I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
2
,
A
p
r
il
20
25
,
p
p
.
2
1
7
2
~
2
1
8
0
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
2
.
pp
2
1
7
2
-
2
1
8
0
2172
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Applica
tion o
f
ma
chine learni
ng
me
thods
t
o
ana
ly
sis
and
ev
a
lua
tion o
f
dist
a
nce educatio
n
Ainu
r
M
uk
hiy
a
din
1
,
M
a
na
r
g
ul M
uk
a
s
hev
a
2
,
Ulzha
n M
a
k
ha
zha
no
v
a
1
,
Ais
lu K
a
s
s
ek
ey
ev
a
1
,
G
ulm
ira
Azie
v
a
1
,
Z
ha
na
t
K
e
nzheba
y
ev
a
3
,
Alf
iy
a
Abdra
kh
m
a
no
v
a
1
1
D
e
p
a
r
t
me
n
t
o
f
I
n
f
o
r
mat
i
o
n
sy
s
t
e
ms
,
Eu
r
a
s
i
a
n
N
a
t
i
o
n
a
l
U
n
i
v
e
r
si
t
y
n
a
me
d
L.
N
.
G
u
m
i
l
y
o
v
,
A
st
a
n
a
,
R
e
p
u
b
l
i
c
o
f
K
a
z
a
k
h
st
a
n
2
D
i
g
i
t
a
l
Le
a
r
n
i
n
g
R
e
se
a
r
c
h
L
a
b
o
r
a
t
o
r
y
,
N
a
t
i
o
n
a
l
A
c
a
d
e
m
y
o
f
E
d
u
c
a
t
i
o
n
n
a
med
a
f
t
e
r
I
.
A
l
t
y
n
s
a
r
i
n
,
A
s
t
a
n
a
,
R
e
p
u
b
l
i
c
o
f
K
a
z
a
k
h
st
a
n
3
D
e
p
a
r
t
me
n
t
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
t
t
h
e
C
a
s
p
i
a
n
U
n
i
v
e
r
si
t
y
o
f
Te
c
h
n
o
l
o
g
y
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
n
a
m
e
d
a
f
t
e
r
S
h
.
Y
e
s
sen
o
v
,
A
k
t
a
u
,
R
e
p
u
b
l
i
c
o
f
K
a
z
a
k
h
st
a
n
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
1
3
,
2
0
2
4
R
ev
is
ed
Oct
2
6
,
2
0
2
4
Acc
ep
ted
No
v
2
0
,
2
0
2
4
In
re
c
e
n
t
d
e
c
a
d
e
s,
d
istan
c
e
lea
rn
in
g
h
a
s
b
e
c
o
m
e
a
n
e
ss
e
n
ti
a
l
c
o
m
p
o
n
e
n
t
o
f
th
e
m
o
d
e
r
n
e
d
u
c
a
ti
o
n
a
l
sy
ste
m
,
p
r
o
v
i
d
i
n
g
st
u
d
e
n
ts
wit
h
fle
x
i
b
il
it
y
a
n
d
a
c
c
e
s
s
to
k
n
o
wle
d
g
e
re
g
a
rd
les
s
o
f
lo
c
a
ti
o
n
.
T
h
is
p
a
p
e
r
d
isc
u
ss
e
s
c
re
a
ti
n
g
a
h
y
b
rid
m
a
c
h
in
e
-
lea
rn
i
n
g
m
o
d
e
l
f
o
r
a
ss
e
ss
in
g
th
e
q
u
a
li
t
y
o
f
d
istan
c
e
lea
rn
in
g
b
a
se
d
o
n
su
r
v
e
y
d
a
ta.
Th
e
m
o
d
e
l
c
o
m
b
in
e
s
two
fe
a
tu
re
e
x
trac
ti
o
n
m
e
th
o
d
s:
Term
fre
q
u
e
n
c
y
-
in
v
e
rse
d
o
c
u
m
e
n
t
fre
q
u
e
n
c
y
(TF
-
ID
F
)
a
n
d
Wo
rd
2
Ve
c
.
Co
m
b
in
i
n
g
th
e
se
m
e
th
o
d
s
a
ll
o
ws
fo
r
a
m
o
re
c
o
m
p
lete
a
n
d
a
c
c
u
ra
te
re
p
re
se
n
tati
o
n
o
f
tex
t
d
a
ta,
imp
ro
v
in
g
th
e
q
u
a
li
ty
o
f
m
a
c
h
in
e
lea
rn
in
g
m
o
d
e
ls.
T
h
e
stu
d
y
a
ims
to
d
e
v
e
lo
p
a
n
d
e
v
a
lu
a
te
t
h
e
e
ffe
c
ti
v
e
n
e
ss
o
f
th
e
p
ro
p
o
se
d
h
y
b
rid
m
o
d
e
l
fo
r
a
n
a
ly
z
in
g
su
r
v
e
y
d
a
ta
a
n
d
a
ss
e
ss
in
g
t
h
e
q
u
a
l
it
y
o
f
d
istan
c
e
lea
rn
i
n
g
.
Th
e
p
a
p
e
r
c
o
n
sid
e
rs
th
e
tas
k
s
o
f
c
o
ll
e
c
ti
n
g
a
n
d
p
re
p
ro
c
e
ss
in
g
tex
t
d
a
ta,
e
x
p
e
rime
n
tally
c
o
m
p
a
rin
g
v
a
rio
u
s
fe
a
tu
re
e
x
trac
ti
o
n
m
e
th
o
d
s
a
n
d
th
e
ir
c
o
m
b
in
a
ti
o
n
s,
train
in
g
a
n
d
e
v
a
lu
a
ti
n
g
a
m
a
c
h
in
e
lea
rn
in
g
m
o
d
e
l
b
a
se
d
o
n
a
c
o
m
b
in
a
ti
o
n
o
f
TF
-
IDF
a
n
d
Wo
r
d
2
Ve
c
fe
a
tu
re
s,
a
s
we
ll
a
s
a
n
a
ly
z
in
g
th
e
re
su
lt
s
a
n
d
a
ss
e
ss
in
g
t
h
e
e
ffe
c
ti
v
e
n
e
ss
o
f
th
e
p
ro
p
o
se
d
m
o
d
e
l
u
sin
g
v
a
rio
u
s
m
e
tri
c
s.
In
c
o
n
c
l
u
s
io
n
,
th
e
p
r
o
sp
e
c
ts
fo
r
f
u
rth
e
r
d
e
v
e
lo
p
m
e
n
t
a
n
d
a
p
p
li
c
a
ti
o
n
o
f
t
h
e
p
ro
p
o
se
d
m
o
d
e
l
i
n
e
d
u
c
a
ti
o
n
a
l
in
sti
tu
ti
o
n
s
to
imp
ro
v
e
th
e
q
u
a
li
ty
o
f
d
istan
c
e
lea
rn
i
n
g
a
r
e
d
isc
u
ss
e
d
.
K
ey
w
o
r
d
s
:
Dis
tan
ce
lear
n
in
g
Ma
ch
in
e
lear
n
in
g
Qu
ality
ass
es
s
m
en
t
T
er
m
f
r
e
q
u
en
c
y
-
in
v
e
r
s
e
d
o
cu
m
e
n
t f
r
eq
u
en
cy
T
ex
t d
ata
an
aly
s
is
W
o
r
d
2
Vec
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ma
n
ar
g
u
l M
u
k
ash
ev
a
Dig
ital L
ea
r
n
in
g
R
esear
ch
L
a
b
o
r
ato
r
y
,
Natio
n
al
Aca
d
e
m
y
o
f
E
d
u
ca
tio
n
n
am
e
d
af
ter
I
.
Alty
n
s
ar
in
0
1
0
0
0
0
Ast
an
a,
R
ep
u
b
lic
o
f
K
az
ak
h
s
tan
E
m
ail: m
an
ar
g
u
l.
m
u
k
ash
e
v
a
@
m
ail.
r
u
1.
I
NT
RO
D
UCT
I
O
N
I
n
r
ec
en
t
d
ec
a
d
es,
d
is
tan
ce
lear
n
in
g
[
1
]
–
[
3
]
h
as
b
ec
o
m
e
an
ess
en
tial
co
m
p
o
n
en
t
o
f
th
e
m
o
d
er
n
ed
u
ca
tio
n
al
s
y
s
tem
[
4
]
,
p
r
o
v
i
d
in
g
s
tu
d
en
ts
with
f
lex
ib
ilit
y
an
d
ac
ce
s
s
to
k
n
o
wled
g
e
r
eg
ar
d
less
o
f
lo
ca
tio
n
.
T
h
e
d
ev
elo
p
m
en
t
o
f
tech
n
o
l
o
g
y
an
d
th
e
in
ter
n
et
h
as
s
ig
n
if
ican
tly
ex
p
an
d
ed
th
e
p
o
s
s
ib
ilit
ies
o
f
d
is
tan
ce
lear
n
in
g
[
5
]
–
[
7
]
,
m
ak
in
g
it
a
v
ailab
le
to
m
illi
o
n
s
o
f
s
tu
d
en
ts
wo
r
ld
wid
e.
At
th
e
s
am
e
tim
e,
th
e
g
r
o
wth
in
d
is
tan
ce
lear
n
in
g
p
r
o
g
r
am
s
h
as
led
to
th
e
n
ee
d
to
d
e
v
elo
p
m
eth
o
d
s
f
o
r
ass
ess
in
g
th
eir
q
u
ality
,
wh
ic
h
is
ess
en
tial
f
o
r
en
s
u
r
in
g
ef
f
ec
ti
v
e
lear
n
in
g
an
d
s
tu
d
en
t
s
atis
f
ac
tio
n
.
T
r
ad
itio
n
al
m
eth
o
d
s
o
f
ev
alu
atin
g
th
e
q
u
ality
o
f
ed
u
ca
tio
n
[
8
]
,
s
u
ch
as
q
u
esti
o
n
n
air
es
an
d
s
u
r
v
ey
s
,
o
f
ten
d
o
n
o
t
p
r
o
v
id
e
a
co
m
p
lete
an
d
o
b
jectiv
e
p
ictu
r
e.
M
o
d
er
n
ap
p
r
o
ac
h
es
to
d
ata
an
aly
s
is
b
ased
o
n
m
a
ch
in
e
lear
n
i
n
g
a
n
d
n
atu
r
al
la
n
g
u
ag
e
p
r
o
ce
s
s
in
g
m
eth
o
d
s
[
9
]
–
[
1
1
]
o
f
f
er
n
ew
o
p
p
o
r
tu
n
ities
f
o
r
m
o
r
e
ac
c
u
r
ate
an
d
d
etailed
an
aly
s
is
o
f
tex
t
d
ata
o
b
tai
n
ed
f
r
o
m
s
tu
d
en
t
an
d
teac
h
er
s
u
r
v
ey
s
.
On
e
p
r
o
m
is
in
g
ar
ea
is
th
e
u
s
e
o
f
h
y
b
r
id
m
o
d
els
th
at
co
m
b
in
e
v
ar
io
u
s
f
ea
tu
r
e
ex
tr
ac
tio
n
m
et
h
o
d
s
to
im
p
r
o
v
e
th
e
q
u
ality
o
f
a
n
aly
s
is
.
T
h
is
ar
ticle
d
is
cu
s
s
es
cr
ea
tin
g
a
h
y
b
r
id
m
ac
h
in
e
-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f m
a
ch
in
e
lea
r
n
i
n
g
meth
o
d
s
to
a
n
a
lysi
s
a
n
d
ev
a
lu
a
tio
n
o
f
…
(
A
in
u
r
Mu
kh
iya
d
in
)
2173
lear
n
in
g
m
o
d
el
f
o
r
ass
ess
in
g
t
h
e
q
u
ality
o
f
d
is
tan
ce
lear
n
in
g
b
ased
o
n
s
u
r
v
ey
d
ata.
T
h
e
m
o
d
el
co
m
b
in
es
two
f
ea
tu
r
e
e
x
tr
ac
tio
n
m
eth
o
d
s
:
ter
m
f
r
e
q
u
en
c
y
-
in
v
er
s
e
d
o
cu
m
e
n
t
f
r
e
q
u
en
c
y
(TF
-
I
DF)
an
d
W
o
r
d
2
Vec
.
T
F
-
I
DF
allo
ws
y
o
u
to
h
ig
h
lig
h
t
ess
en
tial
ter
m
s
in
th
e
tex
t,
wh
ile
W
o
r
d
2
Vec
r
ep
r
esen
ts
wo
r
d
s
as
d
en
s
e
v
ec
to
r
s
th
at
r
ef
lect
th
eir
s
em
an
tic
m
ea
n
i
n
g
.
C
o
m
b
in
in
g
th
ese
m
eth
o
d
s
allo
ws
f
o
r
a
m
o
r
e
co
m
p
lete
an
d
ac
cu
r
ate
r
ep
r
esen
tatio
n
o
f
tex
t d
ata,
im
p
r
o
v
in
g
th
e
q
u
ality
o
f
m
ac
h
in
e
lear
n
in
g
m
o
d
els.
T
h
is
s
tu
d
y
aim
s
to
d
ev
elo
p
an
d
ev
alu
ate
th
e
ef
f
ec
tiv
e
n
ess
o
f
th
e
p
r
o
p
o
s
ed
h
y
b
r
id
m
o
d
el
f
o
r
an
aly
zin
g
s
u
r
v
e
y
d
ata
an
d
ass
ess
in
g
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
in
g
.
T
h
e
p
ap
er
c
o
n
s
id
er
s
th
e
f
o
llo
win
g
task
s
:
i)
C
o
llectio
n
an
d
p
r
e
p
r
o
ce
s
s
in
g
o
f
tex
t
d
ata
f
r
o
m
s
tu
d
en
t
a
n
d
teac
h
er
s
u
r
v
ey
s
;
ii)
E
x
p
er
im
en
tal
co
m
p
ar
is
o
n
o
f
v
ar
io
u
s
f
ea
tu
r
e
ex
tr
ac
tio
n
m
et
h
o
d
s
an
d
th
eir
co
m
b
in
atio
n
s
;
iii)
T
r
ain
in
g
an
d
ev
al
u
atio
n
o
f
a
m
ac
h
in
e
lear
n
in
g
m
o
d
el
b
ased
o
n
a
co
m
b
in
atio
n
o
f
T
F
-
I
DF
an
d
W
o
r
d
2
Ve
c
f
ea
tu
r
es
;
an
d
iv
)
An
aly
s
is
o
f
th
e
r
esu
lts
an
d
ev
alu
atio
n
o
f
th
e
ef
f
ec
tiv
en
ess
o
f
th
e
p
r
o
p
o
s
ed
m
o
d
el
u
s
in
g
v
ar
io
u
s
m
etr
ics.
T
o
s
o
lv
e
th
ese
p
r
o
b
lem
s
,
th
e
s
tu
d
ies
p
r
o
p
o
s
e
to
u
s
e
m
o
d
e
r
n
an
aly
tical
an
d
in
f
o
r
m
ati
o
n
te
ch
n
o
lo
g
ies
at
th
e
s
tag
es
o
f
co
llectin
g
,
ac
cu
m
u
latin
g
,
s
to
r
in
g
,
an
d
p
r
o
ce
s
s
in
g
em
p
ir
ical
in
f
o
r
m
atio
n
.
On
e
o
f
th
e
ess
en
tial
co
m
p
o
n
en
ts
o
f
m
o
d
er
n
g
l
o
b
al
ch
an
g
es
is
f
o
r
m
in
g
a
s
in
g
le
d
ig
ital
s
p
ac
e,
wh
ich
ca
n
b
ec
o
m
e
t
h
e
k
ey
to
d
ee
p
en
in
g
in
teg
r
atio
n
p
r
o
ce
s
s
es
in
s
o
ciety
.
T
h
e
I
n
ter
n
et
h
a
s
b
ec
o
m
e
an
ess
en
tial
ch
an
n
e
l
f
o
r
d
is
s
em
in
atin
g
in
f
o
r
m
atio
n
tr
u
s
ted
b
y
th
e
p
o
p
u
latio
n
,
wh
ich
m
ak
es
it
n
ec
ess
ar
y
to
r
eliab
ly
v
er
if
y
th
e
in
f
o
r
m
atio
n
r
ec
eiv
e
d
an
d
th
e
p
o
s
s
ib
ilit
y
o
f
its
cr
iti
ca
l
u
n
d
er
s
tan
d
in
g
.
T
o
o
b
tain
o
b
jectiv
e,
p
r
o
m
p
t,
an
d
r
eliab
l
e
in
f
o
r
m
atio
n
ab
o
u
t
th
e
s
tate
o
f
s
o
ciety
,
it
is
ad
v
i
s
ab
le
to
o
r
g
an
ize
tim
ely
an
d
o
b
jectiv
e
m
o
n
ito
r
in
g
o
f
th
e
d
ev
elo
p
m
en
t
o
f
its
s
tr
u
ctu
r
es.
W
ith
in
th
e
f
r
am
ew
o
r
k
o
f
co
m
p
lex
s
tu
d
ies,
it
is
p
r
o
p
o
s
ed
to
u
s
e
a
r
esear
ch
co
m
p
lex
th
at
in
clu
d
es
an
au
to
m
ated
in
f
o
r
m
atio
n
s
y
s
tem
an
d
a
s
o
cio
lo
g
ical
r
esear
ch
m
eth
o
d
o
lo
g
y
ass
o
ciate
d
with
it
[
1
2
]
–
[
1
4
]
.
T
h
is
co
m
p
lex
is
in
ten
d
e
d
n
o
t
o
n
ly
f
o
r
s
tu
d
y
in
g
s
o
cial
ca
p
ital
a
n
d
o
th
e
r
s
tr
u
ctu
r
es
o
f
s
o
ciety
b
u
t
also
f
o
r
f
o
r
m
i
n
g
th
e
n
ec
ess
ar
y
cu
ltu
r
e
o
f
th
in
k
i
n
g
an
d
s
cien
tific
cu
ltu
r
e
o
f
m
a
n
ag
em
en
t.
Fird
au
s
et
a
l.
[
1
5
]
u
s
es
th
e
in
f
o
r
m
atio
n
s
y
s
tem
(
IS
)
s
u
cc
ess
m
o
d
el
to
an
al
y
ze
th
e
d
ata
o
n
th
e
u
s
e
o
f
in
f
o
r
m
atio
n
tech
n
o
l
o
g
y
in
d
is
tan
ce
lear
n
in
g
in
s
ch
o
o
ls
d
u
r
i
n
g
th
e
p
an
d
em
ic
in
o
r
d
er
to
i
d
en
tify
th
e
f
ac
to
r
s
th
at
in
f
lu
en
ce
th
e
u
s
e
o
f
e
-
lea
r
n
in
g
in
d
is
tan
ce
lear
n
in
g
s
y
s
tem
s
.
T
h
e
s
tu
d
y
u
s
es
a
q
u
an
ti
tativ
e
ap
p
r
o
ac
h
t
o
id
en
tify
th
e
elem
en
ts
th
at
a
f
f
ec
t
th
e
ef
f
ec
tiv
e
n
ess
o
f
u
s
in
g
tech
n
o
lo
g
y
i
n
d
is
tan
ce
lear
n
in
g
ac
tiv
ities
.
T
h
e
s
tu
d
y
u
s
ed
m
eth
o
d
s
,
an
al
y
tical
tech
n
iq
u
es,
an
d
to
o
ls
co
n
s
is
ten
t
with
th
e
q
u
an
titativ
e
a
p
p
r
o
ac
h
to
o
b
tain
ac
cu
r
ate
r
esu
lts
.
T
h
e
s
tu
d
y
s
u
cc
ess
f
u
lly
ex
am
in
e
d
th
e
u
s
e
o
f
in
f
o
r
m
atio
n
tech
n
o
lo
g
y
i
n
d
is
tan
ce
lea
r
n
in
g
ac
tiv
ities
u
s
in
g
th
e
Dela
u
n
a
y
an
d
Mc
L
ea
n
m
o
d
els.
As
a
r
esu
lt,
th
e
f
o
llo
win
g
c
o
n
clu
s
i
o
n
s
ca
n
b
e
d
r
awn
:
Go
o
g
le
C
lass
r
o
o
m
is
th
e
s
ec
o
n
d
m
o
s
t
p
o
p
u
la
r
p
r
o
g
r
am
f
o
r
u
s
e
in
d
is
tan
ce
lear
n
in
g
af
ter
Z
o
o
m
.
T
h
e
q
u
ality
o
f
in
f
o
r
m
atio
n
,
q
u
ality
o
f
s
er
v
ice,
u
s
er
c
h
ar
ac
ter
is
tics
,
an
d
u
s
e
o
f
t
h
e
s
y
s
tem
d
eter
m
in
e
u
s
er
s
atis
f
ac
tio
n
with
th
e
u
s
e
o
f
a
p
p
licatio
n
s
in
th
is
s
tu
d
y
.
Gu
r
ca
n
a
n
d
C
ag
iltay
[
1
6
]
ex
am
in
es
th
e
m
ain
to
p
ics
a
n
d
t
r
en
d
s
in
d
is
tan
ce
lear
n
i
n
g
b
y
an
aly
zin
g
2
7
,
7
3
5
ar
ticles
p
u
b
lis
h
ed
o
v
e
r
th
e
p
ast
d
ec
a
d
e.
T
h
e
s
tu
d
y
,
b
ased
o
n
s
em
an
tic
co
n
ten
t
an
aly
s
is
u
s
in
g
th
e
n
-
g
r
am
tex
t
ca
teg
o
r
izatio
n
m
eth
o
d
,
id
en
tifie
d
ten
m
ai
n
to
p
ics
s
u
ch
as
“sy
s
tem
s
c
r
ea
tio
n
,
”
“m
e
d
ia,
”
“e
v
alu
atio
n
,
”
“m
eth
o
d
s
,
”
“c
o
n
ten
t,”
“le
v
els
o
f
ed
u
ca
tio
n
,
”
“lea
r
n
er
,
”
“
r
esear
ch
m
et
h
o
d
s
,
”
“in
te
r
ac
tio
n
-
co
m
m
u
n
icatio
n
,
”
a
n
d
“r
eso
u
r
ce
s
-
m
ater
ials
-
to
o
ls
.
”
T
h
e
o
b
t
ain
ed
r
esu
lts
ar
e
in
ten
d
ed
to
p
r
o
v
id
e
ess
en
tial
in
s
ig
h
ts
f
o
r
f
u
r
th
er
r
esear
ch
a
n
d
p
r
ac
tice
in
d
is
tan
ce
lear
n
in
g
,
as
well
as
f
o
r
t
h
e
d
e
v
elo
p
m
en
t
o
f
s
tan
d
a
r
d
s
an
d
co
n
tin
u
o
u
s
im
p
r
o
v
e
m
en
t
in
th
is
f
ield
.
Do
g
an
et
a
l.
[
1
7
]
ex
am
i
n
es
u
s
in
g
ar
tific
ial
in
tellig
en
ce
(
AI
)
tech
n
o
lo
g
ies
in
o
n
lin
e
d
is
tan
ce
lear
n
in
g
b
y
an
al
y
zin
g
2
7
6
p
u
b
licatio
n
s
.
T
h
e
s
tu
d
y
f
o
u
n
d
t
h
r
ee
d
o
m
in
a
n
t
th
em
atic
tr
en
d
s
:
th
e
u
s
e
o
f
A
I
in
o
n
lin
e
lear
n
in
g
p
r
o
ce
s
s
es,
alg
o
r
ith
m
s
to
r
ec
o
g
n
ize,
id
en
tify
,
an
d
p
r
e
d
ict
s
tu
d
en
t
b
eh
av
io
r
,
an
d
ad
ap
ti
v
e
an
d
p
er
s
o
n
alize
d
lear
n
in
g
with
AI
.
T
h
e
lead
in
g
co
u
n
tr
ies
in
th
is
ar
ea
ar
e
C
h
in
a,
I
n
d
ia,
an
d
t
h
e
Un
ited
States
,
an
d
th
e
m
ain
r
esear
ch
ar
ea
s
ar
e
co
m
p
u
ter
s
cien
ce
,
en
g
in
ee
r
in
g
,
an
d
s
o
cial
s
cien
ce
s
.
C
u
i
et
a
l.
[
1
8
]
d
is
cu
s
s
es
th
e
ch
allen
g
es
f
ac
ed
b
y
t
h
e
ed
u
ca
tio
n
in
d
u
s
tr
y
d
u
e
to
th
e
s
p
r
ea
d
o
f
co
r
o
n
a
v
ir
u
s
d
is
ea
s
e
2
0
1
9
(
C
OVI
D
-
19)
an
d
th
e
u
s
e
o
f
o
n
lin
e
ed
u
ca
tio
n
an
d
b
i
g
d
ata
to
o
v
er
co
m
e
th
em
.
T
h
e
s
tu
d
y
an
aly
ze
s
th
e
d
ev
elo
p
m
e
n
t
o
f
o
n
lin
e
e
d
u
ca
tio
n
,
th
e
im
p
ac
t
o
f
th
e
co
m
b
in
atio
n
o
f
o
n
lin
e
ed
u
ca
tio
n
an
d
b
ig
d
ata
tech
n
o
lo
g
y
,
an
d
in
n
o
v
ativ
e
m
eth
o
d
s
a
n
d
p
latf
o
r
m
s
s
u
ch
as
MO
OC
an
d
Din
g
T
al
k
,
wh
ich
h
a
v
e
b
ee
n
wid
ely
ad
o
p
ted
.
B
ased
o
n
th
e
cu
r
r
en
t
ep
id
e
m
ic
s
itu
atio
n
an
aly
s
is
,
th
e
ar
ticle
p
r
ed
icts
th
e
p
r
o
s
p
ec
ts
an
d
d
ev
elo
p
m
e
n
t
o
f
o
n
lin
e
ed
u
ca
tio
n
an
d
b
i
g
d
ata
tech
n
o
lo
g
y
,
em
p
h
asizin
g
th
ei
r
s
ig
n
if
ic
an
ce
an
d
ex
p
ec
ted
im
p
ac
t o
n
th
e
ed
u
ca
tio
n
f
ield
an
d
o
th
e
r
in
d
u
s
tr
ies.
T
h
e
cr
itical
task
o
f
im
p
r
o
v
i
n
g
th
e
m
ea
s
u
r
em
en
t
s
y
s
tem
in
s
o
cio
lo
g
y
is
to
d
ev
elo
p
a
p
ar
ticu
lar
au
to
m
ated
in
f
o
r
m
atio
n
s
y
s
tem
th
at
will
in
cr
ea
s
e
th
e
ac
cu
r
ac
y
o
f
ec
o
n
o
m
ic
an
d
s
o
cio
lo
g
ical
r
esear
ch
r
esu
lts
b
y
im
p
r
o
v
in
g
th
e
q
u
ality
o
f
m
ea
s
u
r
in
g
e
m
p
ir
ical
in
f
o
r
m
atio
n
.
B
ased
o
n
t
h
e
ac
cu
m
u
lated
ex
p
e
r
ien
ce
,
Kaz
ak
h
s
tan
i
s
o
cio
lo
g
y
ca
n
s
i
g
n
if
ican
tly
co
n
tr
ib
u
te
to
th
e
d
ev
elo
p
m
en
t
o
f
d
ata
an
aly
s
is
m
eth
o
d
s
.
T
o
o
b
tain
o
b
jectiv
e
f
u
n
d
am
e
n
tal
k
n
o
wl
ed
g
e
ab
o
u
t
t
h
e
s
tr
u
ctu
r
e
o
f
s
o
ciety
,
it
is
n
ec
ess
ar
y
to
en
s
u
r
e
th
e
q
u
ality
o
f
th
e
d
ata
o
b
tain
ed
th
at
m
ee
ts
th
e
r
eq
u
ir
em
e
n
ts
o
f
m
o
d
er
n
s
cien
ce
[
1
9
]
.
T
h
is
r
eq
u
i
r
es
d
ev
elo
p
in
g
an
d
v
er
if
y
in
g
r
esear
ch
to
o
ls
th
at
allo
w
o
b
tai
n
in
g
ac
cu
r
ate
an
d
o
b
jectiv
e
in
f
o
r
m
atio
n
.
T
h
e
s
tu
d
y
r
esu
lts
d
em
o
n
s
tr
ate
th
at
th
e
p
r
o
p
o
s
ed
h
y
b
r
id
m
o
d
el
is
s
u
p
er
io
r
to
tr
ad
itio
n
al
m
eth
o
d
s
u
s
in
g
o
n
ly
o
n
e
o
f
th
e
ap
p
r
o
ac
h
es
an
d
p
r
o
v
id
es
a
m
o
r
e
ac
c
u
r
ate
an
d
d
etailed
ass
ess
m
en
t
o
f
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
in
g
.
I
n
co
n
clu
s
io
n
,
th
e
p
o
s
s
ib
ilit
ies
o
f
f
u
r
th
er
d
ev
elo
p
m
en
t
an
d
ap
p
licatio
n
o
f
th
e
p
r
o
p
o
s
ed
m
o
d
el
in
ed
u
ca
tio
n
al
i
n
s
titu
tio
n
s
to
im
p
r
o
v
e
th
e
q
u
ality
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
1
7
2
-
2
1
8
0
2174
o
f
d
is
tan
ce
lear
n
in
g
a
r
e
d
is
cu
s
s
ed
.
Pin
to
et
a
l.
[
2
0
]
f
o
c
u
s
es
o
n
a
p
p
ly
in
g
ar
tific
ial
in
tellig
en
ce
an
d
m
ac
h
in
e
lear
n
in
g
i
n
h
ig
h
er
ed
u
ca
tio
n
,
wh
er
e
m
o
s
t
u
n
iv
e
r
s
ities
ar
e
ju
s
t
b
eg
in
n
i
n
g
to
im
p
lem
en
t
t
h
em
.
A
s
y
s
tem
atic
liter
atu
r
e
r
ev
iew
was
co
n
d
u
cted
,
wh
ich
r
ev
ea
led
th
at
th
e
m
ain
ar
ea
s
o
f
r
esear
ch
ar
e
p
r
ed
ictin
g
s
tu
d
en
t
ac
ad
em
ic
p
er
f
o
r
m
an
ce
an
d
em
p
lo
y
ab
ilit
y
.
T
h
ese
f
in
d
in
g
s
h
ig
h
lig
h
t
th
e
im
p
o
r
ta
n
ce
o
f
u
s
in
g
ar
tific
ial
in
tellig
en
ce
(
AI
)
a
n
d
m
ac
h
i
n
e
lear
n
in
g
(
ML
)
i
n
u
n
i
v
er
s
ities
with
o
u
t
co
m
p
r
o
m
is
in
g
ac
ad
em
ic
in
teg
r
ity
.
Ok
ag
b
u
e
et
a
l.
[
2
1
]
ex
p
l
o
r
es
t
h
e
u
s
e
o
f
AI
an
d
ML
i
n
p
ed
a
g
o
g
y
,
w
h
er
e
th
e
y
co
n
tr
ib
u
te
t
o
th
e
tr
an
s
f
o
r
m
ati
o
n
o
f
tr
a
d
itio
n
al
e
d
u
ca
tio
n
al
p
r
o
ce
s
s
es
in
to
d
ig
ital
an
d
p
r
ac
tic
al
f
o
r
m
s
.
A
b
ib
lio
m
etr
ic
an
al
y
s
is
o
f
p
u
b
licatio
n
s
o
n
th
is
to
p
ic
was
co
n
d
u
cted
u
s
in
g
Sco
p
u
s
d
ata,
r
ev
ea
lin
g
g
lo
b
al
tr
en
d
s
an
d
th
e
im
p
ac
t
o
f
AI
an
d
ML
in
ed
u
ca
tio
n
f
r
o
m
2
0
0
0
to
2
0
2
1
.
T
h
e
au
th
o
r
s
ca
ll
o
n
s
ch
o
o
l
ad
m
in
is
tr
ato
r
s
an
d
p
o
licy
m
a
k
er
s
to
s
u
p
p
o
r
t
th
e
im
p
lem
en
tatio
n
o
f
AI
a
n
d
M
L
to
im
p
r
o
v
e
th
e
q
u
ality
o
f
p
ed
ag
o
g
ical
s
er
v
ices.
B
o
zk
u
r
t
an
d
Sh
ar
m
a
[
2
2
]
ex
am
in
es
th
e
r
o
le
o
f
g
e
n
er
a
tiv
e
ar
tific
ial
in
tellig
en
ce
in
d
is
tan
ce
an
d
o
n
lin
e
ed
u
ca
tio
n
,
h
ig
h
lig
h
tin
g
its
p
o
ten
tial
an
d
c
h
allen
g
es.
T
h
e
tech
n
o
lo
g
y
ca
n
im
p
r
o
v
e
le
ar
n
in
g
th
r
o
u
g
h
p
e
r
s
o
n
aliza
tio
n
,
au
to
m
atio
n
,
an
d
co
n
ten
t
cr
ea
tio
n
b
u
t
r
aises
co
n
ce
r
n
s
ab
o
u
t
b
ias,
d
ata
s
ec
u
r
i
ty
,
an
d
o
v
er
r
elian
ce
o
n
AI
.
T
h
e
au
th
o
r
ca
lls
f
o
r
r
eth
in
k
in
g
ed
u
ca
tio
n
al
r
o
les
s
u
ch
as
t
u
to
r
s
an
d
lea
r
n
in
g
r
es
o
u
r
ce
d
ev
elo
p
er
s
an
d
e
m
p
h
asi
ze
s
th
e
im
p
o
r
tan
ce
o
f
h
u
m
an
in
ter
v
en
tio
n
to
r
e
d
u
ce
th
e
“
tr
an
s
ac
tio
n
al
d
is
tan
ce
”
in
th
e
ed
u
ca
tio
n
al
p
r
o
ce
s
s
.
T
h
is
p
ap
er
aim
s
to
d
ev
elo
p
a
n
d
im
p
lem
e
n
t
a
h
y
b
r
id
m
o
d
el
ca
p
ab
le
o
f
m
o
r
e
ac
cu
r
ately
an
aly
zin
g
s
u
r
v
e
y
d
at
a
an
d
ass
ess
in
g
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
in
g
.
T
h
e
u
s
e
o
f
m
o
d
er
n
m
ac
h
in
e
lea
r
n
in
g
m
eth
o
d
s
,
s
u
ch
as
T
F
-
I
D
F
an
d
W
o
r
d
2
Vec
,
will
n
o
t
o
n
ly
e
n
h
an
ce
th
e
ac
c
u
r
ac
y
o
f
th
e
ass
ess
m
en
t
b
u
t
a
ls
o
cr
ea
te
m
o
r
e
a
d
ap
tiv
e
a
n
d
p
r
ac
tical
to
o
ls
f
o
r
m
an
ag
in
g
ed
u
ca
tio
n
al
p
r
o
ce
s
s
es in
th
e
f
ac
e
o
f
g
lo
b
al
c
h
allen
g
es.
2.
M
E
T
H
O
D
I
n
co
n
d
u
c
tin
g
co
m
p
lex
s
o
c
io
l
o
g
ic
al
r
es
ea
r
ch
,
o
n
e
o
f
th
e
cr
i
ti
ca
l
ta
s
k
s
is
to
en
s
u
r
e
th
e
ac
c
u
r
ac
y
an
d
co
r
r
e
ctn
e
s
s
o
f
m
ea
s
u
r
em
e
n
t
s
[
2
3
]
–
[
2
5
]
.
I
n
a
cc
u
r
ac
ie
s
m
ay
a
r
i
s
e
at
v
ar
io
u
s
s
tag
e
s
o
f
th
e
s
t
u
d
y
:
wh
en
f
o
r
m
in
g
a
s
y
s
tem
o
f
o
b
s
e
r
v
ed
v
ar
i
ab
l
es
,
co
n
v
e
r
t
in
g
th
e
s
e
v
ar
iab
le
s
in
to
n
u
m
er
i
ca
l
d
a
ta,
an
d
d
u
r
in
g
m
a
th
em
a
ti
ca
l
an
d
s
ta
ti
s
ti
ca
l
p
r
o
c
e
s
s
in
g
an
d
d
ata
an
a
ly
s
i
s
.
T
h
e
s
e
p
r
o
b
le
m
s
ca
n
l
ea
d
to
in
co
r
r
e
ct
s
c
ien
ti
f
i
c
co
n
c
lu
s
io
n
s
th
a
t
d
o
n
o
t
r
ef
l
ec
t
r
e
al
i
ty
,
wh
i
ch
is
e
s
p
e
ci
al
ly
c
r
i
ti
ca
l
in
co
m
p
lex
s
tu
d
i
e
s
,
wh
er
e
er
r
o
r
s
ca
n
h
av
e
a
cu
m
u
la
t
iv
e
ef
f
e
ct.
T
h
ey
ar
e
a
l
s
o
m
a
in
ly
d
u
e
to
th
e
p
e
cu
l
iar
i
ti
es
o
f
s
o
cio
-
ec
o
n
o
m
i
c
d
a
ta,
wh
ich
ar
e
o
f
t
en
d
if
f
icu
lt
to
f
o
r
m
a
li
ze
,
an
d
th
e
ir
q
u
an
t
ita
t
iv
e
in
d
ic
at
o
r
s
ar
e
p
r
ed
o
m
in
a
n
tly
q
u
al
it
at
iv
e
,
wh
ich
i
s
n
o
t
al
way
s
c
lea
r
to
th
e
r
es
ea
r
ch
er
at
th
e
ta
s
k
p
lan
n
in
g
s
t
ag
e
.
An
aly
s
is
o
f
d
a
ta
co
l
le
ct
io
n
an
d
p
r
o
ce
s
s
in
g
in
co
m
p
l
ex
s
tu
d
ie
s
r
eq
u
ir
es
a
co
m
p
r
eh
en
s
iv
e
ap
p
r
o
ac
h
t
h
at
co
n
s
id
er
s
th
e
s
p
e
cif
ic
s
o
f
s
o
c
io
-
ec
o
n
o
m
ic
in
d
i
ca
to
r
s
.
A
t
th
e
r
e
s
e
ar
ch
p
lan
n
in
g
s
ta
g
e,
s
p
e
ci
al
a
tt
en
tio
n
s
h
o
u
ld
b
e
p
a
id
to
th
e
q
u
es
t
io
n
n
a
ir
e
's
d
ev
e
lo
p
m
en
t
an
d
th
e
q
u
e
s
ti
o
n
s
'
wo
r
d
in
g
[
2
6
]
–
[
2
8
]
t
o
m
in
im
i
ze
t
h
e
lik
el
ih
o
o
d
o
f
s
y
s
tem
a
ti
c
er
r
o
r
s
an
d
b
ia
s
in
r
e
s
u
lt
s
.
I
t
is
e
s
s
en
ti
al
to
en
s
u
r
e
th
a
t
a
ll
v
ar
iab
le
s
a
r
e
m
ea
s
u
r
ab
le
an
d
r
el
ev
an
t
t
o
th
e
s
t
u
d
y
's
o
b
je
ct
iv
e
s
,
an
d
th
a
t
th
eir
in
t
er
p
r
et
at
io
n
is
u
n
am
b
i
g
u
o
u
s
f
o
r
al
l
s
u
r
v
ey
p
ar
t
ic
ip
an
t
s
.
T
h
i
s
s
t
ag
e
al
s
o
in
clu
d
es
p
i
lo
t
t
es
t
in
g
o
f
q
u
e
s
t
io
n
n
air
e
s
to
id
en
t
if
y
p
o
ten
ti
al
p
r
o
b
l
em
s
an
d
th
e
ir
ad
ju
s
tm
en
t
s
b
ef
o
r
e
m
as
s
d
at
a
co
l
le
ct
io
n
.
A
t
th
e
d
a
ta
p
r
o
ce
s
s
in
g
s
tag
e,
i
t
i
s
n
ec
e
s
s
a
r
y
to
ap
p
ly
a
d
eq
u
at
e
s
t
at
i
s
t
ic
al
m
eth
o
d
s
th
a
t
co
n
s
i
d
er
th
e
s
p
ec
if
i
c
s
o
f
s
o
c
io
-
e
c
o
n
o
m
ic
in
d
ica
to
r
s
[
2
9
]
,
[
3
0
]
.
U
s
in
g
f
ac
to
r
an
al
y
s
i
s
,
clu
s
ter
an
a
ly
s
i
s
,
r
eg
r
e
s
s
io
n
m
o
d
el
s
,
an
d
o
th
er
s
t
at
i
s
t
ic
al
tech
n
iq
u
es
al
lo
ws
u
s
to
id
en
t
if
y
h
id
d
en
p
a
tt
er
n
s
an
d
r
e
la
tio
n
s
h
ip
s
b
e
tw
ee
n
v
ar
i
ab
l
e
s
.
An
im
p
o
r
t
an
t
a
s
p
e
ct
i
s
ch
e
ck
in
g
th
e
r
el
iab
il
i
ty
an
d
v
a
lid
i
ty
o
f
th
e
m
eth
o
d
s
u
s
ed
,
wh
ich
r
eq
u
ir
e
s
co
n
d
u
ct
in
g
ap
p
r
o
p
r
ia
te
t
es
t
s
an
d
ap
p
ly
in
g
ad
ju
s
tm
en
t
s
,
if
n
e
ce
s
s
ar
y
.
Mo
d
er
n
s
o
f
t
war
e
an
d
b
ig
d
a
ta
p
r
o
ce
s
s
in
g
t
ec
h
n
o
lo
g
ie
s
o
p
en
u
p
n
e
w
p
o
s
s
ib
i
l
it
ie
s
f
o
r
an
al
y
s
i
s
,
b
u
t
th
ei
r
u
s
e
r
e
q
u
ir
e
s
h
ig
h
ly
q
u
a
li
f
i
ed
r
e
s
ea
r
ch
er
s
an
d
ca
r
ef
u
l
co
n
t
r
o
l
o
v
er
al
l
s
tag
es
o
f
th
e
s
t
u
d
y
.
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
o
s
tu
d
y
t
h
e
lev
el
o
f
ed
u
ca
tio
n
al
ac
tiv
ity
o
f
s
ch
o
o
lch
ild
r
en
d
u
r
in
g
th
e
p
a
n
d
em
ic,
f
ac
to
r
s
i
n
f
lu
en
cin
g
it we
r
e
s
elec
ted
.
E
m
p
ir
ical
m
eth
o
d
s
o
f
o
b
s
er
v
atio
n
,
in
ter
v
ie
win
g
r
esp
o
n
d
e
n
ts
,
an
d
an
aly
s
i
s
o
f
th
e
r
esu
lts
wer
e
u
s
ed
.
T
h
e
s
u
r
v
ey
was
co
n
d
u
ct
ed
as
an
o
n
lin
e
q
u
esti
o
n
n
air
e
o
f
3
2
q
u
esti
o
n
s
.
T
h
e
s
u
r
v
ey
d
ata
wer
e
co
n
s
id
er
ed
in
f
o
u
r
co
n
tex
ts
:
co
n
tex
tu
al
b
l
o
ck
,
co
n
te
n
t
b
lo
ck
,
er
g
o
n
o
m
i
c
b
lo
ck
,
tech
n
ical
s
u
p
p
o
r
t,
an
d
p
s
y
ch
o
-
e
m
o
tio
n
al
b
lo
ck
.
Sin
ce
t
h
e
ch
a
r
ac
ter
is
tics
o
f
th
e
s
u
r
v
ey
p
ar
ticip
an
ts
ar
e
h
eter
o
g
e
n
eo
u
s
,
with
s
tu
d
en
t
s
o
f
d
if
f
e
r
en
t
a
g
es,
s
o
cial
class
e
s
,
an
d
f
am
ily
s
u
p
p
o
r
t,
m
a
n
y
f
ac
to
r
s
ca
n
in
f
lu
e
n
ce
th
e
ad
o
p
tio
n
o
f
a
n
ew
ty
p
e
o
f
e
d
u
ca
tio
n
,
s
u
ch
as e
m
er
g
en
cy
d
is
tan
ce
lear
n
in
g
.
T
h
e
s
u
r
v
ey
in
v
o
lv
ed
3
5
,
9
5
0
s
tu
d
en
ts
o
f
co
m
p
r
eh
e
n
s
iv
e
s
ch
o
o
ls
in
1
6
r
eg
io
n
s
an
d
cities
o
f
r
ep
u
b
lican
s
ig
n
if
ican
ce
in
th
e
R
ep
u
b
lic
o
f
Kaz
ak
h
s
tan
.
Of
th
ese,
1
7
,
1
7
0
s
t
u
d
en
ts
ar
e
in
u
r
b
an
s
ch
o
o
ls
,
1
8
,
7
8
0
ar
e
in
r
u
r
al
s
c
h
o
o
ls
,
an
d
7
0
0
ar
e
i
n
s
m
all
s
ch
o
o
ls
.
Su
r
v
ey
p
ar
ticip
an
ts
wer
e
d
iv
id
ed
b
y
s
ch
o
o
l
s
tatu
s
,
s
tu
d
en
t
s
tatu
s
,
an
d
lan
g
u
ag
e
o
f
in
s
tr
u
ctio
n
,
wh
ic
h
m
ad
e
it
p
o
s
s
ib
le
to
o
b
tain
a
r
ep
r
esen
tativ
e
s
am
p
le
an
d
co
n
s
id
er
th
e
d
i
v
er
s
ity
o
f
lear
n
in
g
co
n
d
itio
n
s
.
T
h
e
s
am
p
le
in
clu
d
ed
p
ar
ticip
a
n
ts
o
f
d
if
f
er
en
t
ag
es,
s
o
cial
s
tatu
s
es,
an
d
lev
els
o
f
f
am
ily
s
u
p
p
o
r
t,
wh
ich
m
a
y
h
a
v
e
af
f
ec
ted
th
e
g
e
n
er
aliza
b
ilit
y
o
f
th
e
f
in
d
i
n
g
s
.
T
h
e
d
iv
er
s
ity
o
f
th
e
s
am
p
le
allo
w
ed
f
o
r
a
co
m
p
r
e
h
en
s
iv
e
an
al
y
s
is
o
f
th
e
im
p
ac
t
o
f
d
is
tan
ce
l
ea
r
n
in
g
i
n
d
if
f
er
en
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f m
a
ch
in
e
lea
r
n
i
n
g
meth
o
d
s
to
a
n
a
lysi
s
a
n
d
ev
a
lu
a
tio
n
o
f
…
(
A
in
u
r
Mu
kh
iya
d
in
)
2175
d
em
o
g
r
a
p
h
ic
co
n
tex
ts
,
wh
ich
in
cr
ea
s
ed
th
e
r
eliab
ilit
y
o
f
th
e
r
esu
lts
wh
ile
r
ec
o
g
n
izin
g
th
at
ce
r
tain
r
eg
io
n
al
o
r
s
o
cio
ec
o
n
o
m
ic
c
o
n
d
itio
n
s
m
a
y
h
av
e
a
f
f
ec
ted
th
eir
b
r
o
ad
er
a
p
p
licab
ilit
y
.
Dev
elo
p
in
g
a
d
a
ta
an
a
ly
s
is
m
o
d
el
f
o
r
s
tu
d
y
in
g
t
h
e
b
eh
av
io
r
o
f
s
o
c
ia
l
in
s
t
itu
t
io
n
s
r
eq
u
ir
e
s
a
we
ll
-
s
tr
u
c
tu
r
ed
a
p
p
r
o
a
ch
th
a
t
b
eg
i
n
s
w
it
h
d
ef
in
in
g
a
q
u
e
s
t
io
n
b
as
e.
T
h
e
q
u
e
s
t
io
n
b
a
s
e
i
s
th
e
f
o
u
n
d
a
t
io
n
o
f
th
e
s
tu
d
y
,
a
s
it
i
s
a
t
t
h
i
s
s
tag
e
th
a
t
th
e
m
a
in
ar
e
a
s
to
b
e
s
tu
d
ied
ar
e
f
o
r
m
u
l
at
ed
.
I
t
i
s
n
ec
es
s
ar
y
to
d
et
er
m
in
e
wh
i
ch
a
s
p
e
ct
s
o
f
th
e
b
eh
av
io
r
o
f
s
o
c
ia
l
in
s
t
i
tu
t
io
n
s
ar
e
o
f
m
o
s
t
s
ig
n
if
i
ca
n
t
in
ter
e
s
t,
b
e
i
t
th
ei
r
ef
f
e
ct
iv
e
n
e
s
s
,
in
t
er
a
ct
io
n
wi
th
o
th
e
r
in
s
ti
tu
t
io
n
s
,
o
r
th
eir
im
p
ac
t
o
n
s
o
ci
ety
.
T
h
is
r
eq
u
ir
es
a
d
ee
p
u
n
d
er
s
ta
n
d
in
g
o
f
th
e
s
u
b
jec
t
ar
e
a
an
d
a
t
h
o
r
o
u
g
h
li
ter
atu
r
e
an
a
ly
s
i
s
.
Fo
r
ex
am
p
le,
o
n
e
co
u
ld
u
s
e
q
u
es
t
io
n
s
o
n
th
e
q
u
a
li
ty
o
f
ed
u
ca
t
io
n
,
th
e
av
a
il
ab
i
li
ty
o
f
ed
u
ca
tio
n
a
l
r
e
s
o
u
r
c
e
s
,
a
n
d
s
tu
d
en
t
s
a
ti
s
f
ac
tio
n
to
s
t
u
d
y
ed
u
c
at
io
n
a
l
in
s
t
itu
ti
o
n
s
.
Fo
r
p
o
l
it
ic
al
i
n
s
t
i
tu
t
io
n
s
,
e
s
s
en
t
ia
l
a
s
p
ec
t
s
co
u
ld
b
e
c
i
ti
ze
n
s
’
t
r
u
s
t
i
n
th
e
g
o
v
e
r
n
m
en
t,
tr
an
s
p
ar
en
cy
,
an
d
a
cc
o
u
n
t
ab
i
l
ity
o
f
m
an
ag
em
en
t
p
r
o
ce
s
s
e
s
.
I
n
th
i
s
ca
s
e,
i
t
i
s
n
e
ce
s
s
ar
y
t
o
co
n
s
id
er
m
o
d
er
n
r
es
ea
r
ch
an
d
t
h
eo
r
et
ic
al
co
n
c
ep
t
s
,
s
u
ch
a
s
th
e
th
eo
r
y
o
f
f
u
n
ct
io
n
a
li
s
m
,
wh
ich
v
ie
ws
s
o
cia
l
in
s
ti
tu
tio
n
s
a
s
s
y
s
t
em
s
th
a
t
m
ain
ta
in
th
e
s
t
a
b
il
ity
o
f
s
o
ci
ety
.
Def
in
in
g
th
e
q
u
e
s
t
io
n
b
a
s
e
m
ay
al
s
o
in
v
o
l
v
e
co
n
s
u
lt
in
g
w
ith
ex
p
er
t
s
i
n
th
e
f
ie
ld
o
f
s
o
c
ia
l
s
cien
ce
s
an
d
co
n
d
u
c
t
in
g
p
ilo
t
s
tu
d
i
e
s
t
o
c
lar
if
y
th
e
w
o
r
d
in
g
a
n
d
s
tr
u
ctu
r
e
o
f
th
e
q
u
es
t
io
n
s
.
T
h
e
n
ex
t
s
tep
in
v
o
lv
es
d
ef
in
in
g
k
ey
q
u
esti
o
n
s
.
On
ce
th
e
q
u
esti
o
n
b
ase
h
as
b
ee
n
cr
ea
ted
,
it
is
n
ec
ess
ar
y
to
n
ar
r
o
w
th
e
f
o
c
u
s
o
f
th
e
r
esear
c
h
to
a
f
ew
k
e
y
asp
ec
ts
.
T
h
is
allo
ws
y
o
u
to
f
o
cu
s
o
n
th
e
m
o
s
t
s
ig
n
if
ican
t
is
s
u
es
an
d
p
r
o
v
id
e
s
a
d
ee
p
er
u
n
d
er
s
tan
d
in
g
o
f
t
h
e
p
r
o
b
lem
u
n
d
er
s
tu
d
y
.
Key
q
u
esti
o
n
s
s
h
o
u
ld
b
e
s
p
ec
if
ic,
m
ea
s
u
r
ab
le,
an
d
r
ele
v
an
t
to
h
elp
o
b
tain
m
ea
n
in
g
f
u
l
an
d
v
alu
a
b
le
d
ata.
Fo
r
ex
am
p
le,
wh
en
s
tu
d
y
in
g
home
-
b
ased
d
is
tan
ce
lea
r
n
in
g
,
k
e
y
q
u
esti
o
n
s
m
ay
in
clu
d
e:
“
Ar
e
y
o
u
co
m
f
o
r
tab
le
p
ar
ticip
atin
g
in
o
n
lin
e
less
o
n
s
at
h
o
m
e?
”
(
an
s
wer
s
:
y
es,
n
o
,
n
o
t
r
ea
lly
)
,
“
Ho
w
m
an
y
h
o
u
r
s
a
d
ay
d
o
y
o
u
s
it
at
th
e
c
o
m
p
u
te
r
?
”
(
an
s
wer
s
:
1
h
o
u
r
,
2
-
3
h
o
u
r
s
,
m
o
r
e
t
h
an
4
h
o
u
r
s
)
,
“
Ho
w
m
u
ch
tim
e
d
o
es
it
tak
e
to
co
m
p
lete
ass
ig
n
m
en
ts
f
o
r
o
n
e
s
u
b
ject
d
u
r
in
g
d
is
tan
ce
le
ar
n
in
g
?
”
(
an
s
wer
s
:
less
th
an
3
0
m
in
u
tes,
u
p
to
1
h
o
u
r
,
m
o
r
e
th
an
1
h
o
u
r
)
,
“
Ho
w
m
an
y
tim
es
a
d
ay
d
o
y
o
u
d
o
g
y
m
n
asti
c
war
m
-
u
p
s
d
u
r
in
g
d
is
tan
ce
lear
n
in
g
?
”
(
an
s
wer
s
:
o
n
ce
in
th
e
m
o
r
n
in
g
,
af
ter
ea
ch
class
,
ev
er
y
h
o
u
r
o
f
class
es,
ev
er
y
two
h
o
u
r
s
o
f
class
es,
d
o
n
o
t
d
o
)
.
Oth
er
k
e
y
q
u
esti
o
n
s
m
ay
b
e
aim
ed
at
id
en
tify
in
g
b
ar
r
ier
s
,
s
u
ch
as:
“
W
h
at
p
r
ev
en
ts
y
o
u
f
r
o
m
s
tu
d
y
in
g
r
em
o
tely
?
”
(
an
s
wer
s
:
p
o
o
r
in
ter
n
et
co
n
n
ec
tio
n
,
n
o
p
e
r
s
o
n
al
c
o
m
p
u
ter
/lap
to
p
,
u
n
f
r
ien
d
ly
teac
h
er
s
,
ex
ce
s
s
iv
e
co
n
tr
o
l
b
y
p
ar
e
n
t
s
/g
u
ar
d
ian
s
,
o
t
h
er
)
o
r
ass
ess
in
g
th
e
im
p
ac
t
o
f
d
is
tan
ce
lear
n
in
g
o
n
h
ea
lth
an
d
well
-
b
ein
g
:
“
I
f
ee
l
th
at
with
d
is
tan
ce
lear
n
in
g
.
.
.
”
(
an
s
wer
s
:
in
cr
ea
s
ed
s
tr
ain
o
n
m
y
ey
esig
h
t,
in
cr
ea
s
ed
s
tr
ain
o
n
m
y
h
ea
r
i
n
g
,
in
cr
ea
s
ed
s
tr
a
in
o
n
m
y
p
o
s
tu
r
e
,
d
is
r
u
p
ted
d
aily
r
o
u
tin
e,
d
is
r
u
p
ted
s
leep
,
i
n
cr
ea
s
ed
a
n
x
iety
,
o
th
er
)
.
Su
ch
q
u
esti
o
n
s
n
o
t
o
n
ly
id
en
tif
y
s
p
ec
if
ic
p
r
o
b
lem
s
b
u
t
also
allo
w
th
em
to
b
e
m
ea
s
u
r
e
d
u
s
in
g
q
u
an
tit
ativ
e
d
ata.
T
h
e
s
p
ec
if
icity
an
d
m
ea
s
u
r
ab
ilit
y
o
f
q
u
esti
o
n
s
ar
e
ess
en
tial
to
en
s
u
r
e
th
e
ac
c
u
r
ac
y
an
d
r
ep
licab
ilit
y
o
f
th
e
s
tu
d
y
.
T
h
e
k
e
y
q
u
esti
o
n
s
m
u
s
t
r
ef
lect
cu
r
r
en
t
is
s
u
es
an
d
tr
en
d
s
i
n
th
e
ar
ea
o
f
s
tu
d
y
,
wh
ich
r
eq
u
ir
es
co
n
s
id
er
in
g
p
r
ev
io
u
s
s
t
u
d
ies'
r
esu
lts
an
d
an
aly
zin
g
c
u
r
r
e
n
t
d
ata.
Fo
r
e
x
am
p
le,
a
s
tu
d
y
o
f
t
h
e
in
ter
a
ctio
n
o
f
s
o
cial
in
s
titu
tio
n
s
m
ay
f
o
c
u
s
o
n
is
s
u
es
r
elate
d
to
th
e
co
o
r
d
in
atio
n
b
e
twee
n
d
if
f
er
e
n
t
in
s
titu
tio
n
s
an
d
th
eir
im
p
ac
t
o
n
s
o
cial
p
r
o
c
ess
es.
Sp
ec
if
ic
an
d
m
ea
s
u
r
ab
le
k
ey
q
u
esti
o
n
s
h
elp
s
tr
u
ctu
r
e
d
ata
c
o
llectio
n
an
d
p
r
o
v
id
e
a
b
asis
f
o
r
s
u
b
s
eq
u
en
t
a
n
aly
s
is
,
f
ac
ilit
atin
g
a
m
o
r
e
in
-
d
ep
t
h
an
d
co
m
p
r
eh
en
s
iv
e
in
ter
p
r
etatio
n
o
f
th
e
r
esu
lts
.
Ap
p
ly
in
g
p
r
in
cip
al
co
m
p
o
n
en
t
an
aly
s
is
(
PC
A
)
f
ac
to
r
an
aly
s
is
m
eth
o
d
s
u
s
in
g
m
ac
h
i
n
e
le
ar
n
in
g
o
r
SP
SS
is
th
e
n
ex
t
im
p
o
r
tan
t
s
te
p
.
PC
A
r
ed
u
ce
s
th
e
d
im
en
s
io
n
ality
o
f
d
ata
b
y
id
en
tif
y
in
g
th
e
m
ain
co
m
p
o
n
en
ts
th
at
ex
p
lain
m
o
s
t
o
f
th
e
v
ar
i
atio
n
in
th
e
d
ata.
T
h
is
h
elp
s
to
s
im
p
lify
th
e
an
aly
s
is
an
d
f
o
cu
s
o
n
th
e
m
o
s
t
s
ig
n
if
ican
t
v
ar
iab
les.
Fo
r
ex
a
m
p
le,
in
a
d
is
tan
ce
lear
n
in
g
s
tu
d
y
,
PC
A
ca
n
an
aly
ze
r
esp
o
n
s
es
to
q
u
esti
o
n
n
air
e
q
u
esti
o
n
s
s
u
ch
as
“
Ho
w
m
an
y
h
o
u
r
s
a
d
a
y
d
o
y
o
u
s
it
at
th
e
co
m
p
u
ter
?
”
o
r
“
W
h
at
p
r
ev
e
n
t
s
y
o
u
f
r
o
m
s
tu
d
y
in
g
r
em
o
tely
?
”
PC
A
tr
an
s
f
o
r
m
s
th
e
o
r
ig
in
al
v
a
r
iab
les
in
to
a
n
e
w
s
et
o
f
v
ar
iab
les
(
p
r
in
cip
al
c
o
m
p
o
n
en
ts
)
,
wh
ich
ar
e
lin
ea
r
c
o
m
b
in
atio
n
s
o
f
t
h
e
o
r
ig
in
al
v
a
r
iab
les,
an
d
ex
p
lain
s
th
e
v
ar
iatio
n
in
th
e
d
ata
as
m
u
ch
as
p
o
s
s
ib
le.
A
h
y
b
r
id
m
ac
h
i
n
e
lear
n
i
n
g
m
o
d
el
co
m
b
in
in
g
T
F
-
I
DF
a
n
d
W
o
r
d
2
Vec
m
eth
o
d
s
was
d
ev
elo
p
ed
to
an
aly
ze
an
d
ass
es
s
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
in
g
u
s
in
g
3
2
q
u
esti
o
n
n
a
ir
e
q
u
esti
o
n
s
.
T
h
e
in
itial
s
tag
e
is
co
llectin
g
an
d
p
r
ep
r
o
ce
s
s
in
g
q
u
esti
o
n
n
air
e
d
ata,
in
clu
d
in
g
cr
itical
q
u
esti
o
n
s
aim
ed
at
s
tu
d
y
in
g
v
ar
io
u
s
asp
ec
ts
o
f
d
is
tan
ce
lear
n
in
g
.
T
h
e
q
u
esti
o
n
tex
ts
ar
e
b
r
o
k
en
d
o
wn
i
n
to
i
n
d
iv
i
d
u
al
to
k
en
s
,
th
en
n
o
r
m
alize
d
b
y
co
n
v
er
tin
g
to
lo
wer
ca
s
e,
r
em
o
v
in
g
s
to
p
wo
r
d
s
,
an
d
co
n
v
er
tin
g
wo
r
d
s
to
th
eir
o
r
ig
in
al
f
o
r
m
.
T
h
e
n
o
r
m
alize
d
to
k
en
s
ar
e
u
s
ed
to
cr
ea
te
v
ec
to
r
r
ep
r
esen
tatio
n
s
u
s
in
g
th
e
W
o
r
d
2
Vec
m
o
d
el,
wh
ich
allo
ws
u
s
to
r
ef
lect
th
e
s
em
an
tic
r
elatio
n
s
h
ip
s
b
etwe
en
wo
r
d
s
.
PC
A
al
s
o
h
elp
s
r
ed
u
ce
th
e
p
r
o
b
lem
o
f
m
u
ltiv
ar
iate
n
ess
an
d
m
u
ltico
llin
ea
r
ity
,
wh
ich
is
a
co
m
m
o
n
p
r
o
b
lem
in
h
ig
h
-
d
im
en
s
io
n
a
l
d
ata
s
ets.
Fo
r
ex
am
p
le,
wh
en
an
aly
zin
g
th
e
f
ac
to
r
s
th
at
in
f
lu
en
ce
th
e
ef
f
ec
tiv
en
ess
o
f
d
is
tan
ce
lear
n
in
g
,
PC
A
ca
n
r
ev
ea
l
th
at
v
a
r
iab
les
s
u
ch
as
“
in
te
r
n
et
q
u
al
ity
”
an
d
“
o
wn
in
g
a
p
er
s
o
n
al
co
m
p
u
ter
”
ex
p
lain
a
s
ig
n
if
ican
t
p
o
r
tio
n
o
f
th
e
v
ar
iatio
n
in
th
e
d
ata
an
d
ar
e
v
ita
l
co
m
p
o
n
e
n
ts
th
at
in
f
lu
en
ce
lear
n
in
g
o
u
tco
m
es.
I
n
ad
d
itio
n
,
PC
A
h
elp
s
im
p
r
o
v
e
th
e
in
ter
p
r
eta
b
ilit
y
o
f
m
ac
h
i
n
e
lear
n
in
g
m
o
d
els
b
y
r
e
d
u
cin
g
th
e
n
u
m
b
er
o
f
i
n
p
u
t
v
ar
iab
les
an
d
elim
in
atin
g
n
o
is
e,
r
esu
ltin
g
in
m
o
r
e
ac
cu
r
ate
an
d
r
eliab
le
p
r
ed
ictio
n
s
.
As
a
r
esu
lt,
u
s
in
g
PC
A
in
co
m
b
in
atio
n
with
m
ac
h
in
e
lear
n
in
g
is
a
p
o
wer
f
u
l
to
o
l
f
o
r
a
n
aly
zin
g
co
m
p
lex
d
ata
s
ets
an
d
o
b
tain
i
n
g
m
ea
n
in
g
f
u
l
a
n
d
v
alu
a
b
le
i
n
s
ig
h
ts
f
o
r
s
tu
d
y
in
g
s
o
cial
in
s
titu
tio
n
s
.
Fig
u
r
e
1
illu
s
tr
ates
th
e
p
r
o
ce
s
s
o
f
p
r
o
ce
s
s
in
g
tex
t
d
ata
to
f
in
d
s
im
ilar
q
u
esti
o
n
s
.
I
n
th
e
f
ir
s
t
s
te
p
,
a
s
et
o
f
c
r
itical
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
1
7
2
-
2
1
8
0
2176
q
u
esti
o
n
s
is
u
s
ed
,
to
k
en
ized
t
o
s
ep
ar
ate
th
em
in
to
i
n
d
iv
id
u
a
l
wo
r
d
s
.
Nex
t,
th
e
d
ata
is
n
o
r
m
alize
d
,
af
ter
wh
ich
two
ap
p
r
o
ac
h
es
ar
e
u
s
ed
t
o
r
ep
r
esen
t
tex
ts
:
th
e
W
o
r
d
2
V
ec
m
o
d
el,
wh
ich
t
r
an
s
f
o
r
m
s
wo
r
d
s
in
to
v
ec
to
r
s
co
n
s
id
er
in
g
s
em
an
tic
p
r
o
x
i
m
ity
,
an
d
th
e
T
F
-
I
DF
m
eth
o
d
to
h
ig
h
lig
h
t
im
p
o
r
tan
t
wo
r
d
s
b
ased
o
n
th
eir
f
r
eq
u
e
n
cy
.
T
h
en
,
d
im
e
n
s
io
n
a
lity
is
r
ed
u
ce
d
u
s
in
g
th
e
p
r
i
n
cip
al
co
m
p
o
n
en
t
a
n
aly
s
is
(
PC
A)
,
s
im
p
lify
in
g
f
u
r
th
er
an
aly
s
is
.
T
h
e
r
esu
ltin
g
v
ec
to
r
s
a
r
e
co
m
b
in
ed
,
an
d
a
ca
lcu
latio
n
is
m
a
d
e
u
s
in
g
t
h
e
co
s
in
e
s
im
ilar
ity
m
etr
ic
to
f
in
d
s
im
ilar
q
u
esti
o
n
s
.
As
a
r
esu
lt,
q
u
esti
o
n
s
m
o
s
t
s
im
ilar
to
th
e
o
r
ig
in
al
o
n
es
a
r
e
o
u
tp
u
t,
wh
ich
ca
n
b
e
u
s
ed
f
o
r
tex
t a
n
al
y
s
is
an
d
n
atu
r
al
lan
g
u
a
g
e
p
r
o
ce
s
s
in
g
task
s
.
Fig
u
r
e
1
.
T
h
e
p
r
o
ce
s
s
o
f
d
ev
el
o
p
in
g
a
m
o
d
el
o
f
b
e
h
av
io
r
o
f
s
o
cial
in
s
titu
tio
n
s
I
n
p
ar
allel
with
W
o
r
d
2
Vec
,
th
e
tex
ts
o
f
q
u
esti
o
n
s
ar
e
v
ec
t
o
r
ized
u
s
in
g
t
h
e
T
F
-
I
DF
m
et
h
o
d
,
wh
ic
h
d
eter
m
in
es
th
e
im
p
o
r
tan
ce
o
f
ea
ch
wo
r
d
in
th
e
tex
t
r
elativ
e
to
th
e
en
tire
d
ata
co
r
p
u
s
.
Vec
t
o
r
s
o
b
tain
ed
u
s
in
g
TF
-
I
DF
u
n
d
er
g
o
a
d
im
en
s
io
n
ality
r
ed
u
ctio
n
p
r
o
ce
d
u
r
e
u
s
in
g
th
e
PC
A,
wh
ich
r
ed
u
ce
s
th
e
n
u
m
b
er
o
f
f
ea
tu
r
es
wh
ile
p
r
eser
v
in
g
im
p
o
r
tan
t
in
f
o
r
m
atio
n
.
T
h
e
co
m
b
i
n
ed
f
ea
t
u
r
es
o
b
tain
ed
u
s
in
g
T
F
-
I
DF
a
n
d
W
o
r
d
2
Vec
f
o
r
m
a
s
in
g
le
s
et
th
at
p
r
o
v
id
es
a
m
o
r
e
co
m
p
lete
r
e
p
r
esen
tatio
n
o
f
th
e
tex
ts
o
f
q
u
esti
o
n
s
.
B
ased
o
n
th
ese
f
ea
tu
r
es,
th
e
co
s
in
e
s
im
ilar
ity
b
etwe
en
th
e
q
u
esti
o
n
s
is
ca
lcu
lated
,
allo
win
g
u
s
to
d
eter
m
in
e
th
eir
s
im
ilar
ity
's
d
eg
r
ee
.
T
h
e
an
aly
s
is
r
esu
lts
p
r
esen
t
a
lis
t
o
f
th
e
m
o
s
t
s
im
ilar
q
u
esti
o
n
s
,
wh
ich
ca
n
b
e
u
s
ed
to
im
p
r
o
v
e
t
h
e
q
u
ality
o
f
th
e
q
u
esti
o
n
n
air
e
a
n
d
o
b
tain
in
s
ig
h
ts
in
to
c
r
itical
asp
ec
ts
o
f
d
is
tan
ce
lear
n
in
g
.
Usi
n
g
a
h
y
b
r
id
m
o
d
el
co
m
b
in
in
g
v
ar
io
u
s
f
ea
tu
r
e
e
x
tr
ac
tio
n
m
eth
o
d
s
allo
ws
u
s
to
in
cr
ea
s
e
th
e
ac
cu
r
ac
y
an
d
in
f
o
r
m
ativ
en
ess
o
f
th
e
an
aly
s
is
,
wh
ich
,
in
tu
r
n
,
c
o
n
tr
ib
u
tes
to
a
d
ee
p
e
r
u
n
d
er
s
tan
d
i
n
g
o
f
th
e
f
ac
to
r
s
af
f
ec
tin
g
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
in
g
.
I
n
th
e
f
u
tu
r
e,
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
ca
n
b
e
ad
ap
te
d
an
d
u
s
ed
to
a
n
aly
ze
o
t
h
er
e
d
u
ca
tio
n
al
d
ata
an
d
d
ev
elo
p
r
ec
o
m
m
e
n
d
atio
n
s
f
o
r
im
p
r
o
v
in
g
ac
ad
em
ic
p
r
o
g
r
am
s
an
d
teac
h
in
g
m
eth
o
d
s
.
T
h
e
f
o
r
m
at
o
f
th
e
r
esp
o
n
s
es
also
p
lay
s
a
v
ital
r
o
le
in
en
s
u
r
in
g
th
e
ac
cu
r
ac
y
o
f
th
e
d
ata.
Usi
n
g
d
if
f
er
en
t
t
y
p
es
o
f
q
u
esti
o
n
s
,
s
u
ch
as
m
u
ltip
le
ch
o
ice,
L
ik
er
t
s
ca
les,
an
d
o
p
e
n
-
en
d
ed
q
u
esti
o
n
s
,
allo
ws
f
o
r
m
o
r
e
d
iv
er
s
e
an
d
c
o
m
p
r
eh
en
s
iv
e
in
f
o
r
m
atio
n
to
b
e
co
llec
ted
.
Fo
r
ex
a
m
p
le,
r
esp
o
n
d
e
n
ts
ca
n
b
e
ask
ed
t
o
s
elec
t
m
u
ltip
le
an
s
wer
o
p
tio
n
s
f
o
r
q
u
esti
o
n
s
ab
o
u
t
b
ar
r
ier
s
to
d
is
tan
ce
lear
n
in
g
,
wh
ich
will
m
o
r
e
ac
cu
r
ately
r
ef
lect
th
eir
ex
p
er
ien
ce
s
an
d
o
p
in
io
n
s
.
I
t
is
also
ess
en
tial
t
o
en
s
u
r
e
th
at
th
e
wo
r
d
in
g
is
n
eu
tr
al
to
av
o
id
b
ias
ag
ain
s
t
ce
r
tain
a
n
s
wer
s
.
I
n
a
d
d
itio
n
,
it
is
n
ec
ess
ar
y
t
o
co
n
s
id
er
th
e
s
o
cio
-
d
em
o
g
r
a
p
h
ic
ch
ar
ac
ter
is
tics
o
f
r
esp
o
n
d
en
ts
,
s
u
ch
as
ag
e,
g
en
d
er
,
le
v
el
o
f
e
d
u
ca
tio
n
,
an
d
s
o
cio
-
ec
o
n
o
m
ic
s
tatu
s
.
T
h
is
all
o
ws
f
o
r
a
m
o
r
e
in
-
d
ep
th
a
n
aly
s
is
o
f
th
e
d
ata
a
n
d
th
e
id
e
n
tific
atio
n
o
f
d
if
f
e
r
en
ce
s
in
th
e
r
esp
o
n
s
es
o
f
d
if
f
er
en
t
g
r
o
u
p
s
.
Fo
r
ex
am
p
le,
d
if
f
e
r
en
ce
s
in
ac
ce
s
s
to
h
ig
h
-
q
u
ality
I
n
ter
n
et
a
n
d
th
e
av
ailab
ilit
y
o
f
a
p
er
s
o
n
al
co
m
p
u
te
r
ca
n
s
ig
n
if
ican
tly
af
f
ec
t
th
e
r
esu
lts
o
f
d
is
tan
ce
lear
n
in
g
an
d
r
eq
u
ir
e
s
ep
ar
ate
an
aly
s
is
.
T
h
u
s
,
ca
r
ef
u
l
d
esig
n
o
f
th
e
q
u
esti
o
n
n
air
e,
b
ased
o
n
cr
itic
al
q
u
esti
o
n
s
an
d
p
r
in
cip
al
c
o
m
p
o
n
e
n
t
an
aly
s
is
r
esu
lts
,
p
lay
s
a
cr
u
cial
r
o
le
i
n
en
s
u
r
in
g
t
h
e
ac
cu
r
ac
y
a
n
d
r
e
liab
ilit
y
o
f
th
e
d
ata,
w
h
ich
i
n
tu
r
n
co
n
tr
ib
u
tes
to
o
b
tain
i
n
g
m
ea
n
in
g
f
u
l
an
d
v
alu
ab
le
r
esear
ch
r
esu
lts
.
Fig
u
r
e
2
s
h
o
ws
th
e
p
e
r
f
o
r
m
an
ce
o
f
t
h
r
ee
m
o
d
els,
PC
A
(
b
lu
e
)
,
W
o
r
d
2
Vec
(
r
ed
)
,
a
n
d
Hy
b
r
i
d
(
g
r
ee
n
)
,
o
n
f
o
u
r
m
etr
ics:
Acc
u
r
ac
y
,
Pre
cisi
o
n
,
R
ec
all,
an
d
F1
-
Sco
r
e.
T
h
e
Hy
b
r
id
m
o
d
el
s
h
o
ws
th
e
h
ig
h
est
r
esu
lts
o
n
all
m
etr
ics,
with
a
n
ac
c
u
r
ac
y
o
f
0
.
9
2
,
a
p
r
e
d
ictio
n
ac
cu
r
ac
y
o
f
0
.
8
7
,
a
r
ec
all
o
f
0
.
8
9
,
a
n
d
a
n
F1
-
Sco
r
e
o
f
0
.
8
8
.
T
h
e
PC
A
m
o
d
el
co
m
es
in
s
ec
o
n
d
,
ac
h
iev
in
g
an
ac
c
u
r
ac
y
o
f
0
.
9
1
,
a
p
r
ed
ictio
n
ac
cu
r
ac
y
o
f
0
.
8
5
,
a
r
ec
all
o
f
0
.
8
8
,
an
d
an
F1
-
Sco
r
e
o
f
0
.
8
7
.
T
h
e
W
o
r
d
2
Vec
m
o
d
el
s
h
o
ws
th
e
lo
west
v
alu
es,
with
an
ac
cu
r
ac
y
o
f
0
.
8
9
,
a
p
r
ed
ictio
n
ac
cu
r
ac
y
o
f
0
.
8
3
,
a
r
ec
all
o
f
0
.
8
6
,
an
d
a
n
F1
-
S
co
r
e
o
f
0
.
8
5
.
T
h
u
s
,
th
e
h
is
to
g
r
am
illu
s
tr
ates
th
e
s
u
p
er
io
r
ity
o
f
th
e
h
y
b
r
i
d
m
o
d
e
l o
v
er
th
e
o
th
er
two
m
o
d
els o
n
all
m
etr
ics.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f m
a
ch
in
e
lea
r
n
i
n
g
meth
o
d
s
to
a
n
a
lysi
s
a
n
d
ev
a
lu
a
tio
n
o
f
…
(
A
in
u
r
Mu
kh
iya
d
in
)
2177
As
a
r
esu
lt
o
f
th
e
co
n
d
u
ct
ed
r
esear
ch
,
a
m
eth
o
d
o
lo
g
y
was
d
ev
elo
p
e
d
,
in
clu
d
in
g
au
to
m
ated
in
f
o
r
m
atio
n
s
y
s
tem
s
f
o
r
co
lle
ctin
g
,
v
e
r
if
y
in
g
,
an
d
an
al
y
zin
g
d
ata.
T
h
is
en
s
u
r
es
a
h
ig
h
le
v
el
o
f
co
n
tr
o
l
o
v
er
th
e
q
u
ality
o
f
in
f
o
r
m
atio
n
a
n
d
allo
ws
f
o
r
th
e
f
o
r
m
atio
n
o
f
r
ea
s
o
n
ab
le
an
d
r
eliab
le
co
n
c
lu
s
io
n
s
,
wh
ich
is
a
cr
itical
f
ac
to
r
f
o
r
th
e
s
u
cc
ess
f
u
l
co
n
d
u
ct
o
f
co
m
p
r
e
h
en
s
iv
e
s
tu
d
ies
o
f
s
o
cial
in
s
ti
tu
tio
n
s
a
n
d
th
e
d
ev
elo
p
m
en
t
o
f
r
ec
o
m
m
en
d
atio
n
s
o
n
th
eir
b
asis
f
o
r
im
p
r
o
v
in
g
s
o
cio
-
e
co
n
o
m
ic
p
o
licy
.
I
n
th
e
s
tu
d
y
,
a
h
y
b
r
id
m
a
ch
in
e
lear
n
in
g
m
o
d
el
was
ch
o
s
en
t
o
ass
ess
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
i
n
g
,
wh
ich
c
o
m
b
in
e
s
th
e
T
F
-
I
DF
an
d
W
o
r
d
2
Vec
m
eth
o
d
s
.
T
h
e
c
h
o
i
ce
o
f
th
ese
m
eth
o
d
s
is
b
ec
au
s
e
T
F
-
I
DF
allo
ws
y
o
u
to
h
ig
h
li
g
h
t
im
p
o
r
tan
t
ter
m
s
b
ased
o
n
th
eir
f
r
e
q
u
en
c
y
,
a
n
d
W
o
r
d
2
Vec
r
ep
r
esen
ts
wo
r
d
s
as
d
en
s
e
v
ec
to
r
s
r
ef
lec
tin
g
th
eir
s
em
an
tic
m
ea
n
in
g
.
T
h
is
co
m
b
in
atio
n
p
r
o
v
id
es
a
m
o
r
e
co
m
p
lete
an
d
ac
cu
r
ate
r
ep
r
esen
tatio
n
o
f
tex
t
d
ata,
im
p
r
o
v
in
g
m
ac
h
in
e
lear
n
in
g
m
o
d
els'
q
u
ality
.
Ho
wev
er
,
ea
ch
o
f
th
ese
m
eth
o
d
s
h
as
its
lim
itatio
n
s
:
T
F
-
I
DF
d
o
es
n
o
t
co
n
s
id
er
th
e
c
o
n
tex
t
o
f
wo
r
d
s
,
an
d
W
o
r
d
2
Vec
r
e
q
u
ir
es
a
la
r
g
e
am
o
u
n
t
o
f
d
ata
f
o
r
tr
ain
i
n
g
.
T
o
s
o
lv
e
th
ese
p
r
o
b
lem
s
,
a
c
o
m
b
in
atio
n
o
f
th
ese
m
eth
o
d
s
was
u
s
ed
,
wh
ich
r
ed
u
ce
d
th
eir
lim
itatio
n
s
an
d
in
cr
ea
s
ed
th
e
ac
cu
r
ac
y
o
f
th
e
m
o
d
el
an
d
t
h
e
in
ter
p
r
etab
ilit
y
o
f
th
e
r
es
u
lts
th
r
o
u
g
h
th
e
u
s
e
o
f
th
e
PC
A
d
im
en
s
io
n
ality
r
ed
u
ctio
n
m
eth
o
d
.
Mo
de
l
c
o
mp
ar
i
s
on
Fig
u
r
e
2
.
C
o
m
p
a
r
ativ
e
r
esu
lt o
f
ac
cu
r
ac
y
b
y
m
o
d
els
4.
CO
NCLU
SI
O
N
As
a
r
esu
lt
o
f
th
e
s
tu
d
y
,
a
h
y
b
r
id
m
ac
h
in
e
lear
n
in
g
m
o
d
el
co
m
b
in
in
g
T
F
-
I
DF
an
d
W
o
r
d
2
Vec
m
eth
o
d
s
was
d
ev
elo
p
e
d
a
n
d
ev
alu
ated
f
o
r
a
n
aly
zin
g
s
u
r
v
ey
d
ata
an
d
ass
ess
in
g
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
in
g
.
T
h
e
r
esu
lts
s
h
o
wed
t
h
at
th
e
p
r
o
p
o
s
ed
m
o
d
el
o
u
tp
e
r
f
o
r
m
s
tr
ad
itio
n
al
m
eth
o
d
s
u
s
in
g
o
n
l
y
o
n
e
o
f
th
e
ap
p
r
o
ac
h
es
an
d
p
r
o
v
id
es
a
m
o
r
e
ac
c
u
r
ate
a
n
d
d
etailed
ass
ess
m
en
t
o
f
th
e
q
u
ality
o
f
d
is
tan
ce
lear
n
i
n
g
.
T
h
e
h
y
b
r
id
m
o
d
el
d
em
o
n
s
tr
ated
h
i
g
h
ac
c
u
r
ac
y
,
F1
-
m
ea
s
u
r
e
,
p
r
e
d
ictio
n
ac
cu
r
ac
y
,
an
d
r
ec
all.
U
s
in
g
PC
A
to
r
ed
u
ce
th
e
d
im
e
n
s
io
n
ality
o
f
th
e
d
at
a
im
p
r
o
v
ed
th
e
in
ter
p
r
etab
ilit
y
an
d
r
eliab
ilit
y
o
f
th
e
m
o
d
el
.
I
n
co
n
clu
s
io
n
,
th
e
p
o
s
s
ib
ilit
ies
o
f
f
u
r
th
er
d
ev
el
o
p
m
en
t
a
n
d
a
p
p
licatio
n
o
f
th
e
p
r
o
p
o
s
ed
m
o
d
el
in
ed
u
ca
ti
o
n
al
in
s
titu
tio
n
s
to
im
p
r
o
v
e
th
e
q
u
ality
o
f
d
is
tan
c
e
lear
n
in
g
ar
e
d
is
cu
s
s
ed
.
T
h
e
i
m
p
o
r
tan
ce
o
f
ca
r
ef
u
lly
f
o
r
m
in
g
th
e
q
u
esti
o
n
n
air
e
an
d
tak
in
g
in
to
ac
co
u
n
t
th
e
r
e
s
p
o
n
d
en
ts
'
s
o
cio
-
d
em
o
g
r
a
p
h
ic
ch
ar
ac
ter
is
tics
to
en
s
u
r
e
th
e
d
ata'
s
ac
cu
r
ac
y
an
d
r
eliab
ilit
y
is
also
em
p
h
asized
.
Su
m
m
ar
izin
g
th
e
r
esu
lts
o
f
t
h
e
d
ata
an
aly
s
is
an
d
ass
ess
m
en
t
o
f
th
e
s
tatis
tical
s
ig
n
if
ican
ce
o
f
th
e
cr
iter
ia
in
s
tu
d
ies
o
f
t
h
e
b
e
h
av
io
r
o
f
s
o
cia
l
in
s
titu
tio
n
s
,
it
is
ess
en
tial
to
em
p
h
asize
th
at
th
e
co
r
r
ec
tn
ess
an
d
ac
c
u
r
ac
y
o
f
m
ea
s
u
r
em
en
ts
ar
e
f
u
n
d
am
e
n
tal
asp
ec
ts
o
f
an
y
s
o
cio
lo
g
ical
r
esear
ch
.
I
t
is
im
p
o
r
tan
t
to
m
i
n
im
ize
er
r
o
r
s
t
h
at
m
ay
lead
to
i
n
co
r
r
ec
t
s
cien
tific
co
n
cl
u
s
io
n
s
at
v
ar
io
u
s
s
t
ag
es,
f
r
o
m
v
ar
iab
le
g
en
er
atio
n
t
o
d
ata
an
aly
s
is
.
RE
F
E
R
E
NC
E
S
[
1
]
A
.
M
u
k
h
i
y
a
d
i
n
e
t
a
l
.
,
“
A
p
p
l
i
c
a
t
i
o
n
o
f
i
n
f
o
r
m
a
t
i
o
n
t
e
c
h
n
o
l
o
g
i
e
s
a
n
d
m
e
t
h
o
d
s
f
o
r
p
r
o
c
e
ss
i
n
g
b
i
g
d
a
t
a
t
o
t
h
e
m
a
n
a
g
e
me
n
t
o
f
t
h
e
e
d
u
c
a
t
i
o
n
a
l
p
r
o
c
e
ss
d
u
r
i
n
g
t
h
e
p
a
n
d
e
m
i
c
,
”
J
o
u
r
n
a
l
o
f
T
h
e
o
r
e
t
i
c
a
l
a
n
d
A
p
p
l
i
e
d
I
n
f
o
rm
a
t
i
o
n
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
1
0
1
,
n
o
.
2
,
p
p
.
4
5
8
–
4
7
0
,
2
0
2
3
.
[
2
]
M
.
M
u
k
a
s
h
e
v
a
,
A
.
M
u
k
h
i
y
a
d
i
n
,
U
.
M
a
k
h
a
z
h
a
n
o
v
a
,
a
n
d
S
.
S
e
r
i
k
b
a
y
e
v
a
,
“
Th
e
b
e
h
a
v
i
o
u
r
o
f
t
h
e
e
n
sem
b
l
e
l
e
a
r
n
i
n
g
mo
d
e
l
i
n
a
n
a
l
y
si
n
g
e
d
u
c
a
t
i
o
n
a
l
d
a
t
a
o
n
C
O
V
I
D
-
1
9
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
a
n
d
E
d
u
c
a
t
i
o
n
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
1
3
,
n
o
.
1
2
,
p
p
.
1
8
6
8
–
1
8
7
8
,
2
0
2
3
,
d
o
i
:
1
0
.
1
8
1
7
8
/
i
j
i
e
t
.
2
0
2
3
.
1
3
.
1
2
.
2
0
0
0
.
[
3
]
S
.
S
e
r
i
k
b
a
y
e
v
a
e
t
a
l
.
,
“
D
e
v
e
l
o
p
me
n
t
o
f
q
u
e
r
i
e
s
u
s
i
n
g
t
h
e
Z
3
9
.
5
0
p
r
o
t
o
c
o
l
i
n
d
i
s
t
r
i
b
u
t
e
d
i
n
f
o
r
ma
t
i
o
n
s
y
st
e
ms
t
o
s
u
p
p
o
r
t
s
c
i
e
n
t
i
f
i
c
a
n
d
e
d
u
c
a
t
i
o
n
a
l
a
c
t
i
v
i
t
i
e
s
,
”
E
a
st
e
rn
-
Eu
ro
p
e
a
n
J
o
u
r
n
a
l
o
f
E
n
t
e
rp
r
i
se
T
e
c
h
n
o
l
o
g
i
e
s
,
v
o
l
.
5
,
n
o
.
2
,
p
p
.
6
6
–
7
9
,
O
c
t
.
2
0
2
1
,
d
o
i
:
1
0
.
1
5
5
8
7
/
1
7
2
9
-
4
0
6
1
.
2
0
2
1
.
2
3
9
5
4
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
1
7
2
-
2
1
8
0
2178
[
4
]
S
.
S
a
n
d
u
g
a
sh
,
T.
J
a
ma
l
b
e
k
,
S
.
M
a
d
i
n
a
,
Y
.
A
k
b
o
t
a
,
a
n
d
A
.
A
i
n
u
r
,
“
B
u
i
l
d
i
n
g
a
st
a
n
d
a
r
d
m
o
d
e
l
o
f
a
n
i
n
f
o
r
m
a
t
i
o
n
sy
s
t
e
m
f
o
r
w
o
r
k
i
n
g
w
i
t
h
d
o
c
u
m
e
n
t
s
o
n
sc
i
e
n
t
i
f
i
c
a
n
d
e
d
u
c
a
t
i
o
n
a
l
a
c
t
i
v
i
t
i
e
s,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
A
d
v
a
n
c
e
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
1
2
,
n
o
.
9
,
2
0
2
1
,
d
o
i
:
1
0
.
1
4
5
6
9
/
i
j
a
c
sa
.
2
0
2
1
.
0
1
2
0
9
5
1
.
[
5
]
C
.
A
.
O
n
g
g
i
r
a
w
a
n
,
J
.
M
.
K
h
o
,
A
.
P
.
K
a
r
t
i
w
a
,
A
n
d
e
r
i
e
s,
a
n
d
A
.
A
.
S
.
G
u
n
a
w
a
n
,
“
S
y
st
e
mat
i
c
l
i
t
e
r
a
t
u
r
e
r
e
v
i
e
w
:
Th
e
a
d
a
p
t
a
t
i
o
n
o
f
d
i
s
t
a
n
c
e
l
e
a
r
n
i
n
g
p
r
o
c
e
ss
d
u
r
i
n
g
t
h
e
C
O
V
I
D
-
1
9
p
a
n
d
e
mi
c
u
s
i
n
g
v
i
r
t
u
a
l
e
d
u
c
a
t
i
o
n
a
l
s
p
a
c
e
s
i
n
me
t
a
v
e
r
se
,
”
Pr
o
c
e
d
i
a
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
2
1
6
,
p
p
.
2
7
4
–
2
8
3
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
p
r
o
c
s.
2
0
2
2
.
1
2
.
1
3
7
.
[
6
]
F
.
B
a
sh
i
r
a
n
d
N
.
F
.
W
a
r
r
a
i
c
h
,
“
S
y
st
e
ma
t
i
c
l
i
t
e
r
a
t
u
r
e
r
e
v
i
e
w
o
f
sema
n
t
i
c
w
e
b
f
o
r
d
i
st
a
n
c
e
l
e
a
r
n
i
n
g
,
”
I
n
t
e
r
a
c
t
i
v
e
L
e
a
r
n
i
n
g
En
v
i
r
o
n
m
e
n
t
s
,
v
o
l
.
3
1
,
n
o
.
1
,
p
p
.
5
2
7
–
5
4
3
,
A
u
g
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
8
0
/
1
0
4
9
4
8
2
0
.
2
0
2
0
.
1
7
9
9
0
2
3
.
[
7
]
R
.
G
u
z
a
l
,
“
P
r
o
s
p
e
c
t
s
f
o
r
d
i
s
t
a
n
c
e
e
d
u
c
a
t
i
o
n
,
”
(
i
n
Ru
ssi
a
n
)
Ac
a
d
e
m
i
c
Re
s
e
a
r
c
h
i
n
E
d
u
c
a
t
i
o
n
a
l
S
c
i
e
n
c
e
s
,
v
o
l
.
4
,
n
o
.
1
1
,
p
p
.
6
9
–
4
7
2
,
2
0
2
3
.
[
8
]
M
.
A
l
e
n
e
z
i
,
S
.
W
a
r
d
a
t
,
a
n
d
M
.
A
k
o
u
r
,
“
Th
e
n
e
e
d
o
f
i
n
t
e
g
r
a
t
i
n
g
d
i
g
i
t
a
l
e
d
u
c
a
t
i
o
n
i
n
h
i
g
h
e
r
e
d
u
c
a
t
i
o
n
:
C
h
a
l
l
e
n
g
e
s
a
n
d
o
p
p
o
r
t
u
n
i
t
i
e
s,
”
S
u
st
a
i
n
a
b
i
l
i
t
y
,
v
o
l
.
1
5
,
n
o
.
6
,
M
a
r
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s
u
1
5
0
6
4
7
8
2
.
[
9
]
Z.
S
a
d
i
r
me
k
o
v
a
e
t
a
l
.
,
“
O
n
t
o
l
o
g
y
e
n
g
i
n
e
e
r
i
n
g
o
f
a
u
t
o
m
a
t
i
c
t
e
x
t
p
r
o
c
e
ss
i
n
g
me
t
h
o
d
s,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
t
ri
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
1
3
,
n
o
.
6
,
p
p
.
6
6
2
0
–
6
6
2
8
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
3
i
6
.
p
p
6
6
2
0
-
6
6
2
8
.
[
1
0
]
D
.
K
h
u
r
a
n
a
,
A
.
K
o
l
i
,
K
.
K
h
a
t
t
e
r
,
a
n
d
S
.
S
i
n
g
h
,
“
N
a
t
u
r
a
l
l
a
n
g
u
a
g
e
p
r
o
c
e
ssi
n
g
:
s
t
a
t
e
o
f
t
h
e
a
r
t
,
c
u
r
r
e
n
t
t
r
e
n
d
s
a
n
d
c
h
a
l
l
e
n
g
e
s
,
”
Mu
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
8
2
,
n
o
.
3
,
p
p
.
3
7
1
3
–
3
7
4
4
,
Ju
l
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
1
0
4
2
-
0
2
2
-
1
3
4
2
8
-
4.
[
1
1
]
S
.
C
.
F
a
n
n
i
,
M
.
F
e
b
i
,
G
.
A
g
h
a
k
h
a
n
y
a
n
,
a
n
d
E.
N
e
r
i
,
“
N
a
t
u
r
a
l
l
a
n
g
u
a
g
e
p
r
o
c
e
ss
i
n
g
,
”
i
n
I
n
t
r
o
d
u
c
t
i
o
n
t
o
Art
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
,
S
p
r
i
n
g
e
r
I
n
t
e
r
n
a
t
i
o
n
a
l
P
u
b
l
i
sh
i
n
g
,
2
0
2
3
,
p
p
.
8
7
–
9
9
.
[
1
2
]
G
.
R
i
t
s
c
h
a
r
d
,
T
.
F
.
L
i
a
o
,
a
n
d
E
.
S
t
r
u
f
f
o
l
i
n
o
,
“
S
t
r
a
t
e
g
i
e
s
f
o
r
m
u
l
t
i
d
o
mai
n
s
e
q
u
e
n
c
e
a
n
a
l
y
s
i
s
i
n
s
o
c
i
a
l
r
e
s
e
a
r
c
h
,
”
S
o
c
i
o
l
o
g
i
c
a
l
Me
t
h
o
d
o
l
o
g
y
,
v
o
l
.
5
3
,
n
o
.
2
,
p
p
.
2
8
8
–
3
2
2
,
A
p
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
7
7
/
0
0
8
1
1
7
5
0
2
3
1
1
6
3
8
3
3
.
[
1
3
]
J.
D
a
i
k
e
l
e
r
e
t
a
l
.
,
“
A
ss
e
ssi
n
g
d
a
t
a
q
u
a
l
i
t
y
i
n
t
h
e
a
g
e
o
f
d
i
g
i
t
a
l
s
o
c
i
a
l
r
e
se
a
r
c
h
:
A
s
y
st
e
mat
i
c
r
e
v
i
e
w
,
”
S
o
c
i
a
l
S
c
i
e
n
c
e
C
o
m
p
u
t
e
r
Re
v
i
e
w
,
A
p
r
.
2
0
2
4
,
d
o
i
:
1
0
.
1
1
7
7
/
0
8
9
4
4
3
9
3
2
4
1
2
4
5
3
9
5
.
[
1
4
]
M
.
I
n
g
h
i
l
l
e
r
i
,
“
S
o
c
i
o
l
o
g
i
c
a
l
a
p
p
r
o
a
c
h
e
s,
”
i
n
T
h
e
R
o
u
t
l
e
d
g
e
H
a
n
d
b
o
o
k
o
f
T
ra
n
s
l
a
t
i
o
n
T
h
e
o
ry
a
n
d
C
o
n
c
e
p
t
s
,
R
o
u
t
l
e
d
g
e
,
2
0
2
3
,
p
p
.
2
4
1
–
2
6
2
.
[
1
5
]
D
.
R
.
F
i
r
d
a
u
s,
B
.
H
a
r
t
o
,
a
n
d
H
.
F
e
r
d
i
a
n
sy
a
h
,
“
Th
e
e
f
f
e
c
t
i
v
e
n
e
ss
a
n
a
l
y
si
s
o
f
d
i
st
a
n
c
e
l
e
a
r
n
i
n
g
b
y
o
p
t
i
mi
z
i
n
g
t
h
e
u
se
o
f
i
n
f
o
r
mat
i
o
n
t
e
c
h
n
o
l
o
g
y
,
”
J
o
u
rn
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
S
y
st
e
m
,
T
e
c
h
n
o
l
o
g
y
a
n
d
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
1
,
n
o
.
1
,
p
p
.
1
–
5
,
M
a
y
2
0
2
3
,
d
o
i
:
1
0
.
6
1
4
8
7
/
j
i
st
e
.
v
1
i
1
.
4
.
[
1
6
]
F
.
G
u
r
c
a
n
a
n
d
N
.
E.
C
a
g
i
l
t
a
y
,
“
R
e
s
e
a
r
c
h
t
r
e
n
d
s
o
n
d
i
st
a
n
c
e
l
e
a
r
n
i
n
g
:
a
t
e
x
t
mi
n
i
n
g
-
b
a
se
d
l
i
t
e
r
a
t
u
r
e
r
e
v
i
e
w
f
r
o
m
2
0
0
8
t
o
2
0
1
8
,
”
I
n
t
e
r
a
c
t
i
v
e
L
e
a
rn
i
n
g
En
v
i
r
o
n
m
e
n
t
s
,
v
o
l
.
3
1
,
n
o
.
2
,
p
p
.
1
0
0
7
–
1
0
2
8
,
S
e
p
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
8
0
/
1
0
4
9
4
8
2
0
.
2
0
2
0
.
1
8
1
5
7
9
5
.
[
1
7
]
M
.
E
.
D
o
g
a
n
,
T.
G
o
r
u
D
o
g
a
n
,
a
n
d
A
.
B
o
z
k
u
r
t
,
“
Th
e
u
s
e
o
f
a
r
t
i
f
i
c
i
a
l
i
n
t
e
l
l
i
g
e
n
c
e
(
A
I
)
i
n
o
n
l
i
n
e
l
e
a
r
n
i
n
g
a
n
d
d
i
s
t
a
n
c
e
e
d
u
c
a
t
i
o
n
p
r
o
c
e
s
se
s:
A
sy
st
e
m
a
t
i
c
r
e
v
i
e
w
o
f
e
mp
i
r
i
c
a
l
s
t
u
d
i
e
s
,
”
Ap
p
l
i
e
d
S
c
i
e
n
c
e
s
,
v
o
l
.
1
3
,
n
o
.
5
,
F
e
b
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
a
p
p
1
3
0
5
3
0
5
6
.
[
1
8
]
Y
.
C
u
i
e
t
a
l
.
,
“
A
su
r
v
e
y
o
n
b
i
g
d
a
t
a
-
e
n
a
b
l
e
d
i
n
n
o
v
a
t
i
v
e
o
n
l
i
n
e
e
d
u
c
a
t
i
o
n
sy
st
e
ms
d
u
r
i
n
g
t
h
e
C
O
V
I
D
-
1
9
p
a
n
d
e
mi
c
,
”
J
o
u
r
n
a
l
o
f
I
n
n
o
v
a
t
i
o
n
& K
n
o
w
l
e
d
g
e
,
v
o
l
.
8
,
n
o
.
1
,
J
a
n
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
i
k
.
2
0
2
2
.
1
0
0
2
9
5
.
[
1
9
]
M
.
O
.
T
u
r
a
q
u
l
o
v
i
c
h
,
“
A
p
p
l
i
e
d
t
o
t
h
e
c
u
r
r
e
n
t
t
r
a
i
n
i
n
g
p
r
o
c
e
ss
r
e
q
u
i
r
e
men
t
s,”
T
h
e
Mu
l
t
i
d
i
sc
i
p
l
i
n
a
ry
J
o
u
r
n
a
l
o
f
S
c
i
e
n
c
e
sn
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
3
,
n
o
.
1
,
p
p
.
5
4
–
6
3
,
2
0
2
4
.
[
2
0
]
A
.
S
.
P
i
n
t
o
,
A
.
A
b
r
e
u
,
E
.
C
o
st
a
,
a
n
d
J.
P
a
i
v
a
,
“
H
o
w
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
(
M
L)
i
s
t
r
a
n
sf
o
r
mi
n
g
h
i
g
h
e
r
e
d
u
c
a
t
i
o
n
:
A
s
y
s
t
e
m
a
t
i
c
l
i
t
e
r
a
t
u
r
e
r
e
v
i
e
w
,
”
J
o
u
r
n
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
S
y
s
t
e
m
s
En
g
i
n
e
e
ri
n
g
a
n
d
M
a
n
a
g
e
m
e
n
t
,
v
o
l
.
8
,
n
o
.
2
,
A
p
r
.
2
0
2
3
,
d
o
i
:
1
0
.
5
5
2
6
7
/
i
a
d
t
.
0
7
.
1
3
2
2
7
.
[
2
1
]
E.
F
.
O
k
a
g
b
u
e
e
t
a
l
.
,
“
A
c
o
mp
r
e
h
e
n
s
i
v
e
o
v
e
r
v
i
e
w
o
f
a
r
t
i
f
i
c
i
a
l
i
n
t
e
l
l
i
g
e
n
c
e
a
n
d
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
i
n
e
d
u
c
a
t
i
o
n
p
e
d
a
g
o
g
y
:
2
1
Y
e
a
r
s
(
2
0
0
0
–
2
0
2
1
)
o
f
r
e
s
e
a
r
c
h
i
n
d
e
x
e
d
i
n
t
h
e
S
c
o
p
u
s
d
a
t
a
b
a
se,
”
S
o
c
i
a
l
S
c
i
e
n
c
e
s
&
H
u
m
a
n
i
t
i
e
s
O
p
e
n
,
v
o
l
.
8
,
n
o
.
1
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
ss
a
h
o
.
2
0
2
3
.
1
0
0
6
5
5
.
[
2
2
]
A
.
B
o
z
k
u
r
t
a
n
d
R
.
C
.
S
h
a
r
m
a
,
“
C
h
a
l
l
e
n
g
i
n
g
t
h
e
s
t
a
t
u
s
q
u
o
a
n
d
e
x
p
l
o
r
i
n
g
t
h
e
n
e
w
b
o
u
n
d
a
r
i
e
s
i
n
t
h
e
a
g
e
o
f
a
l
g
o
r
i
t
h
ms
:
R
e
i
ma
g
i
n
i
n
g
t
h
e
r
o
l
e
o
f
g
e
n
e
r
a
t
i
v
e
A
I
i
n
d
i
st
a
n
c
e
e
d
u
c
a
t
i
o
n
a
n
d
o
n
l
i
n
e
l
e
a
r
n
i
n
g
,
”
Asi
a
n
J
o
u
rn
a
l
o
f
D
i
st
a
n
c
e
E
d
u
c
a
t
i
o
n
,
v
o
l
.
1
8
,
n
o
.
1
,
2
0
2
3
.
[
2
3
]
M
.
P
a
l
mi
e
r
i
a
n
d
R
.
A
p
r
i
l
e
,
“
D
a
t
a
q
u
a
l
i
t
y
i
n
s
o
c
i
a
l
su
r
v
e
y
r
e
se
a
r
c
h
,
”
i
n
E
n
c
y
c
l
o
p
e
d
i
a
o
f
I
n
f
o
rm
a
t
i
o
n
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
S
i
x
t
h
E
d
i
t
i
o
n
,
I
G
I
G
l
o
b
a
l
,
2
0
2
4
,
p
p
.
1
–
1
3
.
[
2
4
]
D
.
A
l
o
n
z
o
a
n
d
S
.
Te
n
g
,
“
T
r
u
st
w
o
r
t
h
i
n
e
s
s
o
f
t
e
a
c
h
e
r
a
s
se
s
s
men
t
a
n
d
d
e
c
i
si
o
n
-
m
a
k
i
n
g
:
R
e
f
r
a
mi
n
g
t
h
e
c
o
n
si
st
e
n
c
y
a
n
d
a
c
c
u
r
a
c
y
me
a
s
u
r
e
s,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
I
n
st
ru
c
t
i
o
n
,
v
o
l
.
1
6
,
n
o
.
3
,
p
p
.
1
0
7
5
–
1
0
9
4
,
J
u
l
.
2
0
2
3
,
d
o
i
:
1
0
.
2
9
3
3
3
/
i
j
i
.
2
0
2
3
.
1
6
3
5
7
a
.
[
2
5
]
F
.
K
o
u
a
m
A
r
t
h
u
r
W
i
l
l
i
a
m,
“
M
a
s
t
e
r
i
n
g
v
a
l
i
d
i
t
y
a
n
d
r
e
l
i
a
b
i
l
i
t
y
i
n
a
c
a
d
e
m
i
c
r
e
se
a
r
c
h
:
M
e
a
n
i
n
g
a
n
d
si
g
n
i
f
i
c
a
n
c
e
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
Re
s
e
a
r
c
h
P
u
b
l
i
c
a
t
i
o
n
s
,
v
o
l
.
1
4
4
,
n
o
.
1
,
F
e
b
.
2
0
2
4
,
d
o
i
:
1
0
.
4
7
1
1
9
/
i
j
r
p
1
0
0
1
4
4
1
3
2
0
2
4
6
1
6
0
.
[
2
6
]
R
.
F
e
r
n
á
n
d
e
z
-
G
a
r
c
í
a
,
E
.
M
e
l
g
u
i
z
o
-
I
b
á
ñ
e
z
,
F
.
Z
u
r
i
t
a
-
O
r
t
e
g
a
,
a
n
d
J.
L
.
U
b
a
g
o
-
J
i
mé
n
e
z
,
“
D
e
v
e
l
o
p
me
n
t
a
n
d
v
a
l
i
d
a
t
i
o
n
o
f
a
me
n
t
a
l
h
y
p
e
r
a
c
t
i
v
i
t
y
q
u
e
s
t
i
o
n
n
a
i
r
e
f
o
r
t
h
e
e
v
a
l
u
a
t
i
o
n
o
f
c
h
r
o
n
i
c
st
r
e
ss
i
n
h
i
g
h
e
r
e
d
u
c
a
t
i
o
n
,
”
B
MC
Psy
c
h
o
l
o
g
y
,
v
o
l
.
1
2
,
n
o
.
1
,
Ju
l
.
2
0
2
4
,
d
o
i
:
1
0
.
1
1
8
6
/
s
4
0
3
5
9
-
024
-
0
1
8
8
9
-
1.
[
2
7
]
F
.
K
r
i
e
g
l
st
e
i
n
,
M
.
B
e
e
g
e
,
G
.
D
.
R
e
y
,
C
.
S
a
n
c
h
e
z
-
S
t
o
c
k
h
a
mm
e
r
,
a
n
d
S
.
S
c
h
n
e
i
d
e
r
,
“
D
e
v
e
l
o
p
m
e
n
t
a
n
d
v
a
l
i
d
a
t
i
o
n
o
f
a
m
e
n
t
a
l
h
y
p
e
r
a
c
t
i
v
i
t
y
q
u
e
st
i
o
n
n
a
i
r
e
f
o
r
t
h
e
e
v
a
l
u
a
t
i
o
n
o
f
c
h
r
o
n
i
c
st
r
e
ss
i
n
h
i
g
h
e
r
e
d
u
c
a
t
i
o
n
,
”
E
d
u
c
a
t
i
o
n
a
l
Ps
y
c
h
o
l
o
g
y
Re
v
i
e
w
,
v
o
l
.
3
5
,
n
o
.
1
,
J
a
n
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
0
6
4
8
-
0
2
3
-
0
9
7
3
8
-
0.
[
2
8
]
T.
Z
h
a
n
g
,
X
.
L
u
,
X
.
Z
h
u
,
a
n
d
J.
Zh
a
n
g
,
“
Th
e
c
o
n
t
r
i
b
u
t
i
o
n
s
o
f
A
I
i
n
t
h
e
d
e
v
e
l
o
p
m
e
n
t
o
f
i
d
e
o
l
o
g
i
c
a
l
a
n
d
p
o
l
i
t
i
c
a
l
p
e
r
s
p
e
c
t
i
v
e
s
i
n
e
d
u
c
a
t
i
o
n
,
”
H
e
l
i
y
o
n
,
v
o
l
.
9
,
n
o
.
3
,
M
a
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
h
e
l
i
y
o
n
.
2
0
2
3
.
e
1
3
4
0
3
.
[
2
9
]
M
.
M
u
k
a
sh
e
v
a
,
O
.
C
h
o
r
o
s
o
v
a
,
Z.
Z
h
i
l
b
a
y
e
v
,
a
n
d
Y
.
P
a
y
e
v
s
k
a
y
a
,
“
I
n
t
e
g
r
a
t
e
d
a
p
p
r
o
a
c
h
t
o
t
h
e
d
e
v
e
l
o
p
m
e
n
t
a
n
d
i
mp
l
e
me
n
t
a
t
i
o
n
o
f
d
i
s
t
a
n
c
e
c
o
u
r
ses
f
o
r
sc
h
o
o
l
c
o
m
p
u
t
e
r
sci
e
n
c
e
t
e
a
c
h
e
r
s,”
i
n
2
0
2
0
I
EE
E
1
4
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
A
p
p
l
i
c
a
t
i
o
n
o
f
I
n
f
o
rm
a
t
i
o
n
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s (AI
C
T
)
,
O
c
t
.
2
0
2
0
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
a
i
c
t
5
0
1
7
6
.
2
0
2
0
.
9
3
6
8
8
1
7
.
[
3
0
]
M
.
M
u
k
a
sh
e
v
a
,
Z.
K
a
l
k
a
b
a
y
e
v
a
,
a
n
d
A
.
Zh
a
n
a
sb
a
y
e
v
a
,
“
T
e
a
c
h
e
r
s’
p
e
r
s
p
e
c
t
i
v
e
s
o
n
t
h
e
u
se
o
f
v
i
r
t
u
a
l
r
e
a
l
i
t
y
i
n
c
o
l
l
a
b
o
r
a
t
i
v
e
l
e
a
r
n
i
n
g
,
”
i
n
2
0
2
3
1
3
t
h
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
A
d
v
a
n
c
e
d
C
o
m
p
u
t
e
r
I
n
f
o
rm
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s
(
A
C
I
T
)
,
S
e
p
.
2
0
2
3
,
p
p
.
6
7
0
–
6
7
4
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
i
t
5
8
4
3
7
.
2
0
2
3
.
1
0
2
7
5
5
6
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f m
a
ch
in
e
lea
r
n
i
n
g
meth
o
d
s
to
a
n
a
lysi
s
a
n
d
ev
a
lu
a
tio
n
o
f
…
(
A
in
u
r
Mu
kh
iya
d
in
)
2179
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Ain
u
r
Mu
k
h
iy
a
d
i
n
b
e
g
a
n
h
e
r
h
ig
h
e
r
e
d
u
c
a
ti
o
n
in
2
0
0
3
wit
h
a
d
e
g
re
e
in
a
p
p
li
e
d
m
a
th
e
m
a
ti
c
s
in
L.
N.
G
u
m
il
y
o
v
Eu
ra
sia
n
Na
ti
o
n
a
l
U
n
iv
e
rsit
y
.
I
n
2
0
0
9
-
2
0
1
1
,
s
h
e
stu
d
ie
d
a
t
th
e
m
a
ste
r'
s
d
e
g
re
e
in
in
f
o
rm
a
ti
o
n
s
y
ste
m
s
a
n
d
d
e
fe
n
d
e
d
h
e
r
sc
ien
ti
fic
d
isse
rtatio
n
o
n
th
e
t
o
p
ic
“
Ap
p
li
c
a
ti
o
n
o
f
d
istan
c
e
e
d
u
c
a
ti
o
n
a
l
tec
h
n
o
lo
g
ies
in
Ka
z
a
k
h
sta
n
”
i
n
Ka
z
a
k
h
e
c
o
n
o
m
y
,
fi
n
a
n
c
e
a
n
d
in
tern
a
t
io
n
a
l
tra
d
e
u
n
i
v
e
rsity
.
C
u
rre
n
t
ly
,
S
h
e
is
a
d
o
c
t
o
ra
l
s
tu
d
e
n
t
a
t
t
h
e
De
p
a
rtme
n
t
o
f
In
fo
rm
a
ti
o
n
S
y
ste
m
s
o
f
t
h
e
L.
N.
G
u
m
il
y
o
v
Eu
ra
sia
n
Na
ti
o
n
a
l
Un
iv
e
rsity
.
He
r
re
se
a
rc
h
in
tere
sts
fo
c
u
s
o
n
th
e
a
p
p
li
c
a
ti
o
n
o
f
sta
ti
stica
l
m
e
th
o
d
s
i
n
e
d
u
c
a
ti
o
n
a
l
re
se
a
rc
h
,
e
sp
e
c
ially
su
rv
e
y
d
a
ta
a
n
a
l
y
sis
a
n
d
fa
c
to
r
e
x
trac
ti
o
n
m
e
th
o
d
s.
Ac
ti
v
e
ly
p
a
rti
c
ip
a
tes
in
p
u
b
li
c
a
ti
o
n
s
a
n
d
wo
rk
o
n
o
p
ti
m
iza
ti
o
n
o
f
s
u
rv
e
y
m
e
a
su
re
m
e
n
ts
a
n
d
e
v
a
lu
a
ti
o
n
o
f
th
e
ir
e
ffe
c
ti
v
e
n
e
ss
,
m
a
k
in
g
sig
n
ifi
c
a
n
t
c
o
n
tri
b
u
ti
o
n
s
t
o
th
e
d
e
v
e
lo
p
m
e
n
t
o
f
m
e
th
o
d
o
lo
g
ies
in
th
is
a
re
a
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
a
m
u
k
h
iy
a
d
in
@g
m
a
il
.
c
o
m
.
M
a
n
a
r
g
u
l
M
u
k
a
s
h
e
v
a
c
u
r
r
e
n
tl
y
h
o
l
d
s
t
h
e
p
o
si
ti
o
n
o
f
c
h
ief
re
se
a
rc
h
e
r
a
t
t
h
e
Di
g
i
ta
l
Lea
rn
i
n
g
Re
se
a
rc
h
La
b
o
r
a
t
o
r
y
o
f
t
h
e
A
lt
y
n
s
a
r
i
n
N
a
t
i
o
n
a
l
Ac
a
d
e
m
y
o
f
Ed
u
c
a
t
i
o
n
i
n
As
ta
n
a
,
Ka
z
a
k
h
s
ta
n
.
S
h
e
h
a
s
t
h
e
a
c
a
d
e
m
ic
t
it
le
o
f
a
ss
o
c
iate
p
r
o
fe
s
so
r
a
t
t
h
e
E
u
ra
sia
n
Na
ti
o
n
a
l
Un
i
v
e
rs
i
t
y
n
a
m
e
d
a
f
ter
L
.
N
.
G
u
m
il
y
o
v
,
w
h
e
re
sh
e
h
a
s
b
e
e
n
wo
r
k
i
n
g
si
n
c
e
2
0
0
4
a
t
t
h
e
De
p
a
rt
m
e
n
t
o
f
I
n
f
o
rm
a
t
i
o
n
S
y
ste
m
s.
S
h
e
h
a
s
a
d
is
ti
n
g
u
is
h
e
d
c
a
re
e
r
t
h
a
t
s
p
a
n
s
v
a
r
i
o
u
s p
o
s
it
i
o
n
s
,
in
c
l
u
d
i
n
g
h
e
a
d
o
f
t
h
e
I
n
f
o
rm
a
ti
o
n
a
n
d
A
n
a
l
y
ti
c
a
l
S
u
p
p
o
r
t
D
e
p
a
r
t
m
e
n
t
o
f
t
h
e
Ce
n
ter
f
o
r
t
h
e
Bo
l
o
g
n
a
P
r
o
c
e
ss
a
n
d
A
c
a
d
e
m
ic
M
o
b
i
li
t
y
i
n
As
ta
n
a
,
a
n
d
a
ss
o
c
ia
te
p
r
o
fe
s
so
r
a
n
d
a
ss
is
ta
n
t
p
r
o
fe
ss
o
r
a
t
A
k
t
o
b
e
Re
g
i
o
n
a
l
S
tate
Un
i
v
e
rsi
t
y
n
a
m
e
d
a
f
ter
K.
Z
h
u
b
a
n
o
v
.
S
h
e
re
c
e
i
v
e
d
a
Ca
n
d
i
d
a
te
o
f
P
e
d
a
g
o
g
ica
l
S
c
i
e
n
c
e
s
(P
h
D
)
d
e
g
re
e
f
r
o
m
t
h
e
Ka
z
a
k
h
Na
ti
o
n
a
l
P
e
d
a
g
o
g
ica
l
Un
i
v
e
rs
i
t
y
n
a
m
e
d
a
f
te
r
A
b
a
i,
sp
e
c
ial
iz
i
n
g
i
n
tea
c
h
i
n
g
m
a
t
h
e
m
a
t
ics
a
n
d
c
o
m
p
u
ter
sc
ie
n
c
e
.
He
r
re
se
a
r
c
h
i
n
te
re
s
ts
m
a
i
n
l
y
f
o
c
u
s
o
n
v
ir
t
u
a
l
a
n
d
a
u
g
m
e
n
te
d
r
e
a
l
it
y
tec
h
n
o
l
o
g
ies
i
n
e
d
u
c
a
ti
o
n
,
c
o
m
p
u
tat
i
o
n
a
l
t
h
i
n
k
in
g
,
e
d
u
c
a
ti
o
n
a
l
p
r
o
g
ra
m
m
i
n
g
a
n
d
i
n
c
l
u
s
i
v
e
e
d
u
c
a
ti
o
n
m
e
t
h
o
d
o
l
o
g
ie
s.
S
h
e
is
t
h
e
a
u
t
h
o
r
o
f
n
u
m
e
r
o
u
s
sc
ie
n
t
if
ic
w
o
r
k
s
,
i
n
c
l
u
d
i
n
g
a
rt
icl
e
s,
c
o
n
fe
re
n
c
e
re
p
o
rts
a
n
d
b
o
o
k
s
,
m
a
k
i
n
g
s
i
g
n
i
fi
c
a
n
t
c
o
n
t
ri
b
u
ti
o
n
s
to
t
h
e
d
e
v
e
l
o
p
m
e
n
t
o
f
e
d
u
c
a
t
i
o
n
a
l
tec
h
n
o
l
o
g
ies
a
n
d
tea
c
h
i
n
g
p
ra
c
t
ice
i
n
.
S
h
e
c
a
n
b
e
c
o
n
tac
te
d
a
t
e
m
a
i
l:
m
a
n
a
r
g
u
l
.
m
u
k
a
s
h
e
v
a
@m
a
il
.
r
u
.
Ulz
h
a
n
Ma
k
h
a
z
h
a
n
o
v
a
in
2
0
0
8
sh
e
g
ra
d
u
a
ted
fro
m
Eu
ra
sia
n
Na
ti
o
n
a
l
Un
iv
e
rsit
y
with
a
d
e
g
re
e
i
n
c
o
m
p
u
ter
sc
ien
c
e
.
In
2
0
1
1
h
e
re
c
e
iv
e
d
a
m
a
ste
r'
s
d
e
g
re
e
in
c
o
m
p
u
ter
sc
ien
c
e
.
In
2
0
2
1
,
sh
e
g
ra
d
u
a
ted
fr
o
m
E
u
ra
sia
n
Na
ti
o
n
a
l
Un
i
v
e
rsity
d
o
c
to
ra
l
stu
d
ies
with
a
sp
e
c
ialty
6
D0
7
0
3
0
0
–
in
f
o
rm
a
ti
o
n
sy
ste
m
s
.
F
ro
m
2
0
2
0
to
th
e
p
re
se
n
t,
s
h
e
is
a
se
n
io
r
lec
tu
re
r
a
t
t
h
e
De
p
a
rtme
n
t
o
f
I
n
f
o
rm
a
ti
o
n
S
y
ste
m
s,
L.
N.
G
u
m
il
y
o
v
E
u
ra
sia
n
N
a
ti
o
n
a
l
U
n
iv
e
rsit
y
,
As
ta
n
a
.
S
h
e
is
th
e
a
u
t
h
o
r
o
f
m
o
re
th
a
n
2
2
wo
rk
s.
He
r
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
d
a
ta
a
n
a
ly
sis,
b
i
g
d
a
ta,
m
a
c
h
in
e
lea
rn
in
g
,
fu
z
z
y
lo
g
ic.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
m
a
k
h
a
z
h
a
n
.
u
t@g
m
a
il
.
c
o
m
.
Aislu
K
a
ss
e
k
e
y
e
v
a
re
c
e
iv
e
d
h
e
r
P
h
D d
e
g
re
e
in
2
0
2
1
i
n
th
e
sp
e
c
ialty
“
In
fo
rm
a
ti
o
n
sy
ste
m
s
”
n
a
m
e
d
a
fter.
L.
N
.
G
u
m
il
y
o
v
,
Ka
z
a
k
h
sta
n
.
C
u
rre
n
tl
y
h
e
is
a
se
n
io
r
lec
tu
re
r
a
t
t
h
e
De
p
a
rtme
n
t
o
f
In
f
o
rm
a
ti
o
n
S
y
s
tem
s
n
a
m
e
d
a
fter.
L.
N.
G
u
m
il
y
o
v
.
He
r
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
c
o
m
p
u
tatio
n
a
l
li
n
g
u
isti
c
s
,
d
a
ta
a
n
a
l
y
ti
c
s,
a
rti
ficia
l
in
telli
g
e
n
c
e
,
a
n
d
d
a
ta
m
in
i
n
g
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
a
ib
ik
e
_
7
4
7
4
@m
a
il
.
ru
.
G
u
l
m
ir
a
Az
i
e
v
a
c
o
m
p
le
te
d
h
e
r
P
h
D
i
n
i
n
f
o
rm
a
t
i
o
n
s
y
st
e
m
s
a
t
L.
G
u
m
il
y
o
v
E
u
ra
s
ia
n
Na
ti
o
n
a
l
U
n
i
v
e
rs
it
y
in
2
0
2
1
.
I
n
h
e
r
d
is
se
r
tat
i
o
n
,
sh
e
i
n
v
e
sti
g
a
te
d
t
h
e
a
p
p
li
c
a
t
i
o
n
o
f
a
sim
u
la
t
i
o
n
m
o
d
e
l
o
f
t
h
e
c
r
u
d
e
o
il
a
n
d
p
e
tr
o
le
u
m
p
r
o
d
u
c
t
s
s
u
p
p
l
y
c
h
a
i
n
a
ime
d
a
t
o
p
t
imiz
i
n
g
lo
g
is
ti
c
s
p
r
o
c
e
ss
e
s
a
n
d
im
p
r
o
v
i
n
g
t
h
e
e
f
fic
ie
n
c
y
o
f
re
s
o
u
rc
e
m
a
n
a
g
e
m
e
n
t
i
n
t
h
i
s
a
re
a
.
G
u
lm
ira'
s
re
se
a
r
c
h
in
te
re
s
ts
c
o
v
e
r
a
wi
d
e
ra
n
g
e
o
f
iss
u
e
s
i
n
t
h
e
f
ie
ld
o
f
i
n
fo
r
m
a
ti
o
n
s
y
s
tem
s
,
i
n
c
l
u
d
i
n
g
t
h
e
d
e
v
e
l
o
p
m
e
n
t
a
n
d
im
p
lem
e
n
ta
ti
o
n
o
f
m
o
d
e
ls
f
o
r
a
n
a
l
y
z
i
n
g
a
n
d
p
re
d
i
c
ti
n
g
c
o
m
p
le
x
s
y
s
tem
s
.
S
h
e
b
e
g
a
n
h
e
r
e
d
u
c
a
ti
o
n
a
t
t
h
e
F
a
c
u
lt
y
o
f
P
h
y
sic
s
a
n
d
M
a
t
h
e
m
a
t
ics
o
f
t
h
e
sa
m
e
u
n
i
v
e
rs
it
y
,
w
h
e
re
sh
e
c
o
m
p
le
te
d
h
e
r
b
a
c
h
e
l
o
r'
s
d
e
g
r
e
e
i
n
2
0
0
4
.
D
u
r
in
g
h
e
r
st
u
d
ies
a
n
d
re
se
a
rc
h
a
t
A
k
to
b
e
Un
i
v
e
rs
i
t
y
,
G
u
lmi
ra
f
o
c
u
s
e
d
o
n
t
h
e
a
p
p
l
ica
ti
o
n
o
f
m
a
t
h
e
m
a
t
ica
l
a
n
d
s
im
u
la
ti
o
n
m
o
d
e
ls
t
o
s
o
l
v
e
p
ra
c
t
ica
l
p
r
o
b
lem
s
,
w
h
ic
h
b
e
c
a
m
e
t
h
e
b
a
si
s
f
o
r
h
e
r
s
u
b
se
q
u
e
n
t
re
se
a
rc
h
i
n
t
h
e
f
iel
d
o
f
in
f
o
rm
a
t
i
o
n
s
y
ste
m
s.
S
h
e
c
a
n
b
e
c
o
n
t
a
c
te
d
a
t
e
m
a
i
l:
g
u
l
m
i
ra
_
a
z
i
e
v
a
@m
a
i
l.
r
u
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
1
7
2
-
2
1
8
0
2180
Zh
a
n
a
t
K
e
n
z
h
e
b
a
y
e
v
a
g
ra
d
u
a
ted
with
a
d
e
g
re
e
i
n
“
P
r
o
fe
ss
io
n
a
l
train
i
n
g
in
in
fo
rm
a
ti
c
s
a
n
d
c
o
m
p
u
t
in
g
tec
h
n
o
lo
g
y
”
i
n
1
9
9
8
fro
m
A
k
tau
S
tate
Un
iv
e
rsity
n
a
m
e
d
a
fter
S
h
.
Ye
ss
e
n
o
v
.
In
2
0
0
6
,
sh
e
c
o
m
p
lete
d
h
e
r
p
o
st
g
ra
d
u
a
te
st
u
d
ies
i
n
“
S
y
ste
m
s
a
n
a
ly
sis
,
m
a
n
a
g
e
m
e
n
t,
a
n
d
i
n
fo
rm
a
ti
o
n
p
r
o
c
e
ss
i
ng
”
a
t
th
e
Ka
z
a
k
h
Na
ti
o
n
a
l
Tec
h
n
ica
l
Un
iv
e
rsity
n
a
m
e
d
a
fter
K.
S
a
tp
a
y
e
v
,
a
n
d
in
2
0
1
0
,
sh
e
re
c
e
iv
e
d
t
h
e
d
e
g
re
e
o
f
Ca
n
d
id
a
te
o
f
Te
c
h
n
ica
l
S
c
ie
n
c
e
s.
Cu
rre
n
tl
y
,
sh
e
wo
r
k
s
i
n
t
h
e
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
a
t
th
e
Ca
sp
ia
n
Un
iv
e
rsit
y
o
f
Tec
h
n
o
lo
g
y
a
n
d
En
g
in
e
e
rin
g
n
a
m
e
d
a
fter
S
h
.
Ye
ss
e
n
o
v
.
S
h
e
is
th
e
a
u
t
h
o
r
o
f
o
v
e
r
4
0
sc
ien
ti
f
ic
p
a
p
e
rs,
in
c
lu
d
in
g
5
a
rti
c
les
i
n
t
h
e
S
c
o
p
u
s
d
a
tab
a
se
,
6
tex
tb
o
o
k
s,
a
n
d
2
m
o
n
o
g
ra
p
h
s.
He
r
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
m
a
c
h
in
e
lea
rn
in
g
,
s
y
ste
m
s
a
n
a
ly
sis,
in
fo
rm
a
ti
o
n
p
r
o
c
e
ss
in
g
,
in
f
o
rm
a
ti
o
n
m
a
n
a
g
e
m
e
n
t,
a
n
d
G
IS
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
z
h
a
n
a
t.
k
e
n
z
h
e
b
a
e
v
a
@y
u
.
e
d
u
.
k
z
.
Alfiy
a
Abd
r
a
k
h
m
a
n
o
v
a
re
c
e
iv
e
d
a
b
a
c
h
e
lo
r'
s
d
e
g
re
e
in
tec
h
n
ica
l
sc
ien
c
e
s
i
n
sp
e
c
ialty
6
M
0
7
0
3
0
0
-
“
I
n
fo
rm
a
ti
o
n
sy
ste
m
s
”
a
t
th
e
Eu
ra
sia
n
Na
ti
o
n
a
l
U
n
iv
e
rsit
y
(ENU)
n
a
m
e
d
a
fter
L.
N.
G
u
m
il
y
o
v
,
As
t
a
n
a
,
Ka
z
a
k
h
sta
n
,
2
0
2
2
.
S
h
e
is
a
c
o
-
a
u
th
o
r
o
f
3
p
u
b
li
c
a
ti
o
n
s
.
He
r
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
k
n
o
wle
d
g
e
b
a
se
s,
b
i
g
d
a
ta,
a
rti
ficia
l
in
tell
ig
e
n
c
e
a
n
d
m
a
c
h
i
n
e
lea
rn
in
g
.
S
h
e
re
c
e
iv
e
d
a
m
a
ste
r'
s
d
e
g
re
e
i
n
tec
h
n
ica
l
sc
ien
c
e
s
i
n
t
h
e
fiel
d
o
f
i
n
fo
rm
a
ti
o
n
sy
ste
m
s
fro
m
th
e
Ca
sp
ian
S
tate
Un
iv
e
rsity
o
f
Tec
h
n
o
lo
g
y
a
n
d
E
n
g
i
n
e
e
rin
g
n
a
m
e
d
a
fter
S
h
.
Ye
se
n
o
v
in
2
0
0
9
.
S
h
e
c
a
n
b
e
c
o
n
t
a
c
ted
a
t
e
m
a
il
:
a
lfi
y
a
_
z
a
g
iev
n
a
@
m
a
il
.
ru
.
Evaluation Warning : The document was created with Spire.PDF for Python.