I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
2
,
A
p
r
il
20
25
,
p
p
.
1
4
8
7
~
1
4
9
8
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
2
.
pp
1
4
8
7
-
1
4
9
8
1487
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Vehicle si
de con
t
r
o
l of a wireles
s
power t
ra
nsfer
cha
r
g
er using
o
ptimized ar
tif
ici
a
l neural ne
twork
M
a
ro
ua
ne
E
l A
nca
ry
,
Abdel
la
h L
a
s
s
io
ui,
H
a
s
s
a
n E
l F
a
di
l,
Anwa
r
H
a
s
ni,
Ya
s
s
ine
E
l
Asri,
Z
a
k
a
ria
e
E
l Id
riss
i
I
n
g
é
n
e
r
i
e
d
e
s S
y
st
è
mes
A
v
a
n
c
é
s (I
S
A
)
La
b
o
r
a
t
o
r
y
,
N
a
t
i
o
n
a
l
S
c
h
o
o
l
o
f
A
p
p
l
i
e
d
S
c
i
e
n
c
e
s (EN
S
A
)
,
I
b
n
T
o
f
a
i
l
U
n
i
v
e
r
si
t
y
,
K
e
n
i
t
r
a
,
M
o
r
o
c
c
o
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l 2
6
,
2
0
2
4
R
ev
is
ed
Oct
2
5
,
2
0
2
4
Acc
ep
ted
No
v
2
0
,
2
0
2
4
Th
is
p
a
p
e
r
i
n
v
e
sti
g
a
tes
a
n
e
w
a
p
p
ro
a
c
h
t
o
c
o
n
tro
l
a
wire
les
s
p
o
w
e
r
tran
sfe
r
(W
P
T)
c
h
a
rg
e
r
f
o
r
e
lec
tri
c
v
e
h
icl
e
s
(EVs)
e
m
p
lo
y
in
g
a
n
o
p
ti
m
ize
d
a
rti
ficia
l
n
e
u
ra
l
n
e
two
r
k
(AN
N).
En
h
a
n
c
i
n
g
t
h
e
e
fficie
n
c
y
a
n
d
r
o
b
u
stn
e
s
s
o
f
su
c
h
sy
ste
m
s
is
c
ru
c
ial,
a
n
d
in
te
g
ra
ti
n
g
a
rti
ficia
l
i
n
telli
g
e
n
c
e
(AI)
-
b
a
se
d
so
l
u
ti
o
n
s
h
a
s
in
tr
o
d
u
c
e
d
i
n
n
o
v
a
ti
v
e
a
p
p
r
o
a
c
h
e
s
in
th
is
field
.
T
h
e
p
r
o
p
o
se
d
m
e
th
o
d
e
n
a
b
les
p
re
c
ise
re
g
u
lati
o
n
o
f
b
a
tt
e
ry
c
h
a
rg
i
n
g
v
o
lt
a
g
e
e
v
e
n
u
n
d
e
r
c
h
a
ll
e
n
g
i
n
g
c
o
n
d
it
i
o
n
s,
su
c
h
a
s
c
o
il
m
isa
li
g
n
m
e
n
t
o
r
sh
a
re
d
g
ro
u
n
d
in
g
a
ss
e
m
b
li
e
s
fo
r
m
u
lt
ip
le
EVs.
To
a
ss
e
ss
th
e
sta
b
il
it
y
a
n
d
r
o
b
u
stn
e
ss
o
f
th
e
p
ro
p
o
se
d
c
o
n
tro
l
ler,
it
s
p
e
rfo
rm
a
n
c
e
wa
s
e
v
a
lu
a
ted
u
n
d
e
r
sc
e
n
a
rio
s
o
f
c
o
il
m
isa
li
g
n
m
e
n
t
a
n
d
sh
a
re
d
g
ro
u
n
d
i
n
g
a
ss
e
m
b
li
e
s
fo
r
EVs
with
v
a
r
y
i
n
g
b
a
tt
e
ry
v
o
lt
a
g
e
s.
Th
e
c
o
n
tro
ll
e
r
e
ffe
c
ti
v
e
ly
e
li
m
in
a
ted
o
v
e
rsh
o
o
t
a
n
d
si
g
n
ifi
c
a
n
t
ly
re
d
u
c
e
d
re
sid
u
a
l
o
u
t
p
u
t
v
o
lt
a
g
e
rip
p
le
b
y
4
.
3
3
%
c
o
m
p
a
re
d
t
o
a
c
o
n
v
e
n
ti
o
n
a
l
p
ro
p
o
rti
o
n
a
l
-
i
n
teg
ra
l
(
PI
)
c
o
n
tro
ll
e
r,
d
e
m
o
n
stra
ti
n
g
t
h
e
su
p
e
ri
o
r
p
e
r
fo
rm
a
n
c
e
a
n
d
re
li
a
b
i
li
ty
o
f
th
e
AN
N
-
b
a
se
d
c
o
n
tro
l
a
p
p
ro
a
c
h
.
K
ey
w
o
r
d
s
:
Ar
tific
ial
in
tellig
en
ce
Ar
tific
ial
n
eu
r
al
n
etwo
r
k
E
lectr
ic
v
eh
icles
Veh
icle
s
id
e
co
n
tr
o
l
W
ir
eles
s
p
o
wer
tr
an
s
f
er
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ma
r
o
u
an
e
E
l A
n
ca
r
y
I
n
g
é
n
e
r
i
e
d
e
s
S
y
s
t
è
m
es
A
v
a
n
cé
s
(
I
S
A
)
L
a
b
o
r
a
t
o
r
y
,
N
a
t
i
o
n
al
S
c
h
o
o
l
o
f
A
p
p
l
i
e
d
Sc
i
e
n
c
es
(
E
N
S
A
)
,
I
b
n
T
o
f
a
i
l
U
n
i
v
e
r
s
it
y
C
am
p
u
s
Un
iv
er
s
itair
e,
B
.
P 2
4
1
,
Ken
itra
1
4
0
0
0
,
Mo
r
o
cc
o
E
m
ail:
m
ar
o
u
an
e
.
elan
ca
r
y
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
tr
an
s
p
o
r
tatio
n
s
ec
to
r
is
a
p
r
im
ar
y
c
o
n
tr
ib
u
to
r
t
o
clim
at
e
ch
an
g
e,
with
th
e
c
o
m
b
u
s
tio
n
o
f
f
o
s
s
il
f
u
els
in
v
eh
icles
r
elea
s
in
g
s
u
b
s
tan
tial
q
u
an
titi
es
o
f
ca
r
b
o
n
d
io
x
id
e.
T
h
is
g
r
ee
n
h
o
u
s
e
g
as
ex
ac
er
b
ates
g
lo
b
al
war
m
in
g
,
lea
d
in
g
to
in
c
r
ea
s
in
g
ly
f
r
e
q
u
en
t
an
d
s
ev
er
e
wea
th
er
ev
e
n
ts
[
1
]
.
R
o
ad
tr
an
s
p
o
r
tatio
n
,
p
ar
ticu
la
r
ly
p
ass
en
g
er
v
eh
icles,
is
a
d
o
m
i
n
an
t
s
o
u
r
ce
o
f
th
ese
em
is
s
io
n
s
,
th
o
u
g
h
av
iatio
n
an
d
m
ar
i
tim
e
tr
an
s
p
o
r
t
also
co
n
tr
ib
u
te
s
ig
n
if
ican
tly
.
T
r
an
s
itio
n
in
g
to
s
u
s
tain
ab
le
m
o
d
es
o
f
tr
a
n
s
p
o
r
tatio
n
,
s
u
ch
as
p
u
b
lic
tr
an
s
it,
cy
clin
g
,
an
d
walk
in
g
,
c
o
u
p
le
d
with
th
e
d
ev
elo
p
m
en
t
o
f
clea
n
er
v
eh
icle
tech
n
o
lo
g
ies,
is
ess
e
n
tial
f
o
r
m
itig
atin
g
clim
ate
ch
an
g
e
im
p
ac
ts
[
2
]
,
[
3
]
.
E
lectr
ic
v
eh
icles
(
E
Vs)
o
f
f
e
r
a
p
r
o
m
is
in
g
s
o
l
u
tio
n
to
d
ec
ar
b
o
n
ize
th
e
tr
an
s
p
o
r
tatio
n
s
ec
to
r
.
E
Vs
d
r
asti
ca
lly
r
ed
u
ce
g
r
ee
n
h
o
u
s
e
g
as
em
is
s
io
n
s
b
y
r
ep
lacin
g
f
o
s
s
il
f
u
els
with
elec
tr
icity
,
o
f
ten
g
en
er
ated
f
r
o
m
r
en
ewa
b
le
s
o
u
r
ce
s
.
T
h
e
a
b
s
en
ce
o
f
tailp
ip
e
em
is
s
io
n
s
i
m
p
r
o
v
es
air
q
u
ality
an
d
m
itig
ates
clim
ate
ch
a
n
g
e
ef
f
ec
ts
.
Fu
r
th
er
m
o
r
e,
b
atter
y
tech
n
o
lo
g
y
a
d
v
an
ce
m
en
ts
h
a
v
e
en
h
a
n
ce
d
E
Vs'
ec
o
n
o
m
ic
v
iab
ilit
y
,
ac
ce
ler
ati
n
g
th
eir
ad
o
p
tio
n
as
a
s
u
s
tai
n
ab
le
tr
an
s
p
o
r
tatio
n
alter
n
ativ
e
[
4
]
.
Ho
wev
er
,
to
m
ax
im
ize
th
e
b
e
n
ef
its
o
f
E
Vs
,
it
is
ess
en
tial
to
d
ev
elo
p
ap
p
r
o
p
r
iate
r
ec
h
ar
g
in
g
in
f
r
astru
ct
u
r
es
an
d
s
o
lv
e
th
e
p
r
o
b
lem
s
o
f
a
u
to
n
o
m
y
an
d
b
atter
y
lo
n
g
e
v
ity
.
Am
o
n
g
r
e
ce
n
t
in
n
o
v
ativ
e
a
p
p
r
o
ac
h
es,
wir
eless
ch
ar
g
in
g
s
y
s
tem
s
s
ee
m
p
ar
ticu
lar
ly
p
r
o
m
is
in
g
f
o
r
th
ei
r
ab
ilit
y
to
m
a
k
e
r
ec
h
ar
g
i
n
g
m
o
r
e
co
n
v
en
ien
t
an
d
ac
ce
s
s
ib
le
[
5
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
4
8
7
-
1
4
9
8
1488
W
ir
eles
s
p
o
wer
tr
an
s
f
er
(
W
PT)
tech
n
o
lo
g
y
o
f
f
er
s
a
co
n
v
e
n
ien
t
an
d
ef
f
icie
n
t
m
eth
o
d
f
o
r
ch
ar
g
in
g
E
Vs
with
o
u
t
th
e
n
ee
d
f
o
r
p
h
y
s
ical
co
n
n
ec
tio
n
s
[
6
]
.
T
h
is
tec
h
n
o
lo
g
y
,
b
ased
o
n
m
ag
n
etic
i
n
d
u
ctio
n
,
e
n
h
an
ce
s
s
af
ety
b
y
elim
in
atin
g
th
e
r
is
k
s
ass
o
ciate
d
with
tr
a
d
itio
n
al
c
h
ar
g
in
g
m
eth
o
d
s
,
s
u
ch
as
elec
tr
ic
s
h
o
ck
s
a
n
d
f
ir
es
ca
u
s
ed
b
y
ex
p
o
s
ed
co
r
d
s
[
7
]
.
Fu
r
th
er
m
o
r
e
,
W
PT
f
ac
ilit
ates
au
to
m
ated
c
h
ar
g
in
g
,
im
p
r
o
v
i
n
g
u
s
er
co
n
v
en
ie
n
ce
.
Du
e
to
th
eir
r
eliab
ilit
y
,
d
u
r
ab
ilit
y
,
an
d
r
esis
tan
ce
to
ad
v
er
s
e
wea
th
er
co
n
d
itio
n
s
,
wir
eless
E
V
ch
ar
g
er
s
ar
e
p
ar
ticu
lar
ly
s
u
itab
le
f
o
r
lo
ca
ti
o
n
s
with
r
estricte
d
ac
ce
s
s
[
8
]
,
[
9
]
.
Fig
u
r
e
1
s
h
o
ws
a
s
im
p
lifie
d
W
PT
s
y
s
tem
co
m
p
r
is
es
two
d
if
f
er
en
t
m
ain
p
ar
ts
:
th
e
v
eh
icle
-
s
id
e
p
ar
t
an
d
th
e
g
r
o
u
n
d
-
s
id
e
p
ar
t
[
1
0
]
.
E
n
er
g
y
tr
an
s
f
e
r
o
cc
u
r
s
wir
eless
ly
th
r
o
u
g
h
a
m
ag
n
etic
f
ield
g
en
e
r
ated
b
y
an
u
n
d
er
g
r
o
u
n
d
tr
a
n
s
m
itti
n
g
co
il
an
d
r
ec
eiv
ed
b
y
a
co
il
p
o
s
itio
n
ed
b
en
ea
t
h
th
e
v
eh
icle
[
1
1
]
,
[
1
2
]
.
T
o
en
s
u
r
e
ef
f
icien
t
en
er
g
y
tr
an
s
f
er
to
t
h
e
elec
tr
ic
v
eh
icle
b
atter
y
,
a
co
n
tr
o
l sy
s
tem
is
n
e
ce
s
s
ar
y
to
r
eg
u
late
th
e
e
n
er
g
y
f
lo
w.
Fig
u
r
e
1
.
Simp
lifie
d
co
n
f
i
g
u
r
a
tio
n
o
f
a
W
PT
ch
ar
g
in
g
s
y
s
te
m
T
h
er
e
ar
e
th
r
ee
m
eth
o
d
s
to
co
n
tr
o
l
W
PT
ch
ar
g
er
s
:
p
r
im
ar
y
-
s
id
e,
s
ec
o
n
d
ar
y
-
s
id
e,
an
d
d
u
al
-
s
id
e
co
n
tr
o
l
[
1
3
]
.
E
ac
h
a
p
p
r
o
ac
h
r
eg
u
lates
v
o
ltag
e
an
d
cu
r
r
en
t,
eith
er
o
n
th
e
g
r
o
u
n
d
s
id
e,
th
e
v
eh
icle
s
id
e,
o
r
a
co
m
b
in
atio
n
o
f
b
o
th
.
Fo
r
v
e
h
icle
-
s
id
e
co
n
tr
o
l,
[
1
4
]
p
r
ese
n
ts
a
clo
s
ed
-
lo
o
p
s
tr
ateg
y
u
tili
zin
g
b
id
ir
ec
tio
n
al
s
witch
es
m
o
d
u
lated
b
y
a
p
r
o
p
o
r
tio
n
al
-
in
teg
r
al
(
PI
)
co
n
tr
o
ller
.
T
h
is
m
eth
o
d
r
eg
u
lates
o
u
tp
u
t
c
u
r
r
e
n
t
an
d
v
o
ltag
e
d
u
r
in
g
b
atter
y
ch
ar
g
in
g
,
en
ab
lin
g
b
o
th
c
o
n
s
tan
t
cu
r
r
en
t
(
C
C
)
an
d
co
n
s
tan
t
v
o
ltag
e
(
C
V)
p
h
ases
.
Als
o
,
a
co
m
p
ar
ativ
e
s
tu
d
y
o
f
two
s
ec
o
n
d
ar
y
-
s
id
e
co
n
tr
o
l
tech
n
i
q
u
es,
PI
an
d
o
n
e
-
cy
cle
co
n
tr
o
l
(
OC
C
)
,
is
p
r
esen
ted
f
o
r
W
PT
ch
ar
g
er
s
[
1
5
]
.
T
h
e
ef
f
ec
tiv
en
ess
o
f
t
h
ese
m
eth
o
d
s
i
n
m
ain
tain
in
g
p
o
wer
r
eg
u
latio
n
is
ass
ess
ed
u
n
d
er
v
ar
y
in
g
m
u
tu
al
in
d
u
ctan
ce
c
o
n
d
itio
n
s
.
B
h
av
s
in
g
h
et
a
l.
[
1
6
]
p
r
o
p
o
s
e
a
W
PT
ch
ar
g
er
to
m
ax
im
ize
p
o
wer
tr
an
s
m
is
s
io
n
.
T
h
eir
ap
p
r
o
ac
h
in
v
o
lv
es
u
s
in
g
d
u
ty
cy
cl
e
co
n
tr
o
l
b
ased
o
n
th
e
f
u
n
d
am
en
tal
h
ar
m
o
n
ic
ap
p
r
o
x
im
atio
n
m
eth
o
d
.
T
o
ac
h
iev
e
th
is
,
th
ey
in
co
r
p
o
r
ate
two
b
id
ir
ec
tio
n
al
s
witch
es b
ef
o
r
e
th
e
r
ec
tifie
r
o
n
th
e
v
eh
icle
s
id
e
o
f
th
e
s
y
s
tem
.
T
h
e
p
r
o
p
o
s
ed
co
n
t
r
o
l
s
tr
ateg
y
i
n
[
1
7
]
e
m
p
lo
y
s
a
b
o
o
s
t
co
n
v
e
r
ter
o
n
th
e
v
eh
icle
s
id
e
with
d
u
t
y
c
y
cle
m
o
d
u
lat
io
n
to
ac
h
iev
e
C
C
an
d
C
V
ch
ar
g
in
g
p
h
ases
.
In
[
1
8
]
,
a
s
e
m
i
-
b
r
id
g
eless
ac
tiv
e
r
ec
tifie
r
co
n
tr
o
lled
b
y
a
PI
r
e
g
u
lato
r
is
em
p
lo
y
e
d
o
n
th
e
s
e
co
n
d
ar
y
-
s
id
e
to
r
eg
u
late
th
e
o
u
tp
u
t
v
o
ltag
e.
Pu
ls
e
d
en
s
ity
m
o
d
u
latio
n
is
im
p
lem
en
ted
f
o
r
t
h
e
ac
tiv
e
r
ec
tifie
r
s
witch
es
to
en
h
an
ce
co
n
v
er
ter
ef
f
icien
cy
.
I
n
[
1
9
]
,
a
n
o
n
lin
ea
r
H
-
in
f
i
n
ity
co
n
tr
o
ller
is
em
p
lo
y
ed
f
o
r
th
e
s
ec
o
n
d
ar
y
-
s
id
e
DC
-
DC
co
n
v
er
ter
.
T
o
o
p
tim
ize
co
n
tr
o
ller
p
ar
am
eter
s
d
u
r
in
g
v
ar
ia
b
le
v
o
ltag
e
in
ter
m
itten
t
ch
ar
g
i
n
g
,
a
m
u
lti
-
o
b
jectiv
e
,
m
u
lti
-
co
n
s
tr
ain
t
alg
o
r
ith
m
is
u
tili
ze
d
.
All
p
r
ev
io
u
s
s
tu
d
ies
h
av
e
em
p
lo
y
ed
s
ec
o
n
d
ar
y
-
s
id
e
co
n
tr
o
l
b
ased
o
n
eith
e
r
PI
o
r
n
o
n
-
lin
ea
r
co
n
tr
o
ller
s
.
W
h
ile
PI
co
n
tr
o
ller
s
ar
e
s
im
p
le
to
im
p
lem
en
t,
th
ey
ar
e
ill
-
s
u
ited
f
o
r
h
i
g
h
ly
n
o
n
lin
ea
r
s
y
s
tem
s
s
u
ch
as
p
o
wer
co
n
v
er
ter
s
in
W
PT
ch
ar
g
er
s
.
No
n
lin
ea
r
c
o
n
tr
o
ller
s
,
o
n
th
e
o
th
er
h
an
d
,
o
f
f
er
s
u
p
er
io
r
p
er
f
o
r
m
an
c
e
f
o
r
s
u
ch
s
y
s
tem
s
b
u
t
o
f
ten
r
e
q
u
ir
e
ad
d
itio
n
al
s
en
s
o
r
s
,
in
cr
ea
s
in
g
b
o
th
c
o
s
t
an
d
c
o
m
p
le
x
ity
.
Mo
s
t
ex
is
tin
g
r
esear
ch
f
o
cu
s
es
o
n
v
o
ltag
e
a
n
d
c
u
r
r
en
t
r
eg
u
latio
n
d
u
e
to
m
is
alig
n
m
en
t
is
s
u
es
in
W
PT
s
y
s
tem
s
.
Mo
r
eo
v
er
,
th
er
e
is
a
n
o
tab
le
g
ap
in
th
e
liter
atu
r
e
r
eg
ar
d
in
g
s
h
ar
e
d
g
r
o
u
n
d
ass
em
b
lies
f
o
r
ch
ar
g
i
n
g
m
u
ltip
le
elec
tr
ic
v
eh
icle
b
atter
ies.
Ad
d
itio
n
all
y
,
th
e
p
o
te
n
tial
o
f
ar
tific
ial
i
n
tellig
en
ce
in
co
n
tr
o
llin
g
t
h
e
s
e
co
m
p
lex
s
y
s
tem
s
r
em
ain
s
lar
g
ely
u
n
ex
p
l
o
r
ed
,
h
i
g
h
lig
h
tin
g
a
n
ee
d
f
o
r
f
u
r
t
h
er
i
n
v
esti
g
atio
n
in
th
is
ar
ea
.
T
h
is
p
ap
er
in
tr
o
d
u
ce
s
a
n
o
v
el
v
eh
icle
-
s
id
e
c
o
n
tr
o
l
tech
n
iq
u
e
f
o
r
W
PT
ch
ar
g
e
r
s
d
esig
n
ed
f
o
r
E
Vs.
T
h
is
tech
n
iq
u
e
lev
er
a
g
es
an
o
p
tim
ized
ar
tific
ial
n
eu
r
al
n
et
wo
r
k
to
ac
h
iev
e
two
p
r
im
ar
y
o
b
jectiv
es
.
First,
it
en
ab
les
th
e
ch
a
r
g
in
g
o
f
two
d
is
tin
ct
b
atter
y
ty
p
es
with
d
i
f
f
er
en
t
v
o
ltag
es
u
s
in
g
a
s
in
g
le
ch
ar
g
in
g
s
tatio
n
o
r
g
r
o
u
n
d
-
s
id
e
ass
em
b
ly
.
Seco
n
d
,
it
m
ain
tain
s
a
co
n
s
tan
t
b
atter
y
ch
ar
g
e,
ev
e
n
in
th
e
p
r
esen
ce
o
f
v
o
ltag
e
f
lu
ctu
atio
n
s
ca
u
s
ed
b
y
co
il m
i
s
alig
n
m
en
t o
r
g
r
id
in
s
tab
ilit
y
o
n
th
e
p
r
im
ar
y
s
id
e
o
f
th
e
W
PT
ch
ar
g
er
.
T
h
e
r
em
ain
in
g
s
ec
tio
n
s
o
f
th
i
s
d
o
cu
m
en
t
ar
e
o
r
g
an
ized
as
f
o
llo
ws:
s
ec
tio
n
2
in
tr
o
d
u
ce
s
th
e
W
PT
ch
ar
g
er
,
its
m
o
d
elin
g
,
an
d
t
h
e
eq
u
iv
alen
t
cir
cu
it
r
ep
r
esen
tatio
n
.
Sectio
n
3
illu
s
tr
ates
th
e
p
r
o
p
o
s
ed
co
n
tr
o
l
s
tr
ateg
y
.
Sectio
n
4
p
r
esen
ts
th
e
r
esu
lts
an
d
d
is
cu
s
s
io
n
o
f
th
e
co
n
tr
o
l
tech
n
i
q
u
e
an
d
its
p
er
f
o
r
m
an
ce
b
ased
o
n
s
im
u
latio
n
r
esu
lts
.
Fin
ally
,
s
ec
tio
n
5
p
r
esen
ts
co
n
clu
s
io
n
s
an
d
f
u
tu
r
e
r
esear
ch
d
ir
ec
tio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
V
eh
icle
s
id
e
co
n
tr
o
l o
f a
w
ir
eless
p
o
w
er t
r
a
n
s
fer ch
a
r
g
er u
s
in
g
…
(
Ma
r
o
u
a
n
e
E
l A
n
c
a
r
y
)
1489
2.
WI
R
E
L
E
SS
P
O
W
E
R
T
RA
NSFER C
H
ARG
E
R
2
.
1
.
P
rinciple o
f
o
pera
t
io
n o
f
t
he
WP
T
T
h
is
s
ec
tio
n
is
d
ev
o
te
d
to
th
e
d
escr
ip
tio
n
o
f
t
h
e
W
PT
ch
ar
g
er
.
T
h
e
ca
b
le
-
f
r
ee
c
h
ar
g
in
g
p
r
o
ce
s
s
is
s
ch
em
atica
lly
s
u
m
m
ar
ized
in
th
e
SAE
J
2
9
5
4
s
tan
d
ar
d
an
d
m
ay
b
e
d
i
v
id
ed
in
to
two
s
u
b
s
y
s
tem
s
,
as
Fig
u
r
e
2
illu
s
tr
ates:
th
e
p
r
im
ar
y
s
id
e,
also
k
n
o
wn
as
th
e
g
r
o
u
n
d
ass
em
b
ly
(
GA)
,
an
d
th
e
s
ec
o
n
d
a
r
y
s
id
e,
also
k
n
o
wn
as
th
e
v
eh
icle
ass
em
b
ly
(
VA)
[
2
0
]
.
A
h
ig
h
-
f
r
e
q
u
en
c
y
DC
/AC
co
n
v
er
ter
,
o
p
e
r
atin
g
at
8
5
k
H
z
as
r
ec
o
m
m
en
d
ed
in
SAE
J
2
9
5
4
s
tan
d
ar
d
,
g
e
n
e
r
ates
a
tim
e
-
v
ar
y
in
g
v
o
ltag
e.
T
h
e
tr
an
s
m
itti
n
g
co
il,
en
er
g
iz
ed
b
y
th
e
in
v
e
r
ter
,
g
en
er
ates
a
tim
e
-
v
ar
y
i
n
g
m
a
g
n
etic
f
ield
(
MF)
.
T
h
is
MF
is
t
r
an
s
m
itted
wir
eless
ly
an
d
ca
r
r
ied
to
th
e
r
ec
eiv
in
g
co
il
[
2
1
]
,
[
2
2
]
.
T
h
e
n
o
r
m
alize
d
v
o
ltag
es
an
d
cu
r
r
en
ts
r
e
q
u
ir
ed
b
y
th
e
b
atter
y
ar
e
o
b
tain
e
d
b
y
r
ec
tif
y
in
g
th
e
v
o
ltag
e
f
r
o
m
th
e
s
ec
o
n
d
ar
y
co
il
[
2
3
]
.
Fig
u
r
e
2
.
W
ir
eless
p
o
wer
tr
an
s
f
er
ch
ar
g
er
cir
cu
it
2
.
2
.
M
o
delin
g
o
f
t
he
WP
T
T
h
is
s
ec
tio
n
f
o
cu
s
es o
n
d
ev
el
o
p
in
g
a
p
r
ec
is
e
an
aly
tical
m
o
d
el
f
o
r
th
e
wir
eless
ch
ar
g
er
,
ex
clu
d
in
g
th
e
AC
/D
C
p
o
wer
f
ac
to
r
co
r
r
ec
tio
n
(
PF
C
)
co
n
v
er
ter
s
tag
e.
T
h
e
an
aly
s
is
i
s
co
n
f
in
ed
to
th
e
s
y
s
tem
co
m
p
o
n
en
ts
b
etwe
en
th
e
DC
b
u
s
an
d
th
e
v
eh
icle
b
atter
y
.
Fu
r
th
er
m
o
r
e,
th
e
b
atter
y
is
m
o
d
elled
b
y
a
r
esis
to
r
in
s
er
ies
with
an
o
p
en
cir
cu
it
v
o
ltag
e
.
On
ce
Kir
ch
h
o
f
f
'
s
r
u
les
ar
e
ap
p
lied
to
th
e
cir
cu
it
in
Fig
u
r
e
2
,
th
e
r
esu
lts
ar
e
s
h
o
wn
in
(
1
)
–
(
5
)
:
=
1
+
1
1
−
2
(
1
)
1
=
+
2
+
2
2
(
2
)
1
=
1
1
(
3
)
2
=
2
2
(
4
)
=
|
2
|
=
0
−
+
0
(
5
)
W
h
er
e,
1
an
d
2
ar
e
th
e
cu
r
r
en
ts
in
th
e
p
r
im
ar
y
s
id
e
an
d
s
ec
o
n
d
ar
y
s
id
e
co
ils
,
2
an
d
2
ar
e
th
e
i
n
d
u
ctan
ce
s
o
f
th
e
p
r
im
ar
y
an
d
s
ec
o
n
d
ar
y
s
id
e
co
ils
,
is
th
e
m
u
tu
al
in
d
u
ctan
ce
b
etwe
en
th
e
co
ils
,
is
th
e
in
v
er
ter
o
u
tp
u
t
v
o
ltag
e,
1
an
d
2
,
ar
e,
r
es
p
ec
tiv
ely
,
th
e
v
o
ltag
e
ac
r
o
s
s
th
e
p
r
im
ar
y
an
d
s
ec
o
n
d
ar
y
s
id
e
co
m
p
en
s
atio
n
ca
p
ac
ito
r
s
,
an
d
0
ar
e,
r
esp
ec
tiv
ely
,
th
e
v
o
ltag
e
at
th
e
in
p
u
t a
n
d
o
u
tp
u
t o
f
th
e
s
ec
o
n
d
ar
y
s
id
e
r
ec
tifie
r
,
an
d
C
f
is
th
e
f
ilter
in
g
ca
p
ac
ito
r
o
f
th
e
s
ec
o
n
d
ar
y
s
id
e
[
2
4
]
.
Fro
m
(
1
)
to
(
5
)
,
th
e
f
o
llo
win
g
s
tate
s
p
ac
e
m
o
d
el
is
o
b
tain
ed
:
=
[
1
,
2
,
1
,
2
,
0
]
=
[
1
,
2
,
3
,
4
,
5
]
(
6
)
•
1
=
1
1
3
(
7
)
•
2
=
1
2
4
(
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
4
8
7
-
1
4
9
8
1490
•
3
=
1
1
(
−
1
)
−
1
2
(
2
−
(
4
)
5
)
(
9
)
•
4
=
1
2
(
−
1
)
−
1
3
(
2
−
(
4
)
5
)
(
1
0
)
•
5
=
1
(
4
)
4
−
5
−
(
1
1
)
W
h
er
e
1
=
1
2
−
2
2
,
2
=
1
2
−
2
2
,
3
=
1
2
−
2
1
an
d
(
)
=
1
wh
en
>
0
,
(
)
=
−
1
wh
en
<
0
an
d
(
)
=
0
wh
en
=
0
.
3.
CO
NT
RO
L
L
E
R
DE
SI
G
N
T
h
e
p
u
r
p
o
s
e
o
f
t
h
is
s
ec
tio
n
is
to
d
esig
n
a
co
n
tr
o
ller
f
o
r
th
e
W
PT
s
y
s
tem
.
A
b
u
ck
-
b
o
o
s
t
DC
-
D
C
co
n
v
er
ter
will
en
ab
le
th
e
b
atter
y
v
o
ltag
e
to
b
e
co
n
tr
o
lled
o
n
l
y
in
co
n
s
tan
t
v
o
ltag
e
(
C
V)
m
o
d
e.
T
h
e
u
s
e
o
f
th
e
ar
tific
ial
n
eu
r
al
n
etwo
r
k
in
th
is
co
n
tr
o
l
tech
n
iq
u
e
will
m
ak
e
it
p
o
s
s
ib
le
to
ac
h
iev
e
th
e
o
b
je
ctiv
es
o
f
r
eg
u
latio
n
in
th
e
p
r
esen
ce
o
f
f
lu
ct
u
atio
n
o
f
th
e
v
eh
icle
s
id
e
in
p
u
t v
o
ltag
e
d
u
e
to
m
is
alig
n
m
en
t b
etwe
en
th
e
co
ils
an
d
also
to
en
ab
le
two
b
atter
ies
o
f
two
d
if
f
er
e
n
t
v
o
ltag
es
to
b
e
ch
a
r
g
ed
with
th
e
s
am
e
g
r
o
u
n
d
s
id
e
ass
em
b
ly
.
Fig
u
r
e
3
s
h
o
ws
th
e
f
u
n
d
am
e
n
tal
p
r
in
c
ip
le
o
f
th
e
p
r
o
p
o
s
ed
co
n
tr
o
l
m
eth
o
d
.
T
o
ev
alu
ate
th
e
co
n
tr
o
ller
'
s
r
o
b
u
s
tn
ess
u
n
d
er
v
ar
io
u
s
o
p
er
atin
g
co
n
d
itio
n
s
,
th
e
b
atter
y
is
r
ep
lace
d
wi
th
a
v
ar
iab
le
lo
a
d
r
esis
to
r
.
Fig
u
r
e
3
.
Fu
n
d
am
en
tal
p
r
in
cip
le
o
f
th
e
p
r
o
p
o
s
ed
co
n
t
r
o
l a
p
p
r
o
ac
h
3
.
1
.
B
uck
-
B
o
o
s
t
DC
-
DC
co
n
v
er
t
er
T
h
e
b
u
ck
-
b
o
o
s
t
co
n
v
er
ter
ai
m
s
to
p
r
ec
is
ely
r
eg
u
late
o
u
tp
u
t
v
o
ltag
e
b
y
tr
ac
k
in
g
a
r
ef
er
en
ce
v
alu
e.
T
h
is
is
ac
h
iev
ed
b
y
m
o
d
u
la
tin
g
th
e
co
n
v
er
ter
'
s
d
u
ty
cy
cle
[
2
5
]
.
T
h
e
b
u
ck
-
b
o
o
s
t
co
n
v
er
ter
to
p
o
lo
g
y
is
d
ep
icted
in
Fig
u
r
e
4
.
Kir
c
h
h
o
f
f
'
s
r
u
les
ca
n
b
e
ap
p
lied
to
th
e
cir
cu
it
an
aly
s
is
in
o
r
d
er
to
o
b
tain
th
e
(
1
2
)
an
d
(
1
3
)
,
ass
u
m
in
g
in
itially
th
at
S
=
1
.
W
h
er
e
an
d
r
ep
r
esen
t,
r
esp
ec
tiv
ely
,
th
e
i
n
d
u
cto
r
'
s
eq
u
iv
alen
t
s
er
ies
r
esis
tan
ce
an
d
th
e
p
o
we
r
s
witch
'
s
r
esi
s
tan
ce
.
Fig
u
r
e
4
.
B
u
ck
B
o
o
s
t D
C
-
DC
co
n
v
er
ter
cir
cu
it
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
V
eh
icle
s
id
e
co
n
tr
o
l o
f a
w
ir
eless
p
o
w
er t
r
a
n
s
fer ch
a
r
g
er u
s
in
g
…
(
Ma
r
o
u
a
n
e
E
l A
n
c
a
r
y
)
1491
=
−
+
+
(
1
2
)
=
−
(
1
3
)
T
h
e
s
witch
is
OFF (
S =
0
)
wh
ile
th
e
d
io
d
e
is
co
n
d
u
ctin
g
,
p
r
o
d
u
cin
g
t
h
e
f
o
llo
win
g
r
esu
lt (
1
4
)
an
d
(
1
5
)
.
=
−
−
(
1
4
)
=
−
−
(
1
5
)
T
h
e
v
ar
iab
le
,
wh
ich
co
m
p
r
is
e
s
th
e
in
d
u
cto
r
cu
r
r
e
n
t
an
d
th
e
o
u
tp
u
t
v
o
ltag
e,
is
in
clu
d
ed
in
t
h
e
s
tate
v
ec
to
r
o
f
th
e
cir
cu
it,
as d
ep
icted
i
n
(
1
6
)
.
(
)
=
(
•
1
•
2
)
=
(
−
+
−
−
(
1
−
)
−
1
(
1
−
)
−
1
(
1
−
)
−
1
)
(
1
2
)
+
(
0
)
(
1
6
)
Fin
ally
,
th
e
r
elatio
n
s
h
ip
b
etwe
en
an
d
is
g
iv
en
in
(
1
7
)
.
=
1
−
(
1
7
)
3
.
2
.
Art
if
ici
a
l neura
l net
wo
rk
mo
del
T
h
e
ar
tific
ial
n
eu
r
al
n
etwo
r
k
(
ANN)
m
o
d
el
is
in
s
p
ir
ed
b
y
th
e
f
u
n
ctio
n
in
g
o
f
b
io
lo
g
ical
n
eu
r
o
n
s
.
I
n
co
n
tr
ast
to
tr
a
d
itio
n
al
al
g
o
r
ith
m
s
,
ANNs
lear
n
f
r
o
m
in
p
u
t
d
ata
an
d
tr
an
s
f
o
r
m
it
in
t
o
k
n
o
wled
g
e
in
a
m
a
n
n
er
lik
e
to
th
at
o
f
th
e
h
u
m
an
b
r
ai
n
.
ANNs
ar
e
ar
ch
itectu
r
ally
f
o
r
m
ed
b
y
in
ter
co
n
n
ec
ted
ele
m
en
tar
y
u
n
its
n
am
ed
n
eu
r
o
n
s
.
T
h
e
s
tr
u
ctu
r
e
o
f
n
eu
r
al
n
etwo
r
k
s
co
m
m
o
n
ly
f
o
llo
w
s
a
lay
er
ed
s
tr
u
ctu
r
e.
T
h
e
n
et
wo
r
k
ar
ch
itectu
r
e
is
d
ef
in
ed
b
y
th
e
n
u
m
b
er
o
f
lay
e
r
s
an
d
th
e
n
u
m
b
e
r
o
f
n
eu
r
o
n
s
with
in
ea
ch
lay
er
[
2
6
]
.
T
h
e
co
n
tr
o
ller
m
o
d
el
u
s
ed
i
n
th
is
p
ap
er
is
f
o
u
n
d
e
d
o
n
a
f
ee
d
f
o
r
war
d
ANN
as
illu
s
tr
ated
in
Fig
u
r
e
5
,
f
ee
d
f
o
r
war
d
ANNs
ar
e
r
en
o
wn
e
d
f
o
r
th
eir
s
im
p
lic
ity
,
ef
f
icien
cy
,
a
n
d
ea
s
e
o
f
tr
ai
n
in
g
,
m
a
k
in
g
th
e
m
well
-
s
u
ited
f
o
r
v
ar
i
o
u
s
task
s
,
in
clu
d
i
n
g
co
n
tr
o
l
s
y
s
tem
s
.
T
h
e
b
u
ck
-
b
o
o
s
t
DC
-
DC
co
n
v
e
r
ter
'
s
in
p
u
t
v
o
ltag
e
an
d
th
e
s
im
u
lated
b
atter
y
r
ef
e
r
en
ce
v
o
ltag
e,
r
ep
r
esen
ted
b
y
th
e
lo
ad
r
esis
tan
ce
,
s
er
v
e
as
i
n
p
u
ts
to
th
e
n
eu
r
al
n
etwo
r
k
.
T
h
e
m
o
d
el'
s
o
u
tp
u
t
,
th
e
d
u
ty
c
y
cle
“
d
”
,
d
ir
ec
tl
y
co
n
tr
o
ls
th
e
o
u
tp
u
t
v
o
ltag
e
.
T
h
e
ANN
m
o
d
el
d
y
n
am
ically
a
d
ju
s
ts
th
e
d
u
ty
cy
cle
b
ased
o
n
in
p
u
t
co
n
d
i
tio
n
s
to
ac
cu
r
ately
tr
ac
k
th
e
d
esire
d
r
e
f
er
en
ce
,
th
er
eb
y
co
n
tr
o
llin
g
th
e
c
o
n
v
e
r
ter
'
s
o
p
er
atio
n
in
eith
er
b
o
o
s
t
o
r
b
u
ck
m
o
d
e.
T
h
e
ar
ch
itect
u
r
e
o
f
th
e
ANN
is
s
h
o
wn
in
Fig
u
r
e
5
(
a)
co
n
s
is
t
s
o
f
th
r
ee
s
ep
ar
ate
lay
er
s
:
th
e
in
p
u
t
lay
er
,
th
e
h
id
d
e
n
lay
er
wh
ich
co
n
tain
s
2
5
n
eu
r
o
n
s
,
an
d
th
e
o
u
tp
u
t
lay
er
.
I
t
h
as
two
in
p
u
ts
an
d
o
n
e
o
u
tp
u
t.
Fig
u
r
e
5
(
b
)
s
h
o
ws
th
e
l
ay
er
s
o
f
th
e
n
eu
r
al
n
etwo
r
k
.
W
eig
h
ts
an
d
b
iases
ar
e
th
e
p
ar
am
ete
r
s
an
ANN
l
ea
r
n
s
d
u
r
in
g
tr
ain
in
g
to
m
in
i
m
ize
er
r
o
r
s
b
etwe
en
th
e
n
etwo
r
k
'
s
o
u
tp
u
t a
n
d
th
e
d
esire
d
o
u
tp
u
t.
(
a)
(
b
)
Fig
u
r
e
5
.
Feed
f
o
r
war
d
ANN:
(
a)
a
r
ch
itectu
r
e
a
n
d
(
b
)
l
ay
e
r
s
o
f
th
e
ANN
Me
an
s
q
u
ar
ed
er
r
o
r
(
MSE
)
is
a
wid
ely
u
s
ed
m
etr
ic
to
ev
alu
ate
th
e
p
er
f
o
r
m
an
ce
o
f
m
ac
h
i
n
e
lear
n
in
g
m
o
d
els,
in
clu
d
in
g
ANNs.
A
lo
wer
MSE
g
en
er
ally
in
d
ic
ates
a
b
etter
-
p
er
f
o
r
m
in
g
m
o
d
el
b
ec
au
s
e
it
ca
n
m
in
im
ize
p
r
e
d
ictio
n
er
r
o
r
s
,
p
r
ev
en
t
o
v
er
f
itti
n
g
,
a
n
d
g
en
er
al
ize
well
to
n
ew
d
ata.
B
y
o
p
ti
m
izin
g
th
e
tr
ain
i
n
g
p
r
o
ce
s
s
to
m
in
im
ize
MSE
,
ANN
m
o
d
els
ca
n
ac
h
iev
e
h
i
g
h
er
ac
cu
r
ac
y
a
n
d
r
eliab
ilit
y
.
I
n
th
is
co
n
tex
t,
a
co
m
p
ar
ativ
e
an
aly
s
is
was
c
o
n
d
u
cte
d
u
s
in
g
th
r
ee
tr
ain
i
n
g
alg
o
r
ith
m
s
:
L
ev
en
b
er
g
-
Ma
r
q
u
ar
d
t,
B
ay
esian
R
eg
u
lar
izatio
n
,
a
n
d
s
ca
led
co
n
ju
g
ate
g
r
ad
ien
t
to
s
elec
t
th
e
o
p
tim
al
ANN
m
o
d
el.
T
h
e
r
esu
lts
o
f
t
h
is
ev
alu
atio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
4
8
7
-
1
4
9
8
1492
ar
e
s
u
m
m
ar
ized
in
T
a
b
le
s
1
,
2
,
an
d
,
3
.
T
h
e
L
ev
en
b
er
g
-
Ma
r
q
u
ar
d
t
alg
o
r
ith
m
y
iel
d
ed
th
e
l
o
west
er
r
o
r
an
d
t
h
e
h
ig
h
est
r
eg
r
ess
io
n
co
e
f
f
icien
t,
d
em
o
n
s
tr
atin
g
s
u
p
er
io
r
p
er
f
o
r
m
an
ce
in
tr
ain
i
n
g
th
e
ANN
m
o
d
el
co
m
p
ar
ed
t
o
th
e
o
th
er
c
o
n
s
id
er
ed
al
g
o
r
ith
m
s
.
T
ab
le
1
.
L
ea
r
n
in
g
r
esu
lts
u
s
in
g
th
e
L
ev
e
n
b
er
g
-
Ma
r
q
u
ar
d
t a
l
g
o
r
ith
m
P
h
a
se
S
a
mp
l
e
s
M
S
E
R
e
g
r
e
ssi
o
n
(
R
)
Tr
a
i
n
i
n
g
1
0
5
0
1
1
.
10102
×
10
−
9
9
.
99999
×
10
−
1
V
a
l
i
d
a
t
i
o
n
2
2
5
0
5
.
62882
×
10
−
10
9
.
99999
×
10
−
1
Te
st
i
n
g
2
2
5
0
9
.
71649
×
10
−
10
9
.
99999
×
10
−
1
T
ab
le
2
.
L
ea
r
n
in
g
r
esu
lts
u
s
in
g
th
e
B
ay
esian
R
eg
u
lar
izatio
n
alg
o
r
ith
m
P
h
a
se
S
a
mp
l
e
s
M
S
E
R
e
g
r
e
ssi
o
n
(
R
)
Tr
a
i
n
i
n
g
1
0
5
0
1
2
.
09661
×
10
−
8
9
.
99996
×
10
−
1
V
a
l
i
d
a
t
i
o
n
2
2
5
0
0
.
00000
×
10
−
0
0
.
00000
×
10
−
0
Te
st
i
n
g
2
2
5
0
3
.
23009
×
10
−
9
9
.
99999
×
10
−
1
T
ab
le
3
.
L
ea
r
n
in
g
r
esu
lts
u
s
in
g
th
e
s
ca
led
co
n
j
u
g
ate
g
r
ad
ien
t
alg
o
r
ith
m
P
h
a
se
S
a
mp
l
e
s
M
S
E
R
e
g
r
e
ssi
o
n
(
R
)
Tr
a
i
n
i
n
g
1
0
5
0
1
7
.
15706
×
10
−
7
9
.
99865
×
10
−
1
V
a
l
i
d
a
t
i
o
n
2
2
5
0
8
.
19750
×
10
−
7
9
.
99864
×
10
−
1
Te
st
i
n
g
2
2
5
0
8
.
18438
×
10
−
7
9
.
99844
×
10
−
1
T
h
e
ANN
m
o
d
el
was
ev
alu
at
ed
u
s
in
g
th
e
L
e
v
en
b
e
r
g
-
Ma
r
q
u
ar
d
t
alg
o
r
ith
m
.
Fig
u
r
e
6
illu
s
tr
ates
th
e
lear
n
in
g
p
e
r
f
o
r
m
an
ce
o
f
th
e
o
p
tim
ized
ANN
-
b
ased
co
n
tr
o
ller
.
T
h
e
m
ea
n
s
q
u
ar
ed
e
r
r
o
r
(
MSE
)
r
ea
ch
ed
a
m
in
im
u
m
v
alu
e
o
f
1
.
4485
×
10
−
9
at
ep
o
ch
4
1
,
in
d
icatin
g
s
u
cc
ess
f
u
l
co
n
v
er
g
en
ce
.
T
h
e
clo
s
e
alig
n
m
e
n
t
o
f
th
e
lear
n
in
g
,
test
in
g
,
an
d
v
al
id
atio
n
cu
r
v
es
s
u
g
g
ests
th
at
th
e
ANN
m
o
d
el
ex
h
ib
its
s
tr
o
n
g
g
en
e
r
aliza
tio
n
ca
p
ab
ilit
ies.
T
h
e
ef
f
ec
tiv
en
es
s
o
f
th
e
co
n
t
r
o
l
ap
p
r
o
ac
h
h
as
b
ee
n
ev
alu
ated
.
T
h
e
s
im
u
latio
n
p
ar
am
ete
r
s
ar
e
d
etailed
in
T
ab
le
4
.
Fig
u
r
e
6
.
L
ea
r
n
in
g
p
er
f
o
r
m
a
n
ce
o
f
th
e
o
p
tim
ized
ANN
-
b
ase
d
co
n
tr
o
ller
T
ab
le
4
.
Par
am
eter
s
u
s
ed
d
u
r
i
n
g
th
e
s
im
u
latio
n
P
a
r
a
me
t
e
r
V
a
l
u
e
D
C
b
u
s
v
o
l
t
a
g
e
f
o
r
p
r
i
m
a
r
y
s
i
d
e
V
D
C
2
0
0
V
S
e
l
f
-
i
n
d
u
c
t
a
n
c
e
o
f
t
h
e
g
r
o
u
n
d
s
i
d
e
c
o
i
l
L
1
4
1
6
µ
H
S
e
l
f
-
i
n
d
u
c
t
a
n
c
e
o
f
t
h
e
v
e
h
i
c
l
e
si
d
e
c
o
i
l
L
2
1
1
6
µ
H
M
u
t
u
a
l
i
n
d
u
c
t
a
n
c
e
M
2
0
µ
H
P
r
i
mary
si
d
e
c
o
mp
e
n
s
a
t
i
o
n
c
a
p
a
c
i
t
o
r
C
1
8
.
5
n
F
S
e
c
o
n
d
a
r
y
si
d
e
c
o
m
p
e
n
sa
t
i
o
n
c
a
p
a
c
i
t
o
r
C
2
3
0
n
F
R
e
s
o
n
a
n
c
e
f
r
e
q
u
e
n
c
y
f
8
5
k
Hz
I
n
d
u
c
t
o
r
o
f
t
h
e
DC
-
D
C
c
o
n
v
e
r
t
e
r
L
5
0
0
µ
H
C
a
p
a
c
i
t
o
r
o
f
t
h
e
DC
-
DC
c
o
n
v
e
r
t
e
r
C
1
mF
I
n
p
u
t
v
o
l
t
a
g
e
o
f
t
h
e
DC
-
DC
c
o
n
v
e
r
t
e
r
6
0
V
S
w
i
t
c
h
i
n
g
f
r
e
q
u
e
n
c
y
1
0
K
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
V
eh
icle
s
id
e
co
n
tr
o
l o
f a
w
ir
eless
p
o
w
er t
r
a
n
s
fer ch
a
r
g
er u
s
in
g
…
(
Ma
r
o
u
a
n
e
E
l A
n
c
a
r
y
)
1493
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
is
s
ec
tio
n
p
r
esen
ts
a
co
m
p
a
r
ativ
e
an
aly
s
is
o
f
th
e
tr
ac
k
in
g
p
er
f
o
r
m
an
ce
o
f
t
h
e
ANN
-
b
ased
co
n
tr
o
l
tech
n
iq
u
e
an
d
a
tr
ad
itio
n
al
P
I
co
n
tr
o
ller
.
T
o
ev
alu
ate
th
e
s
tab
ilit
y
an
d
r
o
b
u
s
tn
ess
o
f
t
h
e
n
ew
ap
p
r
o
ac
h
,
v
ar
io
u
s
s
ce
n
ar
io
s
wer
e
c
o
n
s
id
er
ed
.
T
h
e
f
ir
s
t
s
ce
n
ar
io
i
n
v
o
l
v
ed
ch
a
r
g
in
g
two
v
e
h
icles
with
d
if
f
er
e
n
t
b
atter
y
v
o
ltag
es
u
s
in
g
a
co
m
m
o
n
g
r
o
u
n
d
ass
em
b
ly
t
o
ass
ess
th
e
m
eth
o
d
'
s
v
er
s
atility
.
T
h
e
s
ec
o
n
d
s
ce
n
ar
io
f
o
c
u
s
ed
o
n
m
ain
tain
in
g
a
co
n
s
tan
t
o
u
tp
u
t
v
o
ltag
e
u
n
d
er
in
p
u
t
v
o
ltag
e
f
lu
ctu
atio
n
s
o
n
th
e
v
e
h
icle
s
id
e,
s
im
u
latin
g
p
o
ten
tial m
is
alig
n
m
en
t o
r
g
r
i
d
in
s
tab
ilit
y
is
s
u
es.
4
.
1
.
T
ra
c
k
ing
t
est
o
f
t
he
co
n
t
ro
l t
ec
hn
iqu
e
T
o
ev
alu
ate
th
e
ANN
co
n
t
r
o
ller
's
p
er
f
o
r
m
a
n
ce
,
a
tr
ac
k
i
n
g
test
was
co
n
d
u
cted
.
I
n
itially
,
a
6
0
V
r
ef
er
en
ce
v
o
ltag
e
is
ap
p
lied
,
s
im
u
latin
g
th
e
lo
ad
'
s
v
o
ltag
e
d
em
an
d
.
Af
te
r
two
s
ec
o
n
d
s
,
th
is
r
ef
er
en
ce
is
in
cr
ea
s
ed
to
8
0
V.
Fig
u
r
e
7
p
r
esen
ts
a
co
m
p
ar
ativ
e
an
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
c
o
n
tr
o
ller
'
s
an
d
th
e
co
n
v
en
tio
n
al
PI
co
n
tr
o
ller
'
s
p
er
f
o
r
m
an
ce
.
B
o
th
co
n
tr
o
ller
s
s
u
cc
ess
f
u
lly
tr
ac
k
an
d
s
tab
ilize
at
th
e
d
esire
d
s
etp
o
in
t.
T
h
e
PI
co
n
tr
o
ller
ex
h
ib
ited
s
ig
n
if
ica
n
t
o
v
er
s
h
o
o
t,
r
ea
ch
in
g
1
1
1
V
f
o
r
a
6
0
V
r
ef
er
en
ce
(
an
8
5
%
o
v
er
s
h
o
o
t)
,
a
n
d
s
u
s
tain
ed
a
5
.
6
6
%
r
esid
u
al
r
ip
p
le
as
s
h
o
wn
in
Fig
u
r
e
7
(
a)
,
s
u
ch
o
s
cillatio
n
s
co
m
p
r
o
m
is
e
th
e
b
atter
y
ch
ar
g
in
g
s
y
s
tem
'
s
co
n
s
tan
t
v
o
ltag
e
o
p
e
r
atio
n
an
d
ca
n
in
tr
o
d
u
ce
s
y
s
tem
in
s
tab
ilit
ies.
I
n
co
n
tr
ast,
th
e
ANN
-
o
p
tim
ized
co
n
tr
o
ller
ex
h
ib
its
n
o
o
v
e
r
s
h
o
o
t
at
an
y
o
u
tp
u
t
v
o
ltag
e
lev
el,
as
ev
id
en
ce
d
in
Fig
u
r
e
7
(
b
)
.
T
h
e
ab
s
en
ce
o
f
o
v
er
s
h
o
o
t
is
a
cr
itical
ad
v
an
t
ag
e
o
f
th
e
ANN
co
n
tr
o
ller
,
p
ar
ticu
lar
ly
f
o
r
elec
tr
ic
v
eh
ic
le
b
atter
y
c
h
ar
g
in
g
wh
er
e
b
atter
y
h
ea
lth
is
p
ar
am
o
u
n
t.
Ad
d
itio
n
all
y
,
th
e
ANN
co
n
tr
o
ller
ef
f
ec
tiv
el
y
d
im
in
is
h
e
s
r
esid
u
al
r
ip
p
le
to
ap
p
r
o
x
im
ately
1
.
3
3
% o
f
t
h
e
f
i
n
al
o
u
tp
u
t v
alu
e.
(
a)
(
b
)
Fig
u
r
e
7
.
R
ef
er
e
n
ce
v
o
ltag
e
a
n
d
o
u
t
p
u
t v
o
ltag
e
u
s
in
g
:
(
a)
PI
co
n
tr
o
ller
a
n
d
(
b
)
ANN
-
b
ased
co
n
tr
o
ller
4
.
2
.
Scena
rio
1
:
c
ha
rg
ing
t
wo
v
e
hicles
wit
h t
wo
ba
t
t
er
ies o
f
diff
er
ent
v
o
lt
a
g
es us
ing
a
co
mm
o
n g
ro
un
d
a
s
s
em
bly
A
k
ey
o
b
jectiv
e
o
f
th
is
p
ap
e
r
is
to
d
ev
elo
p
a
m
eth
o
d
e
n
ab
li
n
g
th
e
c
h
ar
g
i
n
g
o
f
two
d
if
f
er
e
n
t
b
atter
y
ty
p
es
with
d
if
f
er
e
n
t
v
o
ltag
es
u
s
in
g
a
s
in
g
le
g
r
o
u
n
d
ass
em
b
l
y
.
Fig
u
r
e
8
illu
s
tr
ates
th
is
s
ce
n
ar
io
,
wh
e
r
e
a
6
0
V
in
p
u
t
v
o
ltag
e
(
)
is
ap
p
lied
to
a
DC
-
D
C
co
n
v
er
ter
as
s
h
o
wn
in
Fig
u
r
e
8
(
a)
.
A
7
2
V
b
at
ter
y
is
ch
ar
g
ed
d
u
r
in
g
th
e
in
itial
2
s
ec
o
n
d
s
,
f
o
llo
wed
b
y
a
4
8
V
b
atter
y
c
h
ar
g
e
f
r
o
m
2
to
4
s
ec
o
n
d
s
.
T
h
e
ANN
co
n
t
r
o
ller
ef
f
ec
tiv
ely
m
a
n
ag
es
p
o
wer
a
n
d
v
o
ltag
e
to
ch
ar
g
e
b
o
th
b
atter
y
ty
p
es,
f
ac
ilit
atin
g
th
e
ch
ar
g
in
g
o
f
two
elec
tr
ic
v
eh
icles
u
s
in
g
a
s
in
g
le
g
r
o
u
n
d
-
s
id
e
ass
em
b
ly
.
T
h
e
o
p
tim
iz
ed
ANN
co
n
tr
o
ller
ef
f
ec
tiv
el
y
ac
h
iev
es
th
is
f
ir
s
t
o
b
jectiv
e
b
y
d
y
n
a
m
ically
ad
j
u
s
tin
g
th
e
d
u
ty
cy
cle
to
m
e
et
th
e
d
esire
d
o
u
tp
u
t
v
o
ltag
e
.
As
illu
s
tr
ated
in
Fig
u
r
e
8
(
b
)
,
a
d
u
ty
cy
cle
o
f
0
.
5
4
5
5
is
ap
p
lied
to
th
e
DC
-
DC
co
n
v
er
ter
d
u
r
in
g
th
e
in
itial
2
s
ec
o
n
d
s
to
ch
ar
g
e
th
e
7
2
V
b
atter
y
(
b
o
o
s
t
m
o
d
e
)
.
Su
b
s
eq
u
en
tly
,
a
d
u
t
y
cy
cle
o
f
0
.
4
4
4
7
is
u
tili
ze
d
to
ch
ar
g
e
th
e
4
8
V
b
atter
y
b
etwe
en
2
an
d
4
s
ec
o
n
d
s
(
b
u
c
k
m
o
d
e
)
.
4
.
3
.
Scena
rio
2
:
m
a
inta
ini
ng
co
ns
t
a
nt
o
utput
v
o
lt
a
g
e
un
der
inp
ut
v
o
lt
a
g
e
f
luct
ua
t
io
ns
T
h
is
s
ce
n
ar
io
is
p
ar
ticu
lar
ly
r
elev
an
t
in
co
n
tex
ts
wh
er
e
th
e
i
n
p
u
t
v
o
ltag
e
t
o
th
e
s
ec
o
n
d
ar
y
s
id
e
o
f
th
e
W
PT
ch
ar
g
er
m
a
y
e
x
p
er
ien
ce
v
ar
iatio
n
s
.
Su
ch
f
lu
ctu
atio
n
s
c
an
ar
is
e
d
u
e
to
f
ac
to
r
s
lik
e
g
r
i
d
in
s
tab
ilit
y
o
n
th
e
p
r
im
ar
y
s
id
e
o
r
m
is
alig
n
m
e
n
t
b
etwe
en
th
e
co
ils
.
T
h
e
s
ec
o
n
d
o
b
jectiv
e
o
f
th
e
p
ap
e
r
is
to
m
ain
tain
th
e
b
atter
y
ch
ar
g
e
at
a
co
n
s
tan
t
v
o
ltag
e
d
esp
ite
f
lu
ctu
atio
n
s
th
at
ca
n
ch
an
g
e
th
e
in
p
u
t
v
o
ltag
e
o
f
th
e
DC
-
DC
co
n
v
er
ter
.
Fig
u
r
e
9
(
a
)
illu
s
tr
ates
s
ce
n
ar
io
2
,
wh
er
e
a
v
eh
icle
is
ab
s
en
t
b
etwe
en
0
an
d
0
.
5
s
e
co
n
d
s
,
r
esu
ltin
g
in
a
0
V
o
u
tp
u
t
v
o
ltag
e
an
d
a
0
-
d
u
ty
cy
cle
as
s
h
o
wn
in
Fig
u
r
e
9
(
b
)
.
Up
o
n
v
e
h
icle
p
r
esen
ce
at
0
.
5
s
ec
o
n
d
s
,
th
e
r
ef
er
e
n
ce
v
o
ltag
e
is
s
et
to
4
8
V.
W
h
en
th
e
i
n
p
u
t
v
o
ltag
e
in
cr
ea
s
es
to
7
0
V
at
2
s
ec
o
n
d
s
,
th
e
ANN
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
4
8
7
-
1
4
9
8
1494
co
n
tr
o
ller
s
wif
tly
ad
ju
s
ts
to
m
ain
tain
th
e
4
8
V
r
ef
er
e
n
ce
,
ac
co
m
p
an
ied
b
y
a
co
r
r
esp
o
n
d
in
g
d
ec
r
ea
s
e
in
d
u
ty
cy
cle.
C
o
n
v
e
r
s
ely
,
a
d
ec
r
ea
s
e
in
to
5
0
V
at
3
.
5
s
ec
o
n
d
s
tr
ig
g
er
s
a
s
wif
t
in
cr
ea
s
e
i
n
d
u
ty
cy
cle
to
m
ain
tain
th
e
4
8
V
o
u
t
p
u
t v
o
ltag
e.
(
a)
(
b
)
Fig
u
r
e
8
.
Ou
t
p
u
t v
o
ltag
e
in
ca
s
e
o
f
co
m
m
o
n
g
r
o
u
n
d
ass
em
b
l
y
: (
a)
v
o
ltag
e
s
ig
n
als an
d
(
b
)
d
u
ty
cy
cle
(
a)
(
b
)
Fig
u
r
e
9
.
Ou
t
p
u
t v
o
ltag
e
in
ca
s
e
o
f
v
ar
iab
le
in
p
u
t v
o
ltag
e:
(
a
)
v
o
ltag
e
s
ig
n
als an
d
(
b
)
d
u
t
y
cy
cle
Fig
u
r
e
1
0
ill
u
s
t
r
at
es
t
h
e
o
u
t
p
u
t
v
o
lta
g
e
a
n
d
c
u
r
r
e
n
t
o
f
t
h
e
i
n
v
er
t
er
.
Z
o
o
m
e
d
-
in
v
i
ews
o
f
F
ig
u
r
es
1
0
(
a
)
an
d
1
0
(
b
)
d
em
o
n
s
t
r
a
te
h
o
w
a
d
j
u
s
ti
n
g
t
h
e
in
v
er
te
r
'
s
o
u
t
p
u
t
v
o
lta
g
e
r
o
o
t
-
m
ea
n
-
s
q
u
ar
e
(
R
MS)
v
a
lu
e
i
n
f
l
u
e
n
c
es
th
e
p
o
we
r
tr
a
n
s
m
i
tte
d
f
r
o
m
t
h
e
g
r
o
u
n
d
s
i
d
e
t
o
t
h
e
v
e
h
ic
le
s
i
d
e
.
Des
p
it
e
th
e
s
q
u
a
r
e
-
w
av
e
n
atu
r
e
o
f
t
h
e
o
u
t
p
u
t
v
o
lta
g
e,
t
h
e
p
r
i
m
a
r
y
co
il'
s
c
u
r
r
en
t
ex
h
i
b
i
ts
a
s
i
n
u
s
o
i
d
al
wa
v
e
f
o
r
m
d
u
e
t
o
t
h
e
f
il
te
r
i
n
g
ef
f
ec
t
o
f
t
h
e
g
r
o
u
n
d
-
s
id
e
co
i
l
a
n
d
its
ass
o
c
iat
e
d
s
e
r
ies
ca
p
ac
it
o
r
wit
h
i
n
t
h
e
r
es
o
n
a
n
t
L
C
n
e
tw
o
r
k
.
Als
o
,
F
ig
u
r
e
1
1
ill
u
s
tr
at
es
th
e
i
n
p
u
t
v
o
lta
g
e
t
o
t
h
e
v
e
h
i
cle
-
s
i
d
e
r
ec
tifi
e
r
a
n
d
t
h
e
c
o
r
r
es
p
o
n
d
i
n
g
c
o
il
cu
r
r
e
n
t
,
w
h
i
ch
ar
e
i
n
p
h
as
e.
T
h
e
i
n
p
u
t
v
o
l
ta
g
e
ex
h
i
b
its
a
s
q
u
a
r
e
wa
v
e
f
o
r
m
at
a
f
r
eq
u
en
c
y
o
f
8
5
k
H
z.
Du
e
t
o
t
h
e
f
ilt
er
in
g
ef
f
e
ct
o
f
t
h
e
v
e
h
ic
le
-
s
i
d
e
r
eso
n
a
n
t
n
et
wo
r
k
,
t
h
e
c
o
i
l
cu
r
r
e
n
t
a
p
p
e
a
r
s
as
a
s
i
n
e
w
a
v
e
at
t
h
e
s
a
m
e
r
eso
n
a
n
t
f
r
eq
u
en
c
y
.
4
.
4
.
Co
m
pa
riso
n
o
f
t
he
pro
po
s
ed
a
pp
ro
a
ch
wit
h o
t
her
wo
rk
s
A
co
m
p
ar
ativ
e
an
aly
s
is
o
f
t
h
e
p
r
o
p
o
s
ed
ANN
-
b
ased
co
n
tr
o
ller
with
ex
is
tin
g
r
esear
c
h
h
as
b
ee
n
co
n
d
u
cte
d
,
co
n
s
id
er
in
g
f
ac
to
r
s
s
u
ch
as
ch
ar
g
in
g
ty
p
e,
c
o
n
tr
o
ller
ty
p
e,
m
a
x
im
u
m
ef
f
icien
cy
,
r
o
b
u
s
tn
ess
,
ad
d
itio
n
al
s
en
s
o
r
s
r
eq
u
ir
e
d
,
a
n
d
v
e
r
s
atility
.
T
ab
le
5
p
r
o
v
i
d
e
s
a
co
m
p
r
eh
en
s
iv
e
co
m
p
a
r
is
o
n
o
f
th
is
s
tu
d
y
with
p
r
ev
io
u
s
wo
r
k
s
o
n
v
e
h
icle
-
s
id
e
co
n
tr
o
l
o
f
W
PT
ch
ar
g
er
s
.
T
h
is
p
ap
er
f
o
cu
s
es
o
n
th
e
C
V
m
o
d
e,
ad
d
r
ess
in
g
ch
allen
g
es
s
u
ch
as
co
il
m
i
s
ali
g
n
m
en
t
an
d
g
r
id
in
s
tab
ilit
y
.
T
h
e
ANN
-
b
ased
co
n
tr
o
ller
em
p
lo
y
ed
in
th
is
s
tu
d
y
is
ch
ar
ac
ter
ized
b
y
its
h
ig
h
ef
f
icien
cy
.
Als
o
,
PI
co
n
tr
o
ller
s
ar
e
g
en
er
ally
r
o
b
u
s
t
u
n
d
er
lin
ea
r
co
n
d
itio
n
s
,
th
e
y
ar
e
less
ef
f
ec
tiv
e
in
n
o
n
lin
ea
r
s
ce
n
ar
io
s
.
No
n
lin
ea
r
co
n
tr
o
ller
s
,
o
n
th
e
o
th
er
h
a
n
d
,
ar
e
in
h
er
en
tly
r
o
b
u
s
t
to
n
o
n
lin
ea
r
en
v
ir
o
n
m
en
ts
b
u
t
c
an
b
e
s
en
s
itiv
e
to
p
ar
a
m
eter
c
h
an
g
es
a
n
d
s
en
s
o
r
n
o
is
es.
ANN
-
b
ased
co
n
tr
o
ller
,
h
o
wev
er
,
d
e
m
o
n
s
tr
ates h
ig
h
r
o
b
u
s
tn
ess
,
p
ar
ticu
lar
ly
in
n
o
n
l
in
ea
r
an
d
v
ar
iab
le
co
n
d
itio
n
s
.
Alth
o
u
g
h
th
e
u
s
e
o
f
ANN
m
ay
in
v
o
lv
e
h
ig
h
e
r
in
it
ial
co
s
ts
d
u
e
to
co
m
p
u
tatio
n
a
l
p
o
wer
,
th
eir
p
o
ten
tial
b
en
ef
i
ts
in
co
m
p
le
x
an
d
ad
ap
tiv
e
s
y
s
tem
s
ca
n
ju
s
tify
th
e
in
v
estme
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
V
eh
icle
s
id
e
co
n
tr
o
l o
f a
w
ir
eless
p
o
w
er t
r
a
n
s
fer ch
a
r
g
er u
s
in
g
…
(
Ma
r
o
u
a
n
e
E
l A
n
c
a
r
y
)
1495
(
a)
(
b
)
Fig
u
r
e
1
0
.
Prim
ar
y
s
id
e
co
il’s
cu
r
r
en
t a
n
d
in
v
er
ter
o
u
tp
u
t
v
o
l
tag
e
an
d
(
a
)
at
tim
e
0
.
0
1
s
an
d
(
b
)
at
0
.
0
5
s
Fig
u
r
e
1
1
.
Veh
icle
s
id
e
co
il’s
cu
r
r
en
t a
n
d
r
ec
tifie
r
i
n
p
u
t
v
o
lt
ag
e
T
ab
le
5
.
Per
f
o
r
m
an
ce
co
m
p
a
r
is
o
n
o
f
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
with
p
u
b
lis
h
ed
wo
r
k
s
S
t
u
d
y
C
h
a
r
g
i
n
g
m
o
d
e
C
o
n
t
r
o
l
l
e
r
M
a
x
i
m
u
m
e
f
f
i
c
i
e
n
c
y
R
o
b
u
st
n
e
ss
A
d
d
i
t
i
o
n
a
l
s
e
n
s
o
r
s
V
e
r
sat
i
l
i
t
y
[
1
4
]
CC
-
CV
PI
9
1
.
7
5
%
N
o
N
o
Lo
w
[
1
5
]
CC
P
I
-
O
C
C
N
o
t
p
r
o
v
i
d
e
d
N
o
No
Lo
w
[
1
6
]
CC
PI
9
2
%
No
N
o
Lo
w
[
1
7
]
CC
-
CV
PI
9
2
.
9
%
N
o
N
o
Lo
w
[
1
8
]
CV
PI
8
5
.
2
6
%
N
o
N
o
Lo
w
[
1
9
]
CC
-
CV
H
-
i
n
f
i
n
i
t
y
n
o
n
l
i
n
e
a
r
c
o
n
t
r
o
l
l
e
r
N
o
t
p
r
o
v
i
d
e
d
Y
e
s
Y
e
s
M
e
d
i
u
m
T
h
i
s p
a
p
e
r
CV
ANN
-
b
a
sed c
o
n
t
r
o
l
l
e
r
9
0
.
0
1
%
Y
e
s
N
o
Hi
g
h
T
h
e
p
r
o
p
o
s
ed
ANN
-
b
ased
c
o
n
tr
o
l
s
tr
ateg
y
o
f
f
er
s
s
ig
n
if
i
ca
n
t
ad
v
an
ta
g
es
o
v
er
tr
a
d
itio
n
al
PI
an
d
n
o
n
lin
ea
r
co
n
tr
o
ller
s
f
o
r
W
PT
s
y
s
tem
s
,
in
th
e
co
n
tex
t
o
f
elec
tr
ic
v
e
h
icle
b
atter
y
c
h
ar
g
in
g
.
T
h
e
ANN
co
n
tr
o
ller
'
s
ab
ilit
y
to
elim
in
ate
o
v
er
s
h
o
o
t
a
n
d
s
ig
n
if
ican
tl
y
r
ed
u
ce
r
esid
u
al
r
ip
p
le
i
n
t
h
e
o
u
tp
u
t
v
o
ltag
e
en
s
u
r
es
s
tab
le
an
d
ef
f
icien
t
b
a
tter
y
ch
ar
g
in
g
.
Un
lik
e
n
o
n
lin
e
ar
co
n
t
r
o
ller
s
,
th
e
ANN
-
b
ased
ap
p
r
o
ac
h
d
o
es
n
o
t
r
eq
u
ir
e
ad
d
itio
n
al
s
en
s
o
r
s
,
le
ad
in
g
t
o
lo
wer
co
s
ts
an
d
s
y
s
tem
co
m
p
lex
ity
.
M
o
r
eo
v
er
,
th
e
ANN
co
n
tr
o
ller
'
s
ad
ap
tab
ilit
y
to
d
iv
er
s
e
b
atter
y
v
o
ltag
es
an
d
in
p
u
t
v
o
ltag
e
f
l
u
ctu
atio
n
s
d
em
o
n
s
tr
ates
its
v
er
s
atility
in
h
an
d
lin
g
r
ea
l
-
wo
r
ld
ch
a
r
g
in
g
s
ce
n
ar
io
s
.
T
h
i
s
r
e
s
e
a
r
c
h
a
d
d
r
e
s
s
es
s
e
v
e
r
a
l e
x
i
s
t
i
n
g
r
e
s
e
a
r
c
h
g
a
p
s
,
i
n
c
l
u
d
in
g
t
h
e
a
b
i
l
i
t
y
t
o
c
h
a
r
g
e
m
u
l
t
i
p
l
e
b
a
t
t
e
r
i
es
w
i
t
h
d
i
v
e
r
s
e
v
o
l
ta
g
e
s
u
s
i
n
g
a
s
i
n
g
l
e
g
r
o
u
n
d
a
s
s
e
m
b
l
y
a
n
d
th
e
p
o
t
e
n
t
i
a
l
o
f
A
I
t
o
e
n
h
a
n
c
e
t
h
e
p
e
r
f
o
r
m
a
n
c
e
o
f
W
P
T
s
y
s
t
e
m
s
.
W
h
i
l
e
t
h
e
p
r
o
p
o
s
e
d
A
NN
-
b
a
s
e
d
c
o
n
t
r
o
l
s
t
r
a
te
g
y
e
x
h
i
b
i
t
s
a
s
l
i
g
h
t
li
m
i
t
at
i
o
n
i
n
t
e
r
m
s
o
f
s
y
s
t
e
m
r
e
s
p
o
n
s
e
t
i
m
e
d
u
e
t
o
t
h
e
c
o
m
p
u
t
a
t
i
o
n
a
l
d
e
m
a
n
d
s
o
f
t
h
e
AN
N
c
o
n
t
r
o
l
l
e
r
,
t
h
i
s
c
o
n
s
t
r
a
i
n
t
d
i
d
n
o
t
s
i
g
n
i
f
i
c
a
n
tl
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
2
,
Ap
r
il
20
25
:
1
4
8
7
-
1
4
9
8
1496
i
m
p
a
c
t
t
h
e
o
v
e
r
a
l
l
s
y
s
t
e
m
e
f
f
i
ci
e
n
c
y
i
n
o
u
r
s
t
u
d
y
.
T
h
e
s
y
s
t
e
m
'
s
e
f
f
e
ct
i
v
e
n
es
s
i
n
p
r
o
t
e
ct
i
n
g
t
h
e
b
a
t
t
e
r
y
,
a
c
r
it
i
c
al
c
o
m
p
o
n
e
n
t
i
n
e
l
ec
t
r
i
c
v
e
h
i
c
l
es,
i
s
e
v
i
d
e
n
t
t
h
r
o
u
g
h
t
h
e
el
i
m
i
n
a
t
i
o
n
o
f
o
v
e
r
s
h
o
o
t
a
n
d
t
h
e
s
u
b
s
t
a
n
ti
a
l
r
e
d
u
c
t
i
o
n
o
f
r
e
s
i
d
u
a
l
v
o
lt
a
g
e
r
i
p
p
le
d
u
r
i
n
g
C
V
c
h
a
r
g
i
n
g
.
T
h
e
s
e
a
d
v
a
n
t
a
g
es
u
n
d
e
r
s
c
o
r
e
t
h
e
v
a
l
u
e
o
f
t
h
e
p
r
o
p
o
s
e
d
A
N
N
-
b
as
e
d
a
p
p
r
o
a
c
h
f
o
r
W
P
T
a
p
p
l
i
c
a
ti
o
n
s
.
F
u
t
u
r
e
r
e
s
e
a
r
c
h
d
i
r
e
c
t
i
o
n
s
i
n
c
l
u
d
e
e
x
p
l
o
r
i
n
g
m
o
r
e
c
o
m
p
l
e
x
A
N
N
a
r
c
h
i
t
ec
t
u
r
e
s
t
o
e
n
h
a
n
c
e
p
e
r
f
o
r
m
a
n
c
e
p
o
t
e
n
ti
a
l
l
y
.
A
d
d
it
i
o
n
a
ll
y
,
r
e
d
u
c
i
n
g
t
h
e
c
o
m
p
u
t
a
t
i
o
n
a
l
t
i
m
e
o
f
t
h
e
AN
N
c
o
n
t
r
o
l
le
r
w
o
u
l
d
b
e
b
e
n
e
f
i
c
i
a
l
,
p
a
r
ti
c
u
l
a
r
l
y
f
o
r
a
p
p
l
i
c
a
t
i
o
n
s
r
e
q
u
i
r
i
n
g
r
a
p
i
d
r
e
s
p
o
n
s
es
s
u
c
h
as
f
a
s
t
c
h
a
r
g
in
g
.
E
x
t
e
n
s
i
v
e
f
i
e
l
d
t
e
s
ti
n
g
a
n
d
v
al
i
d
a
t
i
o
n
o
f
t
h
e
p
r
o
p
o
s
e
d
A
NN
-
b
a
s
e
d
c
o
n
t
r
o
l
s
tr
a
t
e
g
y
i
n
r
ea
l
-
w
o
r
l
d
W
P
T
s
y
s
te
m
s
a
r
e
c
r
u
c
i
al
t
o
a
s
s
e
s
s
i
ts
p
r
a
c
ti
c
a
l
p
e
r
f
o
r
m
a
n
ce
a
n
d
a
d
d
r
e
s
s
p
o
t
e
n
ti
a
l
c
h
al
l
e
n
g
e
s
.
5.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
in
tr
o
d
u
ce
d
a
n
o
v
el
ANN
-
b
ased
co
n
tr
o
l
s
tr
ateg
y
f
o
r
v
e
h
icle
-
s
id
e
W
PT
ch
ar
g
er
s
,
ef
f
ec
tiv
ely
a
d
d
r
ess
in
g
t
h
e
c
r
itical
ch
allen
g
e
o
f
m
ain
tain
in
g
co
n
s
tan
t
b
atter
y
ch
ar
g
in
g
v
o
ltag
e
u
n
d
er
d
iv
er
s
e
o
p
er
atin
g
c
o
n
d
itio
n
s
.
C
o
m
p
ar
ed
to
n
o
n
lin
ea
r
c
o
n
tr
o
l
tec
h
n
i
q
u
es,
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
o
f
f
er
s
a
m
o
r
e
co
s
t
-
ef
f
ec
tiv
e
an
d
less
co
m
p
lex
s
o
l
u
tio
n
.
M
o
r
eo
v
er
,
th
e
ANN
c
o
n
tr
o
ller
'
s
ab
ilit
y
to
ef
f
ec
tiv
ely
r
eg
u
late
th
e
o
u
tp
u
t
v
o
ltag
e,
e
v
en
in
t
h
e
p
r
esen
ce
o
f
co
il
m
is
alig
n
m
e
n
t
an
d
v
a
r
y
in
g
in
p
u
t
v
o
ltag
es.
T
h
e
p
r
o
p
o
s
ed
ANN
-
b
ased
co
n
tr
o
ller
e
f
f
ec
tiv
ely
elim
in
at
ed
o
v
er
s
h
o
o
t
an
d
s
ig
n
if
ican
tly
r
ed
u
ce
d
r
esid
u
al
o
u
tp
u
t
v
o
lta
g
e
r
ip
p
le
b
y
4
.
3
3
%
co
m
p
ar
ed
to
a
co
n
v
en
tio
n
al
PI
co
n
tr
o
ller
.
T
h
is
h
ig
h
lig
h
ts
th
e
co
n
tr
o
ller
'
s
ab
ilit
y
to
en
h
an
ce
s
y
s
tem
s
tab
ilit
y
an
d
r
e
d
u
ce
p
o
ten
tial
d
is
tu
r
b
an
ce
s
d
u
r
in
g
b
atter
y
ch
a
r
g
in
g
.
Ad
d
itio
n
ally
,
th
e
p
r
o
p
o
s
ed
tech
n
iq
u
e
d
em
o
n
s
tr
ated
r
o
b
u
s
t
p
er
f
o
r
m
a
n
ce
in
s
h
ar
e
d
g
r
o
u
n
d
in
g
ass
e
m
b
lies
f
o
r
E
Vs
with
d
iv
e
r
s
e
b
atter
y
v
o
ltag
es.
T
h
e
s
im
u
latio
n
r
esu
lts
v
alid
ated
th
e
p
r
o
p
o
s
ed
tech
n
iq
u
e'
s
p
er
f
o
r
m
an
ce
an
d
ac
c
u
r
ac
y
,
h
ig
h
lig
h
tin
g
its
p
o
ten
tial
f
o
r
p
r
ac
tical
im
p
lem
e
n
tatio
n
i
n
W
PT
s
y
s
tem
s
.
Fu
tu
r
e
r
esear
c
h
co
u
ld
e
x
p
lo
r
e
th
e
in
teg
r
atio
n
o
f
a
d
v
an
ce
d
ANN
ar
ch
itectu
r
es
an
d
o
p
tim
izatio
n
tech
n
iq
u
es
to
f
u
r
th
er
e
n
h
an
ce
th
e
co
n
tr
o
ller
'
s
p
er
f
o
r
m
an
ce
an
d
ad
d
r
ess
p
o
ten
tial
lim
itatio
n
s
.
Ov
e
r
all,
th
is
p
ap
e
r
co
n
tr
ib
u
te
d
to
th
e
ad
v
a
n
ce
m
en
t
o
f
W
PT
tech
n
o
lo
g
y
b
y
o
f
f
er
in
g
a
p
r
o
m
is
in
g
s
o
lu
tio
n
f
o
r
ef
f
icien
t a
n
d
r
eliab
le
b
atter
y
ch
a
r
g
in
g
in
elec
tr
ic
v
eh
icles.
RE
F
E
R
E
NC
E
S
[
1
]
B
.
S
h
u
i
,
Z.
C
a
i
,
a
n
d
X
.
L
u
o
,
“
T
o
w
a
r
d
s
c
u
s
t
o
mi
z
e
d
mi
t
i
g
a
t
i
o
n
s
t
r
a
t
e
g
y
i
n
t
h
e
t
r
a
n
sp
o
r
t
a
t
i
o
n
s
e
c
t
o
r
:
a
n
i
n
t
e
g
r
a
t
e
d
a
n
a
l
y
si
s
f
r
a
mew
o
r
k
c
o
m
b
i
n
i
n
g
L
M
D
I
a
n
d
h
i
e
r
a
r
c
h
i
c
a
l
c
l
u
s
t
e
r
i
n
g
m
e
t
h
o
d
,
”
S
u
st
a
i
n
a
b
l
e
C
i
t
i
e
s
a
n
d
S
o
c
i
e
t
y
,
v
o
l
.
1
0
7
,
Ju
l
.
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
scs.
2
0
2
4
.
1
0
5
3
4
0
.
[
2
]
D
.
M
.
P
a
p
a
d
a
k
i
s
,
A
.
S
a
v
v
i
d
e
s
,
A
.
M
i
c
h
a
e
l
,
a
n
d
A
.
M
i
c
h
o
p
o
u
l
o
s
,
“
A
d
v
a
n
c
i
n
g
s
u
s
t
a
i
n
a
b
l
e
u
r
b
a
n
mo
b
i
l
i
t
y
:
i
n
si
g
h
t
s
f
r
o
m
b
e
st
p
r
a
c
t
i
c
e
s
a
n
d
c
a
s
e
s
t
u
d
i
e
s,
”
F
u
e
l
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
2
0
,
S
e
p
.
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
f
u
e
c
o
.
2
0
2
4
.
1
0
0
1
2
5
.
[
3
]
R
.
C
e
c
c
a
t
o
,
R
.
R
o
ss
i
,
a
n
d
M
.
G
a
s
t
a
l
d
i
,
“
L
o
w
e
m
i
ssi
o
n
z
o
n
e
a
n
d
m
o
b
i
l
i
t
y
b
e
h
a
v
i
o
r
:
E
x
-
a
n
t
e
e
v
a
l
u
a
t
i
o
n
o
f
v
e
h
i
c
l
e
p
o
l
l
u
t
a
n
t
e
mi
ss
i
o
n
s,
”
T
r
a
n
s
p
o
rt
a
t
i
o
n
Re
s
e
a
r
c
h
Pa
rt
A:
P
o
l
i
c
y
a
n
d
Pr
a
c
t
i
c
e
,
v
o
l
.
1
8
5
,
Ju
l
.
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
t
r
a
.
2
0
2
4
.
1
0
4
1
0
1
.
[
4
]
S
.
Ja
g
a
n
i
,
E.
M
a
r
s
i
l
l
a
c
,
a
n
d
P
.
H
o
n
g
,
“
Th
e
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
su
p
p
l
y
c
h
a
i
n
e
c
o
sy
s
t
e
m
:
c
h
a
n
g
i
n
g
r
o
l
e
s
o
f
a
u
t
o
m
o
t
i
v
e
s
u
p
p
l
i
e
r
s,”
S
u
s
t
a
i
n
a
b
i
l
i
t
y
,
v
o
l
.
1
6
,
n
o
.
4
,
F
e
b
.
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
su
1
6
0
4
1
5
7
0
.
[
5
]
G
.
E.
M
.
A
b
r
o
,
S
.
A
.
B
.
M
.
Z
u
l
k
i
f
l
i
,
K
.
K
u
mar,
N
.
E
l
O
u
a
n
j
l
i
,
V
.
S
.
A
s
i
r
v
a
d
a
m
,
a
n
d
M
.
A
.
M
o
ssa,
“
C
o
m
p
r
e
h
e
n
s
i
v
e
r
e
v
i
e
w
o
f
r
e
c
e
n
t
a
d
v
a
n
c
e
me
n
t
s
i
n
b
a
t
t
e
r
y
t
e
c
h
n
o
l
o
g
y
,
p
r
o
p
u
l
s
i
o
n
,
p
o
w
e
r
i
n
t
e
r
f
a
c
e
s,
a
n
d
v
e
h
i
c
l
e
n
e
t
w
o
r
k
s
y
st
e
ms
f
o
r
i
n
t
e
l
l
i
g
e
n
t
a
u
t
o
n
o
mo
u
s
a
n
d
c
o
n
n
e
c
t
e
d
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s,
”
E
n
e
rg
i
e
s
,
v
o
l
.
1
6
,
n
o
.
6
,
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
6
0
6
2
9
2
5
.
[
6
]
V
.
R
a
m
a
k
r
i
sh
n
a
n
e
t
a
l
.
,
“
A
c
o
mp
r
e
h
e
n
si
v
e
r
e
v
i
e
w
o
n
e
f
f
i
c
i
e
n
c
y
e
n
h
a
n
c
e
me
n
t
o
f
w
i
r
e
l
e
ss
c
h
a
r
g
i
n
g
s
y
s
t
e
m f
o
r
t
h
e
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
a
p
p
l
i
c
a
t
i
o
n
s,
”
I
EE
E
A
c
c
e
ss
,
v
o
l
.
1
2
,
p
p
.
4
6
9
6
7
–
4
6
9
9
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
4
.
3
3
7
8
3
0
3
.
[
7
]
C
.
T
h
a
n
g
a
v
e
l
,
V
.
K
r
i
s
h
n
a
m
o
o
r
t
h
y
,
a
n
d
V
.
Ja
y
a
s
a
n
k
a
r
,
“
A
n
a
p
p
r
o
a
c
h
o
f
d
y
n
a
mi
c
w
i
r
e
l
e
ss
c
h
a
r
g
i
n
g
st
r
u
c
t
u
r
e
f
o
r
a
n
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
b
a
se
d
o
n
m
u
t
u
a
l
i
n
d
u
c
t
a
n
c
e
c
a
l
c
u
l
a
t
i
o
n
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
Po
w
e
r
E
l
e
c
t
r
o
n
i
c
s
a
n
d
D
r
i
v
e
S
y
st
e
m
s
,
v
o
l
.
1
5
,
n
o
.
3
,
p
p
.
1
5
6
4
–
1
5
7
2
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
p
e
d
s
.
v
1
5
.
i
3
.
p
p
1
5
6
4
-
1
5
7
2
.
[
8
]
D
.
P
u
r
u
sh
o
t
h
a
ma
n
,
N
.
R
,
a
n
d
V
.
K
.
R
a
mac
h
a
n
d
r
a
m
u
r
t
h
y
,
“
C
h
a
r
g
i
n
g
a
h
e
a
d
:
u
n
l
o
c
k
i
n
g
t
h
e
p
o
t
e
n
t
i
a
l
o
f
c
o
n
s
t
a
n
t
v
o
l
t
a
g
e
a
n
d
c
o
n
st
a
n
t
c
u
r
r
e
n
t
mo
d
e
s i
n
W
P
T
f
o
r
E
V
s,”
J
o
u
rn
a
l
o
f
En
e
rg
y
S
t
o
r
a
g
e
,
v
o
l
.
9
6
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
st
.
2
0
2
4
.
1
1
2
6
0
3
.
[
9
]
K
.
O
b
a
i
d
e
e
n
,
L
.
A
l
b
a
s
h
a
,
U
.
I
q
b
a
l
,
a
n
d
H
.
M
i
r
,
“
W
i
r
e
l
e
ss
p
o
w
e
r
t
r
a
n
sf
e
r
:
a
p
p
l
i
c
a
t
i
o
n
s,
c
h
a
l
l
e
n
g
e
s
,
b
a
r
r
i
e
r
s,
a
n
d
t
h
e
r
o
l
e
o
f
A
I
i
n
a
c
h
i
e
v
i
n
g
su
s
t
a
i
n
a
b
l
e
d
e
v
e
l
o
p
m
e
n
t
g
o
a
l
s
-
a
b
i
b
l
i
o
m
e
t
r
i
c
a
n
a
l
y
s
i
s,
”
En
e
rg
y
S
t
ra
t
e
g
y
R
e
v
i
e
w
s
,
v
o
l
.
5
3
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
sr
.
2
0
2
4
.
1
0
1
3
7
6
.
[
1
0
]
T.
A
.
V
u
,
C
.
V
a
n
P
h
a
m
,
W
.
Tr
a
n
,
A
.
V
.
P
h
a
m,
a
n
d
C
.
S
.
G
a
r
d
n
e
r
,
“
W
i
r
e
l
e
ss
p
o
w
e
r
a
n
d
d
a
t
a
t
r
a
n
sf
e
r
t
h
r
o
u
g
h
c
a
r
b
o
n
c
o
mp
o
s
i
t
e
u
si
n
g
a
c
o
mm
o
n
i
n
d
u
c
t
i
v
e
l
i
n
k
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
P
o
w
e
r
El
e
c
t
r
o
n
i
c
s
a
n
d
D
ri
v
e
S
y
s
t
e
m
s
,
v
o
l
.
1
1
,
n
o
.
3
,
p
p
.
1
4
4
1
–
1
4
4
8
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
p
e
d
s.
v
1
1
.
i
3
.
p
p
1
4
4
1
-
1
4
4
8
.
[
1
1
]
M
.
El
A
n
c
a
r
y
e
t
a
l
.
,
“
C
o
n
t
r
o
l
o
f
a
w
i
r
e
l
e
ss
p
o
w
e
r
t
r
a
n
sf
e
r
c
h
a
r
g
e
r
p
o
w
e
r
e
d
b
y
r
e
n
e
w
a
b
l
e
e
n
e
r
g
i
e
s,
”
i
n
2
0
2
4
4
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
n
o
v
a
t
i
v
e
Re
s
e
a
r
c
h
i
n
A
p
p
l
i
e
d
S
c
i
e
n
c
e
,
En
g
i
n
e
e
ri
n
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
I
RA
S
ET
2
0
2
4
,
2
0
2
4
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
I
R
A
S
ET6
0
5
4
4
.
2
0
2
4
.
1
0
5
4
8
6
3
1
.
[
1
2
]
A
.
La
ssi
o
u
i
,
M
.
El
A
n
c
a
r
y
,
Z.
E
l
I
d
r
i
ssi
,
H
.
El
F
a
d
i
l
,
K
.
R
a
c
h
i
d
,
a
n
d
A
.
R
a
c
h
i
d
,
“
P
r
i
m
a
r
y
-
si
d
e
i
n
d
i
r
e
c
t
c
o
n
t
r
o
l
o
f
t
h
e
b
a
t
t
e
r
y
c
h
a
r
g
i
n
g
c
u
r
r
e
n
t
i
n
a
w
i
r
e
l
e
ss
p
o
w
e
r
t
r
a
n
sf
e
r
c
h
a
r
g
e
r
u
si
n
g
a
d
a
p
t
i
v
e
h
i
l
l
-
c
l
i
mb
i
n
g
c
o
n
t
r
o
l
t
e
c
h
n
i
q
u
e
,
”
Pr
o
c
e
sse
s
,
v
o
l
.
1
2
,
n
o
.
6
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
p
r
1
2
0
6
1
2
6
4
.
[
1
3
]
Z.
Li
u
,
T.
L
i
,
S
.
Li
,
a
n
d
C
.
C
.
M
i
,
“
A
d
v
a
n
c
e
m
e
n
t
s
a
n
d
c
h
a
l
l
e
n
g
e
s
i
n
w
i
r
e
l
e
ss
p
o
w
e
r
t
r
a
n
sf
e
r
:
a
c
o
mp
r
e
h
e
n
s
i
v
e
r
e
v
i
e
w
,
”
N
e
x
u
s
,
v
o
l
.
1
,
n
o
.
2
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
y
n
e
x
s.
2
0
2
4
.
1
0
0
0
1
4
.
[
1
4
]
B
.
B
h
a
v
si
n
g
h
,
S
.
B
.
G
o
t
l
u
r
u
,
M
.
B
h
u
k
y
a
,
a
n
d
R
.
B
h
u
k
y
a
,
“
I
n
v
e
s
t
i
g
a
t
i
o
n
o
f
1
.
5
k
W
s
e
c
o
n
d
a
r
y
si
d
e
p
o
w
e
r
c
o
n
t
r
o
l
l
e
d
m
e
t
h
o
d
i
n
a
i
n
d
u
c
t
i
v
e
w
i
r
e
l
e
ss
p
o
w
e
r
t
r
a
n
sf
e
r
s
y
st
e
m,”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
P
o
w
e
r
E
l
e
c
t
r
o
n
i
c
s
a
n
d
D
ri
v
e
S
y
s
t
e
m
s
,
v
o
l
.
1
5
,
n
o
.
2
,
p
p
.
6
7
0
–
6
8
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
I
JP
ED
S
.
V
1
5
.
I
2
.
P
P
6
7
0
-
6
8
4
.
[
1
5
]
B
.
C
h
e
n
,
G
.
Y
a
o
,
L.
Z
h
o
u
,
a
n
d
M
.
Z
h
a
o
,
“
S
t
u
d
y
o
n
s
e
c
o
n
d
a
r
y
si
d
e
c
o
n
t
r
o
l
o
f
w
i
r
e
l
e
ss
p
o
w
e
r
t
r
a
n
sf
e
r
b
a
se
d
o
n
L
C
C
c
o
m
p
e
n
sa
t
i
o
n
,
”
i
n
2
0
2
1
I
E
EE
3
rd
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
C
i
r
c
u
i
t
s
a
n
d
S
y
st
e
m
s,
I
C
C
S
2
0
2
1
,
2
0
2
1
,
p
p
.
1
9
6
–
2
0
2
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
C
S
5
2
6
4
5
.
2
0
2
1
.
9
6
9
7
3
1
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.