I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
2
,
A
p
r
il
20
25
,
p
p
.
2
4
6
8
~
24
7
8
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
2
.
pp
2
4
6
8
-
2
4
7
8
2468
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
D
-
RA
K
E co
mp
re
ss
io
n f
o
r enhance
d
inter
net
of t
hin
g
s
da
ta
ma
na
g
ement in
a
i
r quality
mo
nitori
ng
K
a
rt
ika
Sa
ri,
Ra
hm
i H
ida
y
a
t
i
D
e
p
a
r
t
me
n
t
o
f
C
o
mp
u
t
e
r
S
y
st
e
m E
n
g
i
n
e
e
r
i
n
g
,
F
a
c
u
l
t
y
o
f
M
a
t
h
e
m
a
t
i
c
s
a
n
d
N
a
t
u
r
a
l
S
c
i
e
n
c
e
s,
U
n
i
v
e
r
si
t
a
s
Ta
n
j
u
n
g
p
u
r
a
,
P
o
n
t
i
a
n
a
k
,
I
n
d
o
n
e
si
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
2
5
,
2
0
2
4
R
ev
is
ed
Sep
1
8
,
2
0
2
4
Acc
ep
ted
Oct
1
,
2
0
2
4
Th
is
st
u
d
y
a
d
d
re
ss
e
s
th
e
issu
e
o
f
a
ir
p
o
ll
u
t
io
n
i
n
P
o
n
ti
a
n
a
k
,
m
a
rk
e
d
b
y
h
i
g
h
lev
e
ls
o
f
p
o
ll
u
tan
t
p
a
rti
c
les
a
n
d
c
h
e
m
ica
l
c
o
m
p
o
u
n
d
s
th
a
t
c
a
u
se
r
e
sp
irato
r
y
h
e
a
lt
h
ris
k
s.
T
h
e
re
se
a
rc
h
i
n
v
o
l
v
e
s
e
ss
e
n
ti
a
l
a
ir
q
u
a
li
t
y
m
o
n
it
o
r
in
g
u
si
n
g
v
a
rio
u
s
se
n
so
rs
fo
r
tem
p
e
ra
tu
re
,
h
u
m
id
it
y
(DH
T2
2
)
,
O
2
(M
Q
-
1
3
5
),
CO
(M
Q
-
7
),
CO
2
(M
G
-
8
1
1
)
,
a
n
d
d
u
st
(G
P
2
Y1
0
1
0
AU
0
F
)
,
c
o
l
lec
ted
re
a
l
-
ti
m
e
,
lea
d
in
g
to
a
n
o
tab
le
i
n
c
re
a
se
in
d
a
ta
v
o
lu
m
e
.
D
u
e
to
li
m
it
a
ti
o
n
s
i
n
in
tern
e
t
o
f
th
in
g
s
(
Io
T
)
d
e
v
ice
s,
t
h
e
re
is
a
n
e
e
d
fo
r
in
te
g
ra
ti
o
n
b
e
twe
e
n
c
lo
u
d
a
n
d
I
o
T
th
ro
u
g
h
d
a
ta
tran
sm
issio
n
t
o
re
d
u
c
e
th
e
c
o
m
m
u
n
ica
ti
o
n
ti
m
e
a
n
d
m
e
m
o
ry
u
sa
g
e
.
Th
e
e
sc
a
latio
n
in
se
n
so
r
d
a
ta
v
o
l
u
m
e
re
q
u
ires
a
lo
ss
les
s
c
o
m
p
re
ss
io
n
tec
h
n
iq
u
e
to
e
n
su
re
e
fficie
n
t
sto
r
a
g
e
with
o
u
t
sa
c
rifi
c
in
g
c
ru
c
ial
i
n
fo
rm
a
ti
o
n
.
Co
m
p
re
ss
io
n
p
lay
s
a
v
it
a
l
r
o
le
i
n
o
v
e
rc
o
m
i
n
g
c
o
m
p
lex
sto
ra
g
e
c
h
a
ll
e
n
g
e
s,
fa
c
il
it
a
ti
n
g
re
a
l
-
ti
m
e
d
a
ta
a
c
c
e
ss
fo
r
m
o
n
it
o
rin
g
,
a
n
d
c
o
n
tri
b
u
ti
n
g
to
su
sta
in
a
b
le
e
ffo
rts
t
o
imp
r
o
v
e
a
ir
q
u
a
li
t
y
i
n
P
o
n
ti
a
n
a
k
.
T
h
is
re
se
a
rc
h
a
p
p
li
e
s
th
e
D
-
RAK
E
c
o
m
p
re
ss
io
n
m
e
th
o
d
b
a
se
d
o
n
b
a
sic
c
o
u
n
t
in
g
p
ro
c
e
d
u
r
e
s
with
m
in
ima
l
m
e
m
o
ry
re
q
u
irem
e
n
ts,
c
o
st
-
e
ffe
c
ti
v
e
,
lo
w
-
sp
e
e
d
m
icro
c
o
n
tr
o
ll
e
rs
c
o
m
m
o
n
ly
u
se
d
in
Io
T
d
e
v
ice
s.
De
sp
it
e
it
s
sim
p
li
c
it
y
,
sim
u
lati
o
n
re
su
lt
s
in
d
ica
te
t
h
a
t
th
e
D
-
RAK
E
a
lg
o
rit
h
m
o
u
t
p
e
rfo
rm
s
we
ll
-
e
s
tab
li
sh
e
d
c
o
m
p
re
ss
io
n
m
e
th
o
d
s
s
u
c
h
a
s
g
zip
,
b
zip
2
,
a
n
d
ra
r
,
p
a
rti
c
u
larly
fo
r
d
a
ta
se
q
u
e
n
c
e
s
with
s
p
a
rse
e
lem
e
n
ts.
M
o
re
o
v
e
r,
wh
e
n
a
p
p
li
e
d
to
re
a
l
-
wo
rld
d
a
ta,
D
-
RAK
E
a
c
h
iev
e
s
su
p
e
ri
o
r
c
o
m
p
re
ss
io
n
ra
ti
o
s
c
o
m
p
a
re
d
to
I
o
T
-
fo
c
u
se
d
c
o
m
p
re
ss
io
n
tec
h
n
iq
u
e
s
.
K
ey
w
o
r
d
s
:
Air
q
u
ality
m
o
n
ito
r
in
g
Data
co
m
p
r
ess
io
n
D
-
R
AKE
I
n
ter
n
et
o
f
th
in
g
L
o
s
s
less
co
m
p
r
ess
io
n
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Kar
tik
a
Sar
i
Dep
ar
tm
en
t o
f
C
o
m
p
u
ter
Sy
s
t
em
,
Facu
lty
o
f
Ma
t
h
em
atics a
n
d
Natu
r
al
Scien
ce
s
,
T
an
ju
n
g
p
u
r
a
Un
iv
e
r
s
ity
J
l.
Pro
f
.
Dr
.
H.
Had
ar
i
Naw
awi,
B
an
s
ir
L
au
t,
Po
n
tian
ak
T
e
n
g
g
ar
a,
Po
n
tian
a
k
,
W
est Ka
lim
an
tan
,
I
n
d
o
n
esia
E
m
ail: k
ar
tik
a.
s
ar
i@
s
is
k
o
m
.
u
n
tan
.
ac
.
id
1.
I
NT
RO
D
UCT
I
O
N
Po
n
tian
ak
,
lik
e
m
an
y
o
th
e
r
m
ajo
r
cities,
f
ac
es
s
ig
n
if
ican
t
ch
allen
g
es
d
u
e
to
air
p
o
llu
tio
n
.
T
h
e
p
r
esen
ce
o
f
d
u
s
t
p
ar
ticles
an
d
h
ar
m
f
u
l
ch
e
m
icals
s
u
ch
as
ca
r
b
o
n
m
o
n
o
x
id
e
p
o
s
es
s
er
io
u
s
r
is
k
s
to
r
esp
ir
ato
r
y
h
ea
lth
,
m
ak
in
g
air
q
u
ality
m
o
n
ito
r
in
g
an
ess
en
tial
task
[
1
]
–
[
1
0
]
.
T
h
e
lar
g
e
v
o
lu
m
es
o
f
d
a
ta
g
en
er
ated
b
y
air
q
u
ality
m
o
n
ito
r
i
n
g
s
y
s
tem
s
r
eq
u
ir
e
ad
v
a
n
ce
d
d
ata
co
m
p
r
e
s
s
io
n
tech
n
iq
u
es
to
m
an
ag
e
th
e
d
ata
ef
f
icien
tly
[
1
1
]
–
[
1
9
]
.
T
h
is
ch
allen
g
e
is
f
u
r
th
er
co
m
p
o
u
n
d
ed
b
y
th
e
lim
itatio
n
s
o
f
in
ter
n
et
o
f
th
i
n
g
s
(
I
o
T
)
d
ev
ices,
wh
ic
h
r
ely
o
n
cl
o
u
d
tr
a
n
s
m
is
s
io
n
to
r
ed
u
ce
co
m
m
u
n
icatio
n
tim
e
a
n
d
m
em
o
r
y
u
s
ag
e
[
2
0
]
.
W
h
ile
tim
ely
s
en
s
o
r
d
ata
is
cr
u
cial
f
o
r
ef
f
ec
tiv
e
m
o
n
it
o
r
in
g
,
th
e
m
ass
iv
e
d
ata
v
o
lu
m
es
ca
n
lead
to
th
r
o
ttli
n
g
is
s
u
es,
d
elay
in
g
th
e
tr
an
s
m
is
s
io
n
an
d
p
r
o
ce
s
s
in
g
o
f
d
ata.
B
atch
p
r
o
ce
s
s
in
g
,
wh
er
e
d
ata
is
c
o
llected
p
er
io
d
ically
b
ef
o
r
e
tr
an
s
m
is
s
io
n
,
p
r
o
v
id
es
a
p
ar
ti
al
s
o
lu
tio
n
.
Ho
wev
er
,
th
e
c
o
n
tin
u
o
u
s
g
en
er
ati
o
n
o
f
d
ata
in
cr
ea
s
es
b
atch
s
ize,
r
ed
u
cin
g
t
h
e
ef
f
icien
c
y
o
f
d
ata
d
eliv
er
y
,
p
r
o
ce
s
s
in
g
,
an
d
s
to
r
ag
e.
T
h
u
s
,
s
o
p
h
is
ticated
d
ata
co
m
p
r
ess
io
n
m
eth
o
d
s
th
at
p
r
eser
v
e
cr
itical
in
f
o
r
m
atio
n
ar
e
ess
en
tial
f
o
r
ef
f
ec
tiv
ely
m
an
a
g
in
g
th
e
g
r
o
win
g
d
ata
v
o
l
u
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
D
-
R
A
K
E
co
mp
r
ess
io
n
fo
r
en
h
a
n
ce
d
in
tern
et
o
f t
h
in
g
s
d
a
ta
ma
n
a
g
eme
n
t in
…
(
K
a
r
tika
S
a
r
i
)
2469
f
r
o
m
Po
n
tian
ak
'
s
air
q
u
ality
m
o
n
ito
r
in
g
s
y
s
tem
s
[
2
1
]
–
[
2
6
]
.
Data
co
m
p
r
ess
io
n
ad
d
r
ess
es
s
to
r
ag
e
c
h
allen
g
es,
en
ab
les
r
ea
l
-
tim
e
d
ata
ac
ce
s
s
f
o
r
an
aly
s
is
,
an
d
s
u
p
p
o
r
ts
ef
f
o
r
ts
to
im
p
r
o
v
e
air
q
u
a
lity
in
Po
n
tian
ak
.
I
n
teg
r
atin
g
co
m
p
r
ess
io
n
in
to
m
o
n
ito
r
in
g
s
y
s
tem
s
en
h
a
n
ce
s
s
to
r
ag
e
e
f
f
icien
cy
an
d
en
s
u
r
es
th
at
cr
itical
d
ata
r
em
ain
s
av
ailab
le
f
o
r
an
aly
s
is
an
d
in
f
o
r
m
ed
d
ec
is
io
n
-
m
a
k
in
g
[
2
7
]
,
[
2
8
]
.
Sev
er
al
p
r
ev
i
o
u
s
s
tu
d
ies
h
av
e
ex
p
lo
r
e
d
v
a
r
io
u
s
d
ata
co
m
p
r
ess
io
n
tech
n
iq
u
es
in
e
n
v
ir
o
n
m
en
tal
m
o
n
ito
r
in
g
,
ea
ch
co
n
tr
ib
u
ti
n
g
u
n
iq
u
ely
to
th
e
a
d
v
an
c
em
en
t
o
f
th
is
f
ield
[
2
9
]
–
[
3
3
]
.
Fo
r
in
s
tan
ce
,
Gu
n
awa
n
et
a
l
.
[
3
4
]
d
esig
n
e
d
an
d
im
p
lem
en
ted
a
p
o
r
tab
l
e
o
u
td
o
o
r
air
q
u
ality
m
ea
s
u
r
em
en
t
s
y
s
tem
u
s
in
g
Ar
d
u
in
o
b
u
t
with
o
u
t
ap
p
ly
in
g
d
ata
co
m
p
r
ess
io
n
,
wh
ich
l
ed
to
ch
allen
g
es
in
d
ata
m
an
ag
em
en
t
an
d
clo
u
d
tr
an
s
m
is
s
io
n
.
W
u
et
a
l
.
[
3
5
]
p
r
o
p
o
s
ed
a
m
eth
o
d
f
o
r
d
ata
co
m
p
r
ess
io
n
to
allev
iate
th
e
s
en
s
itiv
ity
p
ac
k
et
lo
s
s
e
s
in
wir
eless
s
en
s
o
r
n
etwo
r
k
(
W
SN)
.
I
n
ad
d
itio
n
,
Ho
s
s
ain
a
n
d
R
o
y
[
3
6
]
d
id
r
esear
ch
o
n
d
ata
co
m
p
r
ess
io
n
f
o
r
I
o
T
s
en
s
o
r
s
t
o
o
p
tim
ize
s
to
r
a
g
e
u
s
in
g
lo
s
s
less
d
ata
co
m
p
r
ess
io
n
an
d
ac
h
iev
ed
a
c
o
m
p
r
ess
io
n
ef
f
icien
cy
o
f
5
0
%;
b
u
t
it
en
co
u
n
ter
ed
s
o
m
e
er
r
o
r
s
with
th
e
o
r
ig
i
n
al
d
at
a
ch
an
g
in
g
b
y
0
%
to
1
.
5
%
a
f
ter
d
ec
o
m
p
r
ess
io
n
.
Min
ewa
k
i
et
a
l
.
[
3
7
]
co
n
d
u
ct
ed
r
esear
ch
o
n
lo
s
s
less
co
m
p
r
ess
io
n
alg
o
r
ith
m
s
f
o
r
en
v
ir
o
n
m
en
tal
d
ata
u
s
in
g
Z
S.Q
(
ze
r
o
-
s
k
ip
q
u
an
tizatio
n
)
;
b
u
t,
th
ese
m
eth
o
d
s
d
o
n
o
t
f
u
lly
s
atis
f
y
th
e
n
ea
r
-
lo
s
s
less
(
NL
)
co
n
d
itio
n
.
R
am
alin
g
am
et
a
l
.
[
3
8
]
d
elv
e
d
in
to
th
e
b
en
ef
its
o
f
d
ata
co
m
p
r
ess
io
n
in
r
ea
l
-
tim
e
d
ata
tr
an
s
m
is
s
io
n
s
an
d
f
au
lt
an
aly
s
is
.
Hwa
n
g
et
a
l
.
[
3
9
]
p
r
o
p
o
s
ed
a
b
it
d
e
p
th
c
o
m
p
r
ess
io
n
(
B
DC
)
tech
n
iq
u
e
to
co
m
p
r
ess
th
e
s
en
s
o
r
d
ata.
So
m
e
s
tu
d
ies
h
ig
h
lig
h
t
th
at
wh
ile
d
ata
co
m
p
r
ess
io
n
is
cr
u
cial
f
o
r
en
v
ir
o
n
m
e
n
tal
m
o
n
ito
r
in
g
,
ac
h
ie
v
in
g
o
p
tim
al
co
m
p
r
ess
io
n
ef
f
icien
cy
with
o
u
t
co
m
p
r
o
m
is
in
g
d
at
a
in
teg
r
ity
is
s
till
ch
allen
g
in
g
.
T
h
e
d
if
f
icu
lties
in
o
p
tim
izin
g
th
ese
tech
n
iq
u
es f
o
r
I
o
T
s
en
s
o
r
d
ata
u
n
d
er
v
ar
io
u
s
co
n
d
itio
n
s
in
d
icate
a
n
ee
d
f
o
r
f
u
r
th
e
r
r
esear
ch
.
T
h
is
s
tu
d
y
ad
d
r
ess
es
th
ese
ch
allen
g
es
b
y
in
t
r
o
d
u
cin
g
a
m
o
d
if
ied
D
-
R
AKE
m
eth
o
d
t
o
im
p
r
o
v
e
co
m
p
r
ess
io
n
ef
f
icien
cy
an
d
en
s
u
r
e
1
0
0
%
ac
cu
r
ac
y
in
d
ata
d
ec
o
m
p
r
ess
io
n
.
Un
lik
e
p
r
ev
io
u
s
m
eth
o
d
s
,
th
e
D
-
R
AKE
ap
p
r
o
ac
h
f
u
r
th
er
d
ev
elo
p
s
th
e
ab
ilit
y
t
o
e
f
f
ec
tiv
ely
m
an
a
g
e
lar
g
e
v
o
lu
m
es
o
f
s
en
s
o
r
d
ata
in
air
q
u
ality
m
o
n
ito
r
in
g
,
e
n
s
u
r
in
g
t
h
at
cr
itical
in
f
o
r
m
atio
n
is
p
r
es
er
v
ed
w
h
ile
s
ig
n
if
ican
tly
r
ed
u
cin
g
d
ata
s
ize.
T
h
is
n
o
v
el
c
o
n
tr
ib
u
tio
n
p
r
o
v
i
d
es
a
s
o
lu
tio
n
th
at
ad
d
r
ess
es
th
e
ex
is
tin
g
lim
itatio
n
s
o
f
c
u
r
r
en
t
c
o
m
p
r
ess
io
n
tech
n
iq
u
es,
p
a
r
ticu
lar
ly
in
t
h
e
co
n
tex
t
o
f
lar
g
e
-
s
ca
le
air
q
u
a
lity
m
o
n
ito
r
in
g
.
T
h
e
s
u
b
s
eq
u
e
n
t
s
ec
tio
n
s
o
f
th
is
m
an
u
s
cr
ip
t
will
d
etail
th
e
p
r
o
p
o
s
ed
D
-
R
AKE
m
eth
o
d
,
in
clu
d
in
g
t
h
e
s
p
ec
if
ic
m
o
d
if
ica
tio
n
s
m
ad
e
to
th
e
co
m
p
r
ess
io
n
alg
o
r
ith
m
.
Simu
latio
n
an
d
e
x
p
er
im
en
tal
r
esu
lts
will
b
e
p
r
esen
ted
to
d
em
o
n
s
tr
ate
th
e
m
eth
o
d
'
s
s
u
p
er
io
r
ity
o
v
er
o
th
e
r
estab
lis
h
ed
lo
s
s
les
s
co
m
p
r
ess
io
n
tech
n
iq
u
es,
s
u
ch
as
g
z
ip
,
b
z
i
p
2
,
an
d
r
a
r
.
T
h
e
d
is
cu
s
s
io
n
will
f
o
cu
s
o
n
th
e
co
n
tex
t
o
f
air
q
u
ality
m
o
n
ito
r
i
n
g
in
Po
n
tian
ak
f
o
r
s
u
p
p
o
r
tin
g
p
o
llu
tio
n
r
ed
u
ctio
n
in
itiativ
es
in
o
th
er
m
ajo
r
cities.
B
y
o
f
f
e
r
in
g
a
m
o
r
e
ef
f
icien
t
an
d
ef
f
ec
tiv
e
d
ata
c
o
m
p
r
ess
io
n
s
o
lu
tio
n
,
th
is
s
tu
d
y
aim
s
to
e
n
h
an
ce
th
e
o
v
er
all
ef
f
ec
tiv
en
ess
o
f
air
q
u
al
ity
m
o
n
ito
r
i
n
g
e
f
f
o
r
ts
,
c
o
n
tr
i
b
u
tin
g
t
o
im
p
r
o
v
e
d
p
u
b
lic
h
ea
lth
a
n
d
e
n
v
ir
o
n
m
en
t
al
s
u
s
tain
ab
ilit
y
.
2.
T
H
E
P
RO
P
O
SE
D
M
E
T
H
O
D
2
.
1
.
D
-
RAK
E
m
et
ho
d
T
h
e
D
-
R
AKE
d
ata
c
o
m
p
r
ess
io
n
alg
o
r
ith
m
is
a
d
ev
elo
p
m
en
t
o
f
R
AKE
’
s
m
eth
o
d
[
4
0
]
th
at
is
u
s
ed
to
co
m
p
r
ess
d
ata
wh
ile
r
etain
in
g
all
th
e
in
f
o
r
m
atio
n
,
an
d
it
is
p
ar
ticu
lar
ly
ef
f
icien
t
wh
e
n
ap
p
lied
to
b
in
ar
y
s
eq
u
en
ce
s
th
at
h
av
e
a
lo
w
d
e
n
s
ity
o
f
d
ata
p
o
in
ts
.
I
n
ca
s
es
wh
er
e
th
er
e
a
r
e
m
in
im
al
v
ar
iatio
n
s
in
tim
e
f
o
r
s
ig
n
als,
th
e
alg
o
r
ith
m
ca
n
ac
h
iev
e
co
m
p
r
ess
io
n
b
y
p
r
o
ce
s
s
in
g
co
n
s
ec
u
tiv
e
d
if
f
er
en
ce
s
b
etwe
en
s
am
p
les,
wh
ich
ar
e
r
ep
r
esen
ted
as
th
e
r
esid
u
e
(
)
=
(
)
−
(
−
1
)
.
T
h
e
D
-
R
AKE
alg
o
r
i
th
m
ca
n
b
e
u
tili
ze
d
wh
en
th
e
d
ata
to
b
e
co
m
p
r
ess
ed
co
n
tain
s
f
ewe
r
th
an
1
5
%
o
f
1
s
to
th
e
to
tal
n
u
m
b
er
o
f
b
its
.
Nev
e
r
th
eless
,
if
th
e
d
ata
co
n
s
is
ts
o
f
m
o
r
e
th
a
n
4
0
%
o
f
1
s
,
th
e
c
o
m
p
r
ess
io
n
m
eth
o
d
ca
n
n
o
t
b
e
ef
f
ec
tiv
ely
ap
p
l
ied
.
T
h
e
D
-
R
AKE
alg
o
r
ith
m
o
p
e
r
ates
ac
co
r
d
in
g
to
th
e
r
u
les:
i)
A
co
d
ewo
r
d
o
f
'
0
'
m
ea
n
s
a
ll
b
its
in
th
e
R
AK
E
ar
e
'
0
'
,
in
d
icatin
g
n
o
'
1
'
b
its
ar
e
p
r
esen
t
;
ii)
A
co
d
ewo
r
d
o
f
=
1
+
⌈
2
⌉
-
b
its
m
ea
n
s
at
l
ea
s
t
o
n
e
'
1
'
b
it
is
f
o
u
n
d
in
th
e
R
AKE
.
T
h
e
f
ir
s
t b
it o
f
th
e
co
d
ewo
r
d
is
s
et
to
'
1
'
to
in
d
icate
t
h
e
p
r
esen
ce
o
f
a
'
1
'
b
it,
an
d
th
e
r
em
ain
in
g
⌈
lo
g
2
T
⌉
b
its
en
co
d
e
its
p
o
s
itio
n
,
_
{
}
,
wh
ich
r
an
g
es
f
r
o
m
0
to
T
−1
;
iii
)
T
h
e
D
-
R
AKE
s
h
if
ts
b
y
+
1
if
a
'
1
'
b
it
is
f
o
u
n
d
,
o
r
b
y
T
if
n
o
'
1
'
b
it’s
f
o
u
n
d
;
iv
)
T
h
is
p
r
o
ce
s
s
r
e
p
ea
ts
u
n
til
all
b
its
to
b
e
co
m
p
r
ess
ed
ar
e
p
r
o
ce
s
s
ed
;
a
n
d
v
)
T
h
e
f
in
al
co
m
p
r
ess
ed
s
eq
u
en
ce
is
o
b
tain
e
d
b
y
co
n
ca
ten
atin
g
all
th
e
co
d
ewo
r
d
s
.
2
.
2
.
D
-
RAK
E
f
o
r
da
t
a
co
m
press
i
o
n a
nd
deco
m
press
io
n
T
h
e
D
-
R
AKE
m
eth
o
d
is
d
esig
n
ed
to
o
p
tim
ize
d
ata
c
o
m
p
r
ess
io
n
th
at
r
eq
u
i
r
es
ef
f
icien
t
d
ata
m
an
ag
em
en
t
lik
e
in
I
o
T
e
n
v
i
r
o
n
m
en
ts
.
T
h
is
m
eth
o
d
r
e
d
u
c
es
th
e
lar
g
e
d
atasets
s
ize
wh
i
le
p
r
eser
v
in
g
th
eir
in
teg
r
ity
,
m
ak
in
g
it
id
ea
l
f
o
r
h
an
d
lin
g
t
h
e
s
u
b
s
tan
tial
s
en
s
o
r
d
ata
ty
p
ically
g
en
e
r
ated
in
r
ea
l
-
tim
e
m
o
n
ito
r
in
g
s
y
s
tem
s
.
Fig
u
r
e
1
(
a)
an
d
Fig
u
r
e
1
(
b
)
s
h
o
ws th
e
D
-
R
AKE
d
ata
co
m
p
r
ess
io
n
an
d
d
ec
o
m
p
r
es
s
io
n
p
r
o
ce
s
s
.
Fig
u
r
e
1
(
a)
an
d
Fig
u
r
e
1
(
b
)
r
ep
r
esen
t
th
e
s
im
u
latio
n
o
f
D
-
R
AKE
alg
o
r
ith
m
.
T
h
e
ex
p
lan
atio
n
o
f
Fig
u
r
e
1
(
a)
d
ata
co
m
p
r
ess
io
n
an
d
Fig
u
r
e
1
(
b
)
d
ata
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
is
as:
−
No
r
m
aliza
tio
n
: c
o
m
b
i
n
e
all
s
en
s
o
r
v
alu
es a
n
d
th
e
tim
estam
p
in
to
a
s
in
g
le
d
ec
im
al
v
alu
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
4
6
8
-
24
7
8
2470
−
C
o
n
v
er
t to
b
i
n
ar
y
: c
o
n
v
er
t t
h
e
n
o
r
m
alize
d
d
ec
im
al
v
alu
e
to
b
in
ar
y
.
−
XOR o
p
er
atio
n
: p
er
f
o
r
m
XOR o
p
er
atio
n
b
etwe
en
th
e
b
in
ar
y
d
ata
an
d
d
ef
au
lt b
its
s
to
r
ed
o
n
th
e
s
er
v
er
.
−
D
-
R
AKE
co
m
p
r
ess
io
n
:
co
m
p
r
ess
th
e
XOR r
esu
lt u
s
in
g
th
e
R
AKE
co
m
p
r
ess
io
n
alg
o
r
ith
m
.
Af
ter
co
m
p
r
ess
in
g
th
e
d
ata,
it
will
tr
an
s
m
it
it
t
o
th
e
clo
u
d
.
Fo
llo
win
g
th
is
,
th
e
clo
u
d
will
u
n
d
er
tak
e
th
e
d
ata
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
to
g
u
ar
a
n
tee
th
e
co
m
p
lete
r
esto
r
atio
n
o
f
d
ata
f
o
r
u
s
e
o
r
d
is
p
lay
.
T
h
e
d
ata
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
d
u
r
e
in
v
o
lv
es
n
o
r
m
alizin
g
th
e
d
ata
a
n
d
r
ev
er
tin
g
it
to
its
o
r
ig
in
al
f
o
r
m
at.
T
h
e
d
ata
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
is
d
elin
ea
ted
as:
−
D
-
R
AKE
d
ec
o
m
p
r
ess
io
n
: d
ec
o
m
p
r
ess
th
e
d
ata
u
s
in
g
th
e
R
AKE
d
ec
o
m
p
r
ess
io
n
alg
o
r
ith
m
.
−
XOR
o
p
er
atio
n
:
p
er
f
o
r
m
XO
R
o
p
er
atio
n
b
etwe
en
th
e
d
ec
o
m
p
r
ess
ed
d
ata
an
d
th
e
d
ef
a
u
lt
b
its
to
g
et
th
e
o
r
ig
in
al
b
in
a
r
y
d
ata.
−
C
o
n
v
er
t to
d
ec
im
al:
c
o
n
v
e
r
t th
e
o
r
ig
in
al
b
i
n
ar
y
d
ata
b
ac
k
to
d
ec
im
al.
−
Den
o
r
m
aliza
tio
n
: e
x
tr
ac
t t
h
e
o
r
ig
in
al
s
en
s
o
r
d
ata
a
n
d
tim
estam
p
f
r
o
m
th
e
d
en
o
r
m
alize
d
v
al
u
e.
(
a)
(
b
)
Fig
u
r
e
1
.
T
h
e
s
im
u
latio
n
o
f
D
-
R
AKE
alg
o
r
ith
m
:
(
a)
d
ata
c
o
m
p
r
ess
io
n
p
r
o
ce
s
s
an
d
(
b
)
d
at
a
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
3.
M
E
T
H
O
D
T
h
e
d
ata
in
th
is
s
tu
d
y
s
er
v
es
a
s
in
p
u
t
f
o
r
t
h
e
d
e
v
elo
p
e
d
s
y
s
tem
,
wh
ich
is
th
en
p
r
o
ce
s
s
ed
a
n
d
u
tili
ze
d
to
g
en
e
r
ate
o
u
tp
u
t.
Sp
ec
if
ical
ly
,
th
e
co
llected
d
ata
i
n
clu
d
es
air
q
u
ality
v
alu
es
o
b
tain
ed
f
r
o
m
th
e
air
q
u
ality
m
o
n
ito
r
in
g
s
y
s
tem
,
wh
ich
ar
e
s
u
b
jecte
d
to
co
m
p
r
ess
io
n
.
Ad
d
itio
n
ally
,
th
e
s
tu
d
y
r
ec
o
r
d
s
th
e
s
ize
o
f
th
e
s
en
s
o
r
d
ata
v
alu
es b
o
th
b
ef
o
r
e
an
d
af
ter
co
m
p
r
ess
io
n
to
ev
alu
ate
th
e
ef
f
ec
tiv
en
ess
o
f
th
e
c
o
m
p
r
ess
io
n
p
r
o
ce
s
s
.
3
.
1
.
Da
t
a
co
llect
io
n
T
h
e
d
ata
co
llectio
n
p
h
ase
in
v
o
lv
es
g
ath
er
in
g
air
q
u
ality
p
a
r
am
eter
s
f
r
o
m
m
u
ltip
le
s
en
s
o
r
s
:
DHT
2
2
f
o
r
tem
p
er
atu
r
e
an
d
h
u
m
id
ity
,
MQ
-
1
3
5
f
o
r
o
x
y
g
en
(
O₂)
,
MQ
-
7
f
o
r
ca
r
b
o
n
m
o
n
o
x
id
e
(
C
O)
,
MG
-
8
1
1
f
o
r
ca
r
b
o
n
d
io
x
id
e
(
C
O₂)
,
an
d
GP2
Y1
0
1
0
AU0
F
f
o
r
d
u
s
t
p
ar
ticles.
T
h
ese
m
ea
s
u
r
em
en
ts
,
alo
n
g
with
a
tim
es
tam
p
,
f
o
r
m
th
e
b
asis
o
f
th
e
d
ata
f
o
r
s
u
b
s
eq
u
en
t
co
m
p
r
ess
io
n
an
d
an
aly
s
is
.
Alg
o
r
ith
m
1
p
r
esen
t
s
th
e
s
tep
s
in
v
o
lv
ed
in
th
is
p
r
o
ce
s
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
D
-
R
A
K
E
co
mp
r
ess
io
n
fo
r
en
h
a
n
ce
d
in
tern
et
o
f t
h
in
g
s
d
a
ta
ma
n
a
g
eme
n
t in
…
(
K
a
r
tika
S
a
r
i
)
2471
Alg
o
r
ith
m
1
.
Ap
p
ly
in
g
th
e
d
ata
co
llectio
n
1.
function collect_sensor_data():
2.
timestamp
=
get_current_timestamp()
3.
temperature
=
read_sensor(DHT22)
4.
humidity
=
read_
sensor(DHT22)
5.
O
2
=
read_sensor(MQ
-
135)
6.
CO
=
read_sensor(MQ
-
7)
7.
CO
2
=
read_sensor(MG
-
811)
8.
dust
=
read_sensor(GP2Y1010AU0F)
9.
sensor_data
=
[temperature, humidity, O
2
, CO, CO
2
, dust]
10.
return timestamp, sensor_data
Alg
o
r
ith
m
1
o
u
tlin
es
th
e
s
tep
s
as
f
o
llo
ws:
i)
T
h
e
s
y
s
tem
r
ea
d
s
s
en
s
o
r
d
ata
f
o
r
ea
ch
p
ar
am
eter
an
d
s
to
r
es
th
em
in
an
ar
r
ay
ca
lled
_
;
ii)
A
tim
estam
p
is
ad
d
ed
to
ea
ch
co
llectio
n
cy
cle
f
o
r
tr
ac
k
in
g
p
u
r
p
o
s
es
;
iii)
S
e
n
s
o
r
d
a
t
a
f
o
r
t
e
m
p
e
r
a
t
u
r
e
,
h
u
m
i
d
i
t
y
,
O
₂
,
C
O
,
C
O₂
,
a
n
d
d
u
s
t
p
a
r
t
i
c
le
s
i
s
r
e
a
d
u
s
i
n
g
t
h
e
_
(
_
)
f
u
n
c
t
i
o
n
a
n
d
s
t
o
r
e
d
i
n
a
n
a
r
r
a
y
c
a
l
l
e
d
_
;
a
n
d
i
v
)
T
h
e
f
u
n
ctio
n
r
etu
r
n
s
b
o
t
h
th
e
tim
estam
p
an
d
th
e
co
llected
s
en
s
o
r
d
ata
f
o
r
s
u
b
s
eq
u
en
t p
r
o
ce
s
s
in
g
.
3
.
2
.
Appl
y
ing
t
he
pro
po
s
ed
m
et
h
o
d t
o
a
ir
qu
a
lity
m
o
nito
ring
s
y
s
t
em
3
.
2
.
1
.
Da
t
a
co
m
press
io
n a
lg
o
rit
hm
ba
s
ed
o
n D
-
RAK
E
Data
co
m
p
r
ess
io
n
in
th
is
s
y
s
t
em
is
p
er
f
o
r
m
ed
u
s
in
g
a
d
ata
en
co
d
in
g
tech
n
iq
u
e
b
ased
o
n
ASC
I
I
f
o
r
co
n
v
er
tin
g
s
en
s
o
r
d
ata,
wh
ich
is
in
ch
ar
ac
ter
f
o
r
m
,
in
to
b
i
n
ar
y
f
o
r
m
,
an
d
a
d
ata
m
o
d
eli
n
g
tech
n
iq
u
e
u
s
in
g
XOR
o
p
er
atio
n
s
o
n
th
e
s
en
s
o
r
'
s
b
in
ar
y
d
ata.
Alg
o
r
ith
m
2
a
p
p
ly
in
g
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
to
co
m
p
r
ess
th
e
air
q
u
ality
m
o
n
ito
r
in
g
s
y
s
tem
’
s
d
ata:
Alg
o
r
ith
m
2
.
Ap
p
ly
in
g
th
e
p
r
o
p
o
s
ed
m
eth
o
d
to
c
o
m
p
r
ess
th
e
air
q
u
ality
m
o
n
ito
r
in
g
s
y
s
tem
’
s
d
ata
1.
function rake_compress(timestamp, sensor_data):
2.
default_data
=
None
3.
# Step 1: Normalize and encode sensor data
4.
binary_data
=
""
5.
for value in sensor_data:
6.
binary_value
=
ascii_to_binary(value)
7.
binary_data +
=
binary_value
8.
# Step 2: Check if this is the first data
9.
if is_first_data():
10.
default_data
=
binary_data
11.
store_default_data(default_data)
12.
else:
13.
default_data
=
get_default_data()
14.
binary_data
=
xor_operation(binary_data, default_data)
15.
# Step 3: RAKE Compression
16.
compressed_data
=
rake_algorithm(binary_data)
17.
return compressed_data
T
h
e
D
-
R
AKE
-
b
ased
co
m
p
r
ess
io
n
alg
o
r
ith
m
r
ed
u
ce
s
th
e
s
ize
o
f
th
e
c
o
llected
d
ata
w
h
ile
p
r
eser
v
in
g
its
ac
cu
r
ac
y
.
T
h
e
p
r
o
ce
s
s
in
v
o
lv
es:
a.
No
r
m
aliza
tio
n
an
d
en
co
d
in
g
:
s
en
s
o
r
v
alu
es
ar
e
co
n
v
er
ted
in
to
b
in
ar
y
f
o
r
m
u
s
in
g
ASC
I
I
en
co
d
in
g
.
b.
XOR
o
p
er
atio
n
:
if
th
e
cu
r
r
en
t
d
ata
is
n
o
t
th
e
f
ir
s
t
d
ata
p
o
in
t,
th
e
s
y
s
tem
ap
p
lies
an
XOR
o
p
er
atio
n
with
a
d
ef
au
lt (
p
r
ev
io
u
s
ly
s
to
r
e
d
)
b
i
n
ar
y
d
ataset
to
id
en
tif
y
ch
a
n
g
es,
r
ed
u
cin
g
r
e
d
u
n
d
an
cy
.
c.
R
AKE
co
m
p
r
ess
io
n
:
th
e
p
r
o
ce
s
s
ed
b
in
ar
y
d
ata
u
n
d
e
r
g
o
e
s
th
e
R
AKE
co
m
p
r
ess
io
n
alg
o
r
ith
m
,
w
h
ich
m
in
im
izes th
e
d
ata
s
ize.
T
h
e
co
m
p
r
ess
ed
d
ata
is
r
etu
r
n
ed
an
d
r
ea
d
y
f
o
r
tr
an
s
m
is
s
io
n
to
th
e
cl
o
u
d
.
T
h
is
ap
p
r
o
ac
h
en
s
u
r
es
th
at
o
n
ly
s
ig
n
if
ican
t c
h
an
g
es in
t
h
e
d
ata
ar
e
s
to
r
ed
,
o
p
tim
izin
g
m
e
m
o
r
y
u
s
ag
e
an
d
tr
an
s
m
is
s
io
n
b
an
d
wid
th
.
3
.
2
.
2
.
Da
t
a
t
ra
ns
m
is
s
io
n
Af
ter
th
e
s
en
s
o
r
d
ata
v
al
u
es
ar
e
s
u
cc
ess
f
u
lly
co
m
p
r
ess
ed
,
th
e
n
ex
t
s
tep
in
v
o
l
v
es
tr
an
s
m
itti
n
g
th
is
co
m
p
r
ess
ed
d
ata
to
a
clo
u
d
s
to
r
ag
e
s
y
s
tem
f
o
r
f
u
r
th
er
p
r
o
ce
s
s
in
g
.
On
ce
th
e
d
ata
is
s
to
r
ed
i
n
th
e
clo
u
d
,
d
ec
o
m
p
r
ess
io
n
ca
n
b
e
p
er
f
o
r
m
ed
to
r
esto
r
e
th
e
d
ata
t
o
its
o
r
ig
in
al
f
o
r
m
,
m
ak
in
g
it
r
ea
d
y
f
o
r
u
s
e
o
r
d
is
p
lay
.
Alg
o
r
ith
m
3
is
f
o
r
th
e
d
ata
tr
a
n
s
m
is
s
io
n
:
Alg
o
r
ith
m
3
.
T
h
e
d
ata
tr
an
s
m
i
s
s
io
n
1.
function transmit_data_to_cloud(compressed_data):
2.
cloud_store(compressed_data)
T
h
e
co
m
p
r
ess
ed
d
ata
is
tr
an
s
m
itted
to
a
clo
u
d
s
to
r
ag
e
s
y
s
te
m
f
o
r
a
n
aly
s
is
an
d
v
is
u
aliza
tio
n
.
T
h
e
tr
a
n
s
m
is
s
io
n
p
r
o
ce
s
s
is
s
tr
aig
h
tf
o
r
war
d
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
4
6
8
-
24
7
8
2472
a.
T
h
e
_
_
_
(
)
f
u
n
ctio
n
h
an
d
les
th
e
p
r
o
ce
s
s
o
f
u
p
l
o
ad
in
g
co
m
p
r
ess
ed
d
ata
to
th
e
clo
u
d
s
to
r
ag
e.
b.
T
h
e
_
_
_
(
)
f
u
n
c
t
i
o
n
u
s
es
t
h
e
_
(
)
f
u
n
c
t
io
n
t
o
u
p
l
o
a
d
c
o
m
p
r
e
s
s
e
d
d
at
a
t
o
t
h
e
c
l
o
u
d
s
e
c
u
r
e
l
y
,
e
n
s
u
r
i
n
g
c
en
t
r
a
l
i
z
e
d
s
t
o
r
a
g
e
a
n
d
a
c
c
es
s
i
b
i
li
t
y
f
o
r
f
u
r
t
h
e
r
p
r
o
c
e
s
s
i
n
g
.
3
.
2
.
3
.
Da
t
a
deco
m
press
io
n a
lg
o
rit
hm
ba
s
ed
o
n D
-
RAK
E
T
h
e
d
ata
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
is
cr
u
cial
in
en
s
u
r
in
g
t
h
at
co
m
p
r
ess
ed
d
ata
ca
n
b
e
ac
cu
r
ately
r
esto
r
ed
to
its
o
r
ig
in
al
f
o
r
m
with
o
u
t a
n
y
lo
s
s
o
f
in
f
o
r
m
atio
n
o
r
p
r
ec
is
io
n
.
T
h
is
s
tep
is
p
ar
ticu
lar
ly
im
p
o
r
tan
t in
ap
p
licatio
n
s
s
u
ch
as
ai
r
q
u
ality
m
o
n
ito
r
in
g
,
wh
er
e
ac
cu
r
ate
d
ata
is
ess
en
tial
f
o
r
a
n
aly
s
is
an
d
d
ec
is
io
n
-
m
ak
in
g
.
Alg
o
r
ith
m
4
im
p
lem
e
n
ts
th
e
p
r
o
p
o
s
ed
m
eth
o
d
f
o
r
d
ec
o
m
p
r
e
s
s
in
g
air
q
u
ality
m
o
n
ito
r
i
n
g
d
ata,
wh
ich
in
v
o
lv
es
th
r
ee
k
ey
s
tag
es:
R
AKE
d
ec
o
m
p
r
ess
io
n
to
r
e
v
er
s
e
th
e
co
m
p
r
ess
io
n
p
r
o
ce
s
s
,
n
o
r
m
aliza
tio
n
to
r
ec
o
n
s
tr
u
ct
th
e
o
r
ig
in
al
b
in
a
r
y
v
alu
es,
a
n
d
b
i
n
ar
y
-
to
-
ASC
I
I
co
n
v
er
s
io
n
to
tr
an
s
late
th
e
b
in
ar
y
d
ata
b
ac
k
in
to
u
s
ab
le
s
en
s
o
r
r
ea
d
in
g
s
.
T
h
ese
s
tep
s
en
s
u
r
e
t
h
at
th
e
d
ec
o
m
p
r
ess
ed
d
ata
is
a
cc
u
r
ate
f
o
r
f
u
r
t
h
er
u
s
e.
Alg
o
r
ith
m
4
.
Ap
p
ly
in
g
th
e
p
r
o
p
o
s
ed
m
eth
o
d
to
d
ec
o
m
p
r
ess
th
e
air
q
u
ality
m
o
n
ito
r
in
g
s
y
s
te
m
’
s
d
ata
1.
function rake_decompress():
2.
compressed_data
=
retrieve_from_cloud()
3.
# Step 1: RAKE Decompression
4.
binary_data
=
rake_decompression_algorithm(compressed_data)
5.
# Step 2: Normalization using XOR with default data
6.
default_data
=
get_default_data()
7.
original_binary_data
=
xor_operation(binary_data, default_data)
8.
# Step 3: Convert binary to original sensor data
9.
sensor_data
=
binary_to_ascii(original_binary_data)
10.
return sensor_data
11.
function
rake_decompression_algorithm(compressed_data):
12.
binary_data
=
compressed_data # Placeholder for the algorithm
13.
return binary_data
14.
function binary_to_ascii(binary_data):
15.
ascii_data
=
""
16.
for i in range(0, len(binary_data), 8):
17.
byte
=
binary_data[i:i+8]
18.
ascii_data +
=
chr(int(byte, 2))
19.
return ascii_data.split()
20.
function ascii_to_binary(value):
21.
binary_value
=
""
22.
for char in str(value):
23.
binary_value +
=
format(ord(char), '08b')
24.
return binary_value
25.
function xor_operation (data1, data2):
26.
return ''.join (['1' if b1 !
=
b2 else '0' for b1, b2 in zip(data1, data2)])
27.
function rake_algorithm(data): # Implement RAKE compression algorithm
28.
compressed_data
=
data
# for the actual RAKE
29.
return compressed_data
Alg
o
r
ith
m
4
e
x
p
lain
s
th
at
th
e
d
ata
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
co
n
s
is
ts
o
f
th
r
ee
m
ain
s
tag
es:
a.
R
etr
iev
in
g
co
m
p
r
ess
ed
d
ata
:
T
h
e
p
r
o
ce
s
s
b
eg
in
s
b
y
r
etr
iev
i
n
g
c
o
m
p
r
ess
ed
d
ata
f
r
o
m
cl
o
u
d
s
to
r
ag
e
u
s
in
g
th
e
_
_
(
)
f
u
n
ctio
n
.
On
ce
t
h
e
d
ata
is
s
u
cc
ess
f
u
lly
r
etr
iev
ed
,
th
e
f
ir
s
t
s
tag
e,
R
AKE
d
ec
o
m
p
r
ess
io
n
,
is
p
er
f
o
r
m
e
d
.
T
h
e
_
_
ℎ
(
)
f
u
n
ctio
n
is
u
s
ed
to
r
e
v
er
s
e
th
e
R
AKE
co
m
p
r
ess
io
n
lo
g
ic,
co
n
v
er
tin
g
th
e
c
o
m
p
r
ess
ed
b
in
ar
y
d
ata
b
ac
k
i
n
to
its
d
ec
o
m
p
r
ess
ed
b
in
ar
y
f
o
r
m
.
b.
Data
n
o
r
m
aliza
tio
n
:
I
n
th
e
s
ec
o
n
d
s
tag
e,
n
o
r
m
aliza
tio
n
is
p
e
r
f
o
r
m
e
d
b
y
r
ec
o
n
s
tr
u
ctin
g
th
e
o
r
ig
in
al
b
in
ar
y
v
alu
es
u
s
in
g
an
XOR
o
p
er
atio
n
b
etwe
en
th
e
d
ec
o
m
p
r
ess
ed
b
in
ar
y
d
ata
an
d
a
d
ef
au
lt
d
ata
s
et.
T
h
is
s
tep
is
ex
ec
u
ted
u
s
in
g
th
e
_
(
)
f
u
n
ctio
n
,
wh
ich
r
esto
r
es
th
e
d
ata
to
its
o
r
ig
in
al
s
tate
p
r
i
o
r
t
o
co
m
p
r
ess
io
n
.
T
h
e
d
ef
a
u
lt
d
ata
s
et
s
er
v
es
as
a
r
ef
er
en
ce
to
ac
cu
r
ately
r
ev
e
r
s
e
an
y
tr
a
n
s
f
o
r
m
atio
n
s
ap
p
lied
d
u
r
in
g
th
e
co
m
p
r
ess
io
n
p
r
o
ce
s
s
.
c.
B
in
ar
y
-
to
-
ASC
I
I
co
n
v
er
s
io
n
:
T
h
e
th
ir
d
an
d
f
in
al
s
tag
e
i
n
v
o
lv
es
co
n
v
e
r
tin
g
t
h
e
r
ec
o
n
s
tr
u
c
ted
b
in
ar
y
d
ata
b
ac
k
in
t
o
th
e
o
r
ig
i
n
al
s
en
s
o
r
v
alu
es
u
s
in
g
b
in
ar
y
-
to
-
ASC
I
I
co
n
v
er
s
io
n
.
T
h
e
_
_
(
)
f
u
n
ctio
n
p
r
o
ce
s
s
es
th
e
b
in
ar
y
d
ata
in
8
-
b
it
ch
u
n
k
s
(
b
y
tes)
an
d
co
n
v
er
ts
th
em
in
to
th
eir
co
r
r
es
p
o
n
d
in
g
ASC
I
I
ch
ar
ac
ter
s
.
T
h
e
r
esu
ltin
g
d
ata
is
th
en
s
p
lit
in
to
in
d
iv
id
u
al
s
en
s
o
r
v
alu
es,
co
m
p
letin
g
th
e
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
.
T
h
r
o
u
g
h
th
ese
s
tep
s
,
Alg
o
r
ith
m
4
en
s
u
r
es th
at
co
m
p
r
ess
ed
d
ata
ca
n
b
e
ac
cu
r
ately
r
esto
r
ed
with
o
u
t a
n
y
lo
s
s
o
f
in
f
o
r
m
atio
n
.
T
h
is
is
cr
u
cial
f
o
r
ap
p
licatio
n
s
th
at
d
em
an
d
h
ig
h
p
r
ec
is
io
n
,
s
u
c
h
as
air
q
u
ality
m
o
n
ito
r
in
g
s
y
s
tem
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
D
-
R
A
K
E
co
mp
r
ess
io
n
fo
r
en
h
a
n
ce
d
in
tern
et
o
f t
h
in
g
s
d
a
ta
ma
n
a
g
eme
n
t in
…
(
K
a
r
tika
S
a
r
i
)
2473
3
.
3
.
Da
t
a
t
esting
T
h
e
s
y
s
tem
u
tili
ze
s
a
s
tr
u
ct
u
r
e
co
n
s
is
tin
g
o
f
in
p
u
t,
p
r
o
c
ess
in
g
,
an
d
o
u
tp
u
t.
T
esti
n
g
b
eg
in
s
b
y
in
s
er
tin
g
s
en
s
o
r
d
ata
in
to
th
e
s
y
s
tem
to
ev
al
u
ate
its
p
er
f
o
r
m
an
ce
.
Du
r
in
g
th
e
p
r
o
ce
s
s
in
g
p
h
ase,
d
ata
is
co
m
p
r
ess
ed
an
d
d
ec
o
m
p
r
ess
ed
.
T
h
e
test
r
esu
lts
ar
e
o
b
tain
e
d
b
y
ex
am
in
in
g
th
e
d
ata
th
at
h
as
b
ee
n
co
m
p
r
ess
ed
an
d
tr
a
n
s
m
itted
th
r
o
u
g
h
th
e
I
o
T
g
atew
ay
to
th
e
clo
u
d
.
E
a
ch
p
ar
a
m
eter
,
i
n
clu
d
in
g
d
ata
s
ize,
co
m
p
r
ess
io
n
,
d
ec
o
m
p
r
ess
io
n
ef
f
icien
c
y
,
an
d
th
e
co
m
p
r
ess
io
n
an
d
d
ec
o
m
p
r
ess
io
n
r
atio
,
is
th
en
ev
alu
ated
to
ass
es
s
th
e
test
r
esu
lts
.
Fig
u
r
e
2
p
r
o
v
id
es a
v
is
u
al
r
ep
r
esen
tatio
n
o
f
th
e
test
b
lo
ck
d
iag
r
a
m
.
Fig
u
r
e
2
.
T
h
e
test
b
lo
ck
d
iag
r
a
m
3
.
4
.
E
v
a
lua
t
ing
t
he
perf
o
rm
a
nce
o
f
t
ex
t
f
ile
da
t
a
co
m
press
io
n a
lg
o
rit
hm
s
On
ce
th
e
test
in
g
s
y
s
tem
h
a
s
b
ee
n
s
et
u
p
,
th
e
s
u
b
s
eq
u
e
n
t
s
tep
in
v
o
lv
es
co
n
d
u
ctin
g
test
s
an
d
m
ea
s
u
r
em
en
ts
o
n
th
e
im
p
lem
e
n
ted
s
y
s
tem
.
Af
ter
war
d
,
a
co
m
p
r
eh
en
s
iv
e
an
aly
s
is
is
ca
r
r
ied
o
u
t to
d
eter
m
in
e
if
th
e
s
y
s
tem
alig
n
s
with
th
e
in
i
tial
p
lan
.
E
v
al
u
atin
g
th
e
p
er
f
o
r
m
an
ce
o
f
tex
t
f
ile
d
ata
c
o
m
p
r
ess
io
n
alg
o
r
ith
m
s
ar
e
ab
o
u
t c
o
m
p
r
ess
io
n
-
d
ec
o
m
p
r
ess
io
n
r
atio
an
d
co
m
p
r
ess
io
n
-
d
ec
o
m
p
r
ess
io
n
ef
f
icien
c
y
[
4
1
]
–
[
4
3
]
.
a.
C
o
m
p
r
ess
io
n
r
atio
C
o
m
p
r
ess
io
n
r
atio
(
C
R
)
is
a
m
ea
s
u
r
e
th
at
q
u
a
n
tifie
s
th
e
r
elatio
n
s
h
ip
b
etwe
en
th
e
n
u
m
b
er
o
f
b
its
b
ef
o
r
e
c
o
m
p
r
ess
io
n
a
n
d
af
ter
co
m
p
r
ess
io
n
.
T
h
e
f
o
r
m
u
la
f
o
r
ca
lcu
latin
g
th
e
C
R
is
p
r
esen
ted
in
(
1
)
.
=
(
1
)
b.
C
o
m
p
r
ess
io
n
ef
f
icien
cy
C
o
m
p
r
ess
io
n
ef
f
icien
cy
(
C
E
%
)
r
ef
er
s
to
th
e
e
f
f
ec
tiv
en
ess
o
f
a
co
m
p
r
ess
io
n
alg
o
r
ith
m
o
r
tech
n
iq
u
e
in
r
ed
u
cin
g
th
e
s
ize
o
r
v
o
lu
m
e
o
f
d
ata
wh
ile
r
etain
in
g
its
e
s
s
en
tial
in
f
o
r
m
atio
n
o
r
q
u
ality
.
I
t
is
a
m
ea
s
u
r
e
o
f
h
o
w
well
th
e
co
m
p
r
ess
io
n
p
r
o
ce
s
s
r
ed
u
ce
s
th
e
n
u
m
b
er
o
f
b
it
s
o
r
b
y
tes n
ee
d
e
d
to
r
ep
r
esen
t
th
e
d
ata
[
4
4
]
.
%
=
100
×
(
1
-
1
)
(
2
)
T
h
e
is
p
r
esen
ted
in
p
er
ce
n
ta
g
es to
d
escr
ib
e
a
m
ea
s
u
r
e
o
f
d
at
a
co
m
p
r
ess
io
n
'
s
s
u
cc
ess
.
3
.
5
.
E
v
a
lua
t
ing
t
he
perf
o
rm
a
nce
o
f
t
ex
t
f
ile
da
t
a
co
m
press
io
n a
lg
o
rit
hm
s
B
ef
o
r
e
d
elv
in
g
in
t
o
th
e
tech
n
ical
m
etr
ics,
it
is
e
s
s
en
tial
to
estab
lis
h
th
e
im
p
o
r
tan
ce
o
f
ev
alu
atin
g
co
m
p
r
ess
io
n
an
d
d
ec
o
m
p
r
ess
io
n
p
r
o
ce
s
s
es.
T
h
ese
m
etr
ics
p
r
o
v
id
e
in
s
ig
h
ts
in
to
th
e
ef
f
ec
tiv
en
ess
o
f
an
alg
o
r
ith
m
i
n
r
e
d
u
cin
g
d
ata
s
ize
wh
ile
p
r
eser
v
in
g
its
in
teg
r
it
y
.
T
wo
cr
itical
m
ea
s
u
r
es
u
s
ed
f
o
r
th
is
ev
alu
atio
n
ar
e
th
e
d
ec
o
m
p
r
ess
io
n
r
atio
(
DR
)
an
d
d
ec
o
m
p
r
ess
io
n
ef
f
ici
en
cy
(
DE
)
.
a.
Dec
o
m
p
r
ess
io
n
r
atio
DR
i
s
d
eter
m
in
ed
b
y
co
m
p
ar
i
n
g
th
e
n
u
m
b
er
o
f
b
its
b
ef
o
r
e
a
n
d
af
ter
d
ec
o
m
p
r
ess
io
n
.
T
h
e
f
o
r
m
u
la
f
o
r
ca
lcu
latin
g
th
e
d
ec
o
m
p
r
ess
io
n
r
atio
is
illu
s
tr
ated
as (
3
)
.
=
N
umb
er
of
B
i
t
s
B
EF
O
RE
C
o
m
p
r
es
s
i
o
n
N
umb
er
of
B
i
t
s
A
F
T
ER
d
eco
m
p
r
es
s
i
o
n
(
3
)
b.
Dec
o
m
p
r
ess
io
n
ef
f
icien
c
y
(
D
E
%)
is
s
h
o
wn
in
(
4
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
4
6
8
-
24
7
8
2474
T
h
e
d
ec
o
m
p
r
ess
io
n
ef
f
icien
c
y
(
DE
%)
f
u
r
th
e
r
ev
alu
ates th
e
a
lg
o
r
ith
m
'
s
p
er
f
o
r
m
a
n
ce
b
y
ex
p
r
ess
in
g
th
e
ef
f
ec
tiv
en
ess
o
f
d
ec
o
m
p
r
e
s
s
io
n
as a
p
er
ce
n
tag
e.
I
t is d
et
er
m
in
ed
u
s
in
g
(
4
)
:
%
=
100
(
1
−
1
)
(
4
)
i
s
e
x
p
r
e
s
s
e
d
as
a
p
e
r
c
e
n
t
a
g
e
,
r
e
p
r
e
s
e
n
t
i
n
g
a
m
et
r
i
c
t
h
at
q
u
a
n
ti
f
i
e
s
t
h
e
e
f
f
e
c
ti
v
e
n
e
s
s
o
f
d
a
t
a
d
e
c
o
m
p
r
e
s
s
i
o
n
.
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
is
s
tu
d
y
r
ev
ea
ls
th
at
t
h
e
D
-
R
AKE
alg
o
r
ith
m
g
r
ea
tly
im
p
r
o
v
es
d
ata
co
m
p
r
ess
io
n
ef
f
icie
n
cy
in
air
q
u
ality
m
o
n
ito
r
in
g
o
v
er
tr
ad
iti
o
n
al
m
eth
o
d
s
.
E
x
p
er
im
e
n
tal
r
esu
lts
s
h
o
w
th
at
D
-
R
AKE
ca
n
r
ed
u
ce
d
ata
s
ize
b
y
u
p
to
6
8
.
6
7
%
wh
ile
m
ain
tain
in
g
th
e
in
teg
r
ity
o
f
ess
en
tial
in
f
o
r
m
atio
n
.
T
h
is
h
ig
h
er
C
E
m
ea
n
s
th
at
m
o
r
e
d
ata
ca
n
b
e
s
to
r
e
d
an
d
tr
an
s
m
itt
ed
m
o
r
e
q
u
ick
l
y
,
wh
ich
is
cr
u
cial
f
o
r
r
ea
l
-
tim
e
a
p
p
licatio
n
s
in
air
q
u
ality
m
o
n
ito
r
in
g
.
T
h
is
s
u
cc
ess
is
s
u
p
p
o
r
ted
b
y
d
ir
ec
t
c
o
m
p
ar
is
o
n
s
o
f
co
m
p
r
ess
io
n
ef
f
icien
c
y
b
etwe
en
D
-
R
AKE
an
d
o
th
e
r
tr
ad
itio
n
al
m
eth
o
d
s
.
T
o
f
u
r
t
h
er
v
alid
ate
th
ese
f
in
d
in
g
s
,
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
D
-
R
AKE
alg
o
r
ith
m
was
co
m
p
ar
ed
with
f
iv
e
o
th
er
c
o
m
p
r
ess
io
n
m
eth
o
d
s
,
n
am
ely
r
a
r
,
b
z
ip
2
,
g
z
ip
,
R
AKE
,
an
d
D
-
R
AKE
,
u
s
i
n
g
two
air
q
u
alit
y
d
atasets
:
Ds1
(
Data
s
et
1
)
,
r
ep
r
esen
tin
g
in
d
o
o
r
air
q
u
ality
d
a
ta,
an
d
Ds2
(
Data
s
et
2
)
,
r
e
p
r
e
s
en
tin
g
o
u
t
d
o
o
r
air
q
u
ality
d
ata.
T
h
is
co
m
p
ar
is
o
n
r
e
v
ea
ls
th
at
D
-
R
AKE
co
n
s
is
ten
tly
o
u
tp
er
f
o
r
m
s
th
e
o
th
er
m
eth
o
d
s
in
co
m
p
r
ess
io
n
ef
f
icien
c
y
,
p
a
r
ticu
lar
ly
with
Data
s
et
1
,
wh
ich
h
as
m
o
r
e
s
tab
le
d
ata
v
ar
i
atio
n
s
.
T
r
ad
itio
n
al
co
m
p
r
ess
io
n
m
eth
o
d
s
lik
e
r
a
r
,
b
z
ip
2
,
an
d
g
z
ip
d
em
o
n
s
tr
a
ted
lo
wer
p
er
f
o
r
m
an
ce
c
o
m
p
ar
ed
to
D
-
R
AKE
,
esp
ec
ially
wh
en
h
an
d
lin
g
d
ata
with
m
o
r
e
d
y
n
am
ic
v
ar
iatio
n
s
in
Ds2
.
Me
an
wh
ile,
R
AKE
,
th
e
p
r
e
d
ec
ess
o
r
o
f
D
-
R
AKE
,
also
s
h
o
wed
g
o
o
d
ef
f
icien
cy
b
u
t
s
till
f
ell
s
h
o
r
t
o
f
D
-
R
AKE
'
s
p
er
f
o
r
m
an
ce
.
T
h
ese
r
esu
lts
u
n
d
er
s
co
r
e
t
h
e
s
u
p
er
io
r
ity
o
f
D
-
R
AKE
in
v
ar
io
u
s
s
ce
n
ar
io
s
an
d
will
b
e
d
is
cu
s
s
ed
in
m
o
r
e
d
etail
in
th
e
f
o
llo
win
g
s
u
b
s
ec
tio
n
s
.
I
n
co
n
clu
s
io
n
,
th
e
d
ev
elo
p
m
e
n
t
o
f
th
e
D
-
R
AKE
alg
o
r
ith
m
r
ep
r
esen
ts
a
s
ig
n
if
ican
t
ad
v
an
ce
m
en
t
in
d
ata
co
m
p
r
ess
io
n
f
o
r
air
q
u
al
ity
m
o
n
ito
r
in
g
.
T
h
e
s
tu
d
y
h
ig
h
lig
h
ts
th
e
al
g
o
r
ith
m
’
s
ab
ili
ty
to
im
p
r
o
v
e
d
ata
s
to
r
ag
e
an
d
tr
a
n
s
m
is
s
io
n
ef
f
i
cien
cy
with
in
I
o
T
s
y
s
tem
s
,
wh
ich
ca
n
lead
to
f
aster
r
esp
o
n
s
e
tim
es
an
d
m
o
r
e
in
f
o
r
m
e
d
d
ec
is
io
n
-
m
a
k
in
g
in
air
q
u
ality
m
an
a
g
em
en
t.
De
s
p
ite
th
ese
p
r
o
m
is
in
g
r
esu
lts
,
s
ev
er
al
q
u
esti
o
n
s
r
em
ain
u
n
a
n
s
wer
ed
,
s
u
ch
as
h
o
w
D
-
R
AKE
ca
n
b
e
f
u
r
th
er
ad
ap
ted
o
r
e
n
h
an
ce
d
to
wo
r
k
ef
f
ec
tiv
ely
with
v
ar
io
u
s
s
en
s
o
r
ty
p
es
a
n
d
d
if
f
er
en
t
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
.
Fu
tu
r
e
r
esear
ch
c
o
u
ld
f
o
cu
s
o
n
r
ef
in
in
g
th
e
D
-
R
AKE
alg
o
r
ith
m
to
in
cr
ea
s
e
its
s
p
ee
d
an
d
ef
f
icien
c
y
,
a
s
well
as
ex
p
lo
r
in
g
its
p
o
ten
t
ial
ap
p
licatio
n
s
in
o
th
er
I
o
T
d
o
m
ain
s
.
4
.
1
.
CE
p
a
ra
m
et
er
T
h
e
C
E
p
ar
am
eter
is
d
eter
m
in
ed
b
y
ca
lcu
latin
g
th
e
C
R
,
tak
in
g
in
to
co
n
s
id
er
atio
n
th
e
d
ata
s
ize
b
ef
o
r
e
an
d
af
ter
co
m
p
r
ess
io
n
.
I
n
th
is
r
esear
ch
,
d
ata
f
r
o
m
s
en
s
o
r
s
wer
e
co
llected
ac
r
o
s
s
s
ix
d
if
f
er
en
t
tim
e
in
ter
v
als
f
o
r
ea
ch
test
in
g
ex
p
e
r
im
en
t,
y
ield
in
g
d
i
v
er
s
e
d
ata
s
ize
m
ea
s
u
r
em
en
ts
.
T
h
is
was
c
o
n
d
u
cte
d
to
ass
es
s
h
o
w
th
e
s
ize
o
f
th
e
d
ata
b
ein
g
co
m
p
r
ess
ed
af
f
ec
ts
th
e
C
E
p
ar
am
eter
.
E
ac
h
tim
e
in
ter
v
al
u
n
d
er
wen
t
5
0
tim
es
co
llectin
g
d
ata
an
d
6
tim
es
test
in
g
iter
atio
n
s
(
T
1
-
T
6
tim
es
in
co
llectin
g
d
ata
s
en
s
o
r
)
,
en
s
u
r
in
g
th
at
th
e
r
esear
ch
co
n
clu
s
io
n
s
co
u
l
d
b
e
ap
p
lied
u
n
iv
e
r
s
ally
to
all
co
m
p
r
ess
ed
s
en
s
o
r
d
ata.
T
h
e
d
ata
co
m
p
r
ess
io
n
test
in
g
ex
p
er
im
en
ts
wer
e
ca
r
r
ied
o
u
t
u
s
in
g
a
m
o
d
if
ied
v
e
r
s
io
n
o
f
th
e
D
-
R
AKE
d
ata
co
m
p
r
ess
io
n
alg
o
r
ith
m
to
d
is
ce
r
n
v
ar
iatio
n
s
in
th
e
C
E
p
ar
am
eter
v
alu
es
ac
r
o
s
s
.
T
ab
le
1
s
h
o
ws
th
e
o
u
tco
m
es
o
b
tain
ed
f
r
o
m
th
e
s
en
s
o
r
d
ata
co
m
p
r
ess
io
n
test
s
.
T
ab
le
1
.
C
E
p
ar
a
m
eter
test
in
g
Tr
i
a
l
n
u
m
b
e
r
(
Tn
)
D
a
t
a
si
z
e
b
e
f
o
r
e
c
o
m
p
r
e
ss
i
o
n
(
B
y
t
e
s)
T1
T2
T3
T4
T5
T6
1
,
2
0
8
2
,
4
1
6
4
,
2
5
2
7
,
7
8
1
11
,
645
15
,
356
D
a
t
a
si
z
e
a
f
t
e
r
c
o
mp
r
e
ssi
o
n
(
B
y
t
e
)
M
I
N
3
9
8
7
6
7
1
,
3
0
6
2
,
0
7
4
3
,
3
9
6
4
,
3
4
9
M
A
X
5
0
6
9
0
1
1
,
5
2
1
3
,
1
7
6
4
,
2
1
9
6
,
5
9
3
AVG
4
8
8
8
8
6
,
4
1
,
4
5
7
.
3
2
5
9
2
.
8
3
,
7
6
8
.
5
4
,
8
1
0
CR
-
c
o
m
p
r
e
ss
i
o
n
r
a
t
i
o
2
.
47
2
.
73
2
.
92
3
.
0
0
1
3
.
09
3
.
19
CE
-
c
o
mp
r
e
ssi
o
n
e
f
f
i
c
i
e
n
c
y
(
%)
59
.
6
63
.
31
65
.
7
66
.
67
67
.
63
68
.
67
T
ab
le
1
p
r
esen
ts
th
at
th
e
d
ata
s
ize
b
ef
o
r
e
co
m
p
r
ess
io
n
g
r
ad
u
ally
in
cr
ea
s
es
f
r
o
m
T
1
to
T
6
,
i
n
d
icatin
g
v
ar
iatio
n
s
in
th
e
d
ata
s
izes
u
s
ed
f
o
r
test
in
g
.
T
h
e
d
ata
s
ize
b
ef
o
r
e
c
o
m
p
r
ess
io
n
r
an
g
es
f
r
o
m
1
,
2
0
8
b
y
tes
i
n
T
1
to
1
5
,
3
5
6
b
y
tes
in
T
6
.
Af
ter
c
o
m
p
r
ess
io
n
,
th
e
d
ata
s
ize
is
s
i
g
n
if
ican
tly
r
e
d
u
ce
d
,
with
th
e
s
m
allest
co
m
p
r
ess
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
D
-
R
A
K
E
co
mp
r
ess
io
n
fo
r
en
h
a
n
ce
d
in
tern
et
o
f t
h
in
g
s
d
a
ta
ma
n
a
g
eme
n
t in
…
(
K
a
r
tika
S
a
r
i
)
2475
d
ata
s
ize
r
ec
o
r
d
ed
i
n
T
1
at
3
9
8
b
y
tes
an
d
th
e
lar
g
est
in
T
6
at
6
,
5
9
3
b
y
tes.
T
h
e
C
R
d
is
p
lay
ed
in
th
e
tab
le
s
h
o
ws
h
o
w
ea
c
h
tr
ial
y
ield
ed
v
ar
y
i
n
g
r
atio
s
,
s
tar
tin
g
f
r
o
m
2
.
4
7
in
T
1
an
d
in
c
r
ea
s
in
g
t
o
3
.
1
9
in
T
6
.
T
h
is
in
cr
ea
s
e
in
th
e
co
m
p
r
ess
io
n
r
a
tio
alig
n
s
with
th
e
in
cr
ea
s
e
in
th
e
in
itial
d
ata
s
ize,
in
d
icatin
g
th
at
th
e
D
-
R
AKE
alg
o
r
ith
m
b
ec
o
m
es
m
o
r
e
ef
f
ec
tiv
e
wh
en
wo
r
k
i
n
g
with
lar
g
e
r
d
ata
s
ets.
T
h
e
C
E
also
g
r
ad
u
a
lly
in
cr
ea
s
ed
f
r
o
m
5
9
.
6
%
in
T
1
t
o
6
8
.
6
7
%
in
T
6
.
T
h
is
s
u
g
g
ests
th
at
th
e
lar
g
er
th
e
c
o
m
p
r
ess
ed
d
ata,
th
e
h
ig
h
er
th
e
ef
f
icien
c
y
ac
h
iev
ed
b
y
t
h
e
D
-
R
AKE
alg
o
r
ith
m
.
T
h
e
in
cr
ea
s
e
in
ef
f
icien
cy
d
em
o
n
s
tr
ates
th
e
D
-
R
AKE
alg
o
r
ith
m
's
ef
f
ec
tiv
en
ess
in
r
ed
u
cin
g
d
ata
s
ize
wh
ile
p
r
eser
v
in
g
ess
en
tial
in
f
o
r
m
atio
n
.
T
o
b
et
ter
u
n
d
er
s
tan
d
th
e
p
er
f
o
r
m
an
ce
o
f
t
h
e
D
-
R
AKE
alg
o
r
ith
m
as
p
r
esen
ted
in
T
a
b
le
1
,
Fig
u
r
e
3
p
r
o
v
id
es
a
v
is
u
al
r
ep
r
esen
tatio
n
o
f
C
E
p
ar
am
eter
.
F
i
g
u
r
e
3
p
r
es
e
n
ts
t
h
e
e
f
f
i
c
ie
n
c
y
o
f
s
e
n
s
o
r
d
a
t
a
c
o
m
p
r
e
s
s
i
o
n
e
m
p
l
o
y
i
n
g
t
h
e
D
-
R
A
K
E
c
o
m
p
r
e
s
s
i
o
n
t
e
c
h
n
i
q
u
e
d
e
r
i
v
e
d
f
r
o
m
s
i
x
d
is
t
i
n
ct
t
es
t
i
n
g
s
c
e
n
a
r
i
o
s
,
c
o
v
e
r
in
g
i
n
t
e
r
v
a
l
s
o
f
5
,
1
0
,
1
5
,
2
0
,
2
5
,
a
n
d
3
0
m
i
n
u
t
e
s
,
e
a
c
h
r
e
p
e
a
t
e
d
5
0
t
i
m
e
s
t
o
e
n
s
u
r
e
c
o
m
p
r
e
h
e
n
s
i
v
e
i
n
s
i
g
h
t
s
ap
p
l
i
c
a
b
l
e
a
c
r
o
s
s
a
l
l
c
o
m
p
r
es
s
e
d
s
e
n
s
o
r
d
a
ta
.
T
h
e
D
-
R
AK
E
m
e
t
h
o
d
d
e
m
o
n
s
t
r
a
t
es
s
u
p
e
r
i
o
r
C
E
c
o
m
p
a
r
e
d
t
o
v
a
r
i
o
u
s
o
t
h
e
r
l
o
s
s
l
e
s
s
c
o
m
p
r
e
s
s
io
n
m
e
t
h
o
d
s
.
T
h
i
s
i
s
p
r
i
m
a
r
i
l
y
a
tt
r
i
b
u
t
e
d
t
o
i
ts
f
o
c
u
s
s
o
l
el
y
o
n
c
o
n
v
e
r
t
i
n
g
s
e
n
s
o
r
d
at
a
i
n
t
o
b
i
n
a
r
y
f
o
r
m
a
t
,
d
is
r
e
g
a
r
d
i
n
g
c
h
a
r
a
c
t
e
r
s
,
a
n
d
r
e
t
a
i
n
i
n
g
o
n
l
y
t
h
e
d
e
c
i
m
a
l
v
al
u
e
s
o
f
d
e
f
a
u
l
t
a
n
d
s
u
b
s
e
q
u
e
n
t
s
e
n
s
o
r
d
a
t
a
.
C
o
n
s
e
q
u
e
n
t
l
y
,
th
e
r
e
s
u
lt
i
n
g
b
i
n
a
r
y
v
a
l
u
e
s
u
n
d
e
r
g
o
s
i
g
n
i
f
i
c
a
n
t
f
l
u
c
t
u
a
t
i
o
n
s
w
it
h
c
h
a
n
g
es
i
n
d
e
ci
m
a
l
v
al
u
e
s
.
F
o
r
i
n
s
t
a
n
ce
,
i
f
th
e
h
u
m
i
d
i
t
y
s
e
n
s
o
r
r
e
c
o
r
d
s
a
v
a
l
u
e
o
f
5
4
.
2
2
,
t
h
i
s
m
e
t
h
o
d
o
m
i
t
s
c
h
a
r
a
c
t
e
r
s
,
r
e
s
u
l
ti
n
g
i
n
5
,
4
2
2
.
S
u
b
s
e
q
u
e
n
t
c
o
n
v
e
r
s
i
o
n
y
i
e
l
d
s
[
1
0
1
0
1
0
0
1
0
1
1
1
0
]
,
f
o
l
l
o
w
e
d
b
y
n
o
r
m
a
l
i
z
a
t
i
o
n
t
o
o
b
t
a
i
n
5
,
4
2
3
,
t
h
e
n
c
o
n
v
e
r
t
e
d
t
o
b
i
n
a
r
y
f
o
r
m
.
X
O
R
o
p
e
r
a
t
i
o
n
w
i
t
h
t
h
e
d
e
f
a
u
l
t
b
i
n
a
r
y
v
a
l
u
e
o
f
5
,
4
2
3
,
p
r
o
d
u
c
i
n
g
[
1
0
1
0
1
0
0
1
0
1
1
1
1
]
,
r
e
s
u
l
t
s
i
n
n
u
m
e
r
o
u
s
'
1
'
b
i
t
s
.
I
n
c
r
e
as
e
d
d
i
s
c
r
e
p
a
n
c
i
es
i
n
d
e
c
i
m
a
l
d
a
ta
a
m
p
l
i
f
y
t
h
e
l
i
k
e
l
i
h
o
o
d
o
f
'
1
'
b
i
n
a
r
y
o
c
c
u
r
r
e
n
c
e
s
d
u
r
i
n
g
X
O
R
o
p
e
r
a
t
i
o
n
s
.
C
o
n
v
e
r
s
e
l
y
,
t
h
e
R
A
K
E
al
g
o
r
i
th
m
p
r
o
v
e
s
m
o
r
e
e
f
f
i
c
i
e
n
t
wi
t
h
a
h
i
g
h
e
r
f
r
e
q
u
e
n
c
y
o
f
b
i
n
a
r
y
'
0
'
o
c
c
u
r
r
e
n
c
e
s
.
Fig
u
r
e
3
.
C
E
p
ar
am
eter
s
4
.
2
.
DE
P
a
ra
m
et
er
Du
r
in
g
th
e
d
ata
d
ec
o
m
p
r
ess
io
n
test
in
g
p
h
ase,
t
h
e
D
-
R
AKE
m
eth
o
d
was
ap
p
lied
.
I
n
ea
c
h
i
n
d
iv
id
u
al
test
r
u
n
,
d
ata
s
am
p
les
we
r
e
co
llected
o
v
er
s
ix
d
is
tin
ct
p
e
r
io
d
s
to
in
v
esti
g
ate
h
o
w
t
h
e
len
g
th
o
f
t
h
e
d
ata
s
eg
m
en
t
af
f
ec
ted
th
e
p
r
o
ce
s
s
.
Af
ter
th
is
,
t
h
e
d
ata
u
n
d
er
we
n
t
co
m
p
r
ess
io
n
an
d
s
u
b
s
eq
u
e
n
t
d
ec
o
m
p
r
ess
io
n
to
ev
alu
ate
its
ab
ilit
y
to
r
etu
r
n
to
its
o
r
ig
in
al
s
tate.
T
ab
le
2
p
r
o
v
id
es
a
s
u
m
m
a
r
y
o
f
th
e
d
ata
d
ec
o
m
p
r
ess
io
n
test
in
g
u
s
in
g
th
e
D
-
R
AKE
alg
o
r
ith
m
.
B
ased
o
n
th
e
d
ata
d
ec
o
m
p
r
es
s
io
n
test
in
g
o
u
tco
m
es,
it
was
o
b
s
er
v
e
d
t
h
at
th
e
d
ata
len
g
th
r
em
ain
e
d
co
n
s
tan
t
b
o
th
b
ef
o
r
e
an
d
af
te
r
d
ec
o
m
p
r
ess
io
n
,
with
o
u
t
a
n
y
alter
atio
n
s
.
Ad
d
itio
n
ally
,
w
h
en
co
n
v
er
tin
g
th
e
co
m
p
r
ess
ed
d
ata,
th
e
v
alu
es
o
f
th
e
d
ata
b
ef
o
r
e
an
d
af
te
r
co
m
p
r
ess
io
n
wer
e
I
DE
NT
I
C
AL
an
d
UNCHANGE
D
in
all
d
ec
o
m
p
r
ess
io
n
tr
ials
.
As
a
r
esu
lt,
it
ca
n
b
e
in
f
er
r
ed
th
at
th
e
d
ata
was
en
tire
ly
an
d
s
u
cc
ess
f
u
lly
r
esto
r
e
d
to
its
o
r
ig
in
al
s
tate
with
n
o
lo
s
s
,
ac
h
iev
in
g
a
1
0
0
% r
ec
o
v
er
y
r
ate.
T
ab
le
2
.
T
h
e
s
u
m
m
ar
y
o
f
d
ata
co
m
p
r
ess
io
n
test
in
g
Tr
i
a
l
n
u
m
b
e
r
(
Tn
)
O
r
i
g
i
n
a
l
d
a
t
a
s
i
z
e
(
B
y
t
e
)
A
v
e
r
a
g
e
d
a
t
a
si
z
e
a
f
t
e
r
c
o
m
p
r
e
ss
i
o
n
(
B
y
t
e
)
D
a
t
a
si
z
e
a
f
t
e
r
d
e
c
o
m
p
r
e
ss
i
o
n
(
B
y
t
e
)
DR
-
d
e
c
o
m
p
r
e
ss
i
o
n
r
a
t
i
o
(
%)
T1
1
,
2
0
8
4
8
8
1
,
2
0
8
1
0
0
T2
2
,
4
1
6
8
8
6
.
4
2
,
4
1
6
1
0
0
T3
4
,
2
5
2
1
,
4
5
7
.
3
4
,
2
5
2
1
0
0
T4
7
,
7
8
1
2
,
5
9
2
.
8
7
,
7
8
1
1
0
0
T5
11
,
645
3
,
7
6
8
.
5
11
,
645
1
0
0
T6
15
,
356
4
,
8
1
0
15
,
356
1
0
0
5
9
.
6
0
%
6
3
.
3
1
%
6
5
.
7
0
%
6
6
.
6
7
%
6
7
.
6
3
%
6
8
.
6
7
%
5
8
%
6
0
%
6
2
%
6
4
%
6
6
%
6
8
%
7
0
%
T1
T2
T3
T4
T5
T6
Pe
r
c
e
n
t
a
g
e
(
%
)
T
r
i
a
l
N
u
m
b
e
r
Co
m
p
r
e
ss
io
n
e
fficie
n
c
y
Tr
i
a
l
N
u
mb
e
r
(
T
n
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
2
4
6
8
-
24
7
8
2476
4
.
3
.
Co
m
pa
riso
n
re
s
ults
wit
h so
m
e
o
t
her
c
o
m
press
io
n m
et
ho
d
T
h
e
co
m
p
ar
is
o
n
o
f
C
E
ac
r
o
s
s
s
ev
er
al
d
ata
co
m
p
r
ess
io
n
m
et
h
o
d
s
,
in
clu
d
in
g
r
a
r
,
b
z
ip
2
,
g
z
i
p
,
R
AKE
,
an
d
D
-
R
AKE
,
was
co
n
d
u
cted
u
s
in
g
two
air
q
u
ality
d
atasets
,
Ds1
wh
ich
r
ep
r
esen
ts
in
d
o
o
r
air
q
u
ality
d
ata,
an
d
Ds2
th
at
r
ep
r
esen
ts
o
u
td
o
o
r
air
q
u
ality
d
ata.
T
h
e
R
A
R
m
eth
o
d
s
h
o
ws
s
tab
le
c
o
m
p
r
ess
io
n
ef
f
icien
c
y
ac
r
o
s
s
b
o
th
d
atasets
,
with
2
8
.
0
%
f
o
r
Ds1
an
d
3
6
.
4
%
f
o
r
Ds2
.
I
n
co
n
t
r
ast,
b
z
ip
2
ex
h
ib
its
s
ig
n
if
ican
t
v
ar
iatio
n
,
with
v
er
y
lo
w
co
m
p
r
ess
io
n
ef
f
icien
cy
at
4
.
3
%
f
o
r
Ds1
,
b
u
t
a
s
u
b
s
tan
tial
im
p
r
o
v
em
en
t
to
3
5
.
4
%
f
o
r
Ds2
.
T
h
e
g
z
ip
m
eth
o
d
p
er
f
o
r
m
s
s
im
ilar
ly
to
R
AR
,
with
id
en
tical
ef
f
ici
en
cy
v
alu
es
ac
r
o
s
s
b
o
th
d
atasets
.
R
AKE
,
a
m
o
r
e
r
ec
en
t
m
eth
o
d
,
d
e
m
o
n
s
tr
ates
im
p
r
o
v
e
d
ef
f
icie
n
cy
co
m
p
ar
ed
to
tr
ad
itio
n
al
m
et
h
o
d
s
,
ac
h
iev
in
g
3
2
.
1
%
f
o
r
Ds1
an
d
4
0
.
2
%
f
o
r
Ds2
.
Ho
wev
er
,
D
-
R
AKE
,
an
ad
v
an
ce
d
v
er
s
io
n
o
f
R
AKE
,
s
tan
d
s
o
u
t
as
th
e
m
o
s
t
ef
f
ec
tiv
e
m
eth
o
d
,
ac
h
ie
v
in
g
th
e
h
ig
h
est
co
m
p
r
ess
io
n
ef
f
icien
cies,
with
6
8
.
6
7
%
f
o
r
Ds1
an
d
5
1
.
6
%
f
o
r
Ds2
,
m
ak
in
g
it
th
e
m
o
s
t
ef
f
icien
t
in
r
ed
u
cin
g
d
ata
s
ize.
T
h
ese
f
in
d
in
g
s
co
n
f
ir
m
th
e
ef
f
ec
tiv
en
ess
o
f
th
e
D
-
R
AKE
alg
o
r
ith
m
in
ef
f
icien
tly
co
m
p
r
ess
in
g
d
ata
an
d
r
e
d
u
cin
g
d
ata
s
iz
e
wh
ile
p
r
eser
v
in
g
ess
en
tial
in
f
o
r
m
atio
n
.
T
h
is
o
b
s
er
v
atio
n
s
er
v
es
as
ev
id
en
c
e
o
f
th
e
alg
o
r
ith
m
'
s
s
u
p
er
io
r
ity
in
im
p
r
o
v
in
g
d
ata
c
o
m
p
r
es
s
io
n
f
o
r
air
q
u
ality
m
o
n
ito
r
in
g
.
T
h
e
co
m
p
ar
is
o
n
b
etwe
en
th
e
D
-
R
AKE
m
eth
o
d
an
d
o
th
e
r
co
m
p
r
ess
io
n
m
eth
o
d
s
,
s
u
ch
as
r
a
r
,
b
z
ip
2
,
g
z
ip
,
an
d
th
e
o
r
ig
in
al
R
AKE
m
eth
o
d
,
is
s
h
o
wn
i
n
T
ab
le
3
.
T
o
b
etter
u
n
d
e
r
s
tan
d
th
e
p
er
f
o
r
m
an
ce
o
f
d
if
f
er
en
t d
ata
co
m
p
r
ess
io
n
m
eth
o
d
s
,
a
co
m
p
ar
ativ
e
an
aly
s
is
was
co
n
d
u
cted
u
s
in
g
two
d
atasets
,
D
s
1
an
d
Ds2
.
T
h
e
C
E
o
f
v
ar
io
u
s
m
eth
o
d
s
,
in
clu
d
in
g
r
a
r
,
b
z
ip
2
,
g
z
ip
,
R
AKE
,
an
d
D
-
R
AKE
,
was
ev
alu
ated
ac
r
o
s
s
th
ese
d
atasets
.
Fig
u
r
e
3
illu
s
tr
ates
th
e
r
esu
lts
o
f
th
is
co
m
p
a
r
is
o
n
,
h
ig
h
lig
h
tin
g
th
e
C
E
(
%)
ac
h
iev
ed
b
y
ea
c
h
m
eth
o
d
in
b
o
th
in
d
o
o
r
an
d
o
u
t
d
o
o
r
s
e
ttin
g
s
.
T
h
is
v
is
u
al
r
ep
r
esen
tatio
n
p
r
o
v
id
es
a
cl
ea
r
an
d
co
n
cise
o
v
er
v
iew
o
f
h
o
w
ea
ch
m
eth
o
d
p
e
r
f
o
r
m
s
u
n
d
er
d
if
f
er
en
t
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
,
wit
h
p
ar
ticu
lar
em
p
h
asis
o
n
th
e
s
u
p
er
io
r
ity
o
f
th
e
D
-
R
AKE
alg
o
r
ith
m
.
Fig
u
r
e
4
s
h
o
ws th
e
r
esu
lts
.
Fig
u
r
e
4
s
h
o
w
s
a
co
m
p
r
eh
e
n
s
iv
e
co
m
p
ar
is
o
n
ch
a
r
t,
s
h
o
wca
s
in
g
th
e
C
E
o
f
s
ev
er
al
d
ata
co
m
p
r
ess
io
n
m
eth
o
d
s
test
ed
.
T
h
is
ch
ar
t
is
b
ased
o
n
two
air
q
u
ality
d
atasets
,
Ds1
an
d
Ds2
.
I
n
th
is
c
h
ar
t,
it
is
ev
id
en
t
th
at
D
-
R
AKE
h
as
th
e
h
ig
h
est
C
E
ac
r
o
s
s
b
o
th
d
atasets
.
Fo
r
Ds1
,
wh
ich
r
e
p
r
esen
ts
in
d
o
o
r
d
ata,
D
-
R
AKE
ac
h
iev
es
n
ea
r
ly
d
o
u
b
le
th
e
C
E
co
m
p
ar
ed
to
o
th
er
m
eth
o
d
s
,
d
em
o
n
s
t
r
atin
g
D
-
R
AKE
's
ab
ilit
y
to
co
m
p
r
ess
m
o
r
e
s
tab
le
d
ata
with
s
m
aller
v
ar
iatio
n
s
ef
f
ec
tiv
ely
.
Fo
r
Ds2
,
wh
ich
r
ef
lects
o
u
td
o
o
r
d
ata,
D
-
R
AKE
also
s
h
o
ws
th
e
b
est
p
er
f
o
r
m
an
ce
,
alth
o
u
g
h
its
C
E
is
s
lig
h
tly
lo
wer
th
an
f
o
r
Ds
1
d
u
e
to
th
e
g
r
ea
ter
d
ata
v
ar
i
ab
ilit
y
in
o
u
td
o
o
r
en
v
ir
o
n
m
en
ts
.
T
h
e
R
AKE
m
eth
o
d
,
wh
ich
is
th
e
p
r
e
d
e
ce
s
s
o
r
o
f
D
-
R
AKE
,
also
s
h
o
ws
r
elativ
ely
g
o
o
d
p
er
f
o
r
m
an
ce
b
u
t
s
till
f
alls
s
h
o
r
t
o
f
D
-
R
AKE
in
ter
m
s
o
f
C
E
.
Me
an
wh
ile,
tr
ad
itio
n
al
m
eth
o
d
s
s
u
ch
as
r
a
r
,
b
z
ip
2
,
an
d
g
z
ip
,
th
o
u
g
h
s
tab
le,
ar
e
u
n
ab
le
to
r
ea
c
h
th
e
lev
el
s
o
f
C
E
d
em
o
n
s
tr
ated
b
y
D
-
R
AKE
.
T
h
is
f
ig
u
r
e
v
is
u
ally
em
p
h
asizes
th
e
s
u
p
e
r
io
r
ity
o
f
th
e
D
-
R
AKE
m
eth
o
d
in
d
ata
c
o
m
p
r
ess
io
n
,
esp
ec
ially
in
th
e
co
n
tex
t
o
f
air
q
u
ality
m
o
n
ito
r
in
g
,
wh
er
e
r
ed
u
cin
g
d
ata
s
ize
an
d
p
r
eser
v
in
g
ess
en
tial in
f
o
r
m
atio
n
ar
e
c
r
u
cial.
T
ab
le
3
.
C
o
m
p
r
ess
io
n
ef
f
icien
cies
in
th
e
ca
s
e
o
f
r
ea
l
-
wo
r
ld
a
ir
q
u
ality
d
ata
D
a
t
a
S
e
t
C
Er
a
r
(
%)
C
Eb
z
i
p
2
(
%)
C
Eg
z
i
p
(
%)
C
ER
A
K
E
(
%)
C
ED
-
R
A
K
E
(
%)
D
s1
28
.
0
4
.
3
28
.
0
32
.
1
68
.
67
D
s2
36
.
4
35
.
4
36
.
4
40
.
2
51
.
6
Fig
u
r
e
4
.
Me
an
o
f
C
E
% in
th
e
ca
s
e
o
f
r
ea
l
-
wo
r
l
d
air
q
u
ality
d
ata
5.
CO
NCLU
SI
O
N
T
h
is
r
esear
ch
clea
r
ly
s
h
o
ws
th
at
th
e
D
-
R
AKE
alg
o
r
ith
m
s
ig
n
if
ican
tly
im
p
r
o
v
es
d
ata
co
m
p
r
ess
io
n
ef
f
icien
cy
in
I
o
T
-
b
ased
air
q
u
ality
m
o
n
ito
r
in
g
s
y
s
tem
s
.
Ou
r
f
in
d
in
g
s
r
e
v
ea
l
th
at
D
-
R
A
KE
ca
n
r
e
d
u
ce
d
ata
3
6
.
4
28
3
5
.
4
4
.
3
3
6
.
4
28
4
0
.
2
3
2
.
1
5
1
.
6
6
8
.
6
7
Ds2
Ds1
0
10
20
30
40
50
60
70
D
a
ta
s
e
ts
n
u
m
b
e
r
-
N
M
e
a
n
o
f
C
E%
C
o
m
p
r
e
s
s
i
o
n
e
f
f
i
c
i
e
n
c
y
(
C
E
)
C
ED
-
R
A
K
E(
%)
C
ER
A
K
E(
%
)
C
e
g
z
i
p
(
%)
C
Eb
z
i
p
2
(
%
)
C
e
r
a
r
(
%
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
D
-
R
A
K
E
co
mp
r
ess
io
n
fo
r
en
h
a
n
ce
d
in
tern
et
o
f t
h
in
g
s
d
a
ta
ma
n
a
g
eme
n
t in
…
(
K
a
r
tika
S
a
r
i
)
2477
s
ize
b
y
o
v
er
6
8
%
wh
ile
p
r
es
er
v
in
g
th
e
i
n
teg
r
ity
o
f
cr
itica
l
in
f
o
r
m
atio
n
.
T
h
is
ac
h
iev
em
en
t
is
p
ar
ticu
lar
ly
im
p
o
r
tan
t
f
o
r
m
an
a
g
in
g
d
ata
in
I
o
T
en
v
ir
o
n
m
e
n
ts
,
wh
er
e
f
ast
d
ata
tr
an
s
m
is
s
io
n
an
d
s
to
r
ag
e
ef
f
icien
cy
a
r
e
cr
u
cial
f
o
r
r
ea
l
-
tim
e
ap
p
licatio
n
s
.
T
h
e
c
o
m
p
r
e
h
en
s
iv
e
co
m
p
ar
is
o
n
o
f
m
eth
o
d
s
in
th
is
s
tu
d
y
c
o
n
f
ir
m
s
th
at
D
-
R
AKE
co
n
s
is
ten
tly
o
u
tp
er
f
o
r
m
s
o
t
h
er
co
m
p
r
ess
io
n
m
eth
o
d
s
.
I
ts
ab
ilit
y
to
r
ed
u
ce
d
ata
s
ize
wh
ile
m
ain
tain
in
g
im
p
o
r
tan
t in
f
o
r
m
atio
n
m
ak
es it a
s
tan
d
o
u
t so
lu
tio
n
f
o
r
air
q
u
ality
m
o
n
ito
r
in
g
.
Ho
wev
er
,
th
er
e
ar
e
s
till
s
o
m
e
q
u
esti
o
n
s
to
ex
p
lo
r
e,
s
u
ch
as
h
o
w
th
e
alg
o
r
ith
m
ca
n
b
e
f
u
r
t
h
er
o
p
tim
ize
d
to
wo
r
k
with
d
if
f
er
e
n
t
ty
p
es
o
f
s
en
s
o
r
s
an
d
u
n
d
er
v
ar
io
u
s
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
.
Alth
o
u
g
h
D
-
R
AKE
is
h
ig
h
ly
e
f
f
icien
t,
its
co
m
p
lex
ity
co
u
l
d
af
f
ec
t p
r
o
ce
s
s
in
g
s
p
ee
d
,
wh
ich
n
ee
d
s
f
u
r
th
er
in
v
esti
g
atio
n
.
L
o
o
k
i
n
g
ah
ea
d
,
f
u
tu
r
e
wo
r
k
will
f
o
cu
s
o
n
r
ef
i
n
in
g
th
e
alg
o
r
ith
m
f
o
r
s
m
o
o
th
e
r
in
teg
r
atio
n
i
n
to
r
ea
l
-
tim
e
air
q
u
ality
m
o
n
it
o
r
in
g
s
y
s
tem
s
an
d
ad
ap
tin
g
it
to
d
if
f
er
e
n
t
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
an
d
s
en
s
o
r
s
etu
p
s
.
C
o
llab
o
r
atio
n
with
in
d
u
s
tr
y
f
o
r
p
r
ac
tical
im
p
lem
en
tatio
n
,
th
e
d
ev
elo
p
m
en
t
o
f
u
s
er
-
f
r
ien
d
ly
i
n
ter
f
a
ce
s
,
an
d
co
n
tin
u
o
u
s
v
alid
ati
o
n
will
b
e
k
ey
to
estab
lis
h
in
g
D
-
R
AKE
as
a
l
ea
d
in
g
s
o
lu
tio
n
f
o
r
d
ata
co
m
p
r
ess
io
n
in
air
q
u
ality
m
o
n
ito
r
in
g
,
u
ltima
tely
co
n
tr
ib
u
tin
g
to
b
etter
en
v
ir
o
n
m
en
tal
m
an
ag
em
e
n
t a
n
d
p
u
b
lic
h
ea
lth
.
RE
F
E
R
E
NC
E
S
[
1
]
F
.
Z
u
l
f
i
r
y
a
n
s
y
a
h
,
S
.
S
y
a
h
r
o
r
i
n
i
,
a
n
d
M
.
N
.
H
a
b
i
b
i
,
“
A
i
r
q
u
a
l
i
t
y
m
o
n
i
t
o
r
i
n
g
s
y
st
e
m
u
s
i
n
g
u
n
m
a
n
n
e
d
a
e
r
i
a
l
v
e
h
i
c
l
e
(
U
A
V
)
q
u
a
d
c
o
p
t
e
r
t
y
p
e
,
”
Pro
c
e
d
i
a
o
f
E
n
g
i
n
e
e
ri
n
g
a
n
d
L
i
f
e
S
c
i
e
n
c
e
,
v
o
l
.
2
,
n
o
.
2
,
A
u
g
.
2
0
2
2
,
d
o
i
:
1
0
.
2
1
0
7
0
/
p
e
l
s.
v
2
i
2
.
1
2
4
4
.
[
2
]
A
.
B
u
s
h
n
a
g
,
“
A
i
r
q
u
a
l
i
t
y
a
n
d
c
l
i
m
a
t
e
c
o
n
t
r
o
l
A
r
d
u
i
n
o
m
o
n
i
t
o
r
i
n
g
s
y
s
t
e
m
u
s
i
n
g
f
u
z
z
y
l
o
g
i
c
f
o
r
i
n
d
o
o
r
e
n
v
i
r
o
n
m
e
n
t
s
,
”
i
n
2
0
2
0
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
C
o
n
t
r
o
l
,
A
u
t
o
m
a
t
i
o
n
a
n
d
D
i
a
g
n
o
s
i
s
(
I
C
C
A
D
)
,
O
c
t
.
2
0
2
0
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
C
A
D
4
9
8
2
1
.
2
0
2
0
.
9
2
6
0
5
1
4
.
[
3
]
A
.
H
i
l
a
r
y
K
e
l
e
c
h
i
e
t
a
l
.
,
“
D
e
si
g
n
o
f
a
l
o
w
-
c
o
st
a
i
r
q
u
a
l
i
t
y
m
o
n
i
t
o
r
i
n
g
sy
st
e
m
u
s
i
n
g
A
r
d
u
i
n
o
a
n
d
T
h
i
n
g
S
p
e
a
k
,
”
C
o
m
p
u
t
e
rs
,
Ma
t
e
r
i
a
l
s &
C
o
n
t
i
n
u
a
,
v
o
l
.
7
0
,
n
o
.
1
,
p
p
.
1
5
1
–
1
6
9
,
2
0
2
2
,
d
o
i
:
1
0
.
3
2
6
0
4
/
c
m
c
.
2
0
2
2
.
0
1
9
4
3
1
.
[
4
]
D
.
M
u
n
e
r
a
,
D
.
P
.
T
o
b
o
n
V
.
,
J.
A
g
u
i
r
r
e
,
a
n
d
N
.
G
.
G
o
m
e
z
,
“
I
o
T
-
b
a
se
d
a
i
r
q
u
a
l
i
t
y
mo
n
i
t
o
r
i
n
g
s
y
st
e
ms
f
o
r
smar
t
c
i
t
i
e
s:
A
sy
st
e
ma
t
i
c
ma
p
p
i
n
g
st
u
d
y
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
E
l
e
c
t
ri
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
(
I
J
EC
E)
,
v
o
l
.
1
1
,
n
o
.
4
,
p
.
3
4
7
0
,
A
u
g
.
2
0
2
1
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
1
i
4
.
p
p
3
4
7
0
-
3
4
8
2
.
[
5
]
R
.
E
.
O
g
u
,
N
.
C
h
u
k
w
u
c
h
e
k
w
a
,
G
.
A
.
C
h
u
k
w
u
d
e
b
e
,
I
.
A
.
Ez
e
n
u
g
u
,
a
n
d
I
.
E.
A
c
h
u
m
b
a
,
“
A
r
o
b
u
st
I
o
T
-
b
a
se
d
a
i
r
q
u
a
l
i
t
y
m
o
n
i
t
o
r
i
n
g
n
o
d
e
f
o
r
m
u
l
t
i
-
l
o
c
a
t
i
o
n
d
e
p
l
o
y
me
n
t
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
E
n
g
i
n
e
e
r
i
n
g
Re
s
e
a
r
c
h
&
T
e
c
h
n
o
l
o
g
y
(
I
J
ERT)
,
v
o
l
.
1
1
,
n
o
.
0
3
,
2
0
2
2
,
d
o
i
:
1
0
.
1
7
5
7
7
/
I
JER
TV
1
1
I
S
0
3
0
0
8
2
.
[
6
]
K
.
D
.
P
u
r
k
a
y
a
s
t
h
a
,
R
.
K
.
M
i
s
h
r
a
,
A
.
S
h
i
l
,
a
n
d
S
.
N
.
P
r
a
d
h
a
n
,
“
I
o
T
b
a
s
e
d
d
e
s
i
g
n
o
f
a
i
r
q
u
a
l
i
t
y
m
o
n
i
t
o
r
i
n
g
s
y
s
t
e
m
w
e
b
s
e
r
v
e
r
f
o
r
a
n
d
r
o
i
d
p
l
a
t
f
o
r
m
,
”
W
i
r
e
l
e
s
s
P
e
r
s
o
n
a
l
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
1
1
8
,
n
o
.
4
,
p
p
.
2
9
2
1
–
2
9
4
0
,
J
u
n
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
2
7
7
-
0
2
1
-
0
8
1
6
2
-
3.
[
7
]
S
.
K
a
u
r
,
S
.
B
a
w
a
,
a
n
d
S
.
S
h
a
r
m
a
,
“
I
o
T
e
n
a
b
l
e
d
l
o
w
-
c
o
st
i
n
d
o
o
r
a
i
r
q
u
a
l
i
t
y
mo
n
i
t
o
r
i
n
g
sy
st
e
m
w
i
t
h
b
o
t
a
n
i
c
a
l
s
o
l
u
t
i
o
n
s,
”
i
n
2
0
2
0
8
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
Re
l
i
a
b
i
l
i
t
y
,
I
n
f
o
c
o
m
T
e
c
h
n
o
l
o
g
i
e
s
a
n
d
O
p
t
i
m
i
z
a
t
i
o
n
(
T
re
n
d
s
a
n
d
F
u
t
u
r
e
D
i
re
c
t
i
o
n
s)
(
I
C
RI
T
O
)
,
Ju
n
.
2
0
2
0
,
p
p
.
4
4
7
–
4
5
3
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
R
I
TO
4
8
8
7
7
.
2
0
2
0
.
9
1
9
7
8
9
5
.
[
8
]
R
.
L
o
u
n
a
s,
D
.
E.
S
a
l
h
i
,
H
.
M
o
k
r
a
n
i
,
R
.
D
j
e
r
b
i
,
a
n
d
M
.
T.
B
e
n
n
a
i
,
“
T
o
w
a
r
d
s
a
s
mart
d
a
t
a
t
r
a
n
sm
i
ssi
o
n
st
r
a
t
e
g
y
f
o
r
i
o
t
m
o
n
i
t
o
r
i
ng
sy
st
e
ms:
a
p
p
l
i
c
a
t
i
o
n
t
o
a
i
r
q
u
a
l
i
t
y
mo
n
i
t
o
r
i
n
g
,
”
i
n
2
0
1
9
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
T
h
e
o
r
e
t
i
c
a
l
a
n
d
A
p
p
l
i
c
a
t
i
v
e
As
p
e
c
t
s
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
(
I
C
T
AA
C
S
)
,
D
e
c
.
2
0
1
9
,
p
p
.
1
–
7
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
TA
A
C
S
4
8
4
7
4
.
2
0
1
9
.
8
9
8
8
1
1
9
.
[
9
]
M
.
W
.
S
a
r
i
a
n
d
B
.
S
a
n
t
o
s
o
,
“
D
e
v
e
l
o
p
i
n
g
i
n
d
o
o
r
a
i
r
q
u
a
l
i
t
y
m
o
n
i
t
o
r
i
n
g
sy
s
t
e
m
u
s
i
n
g
i
n
t
e
r
n
e
t
o
f
t
h
i
n
g
s
a
n
d
w
i
r
e
l
e
ss
se
n
s
o
r
n
e
t
w
o
r
k
,
”
J
u
rn
a
l
I
l
m
i
a
h
T
e
k
n
o
s
a
i
n
s
,
v
o
l
.
7
,
n
o
.
2
/
N
o
v
,
p
p
.
1
3
–
1
8
,
N
o
v
.
2
0
2
1
,
d
o
i
:
1
0
.
2
6
8
7
7
/
j
i
t
e
k
.
v
7
i
2
/
N
o
v
.
9
7
6
3
.
[
1
0
]
I
.
Li
l
i
,
A
.
K
o
s
t
a
,
a
n
d
E
.
X
h
i
n
a
,
“
Th
e
u
se
o
f
smar
t
d
e
v
i
c
e
s
(
I
o
T)
t
o
m
o
n
i
t
o
r
t
h
e
a
i
r
q
u
a
l
i
t
y
:
a
c
a
se
s
t
u
d
y
a
t
t
h
e
F
a
c
u
l
t
y
o
f
N
a
t
u
r
a
l
S
c
i
e
n
c
e
s,”
i
n
Pro
c
e
e
d
i
n
g
s
o
f
RTA
-
C
S
I
T
2
0
2
3
,
Ti
r
a
n
a
,
A
l
b
a
n
i
a
,
2
0
2
3
.
[
1
1
]
I
.
M
.
P
u
,
“
A
u
d
i
o
c
o
m
p
r
e
ss
i
o
n
,
”
i
n
F
u
n
d
a
m
e
n
t
a
l
D
a
t
a
C
o
m
p
ress
i
o
n
,
El
s
e
v
i
e
r
,
2
0
0
6
,
p
p
.
1
7
1
–
1
8
8
.
[
1
2
]
C
.
K
i
m a
n
d
C
.
‐
C
.
J
.
K
u
o
,
“
D
a
t
a
c
o
m
p
r
e
ssi
o
n
,
”
i
n
H
a
n
d
b
o
o
k
o
f
C
o
m
p
u
t
e
r
N
e
t
w
o
rks
,
W
i
l
e
y
,
2
0
0
7
,
p
p
.
1
9
9
–
2
1
1
.
[
1
3
]
K
.
S
a
y
o
o
d
,
I
n
t
r
o
d
u
c
t
i
o
n
t
o
d
a
t
a
c
o
m
p
ressi
o
n
.
E
l
se
v
i
e
r
,
2
0
1
2
.
[
1
4
]
D
.
S
a
l
o
m
o
n
a
n
d
G
.
M
o
t
t
a
,
H
a
n
d
b
o
o
k
o
f
d
a
t
a
c
o
m
p
ress
i
o
n
.
L
o
n
d
o
n
:
S
p
r
i
n
g
e
r
Lo
n
d
o
n
,
2
0
1
0
.
[
1
5
]
G
.
M
u
r
u
g
e
s
a
n
a
n
d
R
.
G
i
l
m
a
r
y
,
“
C
o
m
p
r
e
ssi
o
n
o
f
t
e
x
t
f
i
l
e
s
u
si
n
g
g
e
n
o
m
i
c
c
o
d
e
c
o
m
p
r
e
ss
i
o
n
a
l
g
o
r
i
t
h
m,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
En
g
i
n
e
e
ri
n
g
& T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
7
,
n
o
.
2
.
3
1
,
p
.
6
9
,
M
a
y
2
0
1
8
,
d
o
i
:
1
0
.
1
4
4
1
9
/
i
j
e
t
.
v
7
i
2
.
3
1
.
1
3
3
9
9
.
[
1
6
]
Y
.
Ji
,
W
.
X
u
,
a
n
d
A
.
D
e
n
g
,
“
A
st
u
d
y
o
f
v
e
sse
l
t
r
a
j
e
c
t
o
r
y
c
o
m
p
r
e
ssi
o
n
b
a
s
e
d
o
n
v
e
c
t
o
r
d
a
t
a
c
o
mp
r
e
ssi
o
n
a
l
g
o
r
i
t
h
ms
,
”
S
p
r
i
n
g
e
r
,
2
0
1
9
,
p
p
.
4
7
3
–
4
8
4
.
[
1
7
]
D
.
D
M
,
“
I
o
T
b
a
se
d
a
i
r
q
u
a
l
i
t
y
m
o
n
i
t
o
r
i
n
g
s
y
st
e
m,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
f
o
r
R
e
se
a
rc
h
i
n
Ap
p
l
i
e
d
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
ri
n
g
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
9
,
n
o
.
V
I
I
I
,
p
p
.
4
0
2
–
4
0
6
,
A
u
g
.
2
0
2
1
,
d
o
i
:
1
0
.
2
2
2
1
4
/
i
j
r
a
s
e
t
.
2
0
2
1
.
3
7
3
3
7
.
[
1
8
]
J.
B
u
e
l
v
a
s,
D
.
M
ú
n
e
r
a
,
D
.
P
.
T
o
b
ó
n
V
.
,
J.
A
g
u
i
r
r
e
,
a
n
d
N
.
G
a
v
i
r
i
a
,
“
D
a
t
a
q
u
a
l
i
t
y
i
n
I
o
T
-
b
a
s
e
d
a
i
r
q
u
a
l
i
t
y
mo
n
i
t
o
r
i
n
g
s
y
s
t
e
ms
:
a
sy
st
e
ma
t
i
c
ma
p
p
i
n
g
st
u
d
y
,
”
W
a
t
e
r,
Ai
r,
&
S
o
i
l
P
o
l
l
u
t
i
o
n
,
v
o
l
.
2
3
4
,
n
o
.
4
,
p
.
2
4
8
,
A
p
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
2
7
0
-
0
2
3
-
0
6
1
2
7
-
9.
[
1
9
]
A
.
P
u
s
c
a
s
i
u
e
t
a
l
.
,
“
I
n
d
o
o
r
a
i
r
q
u
a
l
i
t
y
mo
n
i
t
o
r
i
n
g
s
y
st
e
m
f
o
r
h
e
a
l
t
h
c
a
r
e
f
a
c
i
l
i
t
i
e
s,
”
i
n
I
F
MB
E
Pr
o
c
e
e
d
i
n
g
s
,
S
p
r
i
n
g
e
r
I
n
t
e
r
n
a
t
i
o
n
a
l
P
u
b
l
i
s
h
i
n
g
,
2
0
2
2
,
p
p
.
3
9
9
–
4
0
8
.
[
2
0
]
Z.
A
h
me
d
e
t
a
l
.
,
“
L
o
ss
y
a
n
d
l
o
ss
l
e
ss
v
i
d
e
o
f
r
a
me
c
o
m
p
r
e
ssi
o
n
:
a
n
o
v
e
l
a
p
p
r
o
a
c
h
f
o
r
h
i
g
h
-
t
e
mp
o
r
a
l
v
i
d
e
o
d
a
t
a
a
n
a
l
y
t
i
c
s,”
R
e
m
o
t
e
S
e
n
si
n
g
,
v
o
l
.
1
2
,
n
o
.
6
,
p
.
1
0
0
4
,
M
a
r
.
2
0
2
0
,
d
o
i
:
1
0
.
3
3
9
0
/
r
s1
2
0
6
1
0
0
4
.
[
2
1
]
P
.
D
e
l
g
o
sh
a
a
n
d
V
.
A
n
a
n
t
h
a
r
a
m
,
“
U
n
i
v
e
r
sal
l
o
ssl
e
ss
c
o
m
p
r
e
ssi
o
n
o
f
g
r
a
p
h
i
c
a
l
d
a
t
a
,
”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
I
n
f
o
rm
a
t
i
o
n
T
h
e
o
ry
,
v
o
l
.
6
6
,
n
o
.
1
1
,
p
p
.
6
9
6
2
–
6
9
7
6
,
N
o
v
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
T.
2
0
2
0
.
2
9
9
1
3
8
4
.
[
2
2
]
A
.
G
o
p
i
n
a
t
h
a
n
d
M
.
R
a
v
i
sa
n
k
a
r
,
“
C
o
mp
a
r
i
so
n
o
f
L
o
ssl
e
ss
D
a
t
a
C
o
m
p
r
e
ssi
o
n
T
e
c
h
n
i
q
u
e
s,
”
i
n
2
0
2
0
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
v
e
n
t
i
v
e
C
o
m
p
u
t
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s (
I
C
I
C
T
)
,
F
e
b
.
2
0
2
0
,
p
p
.
6
2
8
–
6
3
3
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
I
C
T4
8
0
4
3
.
2
0
2
0
.
9
1
1
2
5
1
6
.
[
2
3
]
S
.
K
.
R
o
u
t
r
a
y
,
A
.
Ja
v
a
l
i
,
K
.
P
.
S
h
a
r
m
i
l
a
,
W
.
S
e
m
u
n
i
g
u
s,
M
.
P
a
p
p
a
,
a
n
d
A
.
D
.
G
h
o
s
h
,
“
L
o
ssl
e
ss
c
o
mp
r
e
ssi
o
n
t
e
c
h
n
i
q
u
e
s
f
o
r
l
o
w
b
a
n
d
w
i
d
t
h
n
e
t
w
o
r
k
s,
”
i
n
2
0
2
0
3
r
d
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
l
l
i
g
e
n
t
S
u
s
t
a
i
n
a
b
l
e
S
y
st
e
m
s
(
I
C
I
S
S
)
,
D
e
c
.
2
0
2
0
,
p
p
.
8
2
3
–
8
2
8
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
I
S
S
4
9
7
8
5
.
2
0
2
0
.
9
3
1
5
9
3
6
.
[
2
4
]
Y
.
I
m
a
n
d
S
.
V
e
r
d
ú
,
“
O
p
t
i
m
a
l
u
n
i
v
e
r
sal
l
o
ssl
e
ss
c
o
mp
r
e
ssi
o
n
w
i
t
h
si
d
e
i
n
f
o
r
mat
i
o
n
,
”
I
EEE
T
r
a
n
s
a
c
t
i
o
n
s
o
n
I
n
f
o
rm
a
t
i
o
n
T
h
e
o
ry
,
p
p
.
1
–
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
T.
2
0
1
8
.
2
8
6
8
0
5
3
.
[
2
5
]
S
.
K
.
R
o
u
t
r
a
y
,
A
.
Ja
v
a
l
i
,
A
.
S
a
h
o
o
,
W
.
S
e
mu
n
i
g
u
s,
a
n
d
M
.
P
a
p
p
a
,
“
Lo
s
sl
e
ss
c
o
m
p
r
e
ss
i
o
n
t
e
c
h
n
i
q
u
e
s
f
o
r
l
o
w
b
a
n
d
w
i
d
t
h
I
o
Ts,
”
i
n
2
0
2
0
Fo
u
rt
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
I
-
S
MA
C
(
I
o
T
i
n
S
o
c
i
a
l
,
M
o
b
i
l
e
,
A
n
a
l
y
t
i
c
s
a
n
d
C
l
o
u
d
)
(
I
-
S
M
AC
)
,
O
c
t
.
2
0
2
0
,
p
p
.
1
7
7
–
1
8
1
,
d
o
i
:
1
0
.
1
1
0
9
/
I
-
S
M
A
C
4
9
0
9
0
.
2
0
2
0
.
9
2
4
3
4
5
7
.
[
2
6
]
M
.
G
o
y
a
l
,
K
.
Ta
t
w
a
w
a
d
i
,
S
.
C
h
a
n
d
a
k
,
a
n
d
I
.
O
c
h
o
a
,
“
D
e
e
p
Z
i
p
:
l
o
ss
l
e
ss
d
a
t
a
c
o
m
p
r
e
ss
i
o
n
u
si
n
g
r
e
c
u
r
r
e
n
t
n
e
u
r
a
l
n
e
t
w
o
r
k
s
,
”
i
n
2
0
1
9
D
a
t
a
C
o
m
p
ress
i
o
n
C
o
n
f
e
r
e
n
c
e
(
D
C
C
)
,
M
a
r
.
2
0
1
9
,
p
p
.
5
7
5
–
5
7
5
,
d
o
i
:
1
0
.
1
1
0
9
/
D
C
C
.
2
0
1
9
.
0
0
0
8
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.