
th
is
m
etr
ic
ca
n
b
e
d
if
f
icu
lt
to
in
ter
p
r
et
o
n
its
o
wn
an
d
s
h
o
u
ld
b
e
co
m
p
lem
en
ted
with
o
th
er
m
etr
ics
[
2
6
]
s
u
ch
as
m
ea
n
s
q
u
ar
e
d
er
r
o
r
(
MSE
)
o
r
m
ea
n
ab
s
o
lu
te
e
r
r
o
r
(
MA
E
)
,
wh
ich
ar
e
u
s
ef
u
l
in
r
e
g
r
ess
io
n
task
s
.
I
n
o
u
r
s
tu
d
y
,
we
em
p
lo
y
ed
th
e
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
(
R
MSE
)
m
etr
ic
as in
(
2
)
t
o
q
u
a
n
tify
th
e
d
if
f
er
en
ce
s
b
etwe
en
th
e
p
r
ed
i
cted
an
d
ac
tu
al
v
alu
es.
2
=
1
−
∑
(
−
̂
)
2
=
1
∑
(
−
̅
)
2
=
1
(
1
)
=
√
1
∑
(
−
̂
)
2
=
1
(2
)
T
h
e
two
f
u
n
d
am
en
tal
e
q
u
ati
o
n
s
f
o
r
th
e
m
etr
ics
co
n
s
id
er
ed
:
(
1
)
R
2
-
s
co
r
e
a
n
d
(
2
)
R
MSE
wh
er
e
is
th
e
n
u
m
b
er
o
f
o
b
s
er
v
atio
n
s
,
is
th
e
o
b
s
er
v
ed
v
alu
e,
̅
is
th
e
av
er
ag
e
v
alu
e,
an
d
̂
is
th
e
p
r
ed
icted
v
alu
e.
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
3
.
1
.
Resul
t
s
I
n
o
u
r
ex
p
er
im
en
ts
,
we
u
tili
ze
d
a
d
ataset
with
m
i
s
s
in
g
v
a
lu
es
an
d
co
n
d
u
cted
th
e
an
al
y
s
is
u
s
in
g
Py
th
o
n
.
T
h
e
o
r
ig
i
n
al
d
ataset
c
o
m
p
r
is
ed
3
,
0
0
0
,
0
4
0
r
o
ws
a
n
d
6
6
c
o
lu
m
n
s
,
wh
ich
,
af
ter
f
ea
tu
r
e
en
g
in
ee
r
in
g
an
d
d
ata
p
r
ep
a
r
atio
n
,
was
r
e
d
u
ce
d
to
2
6
f
ea
tu
r
es.
T
h
e
p
r
ed
ictio
n
task
s
wer
e
d
ef
in
e
d
b
ased
o
n
2
5
in
p
u
t
f
ea
tu
r
es
an
d
1
o
u
tco
m
e
v
a
r
iab
le.
T
o
e
n
s
u
r
e
co
n
s
is
ten
cy
,
th
e
d
ataset
was
s
u
b
s
am
p
led
in
to
f
iv
e
eq
u
al
p
ar
ts
o
f
6
0
0
,
0
0
8
s
am
p
les
ea
ch
.
On
e
s
am
p
le
w
as
u
s
ed
to
p
er
f
o
r
m
a
tr
ain
-
test
s
p
lit
(
7
0
/3
0
)
u
s
in
g
t
h
e
tr
a
in
_
test
_
s
p
lit
f
u
n
ctio
n
f
r
o
m
Scik
it
-
L
ea
r
n
.
T
h
e
r
esu
lts
p
r
esen
ted
in
T
ab
les
1
-
2
a
n
d
Fig
u
r
es
2
(
a)
-
2
(
b
)
an
d
3
(
a
)
-
3
(
b
)
illu
s
tr
ate
th
e
p
er
f
o
r
m
an
ce
o
f
th
e
v
ar
io
u
s
m
o
d
els in
p
r
e
d
ictin
g
u
s
ed
ca
r
p
r
ices,
u
n
d
er
d
if
f
er
en
t im
p
u
tatio
n
tech
n
iq
u
es.
T
ab
le
1
.
R
2
Sco
r
e
in
% (
R
MSE
)
f
o
r
t
r
ain
in
g
s
et
I
mp
u
t
a
t
i
o
n
s
met
h
o
d
s
R
e
g
r
e
ssi
o
n
l
e
a
r
n
i
n
g
ma
c
h
i
n
e
s r
e
su
l
t
s
Ex
t
r
a
Tr
R
e
g
B
a
g
g
R
e
g
X
G
B
R
e
g
R
i
d
g
e
D
e
c
i
s
i
o
n
Tr
G
B
R
e
g
RF
S
i
m
p
_
S
i
m
p
8
3
.
7
5
(
0
.
0
7
6
6
)
9
1
.
0
1
(
0
.
0
5
7
0
)
9
7
.
4
2
(
0
.
0
3
0
5
)
7
0
.
9
5
(
0
.
1
0
1
7
)
9
1
.
2
7
(
0
.
0
5
6
2
)
9
2
.
9
9
(
0
.
0
5
0
3
)
8
8
.
3
4
(
0
.
0
6
4
9
)
I
t
e
r_
S
i
m
p
8
3
.
7
7
(
0
.
0
7
6
6
)
9
0
.
7
6
(
0
.
0
5
7
8
)
9
7
.
4
7
(
0
.
0
3
0
3
)
7
0
.
7
7
(
0
.
1
0
1
4
)
9
1
.
6
0
(
0
.
0
5
5
1
)
9
3
.
1
2
(
0
.
0
4
9
9
)
8
8
.
7
1
(
0
.
0
6
3
9
)
K
N
N
_
S
i
m
p
8
3
.
7
5
(
0
.
0
7
6
6
)
9
0
.
9
8
(
0
.
0
5
7
1
)
9
7
.
3
7
(
0
.
0
3
0
8
)
7
1
.
1
0
(
0
.
1
0
1
4
)
9
1
.
7
1
(
0
.
0
5
4
7
)
9
3
.
3
7
(
0
.
0
4
9
0
)
8
9
.
0
6
(
0
.
0
6
2
9
)
O
u
rs_
S
i
m
p
8
4
.
1
3
(
0
.
0
7
5
7
)
9
2
.
7
5
(
0
.
0
5
1
2
)
9
7
.
9
1
(
0
.
0
2
7
5
)
7
2
.
1
7
(
0
.
0
9
9
5
)
9
1
.
8
9
(
0
.
0
5
4
1
)
9
6
.
5
1
(
0
.
0
3
5
5
)
9
0
.
4
4
(
0
.
0
5
8
8
)
T
ab
le
2
.
R
2
Sco
r
e
in
% (
R
MSE
)
f
o
r
test
in
g
s
et
I
mp
u
t
a
t
i
o
n
s
met
h
o
d
s
R
e
g
r
e
ssi
o
n
l
e
a
r
n
i
n
g
ma
c
h
i
n
e
s r
e
su
l
t
s
Ex
t
r
a
Tr
R
e
g
B
a
g
g
R
e
g
X
G
B
R
e
g
R
i
d
g
e
D
e
c
i
s
i
o
n
Tr
G
B
R
e
g
RF
S
i
m
p
_
S
i
m
p
8
3
.
2
9
(
0
.
0
7
5
8
)
8
7
.
0
6
(
0
.
0
6
6
7
)
8
9
.
3
4
(
0
.
0
6
0
6
)
7
4
.
3
3
(
0
.
0
9
3
0
)
8
4
.
8
8
(
0
.
0
7
2
1
)
8
7
.
7
7
(
0
.
0
6
4
9
)
8
4
.
0
0
(
0
.
0
7
4
2
)
I
t
e
r_
S
i
m
p
8
3
.
1
8
(
0
.
0
7
6
1
)
8
6
.
5
4
(
0
.
0
6
8
0
)
8
9
.
1
8
(
0
.
0
6
1
0
)
7
4
.
1
4
(
0
.
0
9
2
8
)
8
5
.
5
0
(
0
.
0
7
0
6
)
8
8
.
9
7
(
0
.
0
6
1
6
)
8
5
.
0
7
(
0
.
0
7
1
7
)
K
N
N
_
S
i
m
p
8
3
.
0
5
(
0
.
0
7
6
4
)
8
6
.
8
2
(
0
.
0
6
7
3
)
9
0
.
2
4
(
0
.
0
5
8
0
)
7
4
.
5
6
(
0
.
0
9
2
6
)
8
4
.
7
1
(
0
.
0
7
2
5
)
8
7
.
6
4
(
0
.
0
6
5
2
)
8
4
.
1
6
(
0
.
0
7
3
8
)
O
u
rs_
S
i
m
p
8
3
.
7
4
(
0
.
0
7
4
8
)
8
8
.
1
8
(
0
.
0
6
3
8
)
9
0
.
7
3
(
0
.
0
5
6
5
)
7
5
.
6
4
(
0
.
0
9
0
6
)
8
5
.
2
6
(
0
.
0
7
1
2
)
9
0
.
6
8
(
0
.
0
5
6
6
)
8
5
.
2
1
(
0
.
0
7
1
3
)
3
.
2
.
Dis
cus
s
io
n
T
h
is
s
tu
d
y
in
tr
o
d
u
ce
s
a
n
o
v
e
l
ap
p
r
o
ac
h
to
m
an
a
g
in
g
m
is
s
in
g
d
ata
in
lar
g
e
d
atasets
,
s
p
ec
if
ically
f
o
cu
s
in
g
o
n
th
e
p
r
ed
ictio
n
o
f
u
s
ed
ca
r
p
r
ices.
T
h
e
m
et
h
o
d
o
lo
g
y
in
teg
r
ates
a
cu
s
to
m
f
ea
tu
r
e
s
elec
tio
n
tech
n
iq
u
e
with
an
ad
v
an
ce
d
im
p
u
tatio
n
tech
n
iq
u
e
u
s
i
n
g
(
)
.
B
y
co
m
b
in
in
g
th
ese
elem
en
ts
,
th
e
r
esear
ch
aim
s
to
en
h
an
ce
th
e
ef
f
icien
cy
an
d
ac
c
u
r
ac
y
o
f
h
a
n
d
lin
g
m
is
s
in
g
d
ata
wh
ile
p
r
eser
v
in
g
d
ataset
in
teg
r
ity
.
T
h
e
s
tu
d
y
’
s
o
r
ig
in
ali
ty
lies
in
ex
p
lo
r
in
g
th
e
u
n
i
q
u
e
ca
p
a
b
ilit
ies
o
f
(
)
f
o
r
d
ir
ec
tly
m
an
ag
i
n
g
m
is
s
in
g
v
alu
es.
A
co
m
p
ar
ativ
e
a
n
aly
s
is
o
f
r
eg
r
ess
io
n
m
o
d
els o
n
co
m
p
lete
d
ata
was c
o
n
d
u
cte
d
to
ev
al
u
ate
th
e
ef
f
ec
tiv
en
ess
o
f
th
is
ap
p
r
o
ac
h
.
Fro
m
th
e
p
er
f
o
r
m
a
n
ce
m
etr
ics
o
f
tr
ee
-
b
ased
m
o
d
els
as
s
h
o
w
n
in
T
ab
les 1
a
n
d
2
,
E
x
tr
aT
r
R
eg
was
th
e
least
ef
f
ec
tiv
e,
wh
ile
B
ag
g
R
eg
p
er
f
o
r
m
e
d
b
etter
th
an
Dec
is
io
n
T
r
a
n
d
R
F.
Am
o
n
g
all
th
e
ev
alu
ated
m
o
d
els,
th
e
b
o
o
s
ted
-
b
ased
m
o
d
els
ac
h
iev
ed
th
e
h
ig
h
est
p
er
f
o
r
m
a
n
ce
s
co
r
es.
C
o
n
ce
r
n
in
g
th
e
ex
is
tin
g
im
p
u
tatio
n
m
eth
o
d
s
(
S
imp
_
S
imp
,
I
ter_
S
imp
,
an
d
K
N
N
_
S
imp
)
,
all
m
o
d
els
s
h
o
wed
s
im
ilar
p
er
f
o
r
m
an
ce
o
n
b
o
th
tr
ai
n
in
g
an
d
test
s
ets.
Ho
wev
er
,
o
u
r
p
r
o
p
o
s
ed
im
p
u
tatio
n
m
eth
o
d
cr
ea
ted
a
n
o
ticea
b
le
p
er
f
o
r
m
a
n
c
e
g
ap
,
p
ar
ticu
lar
ly
f
o
r
th
e
B
ag
g
R
eg
a
n
d
GB
R
eg
m
o
d
els.
T
h
e
R
id
g
e
r
eg
r
ess
io
n
m
o
d
el,
c
o
n
s
id
er
ed
as
a
b
aselin
e,
p
r
o
v
ed
to
b
e
th
e
least
ef
f
ec
tiv
e,
in
d
icatin
g
th
at
th
e
task
o
f
p
r
ed
ictin
g
u
s
ed
c
ar
p
r
ices
in
v
o
lv
es
n
o
n
-
lin
ea
r
it
y
,
r
e
n
d
er
in
g
lin
ea
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
n
ew d
a
ta
imp
u
ta
tio
n
tec
h
n
i
q
u
e
fo
r
efficien
t u
s
ed
ca
r
p
r
ic
e
…
(
C
h
a
r
lèn
e
B
éa
tr
ice
B
r
id
g
e
-
N
d
u
w
ima
n
a
)
2369
r
eg
r
ess
io
n
ap
p
r
o
ac
h
es
less
s
u
itab
le
d
esp
ite
p
r
ep
r
o
ce
s
s
in
g
ad
ju
s
tm
en
ts
.
Ultim
ately
,
t
h
r
ee
m
o
d
els
(
R
F,
B
ag
g
R
eg
,
an
d
GB
R
eg
)
s
to
o
d
o
u
t
in
ter
m
s
o
f
th
eir
p
er
f
o
r
m
an
ce
as
in
d
icate
d
b
y
th
e
R
2
-
Sco
r
e
an
d
R
MSE
m
etr
ics.
T
h
ese
p
er
f
o
r
m
a
n
ce
m
etr
ics
wer
e
s
ig
n
if
ican
tly
im
p
r
o
v
e
d
with
o
u
r
p
r
o
p
o
s
ed
im
p
u
tatio
n
m
eth
o
d
(
Ou
r
s
_
S
imp
)
,
as d
ep
icted
i
n
Fig
u
r
es 2
(
a)
-
2
(
b
)
an
d
3
(
a
)
-
3
(
b
)
.
T
h
e
s
tu
d
y
’
s
in
n
o
v
ativ
e
ap
p
r
o
ac
h
to
h
an
d
lin
g
m
is
s
in
g
d
ata
in
ca
r
p
r
ice
p
r
ed
ictio
n
s
h
o
w
s
p
r
o
m
is
e,
th
o
u
g
h
it
m
ay
f
ac
e
lim
itatio
n
s
in
its
g
en
er
aliza
b
ilit
y
ac
r
o
s
s
d
iv
er
s
e
d
atasets
.
T
h
e
ef
f
ec
tiv
e
n
ess
o
f
th
e
cu
s
to
m
f
ea
tu
r
e
s
elec
tio
n
an
d
th
e
b
ased
im
p
u
tatio
n
m
ay
v
ar
y
with
d
if
f
er
en
t
d
ata
d
is
tr
ib
u
tio
n
s
o
r
m
is
s
in
g
d
ata
m
ec
h
an
is
m
s
(
MCAR
an
d
MN
AR
)
.
Fu
r
th
er
r
esear
ch
is
r
eq
u
ir
ed
to
v
alid
ate
th
e
r
o
b
u
s
tn
ess
o
f
th
is
m
eth
o
d
ac
r
o
s
s
v
ar
io
u
s
d
o
m
ain
s
.
(
a)
(
b
)
Fig
u
r
e
2
.
An
al
y
zin
g
p
r
ed
ictiv
e
ac
cu
r
ac
y
f
o
r
p
r
ice
esti
m
atio
n
b
y
co
n
t
r
asti
n
g
o
u
tc
o
m
es f
r
o
m
im
p
u
tatio
n
m
eth
o
d
s
ap
p
lied
to
m
is
s
in
g
d
a
ta
in
b
o
th
(
a)
tr
ain
in
g
an
d
(
b
)
t
esti
n
g
s
ets
(
a)
(
b
)
Fig
u
r
e
3
.
R
MSE
v
alu
es illu
s
tr
atin
g
th
e
im
p
ac
t
o
f
v
a
r
io
u
s
im
p
u
tatio
n
tech
n
iq
u
es o
n
b
o
th
(
a)
th
e
tr
ain
in
g
d
ataset
an
d
(
b
)
th
e
test
in
g
d
ataset
4.
CO
NCLU
SI
O
N
T
h
is
s
tu
d
y
aim
ed
to
ad
d
r
ess
th
e
ch
allen
g
e
o
f
m
is
s
in
g
d
ata
in
lar
g
e
d
atasets
an
d
im
p
r
o
v
e
th
e
ac
cu
r
ac
y
o
f
u
s
ed
ca
r
p
r
ice
p
r
ed
ictio
n
s
.
T
h
e
ef
f
ec
tiv
en
ess
o
f
th
e
p
r
o
p
o
s
ed
im
p
u
tatio
n
m
eth
o
d
is
n
o
ted
to
d
ep
en
d
o
n
d
ata
d
is
tr
ib
u
tio
n
s
an
d
m
is
s
in
g
d
ata
p
atter
n
s
.
T
h
e
r
esu
lts
d
em
o
n
s
tr
ate
th
at
o
u
r
im
p
u
tatio
n
m
eth
o
d
en
h
a
n
ce
s
th
e
p
er
f
o
r
m
an
ce
o
f
b
o
o
s
ted
-
b
ased
m
o
d
els
in
te
r
m
s
o
f
R
2
-
Sco
r
e
an
d
R
MSE
m
etr
ics,
esp
ec
ially
f
o
r
th
e
eXtr
em
e
Gr
ad
ien
t
B
o
o
s
tin
g
a
n
d
Gr
a
d
ien
t
B
o
o
s
tin
g
R
eg
r
ess
io
n
m
o
d
els,
co
m
p
ar
e
d
to
ex
is
tin
g
i
m
p
u
tatio
n
m
eth
o
d
s
.
Pra
ctica
l
ap
p
licatio
n
s
o
f
th
is
s
tu
d
y
ca
n
b
e
f
o
u
n
d
in
th
e
au
to
m
o
tiv
e
in
d
u
s
tr
y
f
o
r
o
p
tim
izin
g
u
s
ed
ca
r
p
r
ic
e
p
r
ed
ictio
n
an
d
in
v
e
n
to
r
y
m
a
n
ag
em
en
t.
A
d
d
itio
n
ally
,
in
d
u
s
tr
ies
f
ac
in
g
s
im
ilar
ch
allen
g
es
with
lar
g
e
d
atasets
an
d
m
is
s
in
g
d
ata,
s
u
ch
as
h
ea
lth
ca
r
e,
f
in
an
ce
,
a
n
d
in
s
u
r
an
ce
,
ca
n
b
en
e
f
it
f
r
o
m
ac
cu
r
ate
p
r
ed
ictio
n
s
an
d
in
s
ig
h
ts
to
im
p
r
o
v
e
d
ec
is
io
n
-
m
ak
in
g
.
T
h
e
s
tu
d
y
ac
h
iev
ed
co
m
p
ar
ab
le
p
er
f
o
r
m
an
ce
t
o
ex
is
tin
g
liter
atu
r
e.
Fu
tu
r
e
r
esear
ch
will f
o
cu
s
o
n
im
p
r
o
v
i
n
g
th
e
p
r
o
p
o
s
ed
im
p
u
t
atio
n
tech
n
iq
u
e,
o
p
tim
izin
g
h
y
p
er
p
ar
am
eter
s
,
an
d
ex
p
lo
r
in
g
o
th
er
m
ac
h
in
e
lear
n
in
g
ap
p
r
o
ac
h
es,
in
clu
d
in
g
d
ee
p
lear
n
in
g
m
o
d
els.
Fu
r
th
e
r
r
esear
ch
d
ir
ec
tio
n
s
in
clu
d
e
v
alid
atin
g
th
e
r
o
b
u
s
tn
ess
o
f
th
e
p
r
o
p
o
s
ed
im
p
u
tatio
n
tech
n
iq
u
e
ac
r
o
s
s
v
ar
y
in
g
d
a
ta
d
is
tr
ib
u
tio
n
s
an
d
m
is
s
in
g
d
ata
m
ec
h
an
is
m
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
3
6
4
-
2
3
7
1
2370
RE
F
E
R
E
NC
E
S
[
1
]
J.
H
.
Li
e
t
a
l
.
,
“
C
o
mp
a
r
i
s
o
n
o
f
t
h
e
e
f
f
e
c
t
s
o
f
i
m
p
u
t
a
t
i
o
n
m
e
t
h
o
d
s
f
o
r
mi
ssi
n
g
d
a
t
a
i
n
p
r
e
d
i
c
t
i
v
e
m
o
d
e
l
l
i
n
g
o
f
c
o
h
o
r
t
st
u
d
y
d
a
t
a
se
t
s,
”
B
MC
Me
d
i
c
a
l
Re
s
e
a
r
c
h
M
e
t
h
o
d
o
l
o
g
y
,
v
o
l
.
2
4
,
n
o
.
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
8
6
/
s
1
2
8
7
4
-
0
2
4
-
0
2
1
7
3
-
x.
[
2
]
M
.
N
.
A
r
e
f
i
n
a
n
d
A
.
K
.
M
.
M
a
su
m,
“
A
p
r
o
b
a
b
i
l
i
st
i
c
a
p
p
r
o
a
c
h
f
o
r
mi
ssi
n
g
d
a
t
a
i
m
p
u
t
a
t
i
o
n
,
”
C
o
m
p
l
e
x
i
t
y
,
v
o
l
.
2
0
2
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
4
/
4
7
3
7
9
6
3
.
[
3
]
A
.
M
a
t
a
s
a
n
d
J
.
L.
R
a
y
m
o
n
d
,
“
H
e
d
o
n
i
c
p
r
i
c
e
s
f
o
r
c
a
r
s
:
a
n
a
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
S
p
a
n
i
s
h
c
a
r
m
a
r
k
e
t
,
1
9
8
1
-
2
0
0
5
,
”
T
h
e
Ap
p
l
i
e
d
Ec
o
n
o
m
i
c
s
o
f
T
r
a
n
sp
o
rt
,
p
p
.
9
9
–
1
1
6
,
2
0
1
4
,
d
o
i
:
1
0
.
4
3
2
4
/
9
7
8
1
3
1
5
8
7
2
3
6
0
-
8.
[
4
]
C
.
Er
d
e
m
a
n
d
I
.
Ş
e
n
t
ü
r
k
,
“
A
h
e
d
o
n
i
c
a
n
a
l
y
s
i
s
o
f
u
se
d
c
a
r
p
r
i
c
e
s
i
n
Tu
r
k
e
y
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
Ec
o
n
o
m
i
c
P
e
rs
p
e
c
t
i
v
e
s
,
v
o
l
.
3
,
n
o
.
2
,
p
p
.
1
4
1
–
1
4
9
,
2
0
0
9
.
[
5
]
A
.
I
f
t
h
i
k
a
r
a
n
d
K
.
V
i
d
a
n
a
g
e
,
“
V
a
l
u
a
t
i
o
n
o
f
u
se
d
v
e
h
i
c
l
e
s
:
a
c
o
m
p
u
t
a
t
i
o
n
a
l
i
n
t
e
l
l
i
g
e
n
c
e
a
p
p
r
o
a
c
h
,
”
i
n
Pr
o
c
e
e
d
i
n
g
s
-
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
l
l
i
g
e
n
t
S
y
st
e
m
s,
Mo
d
e
l
l
i
n
g
a
n
d
S
i
m
u
l
a
t
i
o
n
,
I
S
M
S
,
2
0
1
8
,
v
o
l
.
2
0
1
8
-
M
a
y
,
p
p
.
7
–
1
0
,
d
o
i
:
1
0
.
1
1
0
9
/
I
S
M
S
.
2
0
1
8
.
0
0
0
1
1
.
[
6
]
B
.
C
.
Za
v
i
t
z
,
P
.
A
.
R
u
ss
e
k
,
J.
I
.
P
u
e
n
t
e
,
a
n
d
N
.
J.
P
a
r
k
,
“
S
y
st
e
ms
a
n
d
met
h
o
d
s
f
o
r
f
a
c
i
l
i
t
a
t
i
n
g
t
h
e
p
u
r
c
h
a
se
o
f
o
n
e
o
r
mo
r
e
v
e
h
i
c
l
e
s,
”
A
u
t
o
Tr
a
d
e
r
I
n
c
.
,
P
a
t
e
n
t
n
o
.
1
0
1
0
2
5
5
5
,
O
c
t
.
1
6
,
2
0
1
8
.
[
7
]
E.
G
e
g
i
c
,
B
.
I
sak
o
v
i
c
,
D
.
K
e
c
o
,
Z.
M
a
s
e
t
i
c
,
a
n
d
J
.
K
e
v
r
i
c
,
“
C
a
r
p
r
i
c
e
p
r
e
d
i
c
t
i
o
n
u
si
n
g
mac
h
i
n
e
l
e
a
r
n
i
n
g
t
e
c
h
n
i
q
u
e
s,
”
T
EM
J
o
u
rn
a
l
,
v
o
l
.
8
,
n
o
.
1
,
p
p
.
1
1
3
–
1
1
8
,
2
0
1
9
,
d
o
i
:
1
0
.
1
8
4
2
1
/
TE
M
8
1
-
1
6
.
[
8
]
C
.
Lo
n
g
a
n
i
,
S
.
P
.
P
o
t
h
a
r
a
j
u
,
a
n
d
S
.
D
e
o
r
e
,
“
P
r
i
c
e
p
r
e
d
i
c
t
i
o
n
f
o
r
p
r
e
-
o
w
n
e
d
c
a
r
s
u
si
n
g
e
n
s
e
m
b
l
e
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
t
e
c
h
n
i
q
u
e
s,
”
Ad
v
a
n
c
e
s i
n
Pa
r
a
l
l
e
l
C
o
m
p
u
t
i
n
g
,
v
o
l
.
3
9
,
p
p
.
1
7
8
–
1
8
7
,
2
0
2
1
,
d
o
i
:
1
0
.
3
2
3
3
/
A
P
C
2
1
0
1
9
4
.
[
9
]
K
.
B
.
C
h
i
g
a
t
e
r
i
,
S
.
S
u
r
y
a
v
a
ms
h
i
,
a
n
d
S
.
R
a
j
e
n
d
r
a
,
“
S
y
s
t
e
m
f
o
r
d
e
t
e
c
t
i
n
g
c
a
r
m
o
d
e
l
s
b
a
se
d
o
n
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
,
”
Ma
t
e
r
i
a
l
s
T
o
d
a
y
:
Pro
c
e
e
d
i
n
g
s
,
v
o
l
.
5
2
,
p
p
.
1
6
9
7
–
1
7
0
1
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
m
a
t
p
r
.
2
0
2
1
.
1
1
.
3
3
5
.
[
1
0
]
C
.
L.
La
s
y
a
,
S
.
P
o
o
j
a
,
S
.
J
e
y
a
s
h
r
e
e
,
C
.
A
mb
h
i
k
a
,
a
n
d
G
.
Esw
a
r
i
,
“
F
o
r
e
c
a
st
i
n
g
P
r
e
-
O
w
n
e
d
C
a
r
P
r
i
c
e
s
U
si
n
g
M
a
c
h
i
n
e
Le
a
r
n
i
n
g
,
”
i
n
2
0
2
3
2
n
d
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
S
m
a
r
t
T
e
c
h
n
o
l
o
g
i
e
s
a
n
d
S
y
st
e
m
s
f
o
r
N
e
x
t
G
e
n
e
r
a
t
i
o
n
C
o
m
p
u
t
i
n
g
,
I
C
S
T
S
N
2
0
2
3
,
2
0
2
3
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
S
TSN
5
7
8
7
3
.
2
0
2
3
.
1
0
1
5
1
6
3
2
.
[
1
1
]
P
.
S
r
i
n
i
v
a
sa
n
,
R
.
O
.
R
e
d
d
y
,
K
.
A
.
S
a
i
,
a
n
d
J
.
N
a
i
d
u
,
“
P
r
e
d
i
c
t
i
v
e
a
n
a
l
y
s
i
s
a
n
d
a
p
p
l
i
c
a
t
i
o
n
o
f
v
a
r
i
o
u
s
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
a
l
g
o
r
i
t
h
ms
t
o
f
o
r
e
c
a
st
u
s
e
d
c
a
r
p
r
i
c
e
s,
”
i
n
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
S
u
s
t
a
i
n
a
b
l
e
C
o
m
p
u
t
i
n
g
a
n
d
S
m
a
r
t
S
y
st
e
m
s,
I
C
S
C
S
S
2
0
2
3
-
Pro
c
e
e
d
i
n
g
s
,
2
0
2
3
,
p
p
.
1
9
0
–
1
9
4
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
S
C
S
S
5
7
6
5
0
.
2
0
2
3
.
1
0
1
6
9
1
8
3
.
[
1
2
]
N
.
M
o
n
b
u
r
i
n
o
n
,
P
.
C
h
e
r
t
c
h
o
m,
T.
K
a
e
w
k
i
r
i
y
a
,
S
.
R
u
n
g
p
h
e
u
n
g
,
S
.
B
u
y
a
,
a
n
d
P
.
B
o
o
n
p
o
u
,
“
P
r
e
d
i
c
t
i
o
n
o
f
p
r
i
c
e
s
f
o
r
u
se
d
c
a
r
b
y
u
si
n
g
r
e
g
r
e
ssi
o
n
mo
d
e
l
s,
”
i
n
Pr
o
c
e
e
d
i
n
g
s
o
f
2
0
1
8
5
t
h
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
B
u
s
i
n
e
ss
a
n
d
I
n
d
u
st
r
i
a
l
Re
se
a
rc
h
:
S
m
a
rt
T
e
c
h
n
o
l
o
g
y
f
o
r
N
e
x
t
G
e
n
e
r
a
t
i
o
n
o
f
I
n
f
o
rm
a
t
i
o
n
,
En
g
i
n
e
e
ri
n
g
,
Bu
si
n
e
ss
a
n
d
S
o
c
i
a
l
S
c
i
e
n
c
e
,
I
C
BI
R
2
0
1
8
,
2
0
1
8
,
p
p
.
1
1
5
–
1
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
B
I
R
.
2
0
1
8
.
8
3
9
1
1
7
7
.
[
1
3
]
H
.
M
.
S
a
f
h
i
,
B
.
F
r
i
k
h
,
B
.
H
i
r
c
h
o
u
a
,
B
.
O
u
h
b
i
,
a
n
d
I
.
K
h
a
l
i
l
,
“
D
a
t
a
i
n
t
e
l
l
i
g
e
n
c
e
i
n
t
h
e
c
o
n
t
e
x
t
o
f
b
i
g
d
a
t
a
:
a
su
r
v
e
y
,
”
J
o
u
r
n
a
l
o
f
Mo
b
i
l
e
M
u
l
t
i
m
e
d
i
a
,
v
o
l
.
1
3
,
n
o
.
1
–
2
,
p
p
.
1
–
2
7
,
2
0
1
7
.
[
1
4
]
V
.
V
i
sw
a
n
a
t
h
a
,
A
.
C
.
R
a
ma
c
h
a
n
d
r
a
,
B
.
D
.
P
a
r
a
mes
h
a
c
h
a
r
i
,
H
.
V
.
V
a
c
h
a
n
,
a
n
d
S
.
S
.
S
h
e
t
t
y
,
“
P
r
e
d
i
c
t
i
n
g
t
h
e
p
r
i
c
e
o
f
u
s
e
d
c
a
r
s
u
si
n
g
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
,
”
i
n
2
0
2
3
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Ev
o
l
u
t
i
o
n
a
r
y
Al
g
o
ri
t
h
m
s
a
n
d
S
o
f
t
C
o
m
p
u
t
i
n
g
T
e
c
h
n
i
q
u
e
s,
E
AS
C
T
2
0
2
3
,
2
0
2
3
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
EA
S
C
T5
9
4
7
5
.
2
0
2
3
.
1
0
3
9
3
4
8
6
.
[
1
5
]
M
.
G
a
n
d
N
.
G
,
“
A
n
e
w
p
a
r
a
d
i
g
m
f
o
r
d
e
v
e
l
o
p
m
e
n
t
o
f
d
a
t
a
i
m
p
u
t
a
t
i
o
n
a
p
p
r
o
a
c
h
f
o
r
m
i
s
s
i
n
g
v
a
l
u
e
e
s
t
i
m
a
t
i
o
n
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
E
l
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
(
I
J
E
C
E
)
,
v
o
l
.
6
,
n
o
.
6
,
p
p
.
3
2
2
2
–
3
2
2
8
,
2
0
1
6
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
6
i
6
.
p
p
3
2
2
2
-
3
2
2
8
.
[
1
6
]
K
.
Tr
a
n
g
,
A
.
H
.
N
g
u
y
e
n
,
L.
T
o
n
t
h
a
t
,
a
n
d
B
.
Q
.
V
u
o
n
g
,
“
I
mp
r
o
v
i
n
g
R
e
p
V
G
G
mo
d
e
l
w
i
t
h
v
a
r
i
a
t
i
o
n
a
l
d
a
t
a
i
mp
u
t
a
t
i
o
n
i
n
C
O
V
I
D
-
1
9
c
l
a
ssi
f
i
c
a
t
i
o
n
,
”
I
AE
S
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
Art
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
(
I
J
-
AI
)
,
v
o
l
.
1
1
,
n
o
.
4
,
p
p
.
1
2
7
8
–
1
2
8
6
,
2
0
2
2
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
a
i
.
v
1
1
.
i
4
.
p
p
1
2
7
8
-
1
2
8
6
.
[
1
7
]
A
.
S
a
l
e
m
,
N
.
A
.
Emr
a
n
,
A
.
K
.
M
u
d
a
,
Z.
S
a
h
r
i
,
a
n
d
A
.
A
l
i
,
“
M
i
ss
i
n
g
v
a
l
u
e
s
i
mp
u
t
a
t
i
o
n
i
n
A
r
a
b
i
c
d
a
t
a
set
s
u
s
i
n
g
e
n
h
a
n
c
e
d
r
o
b
u
st
a
sso
c
i
a
t
i
o
n
r
u
l
e
s
,
”
I
n
d
o
n
e
si
a
n
J
o
u
rn
a
l
o
f
El
e
c
t
ri
c
a
l
E
n
g
i
n
e
e
r
i
n
g
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
(
I
J
E
EC
S
)
,
v
o
l
.
2
8
,
n
o
.
2
,
p
p
.
1
0
6
7
–
1
0
7
5
,
2
0
2
2
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
e
c
s.
v
2
8
.
i
2
.
p
p
1
0
6
7
-
1
0
7
5
.
[
1
8
]
G
.
P
a
p
a
g
e
o
r
g
i
o
u
,
S
.
W
.
G
r
a
n
t
,
J.
J.
M
.
T
a
k
k
e
n
b
e
r
g
,
a
n
d
M
.
M
.
M
o
k
h
l
e
s
,
“
S
t
a
t
i
s
t
i
c
a
l
p
r
i
mer:
h
o
w
t
o
d
e
a
l
w
i
t
h
mi
ss
i
n
g
d
a
t
a
i
n
sci
e
n
t
i
f
i
c
r
e
sea
r
c
h
?
,
”
I
n
t
e
r
a
c
t
i
v
e
C
a
r
d
i
o
v
a
s
c
u
l
a
r
a
n
d
T
h
o
r
a
c
i
c
S
u
r
g
e
r
y
,
v
o
l
.
2
7
,
n
o
.
2
,
p
p
.
1
5
3
–
1
5
8
,
2
0
1
8
,
d
o
i
:
1
0
.
1
0
9
3
/
i
c
v
t
s/
i
v
y
1
0
2
.
[
1
9
]
N
.
M
a
n
d
a
l
a
n
d
T
.
S
a
r
o
d
e
,
“
A
f
r
a
m
e
w
o
r
k
f
o
r
c
l
o
u
d
c
o
v
e
r
p
r
e
d
i
c
t
i
o
n
u
s
i
n
g
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
w
i
t
h
d
a
t
a
i
m
p
u
t
a
t
i
o
n
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
t
ri
c
a
l
a
n
d
C
o
m
p
u
t
e
r
En
g
i
n
e
e
ri
n
g
(
I
J
E
C
E)
,
v
o
l
.
1
4
,
n
o
.
1
,
p
p
.
6
0
0
–
6
0
7
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
4
i
1
.
p
p
6
0
0
-
6
0
7
.
[
2
0
]
S
.
L
e
st
a
r
i
,
Y
u
l
m
a
i
n
i
,
A
sw
i
n
,
S
.
Y
.
M
a
’
r
u
f
,
S
u
l
y
o
n
o
,
a
n
d
R
.
R
.
N
.
F
i
k
r
i
,
“
A
l
l
e
v
i
a
t
i
n
g
c
o
l
d
s
t
a
r
t
a
n
d
sp
a
r
si
t
y
p
r
o
b
l
e
ms i
n
t
h
e
mi
c
r
o
,
smal
l
,
a
n
d
m
e
d
i
u
m
e
n
t
e
r
p
r
i
s
e
s
mar
k
e
t
p
l
a
c
e
u
s
i
n
g
c
l
u
st
e
r
i
n
g
a
n
d
i
m
p
u
t
a
t
i
o
n
t
e
c
h
n
i
q
u
e
s
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
E
l
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
(
I
J
EC
E)
,
v
o
l
.
1
4
,
n
o
.
3
,
p
p
.
3
2
2
0
–
3
2
2
9
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
4
i
3
.
p
p
3
2
2
0
-
3
2
2
9
.
[
2
1
]
Y
.
H
a
n
y
f
a
n
d
H
.
S
i
l
k
a
n
,
“
A
me
t
h
o
d
f
o
r
mi
ssi
n
g
v
a
l
u
e
s
i
m
p
u
t
a
t
i
o
n
o
f
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
d
a
t
a
se
t
s,
”
I
AE
S
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
Art
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
(IJ
-
AI
)
,
v
o
l
.
1
3
,
n
o
.
1
,
p
p
.
8
8
8
–
8
9
8
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
a
i
.
v
1
3
.
i
1
.
p
p
8
8
8
-
8
9
8
.
[
2
2
]
A
.
P
e
r
e
z
-
L
e
b
e
l
,
G
.
V
a
r
o
q
u
a
u
x
,
M
.
Le
M
o
r
v
a
n
,
J
.
Jo
s
se,
a
n
d
J
.
B
.
P
o
l
i
n
e
,
“
B
e
n
c
h
m
a
r
k
i
n
g
m
i
ssi
n
g
-
v
a
l
u
e
s
a
p
p
r
o
a
c
h
e
s
f
o
r
p
r
e
d
i
c
t
i
v
e
m
o
d
e
l
s
o
n
h
e
a
l
t
h
d
a
t
a
b
a
ses
,
”
G
i
g
a
S
c
i
e
n
c
e
,
v
o
l
.
1
1
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
9
3
/
g
i
g
a
s
c
i
e
n
c
e
/
g
i
a
c
0
1
3
.
[
2
3
]
T.
Emm
a
n
u
e
l
,
T
.
M
a
u
p
o
n
g
,
D
.
M
p
o
e
l
e
n
g
,
T.
S
e
mo
n
g
,
B
.
M
p
h
a
g
o
,
a
n
d
O
.
Ta
b
o
n
a
,
“
A
su
r
v
e
y
o
n
m
i
ssi
n
g
d
a
t
a
i
n
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
,
”
J
o
u
r
n
a
l
o
f
B
i
g
D
a
t
a
,
v
o
l
.
8
,
n
o
.
1
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
8
6
/
s
4
0
5
3
7
-
021
-
0
0
5
1
6
-
9.
[
2
4
]
S
.
L
i
,
“
Es
t
i
m
a
t
i
n
g
st
o
c
k
mar
k
e
t
p
r
i
c
e
s
w
i
t
h
h
i
st
o
g
r
a
m
-
b
a
se
d
g
r
a
d
i
e
n
t
b
o
o
s
t
i
n
g
r
e
g
r
e
ss
o
r
:
a
c
a
se
st
u
d
y
o
n
A
l
p
h
a
b
e
t
I
n
c
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
A
d
v
a
n
c
e
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
1
5
,
n
o
.
5
,
p
p
.
5
3
2
–
5
4
3
,
2
0
2
4
,
d
o
i
:
1
0
.
1
4
5
6
9
/
I
JA
C
S
A
.
2
0
2
4
.
0
1
5
0
5
5
3
.
[
2
5
]
A
.
A
y
a
o
u
,
“
U
se
d
c
a
r
p
r
i
c
e
p
r
e
d
i
c
t
i
o
n
i
n
M
o
r
o
c
c
o
u
si
n
g
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
,
”
M
o
h
a
me
d
I
U
n
i
v
e
r
s
i
t
y
,
2
0
2
2
.
[
2
6
]
A
.
K
u
mar,
“
M
a
c
h
i
n
e
l
e
a
r
n
i
n
g
b
a
s
e
d
so
l
u
t
i
o
n
f
o
r
a
s
y
mm
e
t
r
i
c
i
n
f
o
r
ma
t
i
o
n
i
n
p
r
e
d
i
c
t
i
o
n
o
f
u
s
e
d
c
a
r
p
r
i
c
e
s,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
l
l
i
g
e
n
t
V
i
si
o
n
a
n
d
C
o
m
p
u
t
i
n
g
,
p
p
.
4
0
9
–
4
2
0
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
3
-
0
3
1
-
3
1
1
6
4
-
2
_
3
4
.
[
2
7
]
M
.
K
a
u
r
,
S
.
S
i
n
g
h
,
a
n
d
N
.
A
g
g
a
r
w
a
l
,
“
M
i
ss
i
n
g
t
r
a
f
f
i
c
d
a
t
a
i
m
p
u
t
a
t
i
o
n
u
s
i
n
g
a
d
u
a
l
-
st
a
g
e
e
r
r
o
r
-
c
o
r
r
e
c
t
e
d
b
o
o
s
t
i
n
g
r
e
g
r
e
sso
r
w
i
t
h
u
n
c
e
r
t
a
i
n
t
y
e
st
i
ma
t
i
o
n
,
”
I
n
f
o
rm
a
t
i
o
n
S
c
i
e
n
c
e
s
,
v
o
l
.
5
8
6
,
p
p
.
3
4
4
–
3
7
3
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
n
s.
2
0
2
1
.
1
1
.
0
4
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
n
ew d
a
ta
imp
u
ta
tio
n
tec
h
n
i
q
u
e
fo
r
efficien
t u
s
ed
ca
r
p
r
ic
e
…
(
C
h
a
r
lèn
e
B
éa
tr
ice
B
r
id
g
e
-
N
d
u
w
ima
n
a
)
2371
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Cha
r
lène
Bé
a
tr
ice
Br
id
g
e
-
Nd
u
wim
a
n
a
re
c
e
iv
e
d
th
e
M
.
S
.
d
e
g
re
e
i
n
c
o
m
m
u
n
ica
ti
o
n
,
tele
c
o
m
m
u
n
ica
ti
o
n
sy
ste
m
s,
a
n
d
c
o
m
p
u
ter
n
e
tw
o
rk
s
fro
m
M
o
u
lay
S
li
m
a
n
e
Un
iv
e
rsity
o
f
Be
n
i
M
e
ll
a
l,
M
o
r
o
c
c
o
,
a
n
d
a
B.
S
c
.
a
n
d
Tec
h
n
o
l
o
g
y
d
e
g
re
e
i
n
e
n
g
in
e
e
rin
g
sc
ien
c
e
s
fro
m
Un
iv
e
rsity
M
o
u
lay
Ism
a
il
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
Tec
h
n
o
lo
g
y
o
f
Err
a
c
h
id
ia.
Cu
rre
n
tl
y
,
sh
e
is
a
P
h
.
D.
st
u
d
e
n
t
a
t
th
e
U
n
iv
e
rsit
y
o
f
S
i
d
i
M
o
h
a
m
e
d
Be
n
Ab
d
e
l
lah
i
n
F
e
s
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
Tec
h
n
o
lo
g
y
.
Da
ta
sc
ien
c
e
,
o
p
ti
m
iza
ti
o
n
,
m
a
c
h
i
n
e
lea
rn
in
g
,
a
n
d
a
rti
ficia
l
in
telli
g
e
n
c
e
a
re
a
m
o
n
g
h
e
r
a
re
a
s
o
f
in
tere
st
in
stu
d
y
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
c
h
a
rlen
e
b
e
a
tri
c
e
.
b
rid
g
e
n
d
u
wim
a
n
a
@u
sm
b
a
.
a
c
.
m
a
.
Az
iza
El
O
u
a
a
z
izi
h
o
l
d
s
h
e
r
P
h
.
D.
a
t
S
i
d
i
M
o
h
a
m
e
d
Be
n
Ab
d
e
l
lah
Un
iv
e
rsit
y
in
2
0
0
0
.
Afte
r
w
o
rk
i
n
g
a
s
a
p
r
o
fe
ss
o
r
i
n
Tec
h
n
ica
l
Hig
h
S
c
h
o
o
l
o
f
F
e
s
(2
0
0
1
),
sh
e
is
c
u
rre
n
tl
y
wo
rk
i
n
g
a
s
p
r
o
fe
ss
o
r
in
t
h
e
In
fo
r
m
a
ti
c
s
a
t
S
id
i
M
o
h
a
m
e
d
Be
n
Ab
d
e
ll
a
h
Un
i
v
e
rsity
,
F
e
z
.
S
h
e
is
a
lso
a
p
e
rm
a
n
e
n
t
m
e
m
b
e
r
o
f
Artifi
c
ial
In
telli
g
e
n
c
e
Da
ta
S
c
ien
c
e
s
a
n
d
Eme
rg
e
n
t
S
y
ste
m
s
Lab
o
ra
to
r
y
a
n
d
a
n
a
ss
o
c
iate
m
e
m
b
e
r
o
f
E
n
g
in
e
e
rin
g
S
c
ien
c
e
Lab
o
ra
t
o
ry
.
He
r
re
se
a
rc
h
in
tere
sts
in
c
l
u
d
e
m
a
c
h
in
e
a
n
d
d
e
e
p
lea
rn
in
g
,
a
rti
ficia
l
v
isi
o
n
a
n
d
ima
g
e
p
r
o
c
e
ss
in
g
,
p
a
tt
e
r
n
re
c
o
g
n
it
i
o
n
,
d
a
ta
a
n
a
ly
sis,
e
v
o
l
u
ti
o
n
a
ry
a
lg
o
rit
h
m
s
a
n
d
t
h
e
ir
a
p
p
li
c
a
ti
o
n
s.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
a
z
iza
.
e
lo
u
a
a
z
izi@u
sm
b
a
.
a
c
.
m
a
.
Ma
jid
Be
n
y
a
k
h
lef
re
c
e
iv
e
d
a
P
h
.
D.
d
e
g
re
e
b
y
S
id
i
M
o
h
a
m
e
d
Be
n
Ab
d
e
ll
a
h
Un
iv
e
rsity
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
in
F
e
s,
M
o
ro
c
c
o
.
He
wo
r
k
s
a
s
a
n
a
ss
o
c
iate
p
ro
fe
ss
o
r
o
f
in
fo
rm
a
ti
c
s
a
n
d
a
u
to
m
a
ti
c
c
o
n
tr
o
l
a
t
P
o
l
y
d
isc
ip
li
n
a
ry
F
a
c
u
lt
y
o
f
T
a
z
a
.
He
is
a
lso
a
p
e
rm
a
n
e
n
t
m
e
m
b
e
r
o
f
E
n
g
i
n
e
e
rin
g
S
c
ien
c
e
Lab
o
ra
to
ry
.
His
c
u
rre
n
t
a
re
a
s
o
f
i
n
tere
st
i
n
re
se
a
rc
h
a
re
larg
e
-
sc
a
le
a
d
a
p
ti
v
e
c
o
n
tro
l,
fu
z
z
y
c
o
n
tr
o
l,
a
n
d
d
e
c
e
n
tralize
d
ro
b
u
st
c
o
n
tro
l
,
c
o
m
p
u
ter
sc
ien
c
e
in
t
h
e
f
ield
s
o
f
m
o
d
e
ll
i
n
g
,
a
n
a
ly
s
is
a
n
d
i
n
fo
rm
a
ti
o
n
p
r
o
c
e
ss
in
g
.
H
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
m
a
ji
d
.
b
e
n
y
a
k
h
lef@
u
sm
b
a
.
a
c
.
m
a
.
Evaluation Warning : The document was created with Spire.PDF for Python.