I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
2
,
A
p
r
il
20
25
,
p
p
.
1
9
9
0
~
1
9
9
9
I
SS
N:
2088
-
8
7
0
8
,
DOI
:
1
0
.
1
1
5
9
1
/ijece.
v
15
i
2
.
pp
1
9
9
0
-
1
9
9
9
1990
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
K
a
fka
-
ma
chin
e le
a
rning
bas
ed
sto
r
a
g
e benchma
rk ki
t
for
estima
tion o
f
la
rg
e f
ile
stora
g
e perfo
rma
nce
Sa
nja
y
K
um
a
r
Na
a
zr
e
Vit
t
a
l R
a
o
1
,
Anitha
Chik
k
a
na
y
a
ka
na
ha
lli L
o
k
esh
K
um
a
r
1
,
Su
bh
a
s
h K
a
m
ble
2
1
D
e
p
a
r
t
me
n
t
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
K
a
l
p
a
t
a
r
u
I
n
st
i
t
u
t
e
o
f
Te
c
h
n
o
l
o
g
y
,
T
i
p
t
u
r
,
I
n
d
i
a
2
D
e
p
a
r
t
me
n
t
o
f
I
n
f
o
r
mat
i
o
n
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
G
l
o
b
a
l
A
c
a
d
e
m
y
o
f
Te
c
h
n
o
l
o
g
y
,
B
e
n
g
a
l
u
r
u
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
1
3
,
2
0
2
4
R
ev
is
ed
No
v
2
5
,
2
0
2
4
Acc
ep
ted
Dec
2
,
2
0
2
4
Eff
icie
n
t
sto
ra
g
e
a
n
d
m
a
in
te
n
a
n
c
e
o
f
b
ig
d
a
ta
is
imp
o
r
tan
t
with
r
e
sp
e
c
t
to
a
ss
u
rin
g
a
c
c
e
ss
ib
il
it
y
a
n
d
c
o
st
-
fri
e
n
d
li
n
e
ss
to
imp
r
o
v
e
r
isk
m
a
n
a
g
e
m
e
n
t
a
n
d
a
c
h
iev
e
a
n
e
ffe
c
ti
v
e
c
o
m
p
re
h
e
n
sio
n
o
f
th
e
u
se
r
re
q
u
irem
e
n
ts.
M
a
n
a
g
in
g
t
h
e
e
x
ten
siv
e
d
a
ta
v
o
lu
m
e
s
a
n
d
o
p
ti
m
izin
g
sto
ra
g
e
p
e
rfo
rm
a
n
c
e
p
o
se
s
a
sig
n
ifi
c
a
n
t
c
h
a
ll
e
n
g
e
.
To
a
d
d
re
ss
th
is
c
h
a
ll
e
n
g
e
,
th
is
re
se
a
rc
h
p
ro
p
o
se
s
th
e
K
a
fk
a
-
m
a
c
h
in
e
lea
rn
in
g
(M
L)
b
a
se
d
sto
ra
g
e
b
e
n
c
h
m
a
rk
k
it
(
S
BK)
d
e
sig
n
e
d
to
e
v
a
lu
a
te
t
h
e
p
e
rf
o
rm
a
n
c
e
o
f
th
e
fil
e
st
o
ra
g
e
sy
ste
m
.
Th
e
p
ro
p
o
se
d
m
e
th
o
d
e
m
p
l
o
y
s
Ka
fk
a
-
M
L
a
n
d
a
d
ril
l
-
d
o
w
n
fe
a
tu
re
t
o
o
p
ti
m
iz
e
sto
ra
g
e
p
e
rfo
rm
a
n
c
e
a
n
d
e
n
h
a
n
c
e
th
r
o
u
g
h
p
u
t.
Ka
f
k
a
-
ML
-
b
a
se
d
S
BK
h
a
s
t
h
e
c
a
p
a
b
il
it
y
to
o
p
ti
m
ize
sto
ra
g
e
e
f
ficie
n
c
y
a
n
d
sy
ste
m
p
e
rfo
rm
a
n
c
e
th
ro
u
g
h
sp
a
c
e
re
q
u
irem
e
n
ts
a
n
d
e
n
h
a
n
c
e
d
a
ta
h
a
n
d
li
n
g
.
Th
e
d
ril
l
-
d
o
w
n
se
a
rc
h
fe
a
tu
re
p
re
c
ise
ly
c
o
n
tri
b
u
tes
t
h
r
o
u
g
h
re
d
u
c
in
g
d
isk
sp
a
c
e
u
sa
g
e
,
e
n
a
b
li
n
g
fa
ste
r
d
a
ta
re
tri
e
v
a
l
a
n
d
m
o
re
e
fficie
n
t
re
a
l
-
ti
m
e
p
ro
c
e
ss
in
g
with
in
t
h
e
Ka
fk
a
-
M
L
fra
m
e
wo
rk
.
T
h
e
S
BK
a
ims
to
p
ro
v
id
e
tran
sp
a
re
n
c
y
a
n
d
e
a
se
o
f
u
ti
li
z
a
ti
o
n
f
o
r
b
e
n
c
h
m
a
rk
in
g
p
u
r
p
o
se
s.
Th
e
p
ro
p
o
se
d
m
e
th
o
d
a
tt
a
i
n
s
m
a
x
imu
m
th
r
o
u
g
h
p
u
t
a
n
d
m
i
n
imu
m
late
n
c
y
o
f
2
0
M
Bs
a
n
d
7
0
m
s,
re
sp
e
c
ti
v
e
ly
o
n
t
h
e
n
u
m
b
e
r
o
f
d
a
ta
b
y
tes
is
1
0
,
a
s
o
p
p
o
se
d
t
o
t
h
e
e
x
isti
n
g
m
e
th
o
d
S
BK
Ka
fk
a
.
K
ey
w
o
r
d
s
:
B
en
ch
m
ar
k
in
g
p
er
f
o
r
m
an
ce
B
ig
d
ata
Dr
ill d
o
wn
f
ea
tu
r
e
Fil
e
s
to
r
ag
e
P
a
y
l
o
a
d
s
a
n
d
s
t
o
r
a
g
e
b
e
n
c
h
m
ar
k
k
i
t
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
San
jay
Ku
m
ar
Naa
zr
e
Vittal Rao
Dep
ar
tm
en
t o
f
C
o
m
p
u
ter
Scie
n
ce
an
d
E
n
g
in
ee
r
in
g
,
Kalp
atar
u
I
n
s
titu
te
o
f
T
ec
h
n
o
l
o
g
y
T
ip
tu
r
,
T
u
m
k
u
r
Dis
tr
ict,
Kar
n
atak
a
-
5
7
2
2
0
1
,
I
n
d
ia
E
m
ail:
s
an
jay
n
v
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
s
to
r
in
g
o
f
d
ata
an
d
its
ac
ce
s
s
is
a
ch
allen
g
e
with
t
h
e
lar
g
e
am
o
u
n
t
o
f
d
ata
i
n
f
ile
s
to
r
ag
e
s
y
s
tem
s
.
T
h
e
ev
al
u
atio
n
o
f
b
e
n
ch
m
ar
k
i
n
g
p
lay
s
a
s
ig
n
if
ican
t
r
o
le
in
p
er
f
o
r
m
an
ce
o
p
tim
izatio
n
as
it
s
u
p
p
o
r
ts
in
ev
alu
atin
g
t
h
e
s
to
r
ag
e
p
e
r
f
o
r
m
a
n
ce
in
v
ar
io
u
s
s
y
s
tem
s
[
1
]
.
T
h
e
p
er
f
o
r
m
a
n
ce
b
en
ch
m
ar
k
in
g
allo
ws
o
r
g
an
izatio
n
s
t
o
ass
ess
th
e
s
y
s
tem
ch
an
g
es
d
u
r
in
g
ev
al
u
atio
n
,
as
well
as
au
th
o
r
ize
f
o
r
lev
er
ag
in
g
t
h
e
d
ata
f
o
r
f
u
r
th
er
p
er
f
o
r
m
an
ce
o
p
tim
iz
atio
n
[
2
]
.
T
o
ass
ess
th
e
laten
cy
,
th
r
o
u
g
h
p
u
t
a
n
d
s
p
ee
d
o
f
th
e
s
y
s
tem
,
th
e
b
en
ch
m
ar
k
in
g
estab
lis
h
es
a
b
aselin
e
f
o
r
ev
alu
atin
g
th
e
ef
f
ec
ts
o
f
th
e
s
y
s
tem
’
s
ch
an
g
es.
T
h
e
s
to
r
ag
e
b
en
ch
m
ar
k
k
it
(
SB
K)
is
a
to
o
l
o
r
o
p
e
n
-
s
o
u
r
ce
s
o
f
twar
e
f
r
am
ewo
r
k
u
tili
ze
d
to
esti
m
ate
th
e
r
ea
d
an
d
wr
ite
o
p
er
atio
n
s
o
f
th
e
s
to
r
ag
e
b
en
c
h
m
ar
k
s
[
3
]
.
SB
K
aid
s
p
er
f
o
r
m
an
ce
b
e
n
ch
m
ar
k
in
g
b
y
d
if
f
e
r
en
t
im
p
lem
e
n
tatio
n
m
eth
o
d
s
lik
e
th
r
o
u
g
h
p
u
t,
r
ate
lim
iter
,
an
d
laten
cy
[
4
]
,
[
5
]
.
S
B
K
d
is
tr
ib
u
tes
th
e
b
en
ch
m
ar
k
in
g
o
u
tco
m
es
in
to
r
ea
d
o
r
wr
ite
laten
cy
an
d
r
ea
d
/wr
ite
th
r
o
u
g
h
p
u
t
to
th
e
Gr
af
an
a
an
aly
tics
f
o
r
d
ev
elo
p
in
g
th
e
p
er
f
o
r
m
an
ce
g
r
ap
h
s
.
T
h
is
b
en
ch
m
ar
k
in
g
a
llo
ws
u
s
er
s
to
e
s
tim
ate
th
e
m
ax
im
u
m
ac
h
iev
a
b
le
th
r
o
u
g
h
p
u
t
p
er
f
o
r
m
an
ce
o
f
th
eir
s
to
r
ag
e
d
ev
ices,
alo
n
g
s
id
e
p
r
o
v
id
i
n
g
p
r
ec
is
e
in
s
ig
h
ts
in
to
th
e
s
to
r
ag
e
s
y
s
tem
’
s
p
er
f
o
r
m
an
ce
[
6
]
,
[
7
]
.
T
h
e
SB
K
o
f
f
er
s
wid
esp
r
ea
d
s
u
p
p
o
r
t f
o
r
a
d
iv
er
s
e
ar
r
a
y
o
f
s
to
r
a
g
e
s
y
s
tem
s
,
en
co
m
p
ass
in
g
lo
ca
l a
n
d
d
is
tr
ib
u
ted
f
ile
s
y
s
tem
s
,
o
b
ject
s
to
r
ag
e
s
y
s
te
m
s
,
an
d
k
ey
-
v
ale
s
to
r
ag
e
s
y
s
tem
s
[
8
]
.
T
h
is
f
r
am
ewo
r
k
c
o
n
tr
ib
u
tes
with
an
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
K
a
fka
-
ma
ch
in
e
lea
r
n
in
g
b
a
s
e
d
s
to
r
a
g
e
b
en
c
h
ma
r
k
kit
fo
r
esti
ma
tio
n
o
f
…
(
S
a
n
ja
y
K
u
ma
r
N
a
a
z
r
e
V
itta
l R
a
o
)
1991
ef
f
icien
t
p
er
f
o
r
m
an
ce
b
en
ch
m
ar
k
in
g
s
o
lu
tio
n
t
h
r
o
u
g
h
r
ea
d
in
g
an
d
wr
itin
g
d
ata
in
t
h
e
s
to
r
a
g
e
s
y
s
tem
[
9
]
.
T
h
e
SB
K
ac
co
m
m
o
d
ates
a
n
u
m
b
er
o
f
p
ay
lo
ad
ty
p
es
in
clu
d
in
g
b
y
te
b
u
f
f
er
,
b
y
te
ar
r
ay
an
d
s
tr
in
g
to
p
er
m
it
u
s
er
s
to
ex
ten
d
th
eir
in
d
i
v
id
u
al
p
ay
l
o
a
d
ty
p
es
[
1
0
]
,
[
1
1
]
.
Fu
r
th
er
m
o
r
e,
th
e
SB
K
h
elp
s
d
atab
ase
s
c
h
em
es
o
f
My
SQL,
SQLite,
Po
s
tg
r
eSQL
,
Ap
ac
h
e
Der
b
y
,
a
n
d
Mic
r
o
s
o
f
t
s
tr
u
ctu
r
ed
q
u
er
y
lan
g
u
ag
e
(
SQL
)
b
y
J
av
a
d
atab
ase
co
n
n
ec
tiv
ity
(
J
DB
C
)
[
1
2
]
,
[
1
3
]
.
T
h
e
SB
K
ex
ec
u
tes
p
er
io
d
ic
lo
g
g
in
g
o
f
th
e
b
en
ch
m
ar
k
in
g
o
u
tco
m
es
to
Gr
af
an
a
an
aly
tics
b
y
Pro
m
et
h
eu
s
ex
am
in
atio
n
a
p
p
r
o
ac
h
[
1
4
]
.
Du
r
i
n
g
th
e
b
e
n
ch
m
a
r
k
in
g
p
er
f
o
r
m
an
ce
,
t
h
e
d
ata
is
s
to
r
ed
in
a
lo
ca
l
d
is
k
o
f
E
x
t4
f
ile
s
y
s
tem
,
R
o
ck
s
DB
an
d
a
L
ev
elDB
k
ey
v
alu
e
s
to
r
e.
I
n
Min
I
O
d
is
tr
ib
u
ted
s
to
r
ag
e
s
y
s
tem
,
th
e
o
b
jects a
r
e
s
en
t o
r
r
ec
eiv
e
th
r
o
u
g
h
r
em
o
te
h
o
s
ted
Min
I
O
s
er
v
er
[
1
5
]
,
[
1
6
]
.
T
h
e
f
ast
d
ev
elo
p
m
e
n
t
o
f
d
ata
v
o
lu
m
es
p
o
s
es
s
ig
n
if
ican
t
ch
a
llen
g
es
in
m
an
ag
in
g
a
n
d
o
p
tim
izin
g
th
e
s
to
r
ag
e
p
er
f
o
r
m
an
ce
.
As
th
e
d
ata
b
ec
o
m
es
en
h
a
n
cin
g
u
n
e
v
en
an
d
d
is
tr
ib
u
ted
o
v
e
r
d
if
f
er
en
t
s
to
r
ag
e
lev
els,
ef
f
ec
tiv
e
lo
ca
tio
n
a
n
d
r
etr
iev
a
l
o
f
d
ata
is
c
o
m
p
lex
.
E
n
s
u
r
in
g
s
ca
lab
ilit
y
,
m
in
im
izin
g
laten
c
y
,
an
d
m
ain
tain
in
g
d
ata
in
teg
r
ity
u
n
d
er
d
y
n
am
ic
wo
r
k
lo
ad
s
f
u
r
th
er
o
b
s
cu
r
es
th
e
s
to
r
ag
e
m
an
ag
em
e
n
t.
T
h
ese
ch
allen
g
es
r
eq
u
ir
e
a
co
m
p
lete
SB
K
to
ef
f
ec
tiv
ely
esti
m
ate
an
d
s
o
lv
e
th
ese
co
m
p
lex
ities
.
T
o
ad
d
r
ess
th
is
ch
al
len
g
e,
th
is
r
esear
ch
p
r
o
p
o
s
es
th
e
Kaf
k
a
-
m
ac
h
in
e
lear
n
in
g
(
ML
)
b
ased
SB
K
f
o
r
esti
m
atin
g
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
f
ile
s
to
r
ag
e
s
y
s
tem
.
I
n
th
is
s
ec
tio
n
,
s
o
m
e
o
f
th
e
ex
is
tin
g
wo
r
k
s
r
ela
ted
to
s
to
r
ag
e
b
en
c
h
m
ar
k
i
n
g
p
er
f
o
r
m
an
ce
ar
e
d
is
cu
s
s
ed
.
Fu
r
th
er
m
o
r
e,
t
h
is
s
ec
tio
n
r
ep
r
esen
ts
th
e
ad
v
an
t
ag
es
an
d
lim
itatio
n
s
o
f
ea
ch
wo
r
k
b
ased
o
n
its
o
p
er
atio
n
f
u
n
ctio
n
s
.
Mu
n
eg
o
wd
a
an
d
Ku
m
ar
[
1
7
]
i
n
tr
o
d
u
ce
d
th
e
SB
K
f
r
am
ewo
r
k
f
o
r
th
e
esti
m
atio
n
o
f
p
er
f
o
r
m
an
ce
o
f
h
ar
d
war
e
d
ev
i
ce
s
.
T
h
is
f
r
am
ewo
r
k
d
escr
ib
e
d
th
e
m
o
s
t
ap
p
r
o
p
r
iate
d
ata
s
tr
u
ctu
r
es
lik
e
v
a
r
io
u
s
co
n
cu
r
r
en
t
q
u
eu
es
to
ev
alu
at
e
th
e
th
r
o
u
g
h
p
u
t
an
d
lo
w
lat
en
cy
f
o
r
s
to
r
a
g
e
d
e
v
ices.
T
h
e
SB
K
f
r
am
ewo
r
k
ex
p
o
r
ted
th
e
s
tan
d
ar
d
s
to
r
ag
e
in
ter
f
ac
e
ap
p
licatio
n
p
r
o
g
r
am
m
in
g
in
ter
f
ac
es
(
API
s
)
wh
ich
th
en
ap
p
en
d
e
d
th
e
s
to
r
ag
e
d
r
iv
er
to
e
v
alu
ate
t
h
e
b
e
n
ch
m
ar
k
in
g
p
er
f
o
r
m
an
ce
f
o
r
co
n
v
en
tio
n
al
s
to
r
a
g
e
d
ev
ice.
W
h
ile
th
e
u
tili
za
tio
n
o
f
h
ar
d
war
e
,
th
e
b
en
ch
m
ar
k
in
g
s
u
p
p
o
r
ted
d
ec
is
io
n
m
ak
in
g
,
b
u
t
th
e
b
en
ch
m
ar
k
s
wer
e
o
f
ten
p
er
s
o
n
alize
d
to
p
ar
ticu
lar
h
a
r
d
war
e
co
n
f
i
g
u
r
atio
n
s
,
an
d
s
o
,
th
e
o
u
tco
m
es
v
a
r
ied
wh
en
u
t
ilized
with
v
ar
io
u
s
h
ar
d
war
e
s
etu
p
s
.
Gó
m
ez
-
L
u
n
a
et
a
l.
[
1
8
]
d
ev
elo
p
ed
a
co
m
p
r
eh
en
s
iv
e
an
aly
s
is
o
f
an
o
p
e
n
-
s
o
u
r
ce
r
ea
l
-
wo
r
d
p
r
o
ce
s
s
in
g
-
in
-
m
e
m
o
r
y
(
PIM
)
ar
ch
itectu
r
e.
Fo
r
th
is
co
m
p
r
eh
en
s
iv
e
an
aly
s
is
,
two
s
ig
n
if
ican
t
asp
ec
ts
wer
e
co
n
s
id
er
ed
:
I
n
itially
,
th
e
ex
p
er
im
en
tal
ch
ar
ac
te
r
izatio
n
o
f
u
n
if
ied
p
r
o
ce
s
s
in
g
i
n
m
em
o
r
y
(
UPME
M)
b
ased
PIM
s
y
s
tem
was
co
n
d
u
cted
b
y
t
h
e
u
tili
za
tio
n
o
f
m
icr
o
b
en
ch
m
ar
k
s
to
p
er
f
o
r
m
d
if
f
er
en
t
ar
c
h
itectu
r
e
co
n
s
tr
ain
ts
.
T
h
en
,
p
r
o
ce
s
s
in
g
-
in
-
m
em
o
r
y
b
e
n
ch
m
a
r
k
s
(
PrI
M)
was
p
r
esen
ted
f
o
r
th
e
esti
m
atio
n
o
f
1
6
wo
r
k
lo
ad
s
f
r
o
m
v
ar
io
u
s
ap
p
licatio
n
d
o
m
ain
s
.
T
h
e
PIM
m
i
n
im
ized
th
e
laten
cy
in
teg
r
ate
d
with
f
etch
ed
d
ata
f
r
o
m
tr
a
d
itio
n
al
s
to
r
ag
e
d
e
v
i
ce
s
.
Ho
wev
er
,
th
e
d
e
v
elo
p
ed
PIM
ap
p
r
o
ac
h
h
ad
lim
ited
m
em
o
r
y
ca
p
ac
ity
as
co
m
p
ar
ed
to
th
e
tr
a
d
itio
n
al
m
e
th
o
d
s
.
Mu
n
eg
o
wd
a
a
n
d
Ku
m
a
r
[
1
9
]
im
p
lem
en
ted
t
h
e
s
lid
in
g
laten
cy
co
v
er
a
g
e
(
SLC)
f
ac
to
r
s
to
co
m
p
r
eh
e
n
d
th
e
r
an
g
e
an
d
th
e
ef
f
ec
tiv
e
n
ess
o
f
p
er
ce
n
ti
le
v
ar
iatio
n
laten
cies
in
s
to
r
ag
e
p
e
r
f
o
r
m
an
ce
b
en
ch
m
ar
k
in
g
.
T
h
e
SLC
d
ep
i
cted
th
e
r
an
g
e
o
f
laten
c
y
,
m
e
d
ian
,
q
u
ar
tiles
an
d
p
er
ce
n
tiles
in
an
in
d
iv
i
d
u
al
u
n
it
f
ac
to
r
.
T
h
e
e
x
p
er
im
e
n
ts
wer
e
p
er
f
o
r
m
ed
o
n
E
x
t4
f
ile
s
y
s
tem
,
L
ev
elDB,
R
o
ck
s
DB
an
d
Min
I
O
s
to
r
ag
e
s
y
s
tem
s
.
T
h
e
SLC
ap
p
r
o
ac
h
es
f
ac
ilit
ated
a
p
ar
allel
ac
ce
s
s
to
th
e
d
ata
a
n
d
p
er
m
itted
v
a
r
io
u
s
p
ar
ts
o
f
a
s
y
s
tem
to
ac
ce
s
s
th
e
d
ata.
No
n
eth
eless
,
th
e
im
p
lem
en
ted
SLC
ap
p
r
o
ac
h
cr
ea
ted
o
v
e
r
h
ea
d
,
lead
in
g
to
a
p
o
o
r
p
er
f
o
r
m
an
ce
.
Go
tz
et
a
l.
[
2
0
]
in
tr
o
d
u
ce
d
d
ee
p
ch
ar
ac
te
r
izatio
n
ap
p
r
o
ac
h
o
f
th
e
m
icr
o
co
n
tr
o
ller
s
f
o
r
th
e
s
elec
tio
n
o
f
ap
p
r
o
p
r
iate
d
ev
i
ce
in
th
e
ce
n
tr
al
p
illar
o
f
s
m
ar
t
en
er
g
y
p
o
licy
.
T
h
e
in
t
r
o
d
u
ce
d
ap
p
r
o
ac
h
in
v
esti
g
ated
th
e
p
o
ten
tial
o
f
d
if
f
er
en
t
lo
w
-
p
o
wer
m
icr
o
co
n
tr
o
ller
s
with
th
e
b
e
n
ch
m
ar
k
wit
h
th
e
u
tili
za
tio
n
o
f
p
er
io
d
ic
d
u
ty
c
y
cle
m
o
d
el
o
f
t
h
e
ty
p
ical
wir
eless
s
en
s
o
r
n
et
wo
r
k
s
(
W
SN)
.
B
u
t
th
e
p
r
o
lo
n
g
ed
r
ea
d
o
p
er
atio
n
s
d
eter
io
r
ated
t
h
e
s
y
s
tem
’
s
p
er
f
o
r
m
an
ce
wh
en
th
e
co
n
n
ec
to
r
was
lo
ca
ted
ar
b
itra
r
ily
f
r
o
m
th
e
clo
u
d
s
to
r
a
g
e.
R
ag
av
an
an
d
R
u
b
a
v
ath
i
[
2
1
]
d
ev
elo
p
ed
b
ig
d
ata
s
to
r
a
g
e
m
in
im
izatio
n
o
f
b
in
ar
y
f
ile
s
y
s
tem
ap
p
r
o
ac
h
f
o
r
ca
teg
o
r
y
-
b
ased
d
r
ill
d
o
wn
s
ea
r
ch
en
g
in
e
wh
ic
h
o
f
f
er
e
d
t
h
e
r
ap
i
d
m
u
lti
-
lev
el
f
ilter
in
g
co
m
p
eten
c
e.
T
h
e
d
ev
elo
p
e
d
ap
p
r
o
ac
h
s
to
r
ed
th
e
s
ea
r
ch
en
g
in
e
d
ata
with
5
m
illi
o
n
d
ata
in
a
f
ile
s
y
s
tem
.
Fu
r
th
er
m
o
r
e
,
th
e
b
in
ar
y
f
iles
wer
e
in
tr
o
d
u
ce
d
in
cr
awlin
g
p
r
o
ce
d
u
r
e
f
o
r
th
e
d
r
ill
d
o
wn
s
ea
r
ch
,
wh
ile
b
in
a
r
y
f
ile
lo
ad
in
g
in
to
s
ig
n
if
ican
t
m
em
o
r
y
to
o
k
a
m
i
n
im
u
m
tim
e
wh
en
co
m
p
ar
ed
to
th
e
ad
d
ed
f
ile
f
o
r
m
at.
Sti
ll,
th
e
ap
p
r
o
ac
h
was
r
esis
tan
t
wh
en
b
ei
n
g
d
ea
lt
wit
h
n
ew
d
ata
ty
p
es
d
u
e
to
th
e
la
ck
o
f
ef
f
ec
tiv
e
f
itn
ess
o
f
th
e
e
x
is
tin
g
ca
teg
o
r
ies.
Fro
m
th
is
liter
atu
r
e
s
u
r
v
e
y
,
t
h
e
f
ew
lim
itatio
n
s
th
at
ar
e
i
d
en
tifie
d
th
at
ca
n
b
e
n
o
ted
ar
e:
b
en
ch
m
ar
k
in
g
o
u
tco
m
es
wer
e
v
ar
ied
wh
en
u
tili
ze
d
with
v
ar
io
u
s
h
ar
d
war
e
s
etu
p
s
,
lim
ited
m
em
o
r
y
ca
p
ac
ity
,
cr
ea
tio
n
o
f
o
v
er
h
ea
d
,
e
x
ten
d
ed
r
ea
d
o
p
er
atio
n
s
th
at
ca
u
s
ed
th
e
s
y
s
tem
p
er
f
o
r
m
an
ce
,
an
d
a
r
esis
ted
a
p
p
r
o
ac
h
wh
e
n
d
ea
lt
with
n
ew
d
ata
ty
p
es
d
u
e
to
th
e
lack
o
f
ef
f
ec
tiv
e
f
itn
ess
o
f
th
e
ex
is
tin
g
ca
teg
o
r
ies.
T
o
o
v
er
co
m
e
th
ese
lim
itatio
n
s
,
th
is
r
esear
ch
p
r
o
p
o
s
es
th
e
Kaf
k
a
-
ML
b
ased
SB
K
f
o
r
th
e
ef
f
ec
tiv
e
esti
m
atio
n
o
f
th
e
s
to
r
a
g
e
p
er
f
o
r
m
an
ce
f
o
r
a
lar
g
e
n
u
m
b
er
o
f
d
ata
f
iles
.
T
h
is
en
s
u
r
es
th
e
s
to
r
ag
e
s
y
s
tem
s
m
ee
t
th
e
c
o
n
s
tr
ain
ts
o
f
ad
v
an
ce
d
d
ata
en
v
ir
o
n
m
en
ts
,
p
r
o
v
id
i
n
g
s
ig
n
if
ican
t
p
e
r
f
o
r
m
an
ce
an
d
r
eliab
ilit
y
.
T
h
e
s
ig
n
i
f
ican
t
co
n
tr
ib
u
ti
o
n
s
o
f
th
is
r
esear
ch
ar
e
as
f
o
llo
w
s
:
i)
t
h
is
r
esear
ch
p
r
o
p
o
s
es
th
e
Kaf
k
a
-
ML
b
ased
SB
K
f
o
r
s
tr
ea
m
in
g
d
ata
an
d
esti
m
atin
g
th
e
s
to
r
ag
e
p
er
f
o
r
m
an
ce
f
o
r
lar
g
e
d
ata
f
iles
.
Ka
f
k
a
-
ML
h
as
t
h
e
ca
p
a
b
ilit
y
to
d
is
tr
ib
u
te
wo
r
k
lo
a
d
s
ef
f
icien
tly
,
f
u
r
th
er
lead
in
g
to
m
ax
im
ized
th
r
o
u
g
h
p
u
t
an
d
m
i
n
im
ized
laten
cy
.
Ad
d
itio
n
ally
,
SB
K
allo
ws
u
s
er
s
to
m
ea
s
u
r
e
an
d
an
aly
ze
th
e
th
r
o
u
g
h
p
u
t
o
f
s
to
r
a
g
e
s
y
s
tem
s
u
n
d
er
d
if
f
er
en
t
wo
r
k
lo
ad
s
;
an
d
ii)
t
h
e
d
r
ill
d
o
wn
s
ea
r
ch
is
d
ev
elo
p
ed
b
y
u
s
in
g
th
e
b
in
ar
y
f
ile
s
y
s
tem
to
m
in
im
ize
s
to
r
ag
e
r
eq
u
ir
em
en
ts
in
th
e
d
ata.
T
h
e
d
r
ill
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
9
9
0
-
1
9
9
9
1992
d
o
wn
f
ea
tu
r
e
m
in
im
izes
th
e
d
i
s
c
s
p
ac
e
th
at
f
ac
ilit
a
tes
in
en
h
an
cin
g
th
e
s
ea
r
ch
p
er
f
o
r
m
a
n
c
e
in
th
e
s
to
r
ed
d
ata,
as o
p
p
o
s
ed
to
t
h
e
co
n
v
en
tio
n
a
l f
ile
s
y
s
tem
s
.
T
h
e
r
est
o
f
th
e
r
esear
c
h
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
ws:
Sectio
n
2
p
r
o
v
id
es
th
e
p
r
o
p
o
s
ed
m
eth
o
d
o
l
o
g
y
.
Sectio
n
3
p
r
esen
ts
th
e
d
ata
s
tr
ea
m
m
an
ag
e
m
e
n
t
an
d
f
ile
s
to
r
a
g
e
p
er
f
o
r
m
a
n
c
e
u
s
in
g
Kaf
k
a
-
ML
.
Sectio
n
4
s
h
o
ws th
e
r
esu
lts
an
d
d
is
cu
s
s
io
n
.
F
in
ally
,
Sectio
n
5
d
em
o
n
s
tr
ates th
e
co
n
clu
s
io
n
.
2.
P
RO
P
O
SE
D
M
E
T
H
O
D
T
h
is
r
esear
ch
p
r
o
p
o
s
es
th
e
K
af
k
a
-
ML
b
ased
SB
K
f
o
r
e
v
al
u
atin
g
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
lar
g
e
d
ata
f
ile
s
to
r
ag
e
in
h
ar
d
war
e
d
ev
ic
es.
T
h
e
Kaf
k
a
-
ML
is
u
s
ed
f
o
r
s
tr
ea
m
in
g
d
ata
in
th
e
s
to
r
ag
e
d
ata,
wh
ile
SB
K
is
u
s
ed
to
b
en
c
h
m
ar
k
th
e
p
er
f
o
r
m
an
ce
o
f
th
e
lar
g
e
f
ile
s
to
r
ag
e
d
ata.
T
h
e
d
r
ill
d
o
wn
f
ea
tu
r
e
s
u
p
p
o
r
ts
in
m
in
im
izin
g
th
e
r
eq
u
ir
em
e
n
ts
o
f
th
e
s
to
r
ag
e
s
y
s
tem
[
2
1
]
.
Fig
u
r
e
1
d
ep
icts
th
e
d
esig
n
o
f
SB
K.
Fig
u
r
e
1
.
C
o
m
p
o
n
en
ts
o
f
s
to
r
a
g
e
b
en
c
h
m
ar
k
k
it
2
.
1
.
Drill
do
wn
s
ea
rc
h
T
h
e
d
r
ill
-
d
o
wn
f
ea
tu
r
e
im
p
r
o
v
es
th
e
ef
f
ec
tiv
en
ess
th
r
o
u
g
h
allo
win
g
a
d
etailed
a
n
aly
s
is
o
f
d
ata
at
d
if
f
er
en
t
lev
els,
wh
ich
f
u
r
th
e
r
s
u
p
p
o
r
ts
in
d
eter
m
i
n
g
a
n
d
s
o
lv
in
g
p
ar
ticu
lar
ef
f
ec
tiv
en
ess
b
o
ttlen
ec
k
s
.
I
t
m
in
im
izes
th
e
s
to
r
ag
e
n
ec
ess
ities
th
r
o
u
g
h
o
p
tim
izin
g
th
e
d
ata
s
to
r
ag
e
a
n
d
r
etr
iev
al
p
r
o
ce
s
s
es.
Gen
er
ally
,
one
-
to
-
o
n
e
r
elatio
n
s
h
i
p
o
f
th
e
k
ey
wo
r
d
s
ar
e
id
e
n
tifie
d
in
b
ig
d
ata,
an
d
wh
en
t
h
e
u
s
er
s
ea
r
ch
es a
n
y
k
ey
wo
r
d
,
it
is
co
n
s
id
er
ed
th
e
s
ea
r
ch
r
esu
lt.
I
n
th
is
r
esear
ch
,
th
e
k
ey
wo
r
d
s
ar
e
s
to
r
ed
in
th
e
p
ag
e,
in
r
elatio
n
to
a
r
an
g
e
o
f
b
in
ar
y
f
iles
,
wh
ile
th
e
d
ata
is
o
r
g
an
ize
d
as
a
ca
teg
o
r
izatio
n
o
f
th
e
b
y
tes.
T
h
e
two
k
ey
wo
r
d
b
in
a
r
y
f
iles
o
f
k
ey
wo
r
d
h
ea
d
er
an
d
d
ata
f
ile
ar
e
wr
itten
in
th
e
cr
awlin
g
p
r
o
ce
s
s
.
I
n
th
is
p
r
o
ce
s
s
,
a
cr
awle
r
p
r
o
g
r
am
[
2
2
]
,
[
2
3
]
tr
an
s
f
er
s
th
e
web
p
ag
e
c
o
n
ten
t
an
d
an
aly
s
es
k
ey
wo
r
d
s
in
th
e
s
ea
r
ch
p
r
o
ce
s
s
.
T
h
e
k
e
y
wo
r
d
s
id
en
tifie
d
in
th
e
titl
e
o
f
th
e
p
ag
e
co
n
tain
m
ax
im
u
m
r
a
n
k
v
alu
es,
wh
ile
t
h
e
k
ey
wo
r
d
s
id
en
tifie
d
in
th
e
m
eta
tag
,
b
o
d
y
an
d
u
n
if
o
r
m
r
eso
u
r
ce
lo
ca
to
r
(
UR
L
)
co
n
tain
m
in
im
u
m
r
an
k
v
alu
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
K
a
fka
-
ma
ch
in
e
lea
r
n
in
g
b
a
s
e
d
s
to
r
a
g
e
b
en
c
h
ma
r
k
kit
fo
r
esti
ma
tio
n
o
f
…
(
S
a
n
ja
y
K
u
ma
r
N
a
a
z
r
e
V
itta
l R
a
o
)
1993
2
.
1
.
1
.
K
ey
wo
rd
hea
der
f
ile
T
h
e
h
ea
d
e
r
f
ile
in
v
o
lv
es
a
m
eta
d
ata
wh
ich
is
tr
iv
ial
i
n
s
ize
a
n
d
in
v
o
lv
es
an
o
f
f
s
et
in
f
o
r
m
at
io
n
o
f
th
e
d
ata
f
ile.
T
ab
le
1
d
is
p
lay
s
th
e
f
o
r
m
at
o
f
k
ey
w
o
r
d
h
ea
d
er
f
ile.
I
n
T
ab
le
1
,
th
e
s
ize
o
f
3
2
-
b
it
d
ata
is
d
ep
icted
as
th
e
to
tal
n
u
m
b
er
o
f
k
ey
wo
r
d
s
id
en
tifie
d
f
o
r
th
e
ca
teg
o
r
y
s
ea
r
ch
p
r
o
ce
s
s
.
T
h
e
n
*
3
2
-
b
it
d
e
p
icts
th
e
n
u
m
b
er
o
f
k
ey
wo
r
d
i
d
en
tifie
r
(
I
D)
in
th
e
f
ir
s
t
co
lu
m
n
an
d
n
*
3
2
-
b
it
d
ep
icts
th
e
p
ag
e’
s
o
f
f
s
et
in
f
o
r
m
atio
n
a
b
o
u
t
th
e
k
ey
wo
r
d
.
T
h
e
p
a
g
e’
s
k
ey
wo
r
d
s
r
ep
r
esen
t
th
e
p
ag
e
I
D
in
a
d
ata
f
ile
th
at
ar
e
q
u
ick
ly
lo
a
d
ed
in
to
s
ig
n
if
ican
t
m
em
o
r
y
w
h
en
th
e
s
ize
o
f
th
e
h
ea
d
er
f
ile
is
s
m
all.
T
ab
le
1
.
Fo
r
m
at
o
f
th
e
k
ey
wo
r
d
h
ea
d
er
f
ile
C
o
u
n
t
i
n
g
o
f
k
e
y
w
o
r
d
s
K
e
y
w
o
r
d
I
D
d
a
t
a
K
e
y
w
o
r
d
o
f
f
set
d
a
t
a
32
-
b
i
t
32
-
b
i
t
*
n
u
mb
e
r
o
f
k
e
y
w
o
r
d
s
32
-
b
i
t
*
n
u
mb
e
r
o
f
k
e
y
w
o
r
d
s
2
.
1
.
2
.
K
ey
wo
rd
da
t
a
f
ile
T
h
e
k
e
y
wo
r
d
d
ata
f
ile
is
r
ea
c
h
ed
to
th
e
g
ig
a
b
y
te
s
ize
b
ec
a
u
s
e
o
f
a
cir
c
u
m
s
tan
ce
wh
e
r
e
th
e
d
ata
is
jo
b
less
.
I
t
is
m
ajo
r
ly
b
ased
o
n
th
e
co
u
n
t
o
f
th
e
h
ea
d
er
f
ile
k
ey
wo
r
d
s
.
I
f
th
e
d
ata
f
ile
is
lar
g
e,
it
is
lo
ad
ed
in
to
m
em
o
r
y
a
n
d
th
e
d
ata
o
f
f
s
ets
ar
e
o
b
tain
ed
f
r
o
m
th
e
s
ig
n
if
ica
n
t
m
em
o
r
y
.
Su
b
s
eq
u
e
n
tly
,
in
-
m
em
o
r
y
d
ata
ac
ce
s
s
is
s
p
ee
d
y
wh
en
r
elate
d
to
th
e
d
is
k
-
b
ased
ac
ce
s
s
,
an
d
th
e
o
f
f
s
et
o
f
th
e
k
ey
wo
r
d
in
a
h
ea
d
e
r
f
ile
is
u
til
ized
as
th
e
ca
talo
g
u
e.
T
h
r
o
u
g
h
t
h
e
u
ti
lizatio
n
o
f
th
is
o
f
f
s
et
k
e
y
wo
r
d
,
th
e
n
ee
d
e
d
p
ag
e
o
u
tco
m
es a
r
e
o
b
tain
ed
f
r
o
m
t
h
e
d
ata.
W
ith
r
esp
ec
t
to
en
h
a
n
ci
n
g
th
e
ac
ce
s
s
s
p
ee
d
o
f
th
e
d
ata
f
ile
d
is
c,
th
e
s
o
lid
-
s
tate
d
r
iv
e
(
SS
D)
d
r
iv
es
ar
e
ch
o
s
en
to
ac
cu
m
u
late
th
e
d
ata
f
ile
r
ath
er
th
an
th
e
h
a
r
d
d
is
k
d
r
iv
e
(
HDD)
d
r
iv
es.
2
.
2
.
St
o
ra
g
e
benchm
a
r
k
k
it
B
en
ch
m
ar
k
in
g
[
1
7
]
is
th
e
s
ig
n
if
ican
t
p
r
o
ce
s
s
f
o
r
esti
m
atin
g
th
e
p
er
f
o
r
m
an
ce
o
f
th
e
s
to
r
ag
e
s
y
s
tem
s
.
T
h
e
b
en
c
h
m
ar
k
i
n
g
p
e
r
m
its
u
s
er
s
to
co
m
p
ar
e
th
e
d
if
f
er
en
t
s
tag
e
s
o
lu
tio
n
s
an
d
u
n
d
e
r
s
tan
d
h
o
w
ef
f
icien
tly
it
p
er
f
o
r
m
s
o
v
e
r
p
ar
ticu
lar
wo
r
k
lo
ad
s
.
B
en
ch
m
ar
k
in
g
is
im
p
o
r
tan
t
f
o
r
esti
m
atin
g
th
e
ef
f
e
ctiv
en
ess
o
f
s
to
r
a
g
e
s
y
s
tem
s
f
o
r
en
ab
lin
g
u
s
er
s
co
m
p
ar
e
v
a
r
io
u
s
s
o
lu
tio
n
s
a
n
d
a
s
s
es
s
th
eir
ef
f
icien
cy
u
n
d
e
r
d
if
f
er
en
t
wo
r
k
lo
ad
s
.
I
t
p
r
o
v
id
es
a
s
y
s
tem
atic
way
t
o
m
ea
s
u
r
e
p
er
f
o
r
m
a
n
ce
,
d
ete
r
m
in
g
b
o
ttlen
ec
k
s
,
alo
n
g
s
id
e
m
ak
in
g
in
f
o
r
m
e
d
d
ec
is
io
n
s
ab
o
u
t
s
y
s
tem
im
p
r
o
v
em
en
ts
.
I
n
th
is
r
esear
ch
,
th
e
n
ec
ess
ities
o
f
th
e
b
en
ch
m
ar
k
i
n
g
d
esig
n
f
o
r
SB
K
ar
e
d
is
co
v
er
e
d
an
d
in
v
esti
g
atio
n
in
to
th
e
th
r
ee
s
tag
es
o
f
th
e
p
r
o
ce
s
s
o
f
b
en
c
h
m
ar
k
en
g
in
ee
r
in
g
a
r
e
ca
r
r
ied
o
u
t.
2
.
2
.
1
.
Understa
nd
ing
t
he
co
n
s
idera
t
io
n o
f
SB
K
-
des
ig
n
T
h
e
d
esig
n
co
n
s
id
er
atio
n
o
f
SB
K
u
n
d
er
s
tan
d
in
g
is
s
ig
n
if
ican
t
to
b
e
p
er
f
o
r
m
e
d
b
ef
o
r
e
s
p
litt
in
g
th
e
d
ata
f
ile
f
o
r
b
en
c
h
m
ar
k
in
g
.
T
h
e
s
ig
n
if
ican
t
tar
g
et
o
f
t
h
e
S
B
K
is
to
d
eliv
er
a
f
lex
ib
le
an
d
r
o
b
u
s
t
f
r
am
ewo
r
k
,
wh
ich
ef
f
ec
tiv
ely
esti
m
ates
v
ar
io
u
s
s
to
r
ag
e
s
y
s
tem
s
’
p
er
f
o
r
m
an
ce
s
.
Few
p
r
im
ar
y
d
esig
n
co
n
s
id
er
atio
n
s
ar
e
m
en
tio
n
ed
b
elo
w:
−
Div
er
s
ity
o
f
th
e
wo
r
k
lo
a
d
:
t
h
e
SB
K
h
elp
s
d
if
f
er
en
t
wo
r
k
lo
ad
s
r
e
p
licate
r
ea
l
-
wo
r
l
d
a
p
p
licatio
n
s
.
I
t
is
ap
p
licab
le
f
o
r
th
e
d
e
v
elo
p
m
e
n
t o
f
d
if
f
e
r
en
t r
ea
d
an
d
wr
ite
o
p
er
atio
n
s
with
ar
b
itra
r
y
a
n
d
r
an
d
o
m
ac
ce
s
s
f
o
r
p
r
eten
s
e
in
ac
co
r
d
an
ce
to
p
er
t
h
e
r
eq
u
i
r
em
en
ts
f
o
r
v
ar
io
u
s
ap
p
licatio
n
s
.
−
Scalab
ilit
y
:
t
h
e
b
en
ch
m
ar
k
in
g
f
r
am
ewo
r
k
h
as
t
h
e
ca
p
a
b
ilit
y
to
b
e
s
ca
led
with
th
e
s
to
r
a
g
e
s
y
s
tem
o
v
er
th
e
test
.
I
t m
ain
tain
s
lar
g
e
d
atasets
f
o
r
f
lex
ib
ilit
y
in
th
e
d
is
tr
ib
u
t
ed
s
to
r
ag
e
s
etu
p
s
.
−
C
o
n
f
ig
u
r
ab
ilit
y
:
t
h
e
SB
K
p
er
m
its
u
s
er
s
to
ar
r
a
n
g
e
b
en
c
h
m
ar
k
p
a
r
am
eter
s
f
o
r
e
n
s
em
b
lin
g
th
eir
p
ar
ticu
lar
u
s
e
ca
s
es.
T
h
is
in
v
o
l
v
es
ad
ju
s
tin
g
th
e
s
izes
o
f
th
e
d
ata,
n
u
m
b
er
o
f
s
y
n
ch
r
o
n
ized
o
p
er
atio
n
s
,
an
d
in
p
u
t
o
r
o
u
tp
u
t
(
I
/O)
p
atter
n
s
.
2
.
2
.
2
.
M
et
ho
ds
a
nd
t
ec
hn
i
qu
es t
o
run SB
K
benc
hm
a
rk
I
n
th
is
s
ec
tio
n
,
th
e
m
et
h
o
d
s
a
n
d
tech
n
iq
u
es
n
ec
ess
ar
y
f
o
r
r
u
n
n
in
g
SB
K
b
en
c
h
m
ar
k
i
n
g
a
r
e
d
is
cu
s
s
ed
.
T
h
e
b
e
n
ch
m
ar
k
m
a
n
u
f
ac
t
u
r
in
g
p
r
o
ce
s
s
in
v
o
l
v
es
th
r
ee
s
ig
n
if
ican
t
s
tag
es
o
f
tr
ain
in
g
,
e
x
ec
u
tio
n
an
d
p
o
s
t
-
p
r
o
ce
s
s
in
g
.
T
h
e
d
etailed
in
f
o
r
m
atio
n
o
f
t
h
ese
s
tag
es is
d
escr
ib
ed
b
elo
w
:
−
T
r
ain
in
g
s
tag
e:
t
h
is
is
th
e
p
r
i
m
ar
y
s
tep
wh
er
e
th
e
b
en
ch
m
ar
k
e
n
v
ir
o
n
m
en
t
is
s
et
u
p
.
I
t
co
n
s
is
ts
o
f
t
h
e
s
elec
tio
n
o
f
a
s
u
itab
le
s
to
r
ag
e
s
y
s
tem
b
y
ar
r
an
g
in
g
h
ar
d
war
e
an
d
in
s
tallin
g
th
e
s
ig
n
i
f
ican
t
s
o
f
twar
e.
Fu
r
th
er
m
o
r
e
,
th
e
b
en
c
h
m
ar
k
p
ar
am
eter
s
o
f
th
e
wo
r
k
lo
ad
t
y
p
es,
s
ize
o
f
th
e
d
ata,
an
d
c
o
n
cu
r
r
en
cy
ar
e
d
escr
ib
ed
.
−
E
x
ec
u
tio
n
s
tag
e:
a
f
ter
th
e
c
o
m
p
letio
n
o
f
tr
ai
n
in
g
,
th
e
b
en
c
h
m
ar
k
is
r
u
n
with
th
e
s
elec
ted
co
n
f
ig
u
r
atio
n
.
T
h
e
SB
K
p
r
o
d
u
ce
s
wo
r
k
lo
a
d
o
n
th
e
s
to
r
ag
e
s
y
s
tem
an
d
est
im
ates
th
e
co
m
p
lex
p
er
f
o
r
m
a
n
ce
m
etr
ices
o
f
laten
cy
an
d
t
h
r
o
u
g
h
p
u
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
9
9
0
-
1
9
9
9
1994
−
Po
s
t
-
p
r
o
ce
s
s
in
g
s
tag
e:
a
f
ter
th
e
b
en
ch
m
ar
k
ex
ec
u
tio
n
,
th
e
co
llected
d
ata
is
an
aly
ze
d
an
d
p
r
o
ce
s
s
ed
.
T
h
is
s
tag
e
co
n
s
is
ts
o
f
r
em
o
v
in
g
o
u
tlier
s
with
an
a
v
er
ag
e
esti
m
atio
n
an
d
th
e
d
ev
elo
p
m
en
t
o
f
co
m
p
r
eh
en
s
iv
e
r
ep
o
r
ts
to
o
u
tco
m
e
in
te
r
p
r
etati
o
n
.
3.
D
A
T
A
ST
RE
AM
M
A
N
A
G
E
M
E
N
T
AN
D
F
I
L
E
S
T
O
RA
G
E
P
E
R
F
O
RM
AN
CE
U
SI
N
G
K
A
F
K
A
-
M
L
Kaf
k
a
-
ML
f
o
r
a
SB
K
allo
ws
th
e
r
ea
l
-
tim
e
d
ata
s
tr
ea
m
in
g
an
d
ML
-
d
r
i
v
en
a
n
aly
s
is
,
en
ab
lin
g
f
o
r
d
y
n
am
ic
wo
r
k
lo
a
d
a
d
ap
tatio
n
an
d
o
p
tim
ized
p
er
f
o
r
m
an
c
e.
T
h
is
co
m
b
in
atio
n
im
p
r
o
v
es
th
e
co
n
tin
u
o
u
s
m
o
n
ito
r
in
g
an
d
p
r
ed
ictiv
e
m
ai
n
ten
an
ce
.
T
h
is
f
u
r
th
er
m
ak
es
t
h
e
b
en
ch
m
a
r
k
k
it
m
o
r
e
r
ec
ep
ti
v
e
an
d
ef
f
icien
t
in
co
n
tr
o
llin
g
co
m
p
o
u
n
d
s
to
r
ag
e
en
v
ir
o
n
m
en
ts
.
T
h
e
d
is
tr
ib
u
te
d
lo
g
i
n
Kaf
k
a
allo
ws
u
s
er
s
to
m
o
v
e
th
e
lo
g
an
d
r
ea
d
d
ata
s
tr
ea
m
s
b
ased
o
n
th
eir
r
eq
u
ir
em
e
n
ts
.
I
t
is
h
elp
f
u
l
wh
en
th
e
s
y
s
tem
h
as
to
p
r
o
ce
s
s
d
ata
o
n
ce
d
estro
y
ed
,
r
eq
u
ir
in
g
to
im
p
r
o
v
e
an
en
tire
d
ata
s
tr
ea
m
.
I
n
th
e
co
n
v
en
tio
n
al
m
ess
ag
e
q
u
eu
e
s
y
s
tem
s
,
ev
er
y
m
ess
ag
e
h
as
th
e
ch
an
ce
t
o
b
e
r
em
o
v
e
d
af
ter
co
n
s
u
m
p
tio
n
,
an
d
th
e
d
atasto
r
e
is
r
eq
u
i
r
ed
to
ass
u
r
e
th
e
d
ata
,
ev
en
in
lo
s
s
co
n
d
itio
n
s
.
I
n
co
n
tin
u
atio
n
to
th
is
,
th
e
d
a
ta
s
tr
ea
m
s
ar
e
in
s
tead
ar
r
an
g
e
d
to
b
e
k
ep
t
i
n
a
lo
g
an
d
ar
e
r
eu
s
ed
to
tr
ain
th
e
o
t
h
er
d
e
p
lo
y
e
d
ar
r
a
n
g
em
en
ts
.
T
h
e
ML
ap
p
r
o
ac
h
es
ar
e
d
e
v
elo
p
ed
to
d
i
r
ec
t
th
e
wh
o
le
d
ata
s
tr
ea
m
.
T
h
e
n
ec
ess
ity
o
f
th
e
d
ata
p
r
o
v
id
es
th
e
r
esp
ec
tiv
e
co
n
tr
o
l
m
ess
ag
e
to
an
an
ticip
ated
d
ep
lo
y
m
en
t
ar
r
an
g
em
en
t
in
Kaf
k
a
with
t
h
e
r
ec
o
g
n
ized
r
eten
tio
n
p
o
licy
.
Fig
u
r
e
2
d
ep
i
cts
th
e
d
ata
s
tr
ea
m
m
an
ag
em
en
t
in
Kaf
k
a
-
ML
.
I
n
F
ig
u
r
e
2
,
th
e
in
itial
d
ata
s
tr
ea
m
is
d
ir
ec
ted
th
r
o
u
g
h
co
n
tr
o
l
m
ess
ag
e
(
C
1
)
to
an
ar
r
an
g
e
d
co
n
f
ig
u
r
atio
n
,
a
n
d
C
1
is
r
esen
t
to
p
er
m
it
t
h
e
c
o
n
f
ig
u
r
atio
n
C
2
to
u
tili
ze
a
s
im
ila
r
d
ata
s
tr
ea
m
.
I
n
th
e
ex
is
tin
g
d
is
tr
ib
u
ted
lo
g
s
ate,
th
e
d
ata
s
tr
ea
m
is
d
estro
y
ed
an
d
is
n
o
t
r
eu
s
ed
lo
n
g
er
f
o
r
o
th
er
d
e
p
lo
y
e
d
ar
r
an
g
em
en
t.
A
d
ata
s
tr
ea
m
in
teg
r
ated
with
C
2
is
d
ir
ec
te
d
to
th
e
d
ep
lo
y
ed
co
n
f
ig
u
r
atio
n
D3
an
d
D5
f
o
r
r
eu
tili
za
t
io
n
.
E
v
en
tu
ally
,
a
s
tr
ea
m
in
g
o
f
th
e
d
ata
is
u
tili
ze
d
f
o
r
tr
ain
i
n
g
an
d
ev
alu
atio
n
p
r
o
ce
s
s
es,
wh
ile
th
e
co
n
tr
o
l
m
ess
ag
es
ar
e
s
en
t
o
n
ly
wh
en
th
e
d
ata
s
tr
ea
m
is
c
o
m
p
leted
.
Fig
u
r
e
2
.
Data
s
tr
ea
m
m
a
n
ag
e
m
en
t b
y
Kaf
k
a
-
ML
T
o
p
er
m
it
tr
ain
i
n
g
an
d
ev
alu
at
io
n
task
s
with
th
e
d
ata
s
tr
ea
m
,
th
e
co
n
tr
o
l
m
ess
ag
e
s
p
ec
if
ies
b
o
th
d
ata
s
tr
ea
m
s
an
d
th
eir
p
o
s
itio
n
s
in
th
e
d
is
tr
ib
u
ted
lo
g
.
T
h
e
Kaf
k
a
-
ML
u
tili
ze
s
co
n
tr
o
l
m
ess
ag
es
to
co
m
m
u
n
icate
th
e
ac
cu
r
ate
p
o
s
itio
n
o
f
th
e
d
a
ta
s
tr
ea
m
s
to
th
e
d
ep
lo
y
ed
co
n
f
ig
u
r
atio
n
s
.
I
n
a
Kaf
k
a
-
ML
w
eb
u
s
er
in
ter
f
ac
e,
it
is
ap
p
licab
le
wh
er
e
th
e
u
s
er
r
ea
lizes
th
e
d
ata
s
tr
ea
m
w
h
ich
is
th
en
s
en
t
an
d
r
eu
s
e
d
f
o
r
o
th
er
s
y
s
tem
co
n
f
ig
u
r
atio
n
s
.
As
m
en
tio
n
ed
p
r
io
r
,
th
e
r
eten
tio
n
p
o
licy
o
f
th
e
Kaf
k
a
d
eter
m
in
es
th
is
b
e
h
av
io
r
.
T
h
e
Kaf
k
a
r
em
o
v
al
r
ete
n
tio
n
p
o
licy
is
d
is
cu
s
s
ed
b
elo
w:
−
R
eten
tio
n
f
o
r
b
y
tes:
m
ain
tain
s
th
e
lar
g
est
s
ize
to
wh
ich
th
e
p
ar
titi
o
n
ex
p
an
d
s
b
ef
o
r
e
th
e
Kaf
k
a
b
eg
in
s
to
r
em
o
v
e
th
e
o
ld
s
eg
m
e
n
ts
to
f
r
ee
u
p
s
p
ac
e.
−
R
eten
tio
n
f
o
r
m
s
:
m
ain
tain
s
m
ax
im
u
m
tim
e
f
o
r
wh
ich
th
e
lo
g
is
co
n
s
id
er
ed
,
p
r
io
r
t
h
e
o
ld
er
s
eg
m
en
ts
b
ein
g
r
em
o
v
ed
to
f
r
ee
u
p
t
h
e
s
p
ac
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
K
a
fka
-
ma
ch
in
e
lea
r
n
in
g
b
a
s
e
d
s
to
r
a
g
e
b
en
c
h
ma
r
k
kit
fo
r
esti
ma
tio
n
o
f
…
(
S
a
n
ja
y
K
u
ma
r
N
a
a
z
r
e
V
itta
l R
a
o
)
1995
3
.
1
.
B
ig
da
t
a
s
t
o
ra
g
e
s
y
s
t
em
B
ig
d
ata
s
to
r
ag
e
s
y
s
tem
s
ar
e
d
ev
elo
p
e
d
to
m
an
a
g
e
la
r
g
e
a
m
o
u
n
ts
o
f
d
ata.
T
h
ey
s
ca
le
h
o
r
izo
n
tally
th
r
o
u
g
h
ad
d
i
n
g
m
o
r
e
n
o
d
es
to
th
e
s
y
s
tem
,
ac
ce
p
tin
g
th
e
en
h
an
ce
d
d
ata
v
o
l
u
m
es
with
o
u
t
a
s
u
b
s
tan
tial
d
r
o
p
in
p
er
f
o
r
m
an
ce
.
T
h
e
clo
u
d
-
b
ased
Had
o
o
p
en
v
ir
o
n
m
e
n
t
s
u
p
p
o
r
t
s
f
o
r
lar
g
e
tr
af
f
ic
f
r
o
m
th
e
u
s
e
r
s
an
d
d
ata
o
wn
er
s
b
y
th
e
h
elp
o
f
Ma
p
R
ed
u
ce
[
2
4
]
,
[
2
5
]
co
n
tex
t.
T
h
e
clu
s
ter
in
g
,
in
d
ex
i
n
g
an
d
co
m
p
r
ess
io
n
elem
en
ts
p
lay
an
im
p
o
r
tan
t
p
ar
t
in
b
ig
d
ata
s
to
r
ag
e
s
y
s
tem
s
.
T
h
is
r
esear
ch
u
tili
ze
s
th
ese
elem
en
ts
to
e
n
h
an
ce
th
e
s
to
r
ag
e
s
y
s
tem
s
.
Pre
ce
d
in
g
to
s
to
r
in
g
th
e
d
ata
in
to
a
clo
u
d
s
er
v
er
,
t
h
e
d
ata
is
clu
s
ter
ed
t
o
m
in
im
i
ze
th
e
s
to
r
ag
e
s
p
ac
e
an
d
d
eter
m
in
e
th
e
tim
e
f
o
r
u
s
er
s
an
d
d
ata
o
wn
er
s
.
T
h
e
ac
ce
s
s
co
n
tr
o
l
s
ch
em
e
f
o
r
d
ata
u
s
er
is
co
n
tr
o
lled
in
th
e
clo
u
d
s
er
v
er
t
h
at
u
p
d
ates
th
e
d
ata
o
n
ce
th
e
ci
p
h
er
tex
t
is
ex
c
h
an
g
ed
t
h
r
o
u
g
h
th
e
d
ata
o
wn
e
r
.
T
h
e
clu
s
ter
in
g
is
ex
ec
u
ted
b
y
th
e
u
tili
za
tio
n
o
f
d
en
s
ity
-
b
ased
s
p
atial
clu
s
ter
i
n
g
o
f
ap
p
licatio
n
s
with
n
o
is
e
(
DB
S
C
AN)
[
2
6
]
,
[
2
7
]
ap
p
r
o
ac
h
.
B
ased
o
n
th
e
d
ata
p
o
in
ts
,
it
g
r
o
u
p
s
s
im
ilar
d
ata
p
o
in
ts
in
t
o
an
in
d
i
v
id
u
al
g
r
o
u
p
b
y
th
e
u
tili
za
tio
n
o
f
E
u
clid
ea
n
Dis
tan
ce
.
T
h
er
e
ar
e
two
p
ar
am
eter
s
ex
am
in
ed
in
a
DB
SC
AN
a
p
p
r
o
ac
h
wh
ich
ar
e
m
id
p
o
in
ts
an
d
‘
’
.
A
s
ig
n
if
ican
t
aim
o
f
th
is
ap
p
r
o
ac
h
is
to
id
en
tify
th
e
s
tr
u
ctu
r
es
an
d
i
n
teg
r
atio
n
d
ata
ef
f
icien
tly
.
T
h
is
a
p
p
r
o
ac
h
is
h
elp
f
u
l
a
n
d
a
p
p
r
o
p
r
iate
f
o
r
id
en
tify
in
g
p
atter
n
s
an
d
to
p
r
ed
ict
th
e
d
ata
p
o
in
ts
.
T
h
e
clu
s
ter
s
y
s
tem
(
C
S)
in
v
o
l
v
es
n
n
u
m
b
e
r
o
f
d
o
m
ain
s
er
v
e
r
s
an
d
th
e
n
u
m
b
er
o
f
clu
s
ter
ed
d
ata
p
ar
titi
o
n
s
ar
e
ap
p
lied
in
t
o
d
o
m
ain
s
er
v
er
.
E
v
er
y
d
o
m
ai
n
s
er
v
e
r
h
an
d
les
th
e
t
r
ee
f
o
r
o
b
tain
a
b
le
d
ata
p
ar
titi
o
n
s
,
wh
ich
is
d
ev
elo
p
e
d
th
r
o
u
g
h
th
e
Fra
ctal
T
r
ee
I
n
d
ex
,
h
en
ce
n
ee
d
in
g
th
e
m
i
n
im
u
m
in
d
iv
id
u
al
s
ea
r
ch
in
g
tim
e
an
d
ap
p
r
o
p
r
iate
in
s
er
tio
n
s
f
o
r
th
e
r
em
o
v
al
o
f
d
ata.
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
I
n
th
is
r
esear
ch
,
th
e
p
r
o
p
o
s
ed
m
eth
o
d
is
im
p
lem
e
n
ted
u
s
in
g
SB
K
with
ce
r
tain
s
y
s
tem
r
eq
u
ir
em
en
ts
.
T
ab
le
2
r
ep
r
esen
ts
th
e
e
x
p
er
im
en
tal
s
etu
p
o
f
th
e
s
o
f
twar
e
an
d
h
ar
d
war
e
r
eq
u
ir
e
m
en
t
s
o
f
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
.
T
h
e
ef
f
ec
tiv
en
ess
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
is
v
alid
ated
o
n
th
e
b
asis
o
f
two
d
if
f
er
en
t
p
er
f
o
r
m
an
ce
m
etr
ices,
th
r
o
u
g
h
p
u
t a
n
d
laten
cy
.
T
ab
le
2
.
E
x
p
er
im
en
tal
s
etu
p
o
f
th
e
s
o
f
twar
e
an
d
h
ar
d
war
e
r
e
q
u
ir
em
en
ts
C
o
m
p
o
n
e
n
t
s
R
e
mar
k
s
N
o
.
o
f
c
o
m
p
u
t
i
n
g
n
o
d
e
s
4
n
o
d
e
s
C
e
n
t
r
a
l
p
r
o
c
e
ss
i
n
g
u
n
i
t
(
C
P
U
)
4
C
P
U
e
a
c
h
o
f
6
4
-
b
i
t
2
.
6
G
H
z
R
a
n
d
o
m
a
c
c
e
ss
mem
o
r
y
(
R
A
M
)
1
6
G
B
H
a
r
d
d
i
s
k
p
e
r
n
o
d
e
H
D
D
S
i
z
e
3
TB
O
p
e
r
a
t
i
n
g
s
y
st
e
m
W
i
n
d
o
w
s 1
0
O
S
4
.
1
.
P
er
f
o
r
m
a
nce
a
na
ly
s
is
I
n
th
is
s
ec
tio
n
,
th
e
p
r
o
p
o
s
e
d
m
eth
o
d
’
s
p
er
f
o
r
m
an
ce
b
e
n
ch
m
ar
k
i
n
g
is
ev
alu
ated
b
ased
o
n
two
p
er
f
o
r
m
an
ce
m
et
r
ices
o
f
th
e
r
ea
d
a
n
d
wr
ite
o
p
er
atio
n
s
.
I
n
S
ec
tio
n
4
.
1
.
1
a
n
d
4
.
1
.
2
,
th
e
p
e
r
f
o
r
m
an
c
e
b
en
ch
m
ar
k
in
g
o
f
r
ea
d
an
d
wr
i
te
o
p
er
atio
n
s
is
p
r
esen
ted
.
T
h
e
in
d
iv
id
u
al
f
r
am
ewo
r
k
s
lik
e
Kaf
k
a
an
d
SB
K
ar
e
co
m
p
ar
ed
with
th
e
Kaf
k
a
-
ML
b
ased
SB
K
to
v
alid
ate
th
e
o
u
t
co
m
es f
o
r
b
o
th
r
ea
d
an
d
wr
ite
o
p
er
atio
n
s
.
4
.
1
.
1
.
Rea
d
o
pera
t
io
n
T
ab
le
3
an
d
F
ig
u
r
e
3
r
ep
r
esen
t
th
e
r
ea
d
o
p
er
atio
n
Kaf
k
a
an
d
SB
K’
s
th
r
o
u
g
h
p
u
t
p
er
f
o
r
m
a
n
ce
o
n
th
e
b
en
ch
m
ar
k
in
g
task
.
T
ab
le
4
an
d
F
ig
u
r
e
4
d
is
p
lay
th
e
r
ea
d
o
p
er
atio
n
o
f
Kaf
k
a
an
d
SB
K
laten
cy
p
er
f
o
r
m
an
ce
b
en
ch
m
ar
k
in
g
task
.
T
h
e
d
if
f
e
r
en
t
d
ata
b
y
tes
s
u
ch
as
1
0
,
1
0
0
,
1
,
0
0
0
,
1
0
,
0
0
0
,
1
0
0
,
0
0
0
an
d
1
,
000
,
00
0
ar
e
u
s
ed
to
v
alid
ate
th
e
ef
f
ec
tiv
en
ess
o
f
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
.
4
.
1
.
2
.
Writ
e
o
pera
t
io
n
T
a
b
le
5
a
n
d
Fi
g
u
r
e
5
d
is
p
l
a
y
t
h
e
w
r
it
e
o
p
e
r
at
io
n
o
f
K
a
f
k
a
an
d
SB
K
t
h
r
o
u
g
h
p
u
t
p
e
r
f
o
r
m
a
n
ce
b
e
n
c
h
m
a
r
k
i
n
g
tas
k
.
T
a
b
l
e
6
a
n
d
F
ig
u
r
e
6
e
x
h
i
b
it
t
h
e
w
r
it
e
o
p
er
ati
o
n
o
f
K
af
k
a
a
n
d
SB
K
’
s
la
ten
c
y
p
e
r
f
o
r
m
a
n
c
e
b
e
n
c
h
m
a
r
k
i
n
g
t
as
k
.
T
h
e
d
if
f
e
r
e
n
t
d
at
a
b
y
t
es
o
f
1
0
,
1
0
0
,
1
,
0
0
0
,
1
0
,
0
0
0
,
1
0
0
,
0
0
0
a
n
d
1
,
0
0
0
,
0
0
0
ar
e
u
s
ed
to
v
al
id
at
e
t
h
e
ef
f
e
cti
v
e
n
ess
o
f
t
h
e
p
r
o
p
o
s
e
d
m
e
th
o
d
.
T
ab
le
3
.
R
ea
d
o
p
er
atio
n
f
o
r
t
h
r
o
u
g
h
p
u
t
p
er
f
o
r
m
an
ce
M
e
t
h
o
d
s
D
a
t
a
b
y
t
e
s
10
1
0
0
1
,
0
0
0
10
,
000
1
0
0
,
0
0
0
1
,
0
0
0
,
0
0
0
K
a
f
k
a
15
1
1
0
1
8
0
1
3
0
3
6
0
3
1
0
S
B
K
18
1
1
6
1
8
7
1
4
5
3
7
6
3
2
3
K
a
f
k
a
-
M
L
b
a
s
e
d
S
B
K
20
1
2
0
2
0
0
1
5
0
3
8
0
3
3
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
9
9
0
-
1
9
9
9
1996
Fig
u
r
e
3
.
Gr
a
p
h
ical
r
ep
r
esen
tatio
n
o
f
r
ea
d
o
p
er
atio
n
f
o
r
t
h
r
o
u
g
h
p
u
t p
er
f
o
r
m
a
n
ce
Kaf
k
a
a
n
d
SB
K
T
ab
le
4
.
R
ea
d
o
p
er
atio
n
f
o
r
lat
en
cy
p
er
f
o
r
m
a
n
ce
M
e
t
h
o
d
s
D
a
t
a
b
y
t
e
s
10
1
0
0
1
,
0
0
0
1
0
,
0
0
0
1
0
0
,
0
0
0
1
,
0
0
0
,
0
0
0
K
a
f
k
a
80
90
1
7
5
0
9
5
0
6
0
0
80
S
B
K
78
87
1
5
7
8
8
1
0
5
8
0
76
K
a
f
k
a
-
M
L
b
a
s
e
d
S
B
K
70
80
1
5
6
0
8
0
0
5
5
0
70
Fig
u
r
e
4
.
R
ea
d
o
p
er
atio
n
f
o
r
laten
cy
p
er
f
o
r
m
a
n
ce
T
ab
le
5
.
W
r
ite
o
p
er
ati
o
n
f
o
r
th
r
o
u
g
h
p
u
t
p
er
f
o
r
m
an
ce
Kaf
k
a
an
d
SB
K
M
e
t
h
o
d
s
D
a
t
a
b
y
t
e
s
10
1
0
0
1
,
0
0
0
1
0
,
0
0
0
1
0
0
,
0
0
0
1
,
0
0
0
,
0
0
0
K
a
f
k
a
10
1
0
5
1
7
4
1
2
5
3
5
0
3
0
6
S
B
K
13
1
0
9
1
8
5
1
3
5
3
6
0
3
4
8
K
a
f
k
a
-
M
L
b
a
s
e
d
S
B
K
15
1
1
0
1
9
1
1
4
6
3
6
6
3
4
5
Fig
u
r
e
5
.
Gr
a
p
h
ical
r
ep
r
esen
tatio
n
o
f
wr
ite
o
p
er
atio
n
f
o
r
th
r
o
u
g
h
p
u
t p
er
f
o
r
m
a
n
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
K
a
fka
-
ma
ch
in
e
lea
r
n
in
g
b
a
s
e
d
s
to
r
a
g
e
b
en
c
h
ma
r
k
kit
fo
r
esti
ma
tio
n
o
f
…
(
S
a
n
ja
y
K
u
ma
r
N
a
a
z
r
e
V
itta
l R
a
o
)
1997
T
ab
le
6
.
W
r
ite
o
p
er
ati
o
n
f
o
r
la
ten
cy
p
er
f
o
r
m
a
n
ce
M
e
t
h
o
d
s
D
a
t
a
b
y
t
e
s
10
1
0
0
1
,
0
0
0
1
0
,
0
0
0
1
0
0
,
0
0
0
1
,
0
0
0
,
0
0
0
K
a
f
k
a
70
82
1
6
0
0
9
2
8
5
9
0
75
S
B
K
68
80
1
5
8
0
9
1
8
5
6
7
74
K
a
f
k
a
-
M
L
b
a
s
e
d
S
B
K
65
76
1
5
5
0
9
0
0
5
7
0
73
Fig
u
r
e
6
.
W
r
ite
o
p
e
r
atio
n
f
o
r
l
aten
cy
p
er
f
o
r
m
a
n
ce
4
.
2
.
Co
m
pa
ra
t
iv
e
a
na
ly
s
is
T
ab
le
7
ex
h
i
b
its
th
e
c
o
m
p
a
r
ativ
e
an
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
with
th
e
e
x
is
tin
g
s
to
r
ag
e
p
er
f
o
r
m
an
ce
m
eth
o
d
s
s
u
ch
as SB
K_
Kaf
k
a
[
1
6
]
an
d
d
r
ill
d
o
wn
[
2
0
]
.
T
h
is
s
ec
tio
n
d
is
cu
s
s
es
th
e
an
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
b
ased
o
n
th
e
wr
itin
g
o
p
er
atio
n
o
n
d
if
f
e
r
e
n
t
n
u
m
b
er
o
f
d
ata
b
y
tes
f
r
o
m
1
0
to
1
0
0
,
0
0
0
.
T
h
e
ef
f
ec
tiv
en
ess
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
is
v
alid
ated
o
n
two
p
e
r
f
o
r
m
a
n
ce
m
et
r
ics
o
f
th
r
o
u
g
h
p
u
t
an
d
laten
c
y
with
d
if
f
er
en
t
n
u
m
b
er
o
f
b
y
tes.
T
a
b
le
8
r
ep
r
esen
ts
th
e
co
m
p
ar
at
iv
e
an
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
b
ased
o
n
a
s
ea
r
ch
tim
e
with
d
if
f
er
e
n
t d
ata
lev
els.
T
ab
le
7
.
C
o
m
p
a
r
ativ
e
an
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
u
s
in
g
th
r
o
u
g
h
p
u
t a
n
d
l
aten
c
y
P
e
r
f
o
r
ma
n
c
e
me
t
r
i
c
M
e
t
h
o
d
s
D
a
t
a
b
y
t
e
s
10
1
0
0
1
,
0
0
0
1
0
,
0
0
0
1
0
0
,
0
0
0
Th
r
o
u
g
h
p
u
t
(
M
B
s)
S
B
K
_
K
a
f
k
a
[
1
6
]
15
1
1
0
1
8
0
1
3
0
3
6
0
P
r
o
p
o
se
d
K
a
f
k
a
-
M
L
b
a
se
d
S
B
K
20
1
2
0
2
0
0
1
5
0
3
8
0
La
t
e
n
c
y
(
ms)
S
B
K
_
K
a
f
k
a
[
1
6
]
80
90
1
7
5
0
9
5
0
6
0
0
P
r
o
p
o
se
d
K
a
f
k
a
-
M
L
b
a
se
d
S
B
K
70
80
1
5
6
0
8
0
0
5
5
0
T
ab
le
8
.
C
o
m
p
a
r
ativ
e
an
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
u
s
in
g
s
ea
r
ch
tim
e
with
d
if
f
er
e
n
t d
at
a
lev
els
P
e
r
f
o
r
ma
n
c
e
me
t
r
i
c
M
e
t
h
o
d
D
a
t
a
l
e
v
e
l
M
a
i
n
1
2
3
S
e
a
r
c
h
t
i
me
(
ms)
D
r
i
l
l
d
o
w
n
a
p
p
r
o
a
c
h
[
2
0
]
55
60
65
82
P
r
o
p
o
se
d
K
a
f
k
a
-
M
L
b
a
se
d
S
B
K
50
53
62
79
4
.
3
.
Dis
cus
s
io
n
I
n
th
is
s
ec
tio
n
,
th
e
ac
h
iev
e
m
en
t
o
f
th
e
p
r
o
p
o
s
ed
Kaf
k
a
-
ML
b
ased
SB
K
f
r
am
ewo
r
k
i
s
d
is
cu
s
s
ed
alo
n
g
with
th
e
lim
itatio
n
s
o
f
th
e
ex
is
tin
g
m
et
h
o
d
s
.
T
h
e
ex
is
tin
g
wo
r
k
s
h
a
v
e
th
e
li
m
itatio
n
s
o
f
v
ar
ie
d
b
en
ch
m
ar
k
in
g
o
u
tco
m
es
wh
e
n
u
tili
ze
d
with
v
a
r
io
u
s
h
ar
d
w
ar
e
s
etu
p
s
,
lim
ited
m
em
o
r
y
c
ap
ac
ity
,
cr
ea
tio
n
o
f
o
v
er
h
ea
d
,
e
x
ten
d
ed
r
ea
d
o
p
er
a
tio
n
s
th
at
h
am
p
er
ed
th
e
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
,
a
n
d
r
esis
ted
ap
p
r
o
ac
h
wh
e
n
d
ea
lt
with
n
ew
d
ata
ty
p
es
d
u
e
to
th
e
lack
o
f
e
f
f
ec
tiv
e
f
itn
ess
o
f
t
h
e
ex
is
tin
g
ca
teg
o
r
ies.
I
n
o
r
d
e
r
to
o
v
e
r
co
m
e
t
h
ese
lim
itatio
n
s
,
th
is
r
e
s
ea
r
ch
p
r
o
p
o
s
es
th
e
Kaf
k
a
-
ML
b
ased
S
B
K
f
o
r
esti
m
atin
g
th
e
s
to
r
ag
e
p
er
f
o
r
m
an
ce
f
o
r
a
lar
g
e
n
u
m
b
er
o
f
d
ata
f
iles
ef
f
ec
tiv
ely
.
T
h
r
o
u
g
h
in
f
lu
e
n
cin
g
th
e
Kaf
k
a'
s
r
o
b
u
s
t
s
tr
ea
m
in
g
ca
p
ab
ilit
ies
co
m
b
in
ed
with
ML
,
th
e
SB
K
d
y
n
a
m
ically
ad
j
u
s
ts
to
th
e
m
u
tab
le
wo
r
k
l
o
ad
s
,
m
a
k
in
g
s
u
r
e
e
f
f
ec
tiv
e
d
ata
p
r
o
ce
s
s
in
g
an
d
s
to
r
ag
e
m
an
ag
em
en
t.
T
h
e
d
r
ill
d
o
wn
a
p
p
r
o
a
ch
is
u
s
ed
to
m
in
im
ize
th
e
s
to
r
ag
e
r
eq
u
ir
em
e
n
ts
b
y
th
e
u
tili
za
tio
n
o
f
two
b
in
a
r
y
s
tr
ea
m
s
,
k
ey
wo
r
d
h
ea
d
e
r
f
ile
an
d
k
ey
wo
r
d
d
ata
f
ile.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
attain
s
a
m
ax
im
u
m
th
r
o
u
g
h
p
u
t
an
d
m
in
im
u
m
laten
c
y
o
f
2
0
MBs
an
d
7
0
m
s
,
r
esp
ec
tiv
ely
.
T
h
e
co
m
b
in
atio
n
o
f
Kaf
k
a
-
ML
in
to
SB
K
ef
f
ec
tiv
ely
im
p
r
o
v
es
r
ea
l
-
tim
e
d
ata
p
r
o
ce
s
s
in
g
an
d
p
er
f
o
r
m
an
ce
o
p
tim
izatio
n
.
T
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
9
9
0
-
1
9
9
9
1998
Kaf
k
a
-
ML
h
as
th
e
ca
p
ab
ilit
y
to
m
ain
tain
th
e
co
n
tin
u
o
u
s
d
a
ta
s
tr
ea
m
s
wh
ich
en
ab
les
f
o
r
d
y
n
am
ic
wo
r
k
lo
ad
ad
ap
tatio
n
,
r
esu
ltin
g
in
th
e
m
o
s
t e
f
f
ec
tiv
e
s
to
r
ag
e
m
an
a
g
em
e
n
t.
As
co
m
p
ar
ed
with
SB
K_
Kaf
k
a
[
1
6
]
,
th
e
Kaf
k
a
-
ML
-
b
ased
SB
K
p
er
f
o
r
m
s
ef
f
ec
tiv
ely
a
n
d
ex
h
i
b
its
s
u
p
er
io
r
o
u
tco
m
es
b
etter
d
u
e
to
its
r
ea
l
-
tim
e
f
le
x
ib
ilit
y
an
d
s
ca
lab
ilit
y
.
T
h
e
p
r
o
p
o
s
ed
Kaf
k
a
-
ML
-
b
ased
SB
K
ap
p
r
o
ac
h
en
ab
les
f
o
r
ef
f
ec
tiv
e
an
aly
s
is
,
m
ak
in
g
it
ap
p
r
o
p
r
iat
e
f
o
r
ad
v
an
ce
d
an
d
d
ata
-
i
n
ten
s
iv
e
en
v
ir
o
n
m
en
ts
.
Ho
wev
er
,
th
e
Kaf
k
a
-
ML
-
b
ased
SB
K
in
tr
o
d
u
ce
s
ch
allen
g
es
s
u
ch
as
th
e
r
eq
u
ir
em
en
t
f
o
r
ex
p
er
tis
e
in
d
ata
s
tr
ea
m
in
g
an
d
ML
,
wh
ich
c
o
n
s
tr
ain
ts
its
av
ailab
ilit
y
f
o
r
s
o
m
e
u
s
er
s
.
T
h
is
r
esear
ch
aim
s
to
esti
m
ate
th
e
in
teg
r
atio
n
o
f
Kaf
k
a
-
ML
in
t
o
a
SB
K
to
im
p
r
o
v
e
r
ea
l
-
tim
e
d
ata
p
r
o
ce
s
s
in
g
an
d
p
er
f
o
r
m
an
ce
o
p
tim
izatio
n
.
Kaf
k
a
-
ML
-
b
ased
SB
K
d
em
o
n
s
tr
ates
an
ef
f
ec
tiv
e
t
o
o
l
f
o
r
o
p
tim
izin
g
s
to
r
ag
e
p
er
f
o
r
m
an
ce
in
r
ea
l
-
tim
e,
p
r
o
v
id
i
n
g
s
ig
n
if
ica
n
t
ad
v
an
tag
es
o
v
er
t
h
e
ex
is
tin
g
a
p
p
r
o
ac
h
es.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
s
o
lv
es
th
e
d
is
ad
v
an
tag
es
o
f
ex
is
tin
g
m
et
h
o
d
s
th
r
o
u
g
h
in
teg
r
atin
g
th
e
s
tr
en
g
th
o
f
Kaf
k
a
-
ML
an
d
SB
K.
T
h
e
s
ig
n
if
ican
ce
o
f
th
e
r
esear
c
h
lies
in
its
laten
t to
en
h
a
n
ce
th
e
r
eliab
ilit
y
a
n
d
th
r
o
u
g
h
p
u
t
o
f
th
e
SB
K.
5.
CO
NCLU
SI
O
N
T
h
e
Kaf
k
a
-
ML
-
b
ased
SB
K
r
e
p
r
esen
ts
s
ig
n
if
ican
t
ad
v
an
tag
e
s
in
attain
in
g
m
ax
im
u
m
th
r
o
u
g
h
p
u
t
an
d
m
in
im
u
m
laten
cy
o
v
e
r
d
if
f
er
en
t
co
n
f
ig
u
r
atio
n
s
.
T
h
r
o
u
g
h
u
s
in
g
th
e
d
r
ill
-
d
o
wn
f
ea
tu
r
e
with
a
b
in
ar
y
f
ile
s
y
s
tem
,
th
e
f
r
am
ewo
r
k
ef
f
ec
ti
v
ely
m
in
im
izes th
e
d
is
k
s
p
ac
e
n
ec
ess
ities
an
d
im
p
r
o
v
es th
e
s
ea
r
ch
ef
f
ec
tiv
en
ess
co
m
p
ar
ed
to
co
n
v
en
tio
n
al
f
ile
s
y
s
tem
s
.
T
h
is
ap
p
r
o
ac
h
n
o
t
o
n
ly
im
p
r
o
v
es
t
h
e
ef
f
icien
cy
o
f
d
ata
r
etr
iev
al
b
u
t
also
o
p
tim
izes
s
to
r
ag
e
m
an
ag
em
en
t,
m
ak
in
g
it
a
v
alu
ab
le
t
o
o
l
f
o
r
f
in
e
-
tu
n
i
n
g
s
to
r
ag
e
s
y
s
tem
s
an
d
m
an
ag
in
g
an
ticip
ated
wo
r
k
lo
ad
s
.
T
h
e
SB
K
an
d
Dr
ill
d
o
wn
f
ea
tu
r
e
is
im
p
o
r
tan
t
in
f
in
e
-
tu
n
in
g
th
e
s
to
r
ag
e
s
y
s
tem
o
u
tco
m
es
f
o
r
g
u
a
r
an
teein
g
t
h
e
m
ain
te
n
an
ce
o
f
th
e
an
tic
ip
ated
wo
r
k
lo
ad
s
e
f
f
icien
tly
.
B
ec
au
s
e
o
f
th
is
,
o
b
tain
in
g
d
ata
f
r
o
m
th
e
b
in
ar
y
f
ile
s
y
s
tem
is
f
aster
as
it
p
e
r
f
o
r
m
s
as
a
n
ef
f
ec
tiv
e
s
to
r
a
g
e
m
in
im
izatio
n
m
o
d
el
in
th
e
d
r
ill
d
o
wn
s
ea
r
ch
.
T
h
e
p
r
o
p
o
s
ed
Kaf
k
a
-
ML
-
b
ased
SB
K
attain
s
th
e
m
ax
im
u
m
th
r
o
u
g
h
p
u
t
o
f
2
0
MBs
,
1
2
0
MBs
,
2
0
0
MBs
,
1
5
0
MBs
an
d
3
8
0
MBs
a
t
th
e
d
at
a
b
y
tes
o
f
1
0
,
1
0
0
,
1
,
0
0
0
,
1
0
,
0
0
0
a
n
d
1
0
0
,
0
0
0
r
esp
ec
tiv
ely
,
as
co
m
p
ar
ed
to
t
h
e
ex
is
tin
g
m
et
h
o
d
,
SB
K_
Kaf
k
a.
T
h
e
f
u
t
u
r
e
wo
r
k
will
f
o
cu
s
o
n
ex
p
an
d
i
n
g
t
h
e
Kaf
k
a
-
ML
b
ased
SB
K
to
f
u
r
t
h
er
en
h
an
ce
its
d
ata
s
to
r
a
g
e
c
ap
ab
ilit
ies,
aim
in
g
to
a
d
d
r
ess
em
er
g
in
g
ch
allen
g
es
an
d
co
n
tr
ib
u
te
to
a
m
o
r
e
ef
f
ici
en
t sto
r
ag
e
s
o
lu
tio
n
s
in
t
h
e
f
ie
ld
.
RE
F
E
R
E
NC
E
S
[
1
]
M
.
B
i
n
S
a
i
f
,
S
.
M
i
g
l
i
o
r
i
n
i
,
a
n
d
F
.
S
p
o
t
o
,
“
Ef
f
i
c
i
e
n
t
a
n
d
sec
u
r
e
d
i
st
r
i
b
u
t
e
d
d
a
t
a
s
t
o
r
a
g
e
a
n
d
r
e
t
r
i
e
v
a
l
u
si
n
g
i
n
t
e
r
p
l
a
n
e
t
a
r
y
f
i
l
e
sy
st
e
m
a
n
d
b
l
o
c
k
c
h
a
i
n
,
”
F
u
t
u
re
I
n
t
e
r
n
e
t
,
v
o
l
.
1
6
,
n
o
.
3
,
p
p
.
1
–
1
3
,
M
a
r
.
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
f
i
1
6
0
3
0
0
9
8
.
[
2
]
D
.
B
l
u
m
e
t
a
l
.
,
“
B
u
i
l
d
i
n
g
o
p
t
i
m
i
z
a
t
i
o
n
t
e
s
t
i
n
g
f
r
a
m
e
w
o
r
k
(
B
O
P
T
E
S
T
)
f
o
r
s
i
m
u
l
a
t
i
o
n
-
b
a
s
e
d
b
e
n
c
h
m
a
r
k
i
n
g
o
f
c
o
n
t
r
o
l
s
t
r
a
t
e
g
i
e
s
i
n
b
u
i
l
d
i
n
g
s
,
”
J
o
u
r
n
a
l
o
f
B
u
i
l
d
i
n
g
P
e
r
f
o
r
m
a
n
c
e
S
i
m
u
l
a
t
i
o
n
,
v
o
l
.
1
4
,
n
o
.
5
,
p
p
.
5
8
6
–
6
1
0
,
2
0
2
1
,
d
o
i
:
1
0
.
1
0
8
0
/
1
9
4
0
1
4
9
3
.
2
0
2
1
.
1
9
8
6
5
7
4
.
[
3
]
R
.
H
u
i
a
n
d
Y
.
K
a
n
g
,
“
D
e
s
i
g
n
o
f
h
i
g
h
p
e
r
f
o
r
m
a
n
c
e
d
i
s
t
r
i
b
u
t
e
d
st
o
r
a
g
e
s
y
st
e
m,”
i
n
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
C
o
m
p
u
t
e
r
N
e
t
w
o
r
k
S
e
c
u
r
i
t
y
a
n
d
S
o
f
t
w
a
re
En
g
i
n
e
e
r
i
n
g
(
C
N
S
S
E
2
0
2
3
)
,
Ju
n
.
2
0
2
3
,
v
o
l
.
1
2
7
1
4
,
p
p
.
2
9
1
–
2
9
6
,
d
o
i
:
1
0
.
1
1
1
7
/
1
2
.
2
6
8
3
5
4
9
.
[
4
]
S
.
A
h
m
a
d
a
n
d
S
.
M
e
h
f
u
z
,
“
Ef
f
i
c
i
e
n
t
t
i
m
e
-
o
r
i
e
n
t
e
d
l
a
t
e
n
c
y
-
b
a
se
d
s
e
c
u
r
e
d
a
t
a
e
n
c
r
y
p
t
i
o
n
f
o
r
c
l
o
u
d
st
o
r
a
g
e
,
”
C
y
b
e
r
S
e
c
u
ri
t
y
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
2
,
p
p
.
1
–
1
0
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
sa
.
2
0
2
3
.
1
0
0
0
2
7
.
[
5
]
A
.
M
a
n
n
i
,
A
.
C
a
r
o
p
p
o
,
G
.
R
e
sci
o
,
P
.
S
i
c
i
l
i
a
n
o
,
a
n
d
A
.
Le
o
n
e
,
“
B
e
n
c
h
m
a
r
k
i
n
g
o
f
c
o
n
t
a
c
t
l
e
ss
h
e
a
r
t
r
a
t
e
m
e
a
s
u
r
e
me
n
t
s
y
st
e
ms
i
n
A
R
M
-
b
a
se
d
e
m
b
e
d
d
e
d
p
l
a
t
f
o
r
ms
,
”
S
e
n
so
rs
,
v
o
l
.
2
3
,
n
o
.
7
,
p
p
.
1
–
1
5
,
M
a
r
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
3
0
7
3
5
0
7
.
[
6
]
V
.
K
j
o
r
v
e
z
i
r
o
sk
i
a
n
d
S
.
F
i
l
i
p
o
sk
a
,
“
K
u
b
e
r
n
e
t
e
s
d
i
st
r
i
b
u
t
i
o
n
s
f
o
r
t
h
e
e
d
g
e
:
s
e
r
v
e
r
l
e
ss
p
e
r
f
o
r
ma
n
c
e
e
v
a
l
u
a
t
i
o
n
,
”
T
h
e
J
o
u
r
n
a
l
o
f
S
u
p
e
r
c
o
m
p
u
t
i
n
g
,
v
o
l
.
7
8
,
n
o
.
1
1
,
p
p
.
1
3
7
2
8
–
1
3
7
5
5
,
J
u
l
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
1
2
2
7
-
0
2
2
-
0
4
4
3
0
-
6.
[
7
]
E.
G
a
mess
a
n
d
S
.
H
e
r
n
a
n
d
e
z
,
“
P
e
r
f
o
r
ma
n
c
e
e
v
a
l
u
a
t
i
o
n
o
f
d
i
f
f
e
r
e
n
t
r
a
s
p
b
e
r
r
y
P
i
m
o
d
e
l
s
f
o
r
a
b
r
o
a
d
sp
e
c
t
r
u
m
o
f
i
n
t
e
r
e
s
t
s,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
A
d
v
a
n
c
e
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
1
3
,
n
o
.
2
,
p
p
.
8
1
9
–
8
2
9
,
2
0
2
2
,
d
o
i
:
1
0
.
1
4
5
6
9
/
I
JA
C
S
A
.
2
0
2
2
.
0
1
3
0
2
9
5
.
[
8
]
I
.
U
.
A
k
g
u
n
,
A
.
S
.
A
y
d
i
n
,
A
.
S
h
a
i
k
h
,
L
.
V
e
l
i
k
o
v
,
a
n
d
E.
Z
a
d
o
k
,
“
A
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
f
r
a
m
e
w
o
r
k
t
o
i
mp
r
o
v
e
st
o
r
a
g
e
s
y
st
e
m
p
e
r
f
o
r
m
a
n
c
e
,
”
i
n
Pro
c
e
e
d
i
n
g
s
o
f
t
h
e
1
3
t
h
A
C
M
Wo
r
k
sh
o
p
o
n
H
o
t
T
o
p
i
c
s
i
n
S
t
o
r
a
g
e
a
n
d
Fi
l
e
S
y
st
e
m
s
,
Ju
l
.
2
0
2
1
,
p
p
.
9
4
–
1
0
2
,
d
o
i
:
1
0
.
1
1
4
5
/
3
4
6
5
3
3
2
.
3
4
7
0
8
7
5
.
[
9
]
A
.
L
a
z
i
d
i
s
,
K
.
T
s
a
k
o
s
,
a
n
d
E
.
G
.
M
.
P
e
t
r
a
k
i
s
,
“
P
u
b
l
i
s
h
–
s
u
b
s
c
r
i
b
e
a
p
p
r
o
a
c
h
e
s
f
o
r
t
h
e
I
o
T
a
n
d
t
h
e
c
l
o
u
d
:
f
u
n
c
t
i
o
n
a
l
a
n
d
p
e
r
f
o
r
m
a
n
c
e
e
v
a
l
u
a
t
i
o
n
o
f
o
p
e
n
-
s
o
u
r
c
e
s
y
s
t
e
m
s
,
”
I
n
t
e
r
n
e
t
o
f
T
h
i
n
g
s
,
v
o
l
.
1
9
,
p
p
.
1
–
4
7
,
A
u
g
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
o
t
.
2
0
2
2
.
1
0
0
5
3
8
.
[
1
0
]
L.
M
.
L
i
m,
J.
-
W
.
P
a
r
k
,
a
n
d
K
.
H
a
d
i
n
o
t
o
,
“
B
e
n
c
h
mar
k
i
n
g
t
h
e
s
o
l
u
b
i
l
i
t
y
e
n
h
a
n
c
e
m
e
n
t
a
n
d
s
t
o
r
a
g
e
s
t
a
b
i
l
i
t
y
o
f
a
mo
r
p
h
o
u
s
d
r
u
g
–
p
o
l
y
e
l
e
c
t
r
o
l
y
t
e
n
a
n
o
p
l
e
x
a
g
a
i
n
st
c
o
-
a
mo
r
p
h
o
u
s
f
o
r
mu
l
a
t
i
o
n
o
f
t
h
e
same
d
r
u
g
,
”
P
h
a
rm
a
c
e
u
t
i
c
s
,
v
o
l
.
1
4
,
n
o
.
5
,
p
p
.
1
–
2
4
,
M
a
y
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
p
h
a
r
m
a
c
e
u
t
i
c
s1
4
0
5
0
9
7
9
.
[
1
1
]
C
.
M
a
r
t
í
n
,
P
.
L
a
n
g
e
n
d
o
e
r
f
e
r
,
P
.
S
.
Za
r
r
i
n
,
M
.
D
í
a
z
,
a
n
d
B
.
R
u
b
i
o
,
“
K
a
f
k
a
-
M
L:
c
o
n
n
e
c
t
i
n
g
t
h
e
d
a
t
a
s
t
r
e
a
m
w
i
t
h
M
L/
A
I
f
r
a
mew
o
r
k
s,”
F
u
t
u
re
G
e
n
e
r
a
t
i
o
n
C
o
m
p
u
t
e
r
S
y
st
e
m
s
,
v
o
l
.
1
2
6
,
p
p
.
1
5
–
3
3
,
Jan
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
f
u
t
u
r
e
.
2
0
2
1
.
0
7
.
0
3
7
.
[
1
2
]
H
.
B
.
S
.
R
e
d
d
y
,
R
.
R
.
S
.
R
e
d
d
y
,
R
.
J
o
n
n
a
l
a
g
a
d
d
a
,
P
.
S
i
n
g
h
,
a
n
d
A
.
G
o
g
i
n
e
n
i
,
“
A
n
a
l
y
si
s
o
f
t
h
e
u
n
e
x
p
l
o
r
e
d
s
e
c
u
r
i
t
y
i
s
su
e
s c
o
mm
o
n
t
o
a
l
l
t
y
p
e
s
o
f
N
o
S
Q
L
d
a
t
a
b
a
ses,
”
A
si
a
n
J
o
u
r
n
a
l
o
f
R
e
se
a
rc
h
i
n
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
1
4
,
n
o
.
1
,
p
p
.
1
–
1
2
,
M
a
y
2
0
2
2
,
d
o
i
:
1
0
.
9
7
3
4
/
a
j
r
c
o
s/
2
0
2
2
/
v
1
4
i
1
3
0
3
2
3
.
[
1
3
]
M
.
A
.
M
h
a
n
a
,
A
.
K
h
a
l
i
f
e
h
,
a
n
d
S
.
A
l
o
u
n
e
h
,
“
P
e
r
f
o
r
ma
n
c
e
c
o
m
p
a
r
i
so
n
o
f
b
i
g
d
a
t
a
p
r
o
c
e
ssi
n
g
u
t
i
l
i
z
i
n
g
S
c
i
D
B
a
n
d
A
p
a
c
h
e
A
c
c
u
m
u
l
o
d
a
t
a
b
a
ses
,
”
i
n
2
0
2
2
S
e
v
e
n
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Fo
g
a
n
d
M
o
b
i
l
e
E
d
g
e
C
o
m
p
u
t
i
n
g
(
FM
EC
)
,
D
e
c
.
2
0
2
2
,
p
p
.
1
–
5
,
d
o
i
:
1
0
.
1
1
0
9
/
F
M
EC
5
7
1
8
3
.
2
0
2
2
.
1
0
0
6
2
5
1
3
.
[
1
4
]
N
.
V
.
P
a
t
i
l
,
C
.
R
.
K
r
i
sh
n
a
,
a
n
d
K
.
K
u
mar,
“
K
S
-
D
D
o
S
:
K
a
f
k
a
s
t
r
e
a
ms
-
b
a
s
e
d
c
l
a
ss
i
f
i
c
a
t
i
o
n
a
p
p
r
o
a
c
h
f
o
r
D
D
o
S
a
t
t
a
c
k
s,
”
T
h
e
J
o
u
rn
a
l
o
f
S
u
p
e
rc
o
m
p
u
t
i
n
g
,
v
o
l
.
7
8
,
n
o
.
6
,
p
p
.
8
9
4
6
–
8
9
7
6
,
A
p
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
2
2
7
-
0
2
1
-
0
4
2
4
1
-
1.
[
1
5
]
H
.
Ji
n
,
W
.
G
.
C
h
o
i
,
J.
C
h
o
i
,
H
.
S
u
n
g
,
a
n
d
S
.
P
a
r
k
,
“
I
mp
r
o
v
e
m
e
n
t
o
f
R
o
c
k
s
D
B
p
e
r
f
o
r
m
a
n
c
e
v
i
a
l
a
r
g
e
-
s
c
a
l
e
p
a
r
a
met
e
r
a
n
a
l
y
s
i
s a
n
d
o
p
t
i
m
i
z
a
t
i
o
n
,
”
J
o
u
r
n
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
Pro
c
e
ss
i
n
g
S
y
st
e
m
s
,
v
o
l
.
1
8
,
n
o
.
3
,
p
p
.
3
7
4
–
3
8
8
,
Ju
n
.
2
0
2
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
K
a
fka
-
ma
ch
in
e
lea
r
n
in
g
b
a
s
e
d
s
to
r
a
g
e
b
en
c
h
ma
r
k
kit
fo
r
esti
ma
tio
n
o
f
…
(
S
a
n
ja
y
K
u
ma
r
N
a
a
z
r
e
V
itta
l R
a
o
)
1999
[
1
6
]
K
.
D
.
H
a
r
t
o
m
o
,
A
.
F
.
D
a
r
u
,
a
n
d
H
.
D
.
P
u
r
n
o
m
o
,
“
A
n
e
w
a
p
p
r
o
a
c
h
o
f
s
c
a
l
a
b
l
e
t
r
a
f
f
i
c
c
a
p
t
u
r
e
m
o
d
e
l
w
i
t
h
P
i
c
l
u
s
t
e
r
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
E
l
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
1
3
,
n
o
.
2
,
p
p
.
2
1
8
6
–
2
1
9
6
,
A
p
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
3
i
2
.
p
p
2
1
8
6
-
2
1
9
6
.
[
1
7
]
K
.
M
u
n
e
g
o
w
d
a
a
n
d
N
.
V
.
S
a
n
j
a
y
K
u
mar,
“
D
e
si
g
n
a
n
d
i
mp
l
e
m
e
n
t
a
t
i
o
n
o
f
st
o
r
a
g
e
b
e
n
c
h
mar
k
k
i
t
,
”
i
n
Em
e
r
g
i
n
g
R
e
se
a
rc
h
i
n
C
o
m
p
u
t
i
n
g
,
I
n
f
o
rm
a
t
i
o
n
,
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s:
ER
C
I
C
A
2
0
2
0
,
v
o
l
.
2
,
S
p
r
i
n
g
e
r
S
i
n
g
a
p
o
r
e
,
2
0
2
2
,
p
p
.
4
5
–
62
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
981
-
16
-
1
3
4
2
-
5
_
5
.
[
1
8
]
J.
G
o
m
e
z
-
L
u
n
a
,
I
.
El
H
a
j
j
,
I
.
F
e
r
n
a
n
d
e
z
,
C
.
G
i
a
n
n
o
u
l
a
,
G
.
F
.
O
l
i
v
e
i
r
a
,
a
n
d
O
.
M
u
t
l
u
,
“
B
e
n
c
h
mar
k
i
n
g
a
n
e
w
p
a
r
a
d
i
g
m
:
Ex
p
e
r
i
m
e
n
t
a
l
a
n
a
l
y
si
s
a
n
d
c
h
a
r
a
c
t
e
r
i
z
a
t
i
o
n
o
f
a
r
e
a
l
p
r
o
c
e
s
si
n
g
-
in
-
m
e
mo
r
y
sy
st
e
m,
”
I
EEE
Ac
c
e
ss
,
v
o
l
.
1
0
,
p
p
.
5
2
5
6
5
–
5
2
6
0
8
,
M
a
y
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
2
.
3
1
7
4
1
0
1
.
[
1
9
]
K
.
M
u
n
e
g
o
w
d
a
a
n
d
N
.
V
.
S
a
n
j
a
y
K
u
mar,
“
S
L
C
:
sl
i
d
i
n
g
l
a
t
e
n
c
y
c
o
v
e
r
a
g
e
f
a
c
t
o
r
s
f
o
r
o
p
t
i
m
a
l
p
e
r
f
o
r
ma
n
c
e
b
e
n
c
h
m
a
r
k
i
n
g
o
f
st
o
r
a
g
e
s
y
st
e
ms,
”
i
n
2
0
2
2
3
r
d
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
f
o
r
Em
e
rg
i
n
g
T
e
c
h
n
o
l
o
g
y
(
I
N
C
ET)
,
M
a
y
2
0
2
2
,
p
p
.
1
–
8
,
d
o
i
:
1
0
.
1
1
0
9
/
I
N
C
ET5
4
5
3
1
.
2
0
2
2
.
9
8
2
5
1
7
0
.
[
2
0
]
M
.
G
o
t
z
,
S
.
K
h
r
i
j
i
,
R
.
C
h
e
o
u
r
,
W
.
A
r
i
e
f
,
a
n
d
O
.
K
a
n
o
u
n
,
“
B
e
n
c
h
mar
k
i
n
g
-
b
a
s
e
d
i
n
v
e
st
i
g
a
t
i
o
n
o
n
e
n
e
r
g
y
e
f
f
i
c
i
e
n
c
y
o
f
l
o
w
-
p
o
w
e
r
mi
c
r
o
c
o
n
t
r
o
l
l
e
r
s,”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
I
n
st
r
u
m
e
n
t
a
t
i
o
n
a
n
d
M
e
a
su
r
e
m
e
n
t
,
v
o
l
.
6
9
,
n
o
.
1
0
,
p
p
.
7
5
0
5
–
7
5
1
2
,
O
c
t
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
M
.
2
0
2
0
.
2
9
8
2
8
1
0
.
[
2
1
]
N
.
R
a
g
a
v
a
n
a
n
d
C
.
Y
.
R
u
b
a
v
a
t
h
i
,
“
A
n
o
v
e
l
b
i
g
d
a
t
a
s
t
o
r
a
g
e
r
e
d
u
c
t
i
o
n
m
o
d
e
l
f
o
r
d
r
i
l
l
d
o
w
n
s
e
a
r
c
h
,
”
C
o
m
p
u
t
e
r
S
y
st
e
m
s
S
c
i
e
n
c
e
a
n
d
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
4
1
,
n
o
.
1
,
p
p
.
3
7
3
–
3
8
7
,
2
0
2
2
,
d
o
i
:
1
0
.
3
2
6
0
4
/
c
sse.
2
0
2
2
.
0
2
0
4
5
2
.
[
2
2
]
J.
C
h
o
u
a
n
d
S
.
H
s
u
,
“
A
u
t
o
ma
t
e
d
p
r
e
d
i
c
t
i
o
n
s
y
st
e
m
o
f
h
o
u
se
h
o
l
d
e
n
e
r
g
y
c
o
n
s
u
m
p
t
i
o
n
i
n
c
i
t
i
e
s
u
si
n
g
w
e
b
c
r
a
w
l
e
r
a
n
d
o
p
t
i
mi
z
e
d
a
r
t
i
f
i
c
i
a
l
i
n
t
e
l
l
i
g
e
n
c
e
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
E
n
e
r
g
y
Re
se
a
rc
h
,
v
o
l
.
4
6
,
n
o
.
1
,
p
p
.
3
1
9
–
3
3
9
,
Ja
n
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
2
/
e
r
.
6
7
4
2
.
[
2
3
]
S.
-
H
.
C
h
a
e
,
S
.
-
M
.
B
a
e
k
,
J
.
Le
e
,
a
n
d
K
.
-
J.
C
h
o
,
“
A
g
i
l
e
a
n
d
e
n
e
r
g
y
-
e
f
f
i
c
i
e
n
t
j
u
m
p
i
n
g
–
c
r
a
w
l
i
n
g
r
o
b
o
t
t
h
r
o
u
g
h
r
a
p
i
d
t
r
a
n
si
t
i
o
n
o
f
l
o
c
o
m
o
t
i
o
n
a
n
d
e
n
h
a
n
c
e
d
j
u
mp
i
n
g
h
e
i
g
h
t
a
d
j
u
s
t
me
n
t
,
”
I
EE
E/
A
S
M
E
T
ra
n
s
a
c
t
i
o
n
s o
n
Me
c
h
a
t
r
o
n
i
c
s
,
v
o
l
.
2
7
,
n
o
.
6
,
p
p
.
5
8
9
0
–
5
9
0
1
,
D
e
c
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
T
M
E
C
H
.
2
0
2
2
.
3
1
9
0
6
7
3
.
[
2
4
]
J.
M
a
r
y
A
r
o
c
k
i
a
m
a
n
d
A
.
C
.
S
e
r
a
p
h
i
m
P
u
s
h
p
a
n
a
t
h
a
n
,
“
M
a
p
R
e
d
u
c
e
-
i
t
e
r
a
t
i
v
e
su
p
p
o
r
t
v
e
c
t
o
r
m
a
c
h
i
n
e
c
l
a
ssi
f
i
e
r
:
n
o
v
e
l
f
r
a
u
d
d
e
t
e
c
t
i
o
n
s
y
s
t
e
ms
i
n
h
e
a
l
t
h
c
a
r
e
i
n
su
r
a
n
c
e
i
n
d
u
st
r
y
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
E
l
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
En
g
i
n
e
e
r
i
n
g
,
v
o
l
.
1
3
,
n
o
.
1
,
p
p
.
7
5
6
–
7
6
9
,
F
e
b
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
3
i
1
.
p
p
7
5
6
-
7
6
9
.
[
2
5
]
M
.
B
.
A
l
-
M
a
s
a
d
e
h
,
M
.
S
.
A
z
mi
,
a
n
d
S
.
S
.
S
y
e
d
A
h
m
a
d
,
“
T
i
n
y
d
a
t
a
b
l
o
c
k
i
n
s
a
v
i
n
g
H
a
d
o
o
p
d
i
s
t
r
i
b
u
t
e
d
f
i
l
e
sy
s
t
e
m
w
a
s
t
e
d
memo
r
y
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
1
3
,
n
o
.
2
,
p
p
.
1
7
5
7
–
1
7
7
2
,
A
p
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
3
i
2
.
p
p
1
7
5
7
-
1
7
7
2
.
[
2
6
]
V
.
D
.
B
a
b
u
a
n
d
K
.
M
a
l
a
t
h
i
,
“
La
r
g
e
d
a
t
a
se
t
p
a
r
t
i
t
i
o
n
i
n
g
u
si
n
g
e
n
se
mb
l
e
p
a
r
t
i
t
i
o
n
-
b
a
s
e
d
c
l
u
s
t
e
r
i
n
g
w
i
t
h
ma
j
o
r
i
t
y
v
o
t
i
n
g
t
e
c
h
n
i
q
u
e
,
”
I
n
d
o
n
e
si
a
n
J
o
u
r
n
a
l
o
f
E
l
e
c
t
r
i
c
a
l
En
g
i
n
e
e
ri
n
g
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
2
9
,
n
o
.
2
,
p
p
.
8
3
8
–
8
4
4
,
F
e
b
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
e
c
s.
v
2
9
.
i
2
.
p
p
8
3
8
-
8
4
4
.
[
2
7
]
N
.
M
.
M
a
h
f
u
z
,
M
.
Y
u
so
f
f
,
a
n
d
Z
.
I
d
r
u
s,
“
C
l
u
s
t
e
r
i
n
g
h
e
t
e
r
o
g
e
n
e
o
u
s
c
a
t
e
g
o
r
i
c
a
l
d
a
t
a
u
si
n
g
e
n
h
a
n
c
e
d
m
i
n
i
b
a
t
c
h
K
-
me
a
n
s
w
i
t
h
e
n
t
r
o
p
y
d
i
s
t
a
n
c
e
mea
s
u
r
e
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
t
ri
c
a
l
a
n
d
C
o
m
p
u
t
e
r
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
1
3
,
n
o
.
1
,
p
p
.
1
0
4
8
–
1
0
5
9
,
F
e
b
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
3
i
1
.
p
p
1
0
4
8
-
1
0
5
9
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
S
a
n
j
a
y
K
u
m
a
r
N
a
a
z
r
e
Vitta
l
Ra
o
is
p
r
o
fe
ss
o
r
i
n
t
h
e
De
p
a
rt
m
e
n
t
o
f
C
o
m
p
u
ter
S
c
ien
c
e
a
n
d
En
g
i
n
e
e
rin
g
,
Ka
l
p
a
taru
In
stit
u
te
o
f
Tec
h
n
o
lo
g
y
,
Ti
p
tu
r.
He
P
u
rsu
e
d
h
is
P
h
.
D
.
d
e
g
re
e
i
n
c
o
m
p
u
ter
sc
ien
c
e
a
n
d
e
n
g
i
n
e
e
rin
g
a
t
Vis
v
e
sv
a
ra
y
a
Tec
h
n
o
lo
g
ica
l
U
n
iv
e
rsit
y
,
Be
lag
a
v
i,
Ka
rn
a
tak
a
,
I
n
d
ia.
He
Ho
ld
s
a
M
.
Tec
h
.
a
n
d
B.
E
.
d
e
g
r
e
e
in
c
o
m
p
u
ter
sc
ien
c
e
a
n
d
e
n
g
in
e
e
rin
g
a
t
VTU,
Be
lag
a
v
i.
His
re
se
a
rc
h
a
re
a
s
a
re
:
b
ig
d
a
ta
a
n
d
st
o
ra
g
e
sy
ste
m
b
e
n
c
h
m
a
rk
in
g
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
sto
ra
g
e
sy
ste
m
s,
p
e
rf
o
rm
a
n
c
e
a
n
a
ly
sis,
a
n
a
ly
ti
c
s
,
a
n
d
d
istri
b
u
ted
s
y
ste
m
s.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
sa
n
jay
n
v
@
g
m
a
il
.
c
o
m
.
Ani
th
a
Chi
k
k
a
n
a
y
a
k
a
n
a
h
a
ll
i
L
o
k
e
sh
K
u
m
a
r
is
p
ro
fe
ss
o
r
in
t
h
e
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
a
n
d
En
g
in
e
e
ri
n
g
,
Ka
lp
a
tar
u
In
stit
u
te
o
f
Tec
h
n
o
lo
g
y
,
Ti
p
t
u
r.
S
h
e
p
u
rsu
e
d
h
e
r
P
h
.
D
.
d
e
g
re
e
i
n
c
o
m
p
u
ter
sc
ien
c
e
a
n
d
e
n
g
i
n
e
e
rin
g
a
t
Visv
e
sv
a
ra
y
a
Tec
h
n
o
lo
g
ica
l
Un
iv
e
rsity
,
Be
lag
a
v
i,
Ka
rn
a
tak
a
,
In
d
ia.
S
h
e
h
a
s
p
u
b
l
ish
e
d
se
v
e
ra
l
re
se
a
rc
h
p
a
p
e
rs
,
in
tern
a
ti
o
n
a
l
c
o
n
fe
re
n
c
e
p
a
p
e
rs
sin
c
e
2
0
1
1
,
S
h
e
is
a
n
a
c
ti
v
e
m
e
m
b
e
r
o
f
IS
T
E.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
c
lan
it
h
a
@g
m
a
il
.
c
o
m
o
r
k
it
a
n
it
h
a
1
@g
m
a
il
.
c
o
m
.
S
u
b
h
a
sh
K
a
m
b
le
re
c
e
iv
e
d
t
h
e
B.
E.
d
e
g
re
e
i
n
c
o
m
p
u
ter
sc
ien
c
e
a
n
d
e
n
g
i
n
e
e
rin
g
fro
m
Visv
e
sv
a
ra
y
a
Tec
h
n
o
lo
g
ica
l
Un
i
v
e
rsity
,
Ka
rn
a
tak
a
,
I
n
d
ia,
i
n
2
0
0
6
a
n
d
t
h
e
M
.
E.
d
e
g
re
e
i
n
c
o
m
p
u
ter
sc
ien
c
e
a
n
d
e
n
g
i
n
e
e
rin
g
fro
m
UV
CE,
Be
n
g
a
l
u
ru
,
Ba
n
g
a
lo
re
Un
iv
e
rsit
y
,
Be
n
g
a
lu
r
u
,
Ka
rn
a
tak
a
,
in
2
0
0
9
.
He
is
c
u
r
re
n
tl
y
p
u
rsu
i
n
g
a
P
h
.
D.
d
e
g
re
e
in
c
o
m
p
u
ter
sc
ien
c
e
a
n
d
e
n
g
in
e
e
rin
g
a
t
Ba
n
g
a
l
o
re
Un
i
v
e
rsity
,
Be
n
g
a
l
u
ru
,
In
d
ia.
He
h
a
s
p
u
b
li
sh
e
d
5
a
rti
c
les
i
n
re
fe
re
e
d
in
tern
a
ti
o
n
a
l
jo
u
rn
a
ls
a
n
d
c
o
n
fe
r
e
n
c
e
s
.
His
re
se
a
rc
h
i
n
tere
st
in
c
l
u
d
e
s
d
a
ta
m
in
in
g
,
m
a
c
h
i
n
e
lea
rn
in
g
,
a
n
d
b
i
g
d
a
ta an
a
ly
ti
c
s
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
s
u
b
h
a
sh
k
a
m
b
le@
g
a
t.
a
c
.
i
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.