I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
wer
E
lect
ro
nics
a
nd
Driv
e
S
y
s
t
em
s
(
I
J
P
E
DS)
Vo
l.
1
6
,
No
.
1
,
Ma
r
ch
2
0
2
5
,
p
p
.
1
5
1
~
1
6
1
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
ijp
ed
s
.
v
1
6
.
i1
.
p
p
1
5
1
-
161
151
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
p
e
d
s
.
ia
esco
r
e.
co
m
Efficien
cy
enhanc
ed ada
ptive qua
si
-
slidin
g
mo
de con
troller f
o
r
v
a
ria
ble
-
speed in
duction mo
tor
dri
v
e
Sh
a
ij
a
P
a
la
cka
pp
illi
l J
a
co
b
1
,
Ash
a
E
liza
bet
h Da
n
iel
2
1
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
i
c
a
l
a
n
d
El
e
c
t
r
o
n
i
c
s E
n
g
i
n
e
e
r
i
n
g
,
G
o
v
t
.
M
o
d
e
l
En
g
i
n
e
e
r
i
n
g
C
o
l
l
e
g
e
,
K
o
c
h
i
,
I
n
d
i
a
2
D
i
v
i
si
o
n
o
f
El
e
c
t
r
i
c
a
l
a
n
d
El
e
c
t
r
o
n
i
c
s E
n
g
i
n
e
e
r
i
n
g
,
S
c
h
o
o
l
o
f
E
n
g
i
n
e
e
r
i
n
g
,
C
U
S
A
T,
K
o
c
h
i
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
y
2
1
,
2
0
2
4
R
ev
is
ed
No
v
2
7
,
2
0
2
4
Acc
ep
ted
Dec
9
,
2
0
2
4
Re
c
e
n
t
a
d
v
a
n
c
e
m
e
n
ts
in
a
u
to
m
a
t
e
d
m
a
n
u
fa
c
tu
rin
g
a
n
d
p
ro
c
e
ss
in
g
in
d
u
stries
n
e
c
e
ss
it
a
te
fa
st
-
re
sp
o
n
d
in
g
,
e
ffi
c
ien
t,
a
n
d
ro
b
u
st
m
e
th
o
d
s
fo
r
c
o
n
tro
ll
in
g
in
d
u
c
ti
o
n
m
o
to
r
(IM
)
d
r
iv
e
s.
Clas
sic
a
l
p
ro
p
o
rti
o
n
a
l
-
i
n
teg
ra
l
(P
I)
c
o
n
tr
o
ll
e
rs
p
ro
v
id
e
o
p
t
ima
l
p
e
rfo
rm
a
n
c
e
o
n
ly
a
t
sp
e
c
ifi
c
o
p
e
ra
ti
n
g
p
o
i
n
t
s
a
n
d
a
re
se
n
siti
v
e
t
o
p
a
ra
m
e
ter
v
a
riatio
n
s
.
Th
is
wo
r
k
p
ro
p
o
se
s
a
n
a
d
a
p
ti
v
e
q
u
a
si
-
slid
in
g
m
o
d
e
c
o
n
tr
o
ll
e
r
(AQ
S
M
C
),
wh
ic
h
u
ti
l
ize
s
a
tan
g
e
n
t
(
tan
h
)
f
u
n
c
ti
o
n
a
s
th
e
sw
it
c
h
i
n
g
f
u
n
c
t
io
n
a
n
d
d
e
m
o
n
stra
tes
e
n
h
a
n
c
e
d
r
o
b
u
stn
e
ss
a
n
d
a
d
a
p
tab
il
it
y
a
c
ro
ss
a
wid
e
r
ra
n
g
e
o
f
o
p
e
ra
ti
n
g
c
o
n
d
it
i
o
n
s.
T
h
e
AQ
S
M
C
e
m
p
lo
y
s
a
n
a
d
a
p
tatio
n
law
t
o
e
stim
a
te
th
e
d
y
n
a
m
ic
d
istu
r
b
a
n
c
e
s,
o
ffe
ri
n
g
in
se
n
siti
v
i
ty
to
stru
c
tu
re
d
a
n
d
u
n
str
u
c
tu
re
d
u
n
c
e
r
tain
ti
e
s.
Nu
m
e
rica
l
sim
u
latio
n
s
a
re
c
a
rried
o
u
t
with
t
h
e
AQ
S
M
C
th
a
t
a
n
a
ly
ti
c
a
ll
y
d
e
d
u
c
e
s
th
e
o
p
ti
m
u
m
field
fl
u
x
e
n
su
rin
g
e
fficie
n
t
p
e
rfo
rm
a
n
c
e
.
A
lo
o
k
u
p
tab
le
d
e
ri
v
e
d
fr
o
m
th
e
e
fficie
n
c
y
o
p
ti
m
iza
ti
o
n
a
lg
o
r
it
h
m
(EOA)
is
in
c
o
rp
o
ra
ted
to
fu
r
th
e
r
stre
a
m
li
n
e
t
h
e
c
o
m
p
u
tati
o
n
a
l
re
q
u
irem
e
n
ts.
To
v
a
li
d
a
te
sim
u
lati
o
n
re
su
lt
s,
a
p
ro
t
o
ty
p
e
wa
s
d
e
v
e
lo
p
e
d
u
si
n
g
a
1
HP
in
d
u
c
ti
o
n
m
o
to
r,
a
DSP
c
o
n
tro
ll
e
r
b
o
a
r
d
with
a
TI
C2
0
0
0
De
lfi
n
o
M
CU
F
2
8
3
7
9
D
m
icro
c
o
n
tr
o
ll
e
r,
a
n
d
a
n
IG
BT
-
b
a
se
d
In
v
e
rter
m
o
d
u
le.
S
imu
lati
o
n
s
sh
o
w
a
6
.
3
%
e
fficie
n
c
y
imp
r
o
v
e
m
e
n
t
a
t
h
a
l
f
lo
a
d
a
n
d
3
0
0
rp
m
,
wh
il
e
e
x
p
e
rime
n
tal
a
n
a
ly
sis
re
c
o
rd
s
a
3
.
9
%
imp
ro
v
e
m
e
n
t
with
t
h
e
EOA,
h
ig
h
li
g
h
ti
n
g
t
h
e
p
o
ten
ti
a
l
fo
r
e
n
h
a
n
c
i
n
g
e
n
e
r
g
y
e
fficie
n
c
y
in
v
a
rio
u
s
in
d
u
strial
a
p
p
li
c
a
ti
o
n
s.
K
ey
w
o
r
d
s
:
Ad
ap
tiv
e
co
n
tr
o
l
E
f
f
icien
cy
en
h
an
ce
m
e
n
t
I
n
d
u
ctio
n
m
o
to
r
d
r
i
v
e
L
o
o
k
u
p
tab
le
L
o
s
s
m
o
d
el
No
n
-
lin
ea
r
c
o
n
tr
o
l
Sli
d
in
g
m
o
d
e
c
o
n
tr
o
l
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Sh
aija
Palack
ap
p
illi
l Jaco
b
Dep
ar
tm
en
t o
f
E
lectr
ical
an
d
E
lectr
o
n
ics E
n
g
in
ee
r
i
n
g
,
Go
v
t
.
Mo
d
el
E
n
g
in
ee
r
in
g
C
o
lleg
e
Ko
ch
i,
Ker
ala,
I
n
d
ia
E
m
ail:
s
h
aijap
j@
g
m
ail.
co
m
,
s
h
aija@
m
ec
.
ac
.
in
1.
I
NT
RO
D
UCT
I
O
N
I
n
d
u
ctio
n
m
o
to
r
s
(
I
Ms)
ar
e
wid
ely
u
s
ed
in
in
d
u
s
tr
ial
ap
p
licatio
n
s
d
u
e
to
th
eir
af
f
o
r
d
a
b
ilit
y
,
r
u
g
g
e
d
co
n
s
tr
u
ctio
n
,
h
ig
h
ef
f
icien
cy
,
an
d
s
elf
-
s
tar
tin
g
ca
p
a
b
ilit
ies.
T
h
ese
f
ea
tu
r
es m
ak
e
I
Ms su
itab
le
f
o
r
a
wid
e
r
a
n
g
e
o
f
ap
p
licatio
n
s
th
at
r
e
q
u
ir
e
m
i
n
im
al
m
ain
ten
an
ce
an
d
h
ig
h
r
eliab
ilit
y
.
Ho
wev
er
,
co
n
tr
o
llin
g
I
Ms
as
v
ar
iab
le
-
s
p
ee
d
d
r
iv
es
r
em
ain
s
a
c
h
allen
g
in
g
task
,
m
ain
l
y
d
u
e
t
o
th
eir
co
m
p
lex
,
m
u
ltiv
ar
iab
le,
n
o
n
-
lin
ea
r
b
eh
a
v
io
r
,
a
n
d
d
y
n
am
ic
f
lu
ctu
atio
n
s
in
elec
t
r
ical
ch
ar
ac
ter
is
tics
.
Ad
v
an
ce
d
co
n
tr
o
l
s
ch
em
es
s
u
ch
as
f
i
eld
-
o
r
ien
ted
co
n
tr
o
l
(
FOC
)
h
av
e
b
ee
n
d
e
v
elo
p
ed
t
o
ad
d
r
ess
th
ese
co
m
p
lex
ities
.
FOC
f
ac
ilit
a
tes
th
e
d
ec
o
u
p
lin
g
o
f
to
r
q
u
e
an
d
f
lu
x
b
y
em
p
lo
y
i
n
g
d
y
n
am
ic
d
-
q
m
o
d
elin
g
o
f
th
e
m
o
to
r
in
a
s
y
n
ch
r
o
n
o
u
s
ly
r
o
tatin
g
r
ef
er
en
ce
f
r
a
m
e,
en
ab
lin
g
p
r
ec
is
e
co
n
tr
o
l o
v
er
m
o
to
r
o
p
er
atio
n
[
1
]
,
[
2
]
.
C
las
s
ical
p
r
o
p
o
r
tio
n
al
-
in
te
g
r
al
(
PI
)
co
n
tr
o
ller
s
o
f
f
er
o
p
tim
al
p
er
f
o
r
m
a
n
ce
o
n
l
y
at
s
p
ec
if
ic
o
p
er
atin
g
p
o
in
ts
an
d
ar
e
s
en
s
itiv
e
to
p
ar
am
eter
v
ar
iatio
n
s
,
m
ak
in
g
th
e
m
less
ef
f
ec
tiv
e
in
d
y
n
am
ic
en
v
ir
o
n
m
e
n
ts
.
Sli
d
in
g
m
o
d
e
co
n
tr
o
l
(
SMC
)
h
as
em
er
g
ed
as
a
r
o
b
u
s
t,
n
o
n
-
lin
ea
r
co
n
tr
o
l
m
eth
o
d
ca
p
ab
le
o
f
h
an
d
lin
g
th
e
u
n
ce
r
tain
ties
an
d
v
ar
iatio
n
s
in
h
er
en
t
i
n
I
M
d
r
iv
es.
B
y
ap
p
ly
i
n
g
a
d
is
co
n
tin
u
o
u
s
co
n
tr
o
l
s
ig
n
al,
SMC
m
o
d
if
ies
th
e
s
y
s
tem
’
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
1
,
Ma
r
c
h
20
25
:
151
-
161
152
d
y
n
am
ics
to
g
u
id
e
th
e
s
tate
tr
ajec
to
r
ies
o
n
to
a
p
r
ed
ef
in
e
d
s
u
r
f
ac
e
in
th
e
s
tate
s
p
ac
e,
u
lt
im
ately
ac
h
iev
in
g
ac
cu
r
ate
tr
ac
k
in
g
eith
er
asy
m
p
to
tically
o
r
in
f
in
ite
tim
e
[
3
]
,
[
4
]
.
Ho
wev
er
,
co
n
v
en
tio
n
al
SMC
is
o
f
ten
ass
o
ciate
d
with
h
ig
h
-
f
r
e
q
u
en
c
y
ch
atter
in
g
[
5
]
d
u
e
to
th
e
u
s
e
o
f
s
witch
in
g
f
u
n
ctio
n
s
lik
e
th
e
s
ig
n
u
m
f
u
n
ctio
n
,
wh
ic
h
ass
u
m
es
in
s
tan
tan
eo
u
s
s
witch
i
n
g
.
Pra
ctica
l
lim
itatio
n
s
s
u
ch
a
s
co
n
tr
o
l
co
m
p
u
tatio
n
d
elay
s
,
s
en
s
o
r
in
ac
cu
r
ac
ies,
an
d
th
e
d
ea
d
tim
e
o
f
p
o
wer
elec
tr
o
n
ic
s
witch
es
co
n
tr
ib
u
te
to
th
is
ch
atter
in
g
p
h
en
o
m
e
n
o
n
[
6
]
,
[
7
]
.
Hig
h
-
f
r
eq
u
e
n
cy
ch
atter
in
g
ca
n
b
e
p
r
o
b
lem
atic
in
co
n
tr
o
l
s
y
s
tem
s
.
I
t
lead
s
to
ex
ce
s
s
iv
e
co
n
tr
o
l
ac
tiv
ity
,
in
cr
ea
s
ed
p
o
wer
c
o
n
s
u
m
p
tio
n
,
an
d
p
o
ten
tial
d
am
ag
e
to
co
m
p
o
n
e
n
t
s
lik
e
ac
tu
ato
r
s
[
8
]
.
A
d
d
itio
n
ally
,
it
in
tr
o
d
u
ce
s
u
n
wan
ted
in
ter
n
al
n
o
n
-
lin
ea
r
i
ties
,
lead
in
g
to
in
s
tab
ilit
y
in
ce
r
tain
ap
p
licatio
n
s
.
I
n
th
e
c
o
n
tex
t
o
f
i
n
d
u
ctio
n
m
o
to
r
s
,
ch
atter
in
g
m
an
i
f
ests
as
cu
r
r
en
t
h
ar
m
o
n
ics
an
d
t
o
r
q
u
e
p
u
ls
atio
n
s
,
r
esu
ltin
g
in
d
eg
r
ad
e
d
s
y
s
tem
p
er
f
o
r
m
an
ce
[
9
]
,
[
1
0
]
.
T
h
e
p
r
o
p
o
s
ed
q
u
asi
-
s
lid
in
g
m
o
d
e
c
o
n
tr
o
ller
(
QSMC)
ad
d
r
ess
es
th
is
is
s
u
e
b
y
u
s
in
g
a
co
n
tin
u
o
u
s
co
n
tr
o
l
in
p
u
t,
ap
p
r
o
x
im
atin
g
t
h
e
d
is
co
n
tin
u
o
u
s
s
ig
n
u
m
f
u
n
ct
io
n
with
a
s
m
o
o
th
f
u
n
ctio
n
,
s
u
ch
as
th
e
h
y
p
e
r
b
o
lic
tan
g
en
t
f
u
n
ctio
n
(
ta
n
h
)
,
to
ef
f
e
ctiv
ely
r
ed
u
ce
c
h
atter
in
g
[
1
1
]
.
I
n
th
e
p
r
esen
ce
o
f
u
n
ce
r
tain
tie
s
,
QSMC co
n
f
in
es
s
y
s
tem
s
tate
s
with
in
a
p
r
ed
ictab
le
an
d
ad
ju
s
tab
le
b
o
u
n
d
n
e
ar
th
e
o
r
ig
in
,
en
s
u
r
in
g
r
eliab
l
e
p
er
f
o
r
m
an
ce
ev
e
n
wh
en
id
ea
l
s
lid
in
g
m
o
d
e
is
n
o
t
ac
h
iev
ed
[
1
2
]
.
T
h
is
m
eth
o
d
h
as
b
ee
n
ef
f
ec
tiv
ely
e
m
p
lo
y
e
d
t
o
r
ed
u
ce
ch
atter
in
g
in
v
ar
io
u
s
ap
p
licatio
n
s
,
s
u
ch
as
DC
-
D
C
co
n
v
er
ter
s
witch
in
g
[
1
3
]
,
m
o
to
r
s
p
ee
d
co
n
tr
o
l
[
6
]
,
[
1
4
]
,
[
1
5
]
,
a
n
d
elec
tr
o
-
h
y
d
r
au
lic
ac
tu
ato
r
s
y
s
tem
s
[
1
6
]
.
I
n
s
p
ac
ec
r
a
f
t
ap
p
li
ca
tio
n
s
,
th
e
u
s
e
o
f
tan
h
f
u
n
ct
io
n
in
s
tead
o
f
th
e
s
ig
n
u
m
f
u
n
ctio
n
lead
s
to
q
u
ick
er
r
esp
o
n
s
e
an
d
lo
wer
p
o
wer
c
o
n
s
u
m
p
tio
n
f
o
r
p
o
i
n
tin
g
m
a
n
o
eu
v
r
es
,
as
r
e
p
o
r
ted
in
th
e
liter
atu
r
e
[
1
7
]
.
W
h
en
th
e
u
p
p
er
b
o
u
n
d
f
o
r
p
a
r
am
eter
v
ar
iatio
n
s
ca
n
n
o
t
b
e
p
r
ed
icted
in
p
r
ac
tical
ap
p
licatio
n
s
,
a
h
ig
h
s
lid
in
g
g
ai
n
is
o
f
ten
ch
o
s
en
in
SMC
d
esig
n
,
lead
in
g
to
in
cr
ea
s
ed
ch
atter
i
n
g
an
d
u
n
n
ec
ess
ar
y
co
n
tr
o
l
ac
tiv
ity
[
1
8
]
.
T
h
e
p
r
o
p
o
s
ed
ad
a
p
tiv
e
q
u
asi
-
s
lid
in
g
m
o
d
e
co
n
tr
o
ller
(
AQSMC
)
o
v
er
co
m
es
th
is
b
y
em
p
lo
y
in
g
an
ad
ap
tatio
n
law
t
o
esti
m
ate
an
d
ad
ju
s
t
th
e
s
lid
i
n
g
g
ai
n
in
r
ea
l
-
tim
e,
e
n
s
u
r
in
g
ef
f
icien
t
an
d
r
o
b
u
s
t
co
n
tr
o
l w
ith
o
u
t th
e
n
ee
d
to
p
r
e
-
ca
lcu
late
u
p
p
e
r
b
o
u
n
d
s
.
As
g
lo
b
al
elec
tr
icity
d
em
an
d
co
n
tin
u
es
to
r
is
e,
d
r
iv
en
b
y
in
d
u
s
tr
ial
g
r
o
wth
an
d
im
p
r
o
v
ed
liv
in
g
s
tan
d
ar
d
s
,
en
h
an
cin
g
en
er
g
y
ef
f
icien
cy
in
all
en
g
in
ee
r
i
n
g
d
o
m
ain
s
b
ec
o
m
es
im
p
er
ativ
e
[
1
9
]
.
R
em
ar
k
a
b
ly
,
elec
tr
ic
m
o
to
r
s
,
p
ar
ticu
lar
ly
in
d
u
ctio
n
m
o
to
r
s
,
co
n
s
u
m
e
o
v
er
h
alf
o
f
th
e
wo
r
ld
'
s
to
tal
ele
ctr
icity
[
2
0
]
.
W
h
ile
I
Ms
o
p
er
ate
m
o
s
t
ef
f
icien
tly
n
ea
r
th
eir
r
ate
d
co
n
d
itio
n
s
,
th
ey
o
f
ten
f
u
n
ctio
n
f
a
r
f
r
o
m
th
e
ir
r
ated
ca
p
ac
ity
in
m
an
y
r
ea
l
-
w
o
r
ld
a
p
p
licatio
n
s
,
s
u
ch
as
elev
ato
r
s
r
u
n
n
in
g
at
less
th
an
h
alf
th
eir
r
ated
to
r
q
u
e
[
2
1
]
.
T
h
is
in
ef
f
icien
cy
n
o
t
o
n
l
y
im
p
ac
ts
o
p
e
r
atio
n
al
p
er
f
o
r
m
an
ce
b
u
t
also
in
cr
ea
s
es
en
e
r
g
y
co
s
ts
an
d
e
n
v
ir
o
n
m
en
tal
im
p
ac
t.
T
h
er
e
f
o
r
e,
o
p
tim
izin
g
co
n
tr
o
l
s
tr
ateg
ies
f
o
r
I
Ms
in
v
ar
y
i
n
g
l
o
ad
c
o
n
d
itio
n
s
is
ess
en
tial.
E
lectr
ic
v
eh
icles,
f
o
r
ex
am
p
le,
ca
n
b
e
n
ef
it
s
ig
n
if
ican
tly
f
r
o
m
en
er
g
y
-
ef
f
icien
t
c
o
n
tr
o
l
s
tr
ateg
ies,
th
er
eb
y
e
x
ten
d
in
g
b
atter
y
life
a
n
d
v
eh
icle
r
a
n
g
e
[
2
2
]
.
A
s
u
b
s
tan
tial
p
o
r
tio
n
o
f
lo
s
s
es
in
I
Ms,
ap
p
r
o
x
im
ately
7
0
%,
ca
n
b
e
attr
ib
u
ted
to
co
p
p
er
an
d
ir
o
n
lo
s
s
es,
wh
ich
ar
e
in
f
lu
en
ce
d
b
y
th
e
m
o
to
r
'
s
elec
tr
ical
an
d
m
ag
n
etic
lo
ad
in
g
[
2
1
]
.
Ma
in
tain
i
n
g
r
ated
f
lu
x
u
n
d
e
r
p
ar
tial
lo
ad
c
o
n
d
itio
n
s
r
esu
lts
in
h
ig
h
e
r
m
a
g
n
etic
lo
s
s
es
co
m
p
ar
ed
to
ele
ctr
ical
lo
s
s
es.
F
OC
-
b
ased
I
M
d
r
i
v
es
h
av
e
d
em
o
n
s
tr
ated
s
ig
n
if
ican
t
en
er
g
y
s
a
v
in
g
s
at
p
ar
tial
lo
a
d
s
an
d
v
a
r
io
u
s
s
p
ee
d
s
wh
en
co
n
tr
o
ller
s
o
p
er
ate
at
th
e
m
in
im
u
m
lo
s
s
p
o
in
t
[
2
3
]
,
lea
d
in
g
to
ef
f
icien
cy
im
p
r
o
v
em
en
ts
,
esp
ec
ially
in
ap
p
licatio
n
s
with
n
o
n
-
lin
ea
r
to
r
q
u
e
-
s
p
ee
d
ch
ar
ac
ter
is
tics
,
s
u
ch
as f
an
s
o
r
p
u
m
p
s
[
2
4
]
.
T
o
en
h
an
ce
m
ac
h
in
e
ef
f
icien
cy
,
esp
ec
ially
in
lig
h
t
-
lo
ad
s
i
tu
atio
n
s
,
v
ar
io
u
s
tech
n
iq
u
es
h
av
e
b
ee
n
p
r
o
p
o
s
ed
f
o
r
I
M
d
r
iv
es.
T
h
ese
ef
f
icien
cy
o
p
tim
izatio
n
co
n
tr
o
l
(
E
OC
)
tech
n
iq
u
es
d
if
f
er
in
ap
p
r
o
ac
h
,
co
m
p
lex
ity
,
ac
cu
r
ac
y
,
a
n
d
c
o
n
v
er
g
e
n
ce
[
2
5
]
.
T
h
e
liter
atu
r
e
b
r
o
a
d
ly
class
if
ies
E
OC
tech
n
iq
u
es
in
t
o
th
r
ee
ca
teg
o
r
ies:
lo
s
s
m
o
d
el
-
b
ased
c
o
n
tr
o
l
(
L
MC),
s
ea
r
ch
co
n
tr
o
l
(
SC
)
,
an
d
h
y
b
r
id
c
o
n
tr
o
l
(
HC
)
[
2
6
]
.
L
MC
in
v
o
lv
es
ad
ju
s
tin
g
th
e
m
ag
n
etiza
tio
n
le
v
el
an
aly
tically
b
y
co
n
s
id
er
in
g
a
s
p
ec
if
ic
m
ac
h
in
e
m
o
d
el
[
1
9
]
,
[
2
7
]
,
r
ed
u
cin
g
p
o
wer
lo
s
s
es
b
ased
o
n
cr
iter
i
a
s
u
ch
as
f
lu
x
,
s
lip
s
p
ee
d
,
p
o
wer
f
ac
to
r
,
o
r
th
e
d
-
a
x
is
co
m
p
o
n
en
t
o
f
th
e
s
tato
r
cu
r
r
en
t
[
2
8
]
–
[
3
1
]
.
T
h
e
SC
tec
h
n
iq
u
e
iter
ativ
ely
m
o
d
if
ies
th
e
m
ag
n
etiza
tio
n
lev
el
to
f
in
d
th
e
m
in
im
u
m
in
p
u
t
p
o
wer
b
u
t
m
a
y
s
u
f
f
e
r
f
r
o
m
s
l
o
w
co
n
v
er
g
en
ce
an
d
o
b
jectio
n
ab
le
to
r
q
u
e
d
y
n
a
m
ics
[
2
3
]
,
[
3
2
]
,
[
3
3
]
.
T
o
f
u
r
th
er
en
h
an
ce
th
e
ef
f
icien
c
y
o
f
in
d
u
ctio
n
m
o
to
r
s
(
I
Ms)
,
v
ar
i
o
u
s
s
ea
r
ch
tech
n
iq
u
es
u
tili
zin
g
n
atu
r
e
-
in
s
p
ir
e
d
alg
o
r
ith
m
s
an
d
n
eu
r
al
n
etwo
r
k
s
(
NNs)
h
av
e
b
ee
n
r
ep
o
r
ted
,
y
ield
in
g
p
r
o
m
is
in
g
r
esu
lts
in
id
en
tify
in
g
o
p
tim
al
co
n
tr
o
l p
a
r
am
eter
s
f
o
r
im
p
r
o
v
ed
p
e
r
f
o
r
m
an
ce
an
d
e
n
er
g
y
s
av
in
g
s
[
3
4
]
–
[
3
7
]
.
T
h
e
k
ey
co
n
tr
ib
u
tio
n
s
o
f
th
is
p
ap
er
in
clu
d
e
th
e
d
ev
elo
p
m
en
t
an
d
im
p
lem
en
tatio
n
o
f
a
n
ad
ap
tiv
e,
ef
f
icien
cy
-
en
h
an
ce
d
v
a
r
iab
le
-
s
p
ee
d
co
n
t
r
o
ller
with
a
h
y
p
e
r
b
o
lic
tan
g
e
n
t
s
witch
in
g
f
u
n
ctio
n
.
T
h
e
e
f
f
icien
cy
o
p
tim
izatio
n
alg
o
r
ith
m
(
E
OA)
b
ased
o
n
a
lo
s
s
m
o
d
el
is
d
esig
n
ed
to
d
ed
u
c
e
th
e
o
p
tim
al
d
-
a
x
is
s
tato
r
cu
r
r
en
t
in
r
ea
l
-
tim
e
f
o
r
v
ar
y
in
g
s
p
ee
d
a
n
d
lo
ad
co
n
d
itio
n
s
.
T
h
e
p
r
o
p
o
s
ed
AQSMC
ef
f
ec
tiv
ely
r
ed
u
ce
s
ch
atter
in
g
an
d
en
h
an
ce
s
co
n
tr
o
l
p
e
r
f
o
r
m
an
c
e.
E
x
ten
s
iv
e
s
im
u
latio
n
s
ca
r
r
ied
o
u
t
i
n
MA
T
L
AB
/Si
m
u
lin
k
an
d
ex
p
e
r
im
en
tal
v
alid
atio
n
u
n
d
er
s
co
r
e
th
e
r
o
b
u
s
tn
ess
an
d
p
r
ac
ticality
o
f
th
e
p
r
o
p
o
s
ed
co
n
tr
o
l
s
tr
ateg
y
.
T
h
e
ap
p
r
o
ac
h
is
estab
lis
h
ed
as
a
v
iab
le
s
o
lu
tio
n
f
o
r
en
h
an
cin
g
in
d
u
ctio
n
m
o
t
o
r
d
r
iv
e
e
f
f
icien
cy
wh
ile
p
r
o
v
i
d
in
g
r
o
b
u
s
t
co
n
tr
o
l
ac
r
o
s
s
v
ar
y
in
g
l
o
ad
a
n
d
s
p
ee
d
co
n
d
itio
n
s
in
d
if
f
er
e
n
t a
p
p
lica
tio
n
s
.
T
h
e
ad
a
p
tiv
e
q
u
asi
-
s
lid
in
g
m
o
d
e
s
p
ee
d
co
n
tr
o
ller
d
esig
n
b
ased
o
n
e
q
u
iv
alen
t
co
n
tr
o
l
te
ch
n
iq
u
e
is
in
clu
d
ed
in
s
ec
tio
n
2
a
n
d
ef
f
ici
en
cy
o
p
tim
izatio
n
al
g
o
r
ith
m
d
esig
n
b
ased
o
n
I
M
lo
s
s
m
o
d
el
i
n
s
ec
tio
n
3
.
Sectio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
fficien
cy
en
h
a
n
ce
d
a
d
a
p
tive
q
u
a
s
i
-
s
lid
in
g
mo
d
e
co
n
tr
o
ller
fo
r
va
r
ia
b
le
…
(
S
h
a
ija
P
a
la
ck
a
p
p
illi
l J
a
co
b
)
153
4
co
v
er
s
th
e
s
im
u
latio
n
r
esu
lts
an
d
s
ec
tio
n
5
ex
p
er
im
e
n
tal
an
aly
s
is
.
C
o
n
clu
s
io
n
an
d
f
u
tu
r
e
s
co
p
e
ar
e
in
clu
d
ed
in
s
ec
tio
n
6
.
2.
ADAP
T
I
VE
Q
UA
SI
-
S
L
I
D
I
NG
M
O
DE
CO
N
T
RO
L
L
E
R
(
AQ
SM
C)
I
n
th
is
s
ec
tio
n
,
an
ad
ap
tiv
e
q
u
asi
-
s
lid
in
g
m
o
d
e
co
n
tr
o
ller
is
d
esig
n
ed
f
o
r
co
n
tr
o
llin
g
t
h
e
s
p
ee
d
o
f
th
e
in
d
u
ctio
n
m
o
to
r
.
I
n
th
is
m
eth
o
d
,
a
QSMC
is
d
esig
n
ed
with
a
co
n
tin
u
o
u
s
h
y
p
er
b
o
lic
tan
g
e
n
t
(
tan
h
)
f
u
n
ctio
n
in
p
lace
o
f
th
e
d
is
co
n
tin
u
o
u
s
s
i
g
n
u
m
f
u
n
ctio
n
o
f
co
n
v
en
tio
n
al
SMC
in
an
ticip
atio
n
o
f
a
b
etter
r
esp
o
n
s
e
an
d
ch
atter
in
g
r
e
d
u
ctio
n
.
An
eq
u
iv
alen
t
co
n
tr
o
l
tech
n
iq
u
e
is
ap
p
lied
in
wh
ich
t
h
e
co
n
t
r
o
l
s
ig
n
al
ca
n
b
e
wr
itten
as
(
1
)
[
3
8
]
.
=
+
(
1
)
W
h
er
e
,
is
th
e
eq
u
iv
alen
t
c
o
n
tr
o
l
s
ig
n
al,
en
s
u
r
in
g
s
y
s
tem
co
n
v
er
g
en
ce
,
a
n
d
is
th
e
s
witc
h
in
g
co
n
tr
o
l
s
ig
n
al,
en
s
u
r
in
g
th
at
th
e
s
lid
in
g
s
u
r
f
ac
e
is
d
r
awn
to
th
e
s
y
s
te
m
s
tate
s
p
ac
e.
T
h
e
s
lid
in
g
p
lan
e
S
is
d
ef
in
ed
as
a
f
u
n
ctio
n
o
f
th
e
s
p
ee
d
er
r
o
r
e(
t
)
an
d
its
in
teg
r
al
an
d
is
g
iv
en
b
y
(
2
)
.
=
1
.
+
2
∫
.
(
2
)
T
h
e
d
er
iv
ativ
e
o
f
th
e
L
y
ap
u
n
o
v
en
er
g
y
f
u
n
ctio
n
is
n
e
g
ativ
e
d
ef
in
ite,
wh
ich
g
u
ar
an
tees
t
h
e
s
tate
tr
ajec
to
r
y
's
m
o
tio
n
to
t
h
e
s
lid
in
g
s
u
r
f
ac
e
.
i
.
e.
as in
(
3
)
.
(
)
̇
.
(
)
<
0
(
3
)
T
h
e
s
witch
in
g
co
n
tr
o
l c
o
m
p
o
n
en
t is g
iv
en
b
y
(
4
)
.
=
ζ
ℎ
(
)
(
4
)
W
h
er
e,
t
h
e
s
witch
in
g
g
ain
,
ζ
,
is
th
e
o
u
tp
u
t
s
atu
r
atio
n
v
alu
e
o
f
th
e
co
n
tr
o
ller
,
an
d
its
v
alu
e
is
s
et
to
m
ee
t
th
e
u
n
ce
r
tain
ties
o
f
th
e
s
y
s
tem
.
T
h
e
tan
h
f
u
n
ctio
n
is
a
r
escaled
lo
g
is
tic
s
ig
m
o
id
f
u
n
ctio
n
g
iv
e
n
b
y
(
5
)
[
3
9
]
.
ℎ
(
)
=
ⅇ
(
)
−
ⅇ
−
(
)
ⅇ
(
)
+
ⅇ
−
(
)
(
5
)
W
h
er
e
,
S
is
th
e
s
lid
in
g
v
ar
iab
l
e
an
d
ϵ
is
th
e
b
o
u
n
d
ar
y
la
y
er
wi
d
th
wh
ich
d
ete
r
m
in
es
th
e
s
teep
n
ess
o
r
in
clin
atio
n
o
f
th
e
tan
h
f
u
n
ctio
n
(
ϵ
>0
)
.
T
h
e
s
teep
n
ess
o
f
th
e
tan
h
f
u
n
ctio
n
d
eter
m
in
es
h
o
w
clo
s
ely
th
e
tan
h
f
u
n
ctio
n
ca
n
r
esem
b
le
th
e
s
ig
n
u
m
f
u
n
ctio
n
.
Prio
r
k
n
o
wled
g
e
o
f
th
e
u
p
p
e
r
b
o
u
n
d
o
f
th
e
p
ar
am
eter
v
ar
i
atio
n
s
,
u
n
m
o
d
eled
d
y
n
am
ics,
an
d
n
o
is
e
m
ag
n
itu
d
es,
is
r
eq
u
ir
ed
to
d
ec
id
e
th
e
v
alu
e
o
f
s
witch
in
g
g
ain
[
4
0
]
.
T
h
is
u
p
p
er
b
o
u
n
d
s
h
o
u
ld
b
e
d
eter
m
i
n
ed
as
p
r
ec
is
ely
as
p
o
s
s
ib
le
b
ec
au
s
e
th
e
h
ig
h
er
th
e
u
p
p
er
b
o
u
n
d
,
th
e
h
ig
h
er
s
h
o
u
ld
b
e
th
e
s
witch
in
g
g
ain
[
4
1
]
.
A
s
u
itab
ly
h
ig
h
v
alu
e
f
o
r
th
e
s
witch
in
g
g
ain
is
u
s
u
ally
u
s
ed
as
th
is
u
p
p
er
b
o
u
n
d
is
ch
alle
n
g
in
g
to
ca
lcu
late.
Ho
wev
er
,
t
h
is
co
u
ld
r
esu
lt
i
n
a
c
o
n
tr
o
l
s
ig
n
al
t
h
at
is
to
o
h
ig
h
o
r
m
o
r
e
co
n
tr
o
l
ac
tiv
ity
t
h
an
is
n
ec
ess
ar
y
to
ac
h
iev
e
th
e
co
n
t
r
o
l
o
b
jectiv
e
[
1
8
]
.
T
h
is
is
u
n
d
esira
b
le
in
I
M
co
n
tr
o
l
as
it
im
p
lies
h
ig
h
e
r
_
a
n
d
in
c
r
ea
s
es
th
e
ch
atter
in
g
p
h
en
o
m
en
o
n
.
T
h
e
p
r
o
p
o
s
ed
AQSMC
s
ch
em
e
co
n
tin
u
o
u
s
ly
esti
m
ates
th
e
s
lid
in
g
g
ai
n
to
ad
a
p
t
to
ev
o
lv
in
g
s
y
s
tem
u
n
ce
r
tain
ties
o
v
er
tim
e.
T
h
e
s
witch
in
g
g
ain
ζ
̂
is
esti
m
at
ed
as p
er
th
e
f
o
llo
win
g
a
d
ap
ta
tio
n
law
,
as in
(
6
)
.
̂
̇
=
|
|
(
6
)
W
h
er
e
,
is
a
p
o
s
itiv
e
co
n
s
tan
t
th
at
d
eter
m
in
es th
e
s
witch
in
g
g
ain
’
s
ad
ap
tatio
n
s
p
ee
d
an
d
̂
(
0
)
=
0
.
T
h
e
h
ig
h
co
n
tr
o
l a
ctiv
ity
i
n
th
e
r
ea
c
h
in
g
p
h
ase
ca
n
b
e
ef
f
ec
tiv
ely
av
o
i
d
ed
b
y
s
elec
tin
g
an
ap
p
r
o
p
r
iat
e
ad
ap
tatio
n
g
ain
.
T
h
e
m
o
d
i
f
ied
s
witch
in
g
co
n
tr
o
l c
o
m
p
o
n
en
t is g
iv
e
n
b
y
(
7
)
.
=
̂
γ
ℎ
(
)
(
7
)
T
h
er
e
ex
is
ts
an
u
n
k
n
o
wn
f
in
it
e
n
o
n
-
n
eg
ativ
e
s
witch
in
g
g
ain
s
u
ch
th
at
in
(
8
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
1
,
Ma
r
c
h
20
25
:
151
-
161
154
>
+
(
8
)
W
h
er
e
,
is
a
p
o
s
itiv
e
c
o
n
s
tan
t
an
d
≥
|
(
)
|
∀
.
T
h
e
u
n
ce
r
tain
ty
ter
m
s
h
a
v
e
b
ee
n
co
llected
in
th
e
s
ig
n
al
L
(
t)
[
3
8
]
.
T
h
e
tr
ac
k
in
g
er
r
o
r
e
x
p
o
n
e
n
tially
ap
p
r
o
ac
h
es
ze
r
o
wh
en
s
lid
in
g
m
o
d
e
o
cc
u
r
s
o
n
th
e
s
lid
in
g
s
u
r
f
ac
e,
(
t)
=
̇
(
t)
=
0
[
4
1
]
.
B
y
u
s
in
g
th
e
g
ain
ad
ap
tatio
n
law,
th
e
o
b
tain
ed
co
n
tr
o
l
m
ag
n
itu
d
e
is
r
ea
s
o
n
ab
le,
as
th
e
g
ain
-
ad
ap
tatio
n
law
d
o
es n
o
t o
v
er
e
s
tim
ate
th
e
m
ag
n
itu
d
e
o
f
u
n
ce
r
tain
ties
o
r
p
er
tu
r
b
atio
n
s
.
3.
E
F
F
I
CI
E
NC
Y
O
P
T
I
M
I
Z
A
T
I
O
N
A
L
G
O
RIT
H
M
(
E
O
A
)
B
ASE
D
O
N
L
O
SS
-
M
O
DE
L
O
F
I
M
T
h
e
p
er
ce
n
tag
e
ef
f
icien
c
y
o
f
th
e
I
M
d
r
i
v
e
s
y
s
tem
is
in
v
esti
g
ated
u
s
in
g
b
o
th
th
e
co
n
v
en
tio
n
al
PI
co
n
tr
o
ller
a
n
d
th
e
p
r
o
p
o
s
ed
A
QSMC u
n
d
er
v
ar
y
in
g
lo
ad
co
n
d
itio
n
s
.
Alth
o
u
g
h
th
e
a
d
ap
tiv
e
co
n
tr
o
ller
e
x
h
ib
its
s
u
b
s
tan
tial
im
p
r
o
v
em
en
t
in
t
r
a
n
s
ien
t
p
er
f
o
r
m
an
ce
co
m
p
ar
ed
to
th
e
PI
co
n
tr
o
ller
,
th
e
ef
f
icie
n
cy
ac
r
o
s
s
v
ar
io
u
s
lo
ad
s
s
h
o
ws
a
s
lig
h
t
d
o
wn
g
r
ad
e
tr
en
d
.
T
h
er
e
f
o
r
e,
th
er
e
is
p
o
ten
tial
f
o
r
ef
f
icien
c
y
o
p
tim
izatio
n
to
f
u
r
th
er
en
h
an
ce
o
v
er
all
co
n
tr
o
ller
p
er
f
o
r
m
an
ce
.
T
h
is
s
ec
tio
n
in
tr
o
d
u
ce
s
an
E
OA
d
esig
n
ed
to
m
in
im
ize
to
tal
lo
s
s
es
in
th
e
I
M
at
all
o
p
er
atin
g
co
n
d
iti
o
n
s
.
T
h
e
lo
s
s
es
in
an
I
M
in
clu
d
e
co
p
p
er
lo
s
s
es
,
co
r
e
lo
s
s
es o
r
ir
o
n
lo
s
s
es
an
d
m
ec
h
an
ical
lo
s
s
es
ℎ
.
T
h
e
co
p
p
er
lo
s
s
es
o
cc
u
r
in
a
m
ac
h
in
e
d
u
e
to
cu
r
r
e
n
t
f
lo
w
th
r
o
u
g
h
s
tato
r
an
d
r
o
t
o
r
win
d
in
g
s
.
Un
d
er
s
tead
y
-
s
tate,
th
e
to
tal
co
p
p
e
r
lo
s
s
es a
r
e
co
m
p
u
ted
as
(
9
)
[
4
2
]
.
=
3
2
(
2
+
2
)
+
3
2
(
2
+
2
)
(
9
)
W
h
er
e
,
Rs
d
en
o
t
e
s
t
h
e
s
ta
to
r
r
es
i
s
t
an
c
e
an
d
R
r
,
r
o
to
r
r
e
s
is
t
an
ce
.
T
h
e
d
-
ax
i
s
an
d
q
-
ax
i
s
c
o
m
p
o
n
en
t
s
o
f
s
ta
to
r
an
d
r
o
to
r
cu
r
r
en
t
s
ar
e
g
iv
en
b
y
i
ds
,
i
qs
,
i
dr
an
d
i
qr
r
e
s
p
ec
tiv
el
y
.
T
h
e
co
r
e
lo
s
s
e
s
co
n
s
i
s
t
o
f
ed
d
y
cu
r
r
en
t
lo
s
s
e
s
an
d
h
y
s
t
er
e
s
i
s
lo
s
s
e
s
.
=
3
2
(
ℎ
+
2
)
2
(
1
0
)
W
h
er
e
,
ℎ
d
en
o
t
es
th
e
h
y
s
ter
es
i
s
lo
s
s
co
ef
f
ic
ien
t
an
d
is
th
e
ed
d
y
cu
r
r
en
t
lo
s
s
co
ef
f
ic
ien
t.
Sy
n
ch
r
o
n
o
u
s
s
p
e
ed
i
s
g
i
v
en
b
y
e
an
d
m
u
tu
al
f
lu
x
is
d
en
o
te
d
b
y
Ψ
m
.
Me
c
h
an
i
ca
l
lo
s
s
es
in
clu
d
e
f
r
ic
t
io
n
d
u
e
to
b
ea
r
in
g
an
d
win
d
ag
e
lo
s
s
e
s
.
M
ec
h
a
n
i
ca
l
l
o
s
s
e
s
,
a
s
a
n
ap
p
r
o
x
i
m
a
tio
n
,
ar
e
p
r
o
p
o
r
ti
o
n
a
l t
o
th
e
s
q
u
ar
e
o
f
th
e
r
o
to
r
s
p
e
ed
.
ℎ
=
2
(
1
1
)
W
h
er
e
,
is
th
e
m
ec
h
an
i
ca
l
lo
s
s
co
ef
f
ic
ie
n
t
an
d
r
is
t
h
e
r
o
t
o
r
m
e
ch
an
ic
al
s
p
ee
d
.
Hen
ce
,
th
e
to
ta
l
p
o
wer
lo
s
s
e
s
i
n
th
e
I
M
c
an
b
e
ex
p
r
e
s
s
ed
a
s
(
1
2
)
.
=
3
2
{
(
2
+
2
)
+
(
2
+
2
)
+
(
ℎ
+
2
)
2
}
+
2
(
1
2
)
W
h
en
t
h
e
m
o
to
r
i
s
r
u
n
n
in
g
u
n
d
er
s
t
ea
d
y
-
s
ta
te
an
d
in
th
e
r
o
t
o
r
f
i
eld
-
o
r
i
en
t
ed
co
n
tr
o
l
[
2
8
]
.
=
0
; a
n
d
=
−
(
1
3
)
W
h
er
e
L
m
i
s
th
e
m
u
tu
al
in
d
u
ctan
ce
an
d
L
r
r
o
to
r
in
d
u
ct
an
c
e.
H
er
e,
th
e
ai
r
-
g
ap
f
lu
x
c
an
b
e
d
er
iv
ed
as
(
1
4
)
an
d
(
1
5
)
[
4
3
]
.
2
=
(
)
2
+
(
−
2
)
2
(
1
4
)
2
=
2
2
+
2
2
2
2
(
1
5
)
W
h
er
e,
=
+
.
Als
o
,
th
e
m
o
to
r
T
o
r
q
u
e
d
ev
elo
p
ed
in
I
F
O
C
is
g
iv
e
n
b
y
(
1
6
)
.
=
3
2
2
2
=
(
1
6
)
Fro
m
th
e
(
1
6
)
,
ca
n
b
e
wr
i
tt
en
a
s
(
1
7
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
fficien
cy
en
h
a
n
ce
d
a
d
a
p
tive
q
u
a
s
i
-
s
lid
in
g
mo
d
e
co
n
tr
o
ller
fo
r
va
r
ia
b
le
…
(
S
h
a
ija
P
a
la
ck
a
p
p
illi
l J
a
co
b
)
155
=
(
1
7
)
W
h
er
e
=
3
2
2
2
.
Us
in
g
in
(
1
3
)
a
n
d
(
1
5
)
,
(
1
2
)
ca
n
b
e
wr
it
ten
a
s
(
1
8
)
.
=
3
2
{
(
+
(
ℎ
+
2
)
2
)
.
2
+
(
+
2
2
+
(
ℎ
+
2
)
2
2
2
)
.
2
}
+
2
(
1
8
)
Su
b
s
t
i
tu
t
in
g
(
1
7
)
i
n
(
1
8
)
,
i
t b
e
co
m
e
s
(
1
9
)
.
=
3
2
(
.
2
+
.
2
2
2
)
+
2
(
1
9
)
W
h
er
e,
=
+
(
ℎ
+
2
)
2
; a
nd
=
+
2
2
+
(
ℎ
+
2
)
2
2
2
.
T
h
e
lo
s
s
(
1
9
)
ex
p
r
e
s
s
e
s
th
e
i
n
d
u
ct
io
n
m
o
to
r
lo
s
s
e
s
in
ter
m
s
o
f
.
T
h
a
t
i
s
,
th
e
lo
s
s
ex
p
r
es
s
io
n
i
s
d
ep
en
d
en
t
o
n
th
e
d
-
ax
i
s
s
ta
to
r
cu
r
r
e
n
t
co
m
p
o
n
en
t
,
,
at
ea
ch
o
p
er
a
tin
g
p
o
i
n
t (
co
r
r
e
s
p
o
n
d
i
n
g
to
an
d
)
,
p
r
e
s
u
m
i
n
g
th
at
th
e
m
o
to
r
p
a
r
am
e
ter
s
ar
e
f
ix
e
d
an
d
n
o
t
d
ep
en
d
en
t
o
n
r
o
to
r
f
lu
x
.
T
h
e
o
p
t
i
m
al
v
alu
e
o
f
th
e
d
-
ax
i
s
s
t
ato
r
cu
r
r
en
t
th
at
m
in
i
m
iz
es
th
e
o
v
er
al
l
p
o
wer
lo
s
s
i
s
co
m
p
u
te
d
b
y
d
if
f
er
en
ti
at
i
n
g
th
e
(
1
9
)
wi
th
r
es
p
ec
t
to
an
d
eq
u
a
tin
g
i
t
to
z
er
o
a
s
(
2
0
)
an
d
(
2
1
)
:
=
3
2
(
2
.
.
−
(
)
2
2
.
3
)
= 0
(
2
0
)
a
nd
=
√
(
)
2
4
(
2
1
)
So
,
in
th
i
s
co
n
tr
o
l t
ec
h
n
iq
u
e,
an
E
OA
i
s
p
r
e
s
en
ted
th
at
co
m
p
u
te
s
th
e
o
p
t
im
u
m
v
a
lu
e
o
f
th
e
p
r
i
m
ar
y
co
n
tr
o
l
v
ar
i
ab
l
e,
th
e
d
-
ax
i
s
co
m
p
o
n
en
t o
f
s
ta
to
r
cu
r
r
e
n
t,
,
wh
i
ch
in
t
u
r
n
m
in
im
iz
e
s
th
e
lo
s
s
e
s
an
d
m
ax
i
m
i
ze
s
th
e
ef
f
i
ci
en
cy
.
4.
SI
M
UL
A
T
I
O
N
R
E
S
UL
T
S
AND
DIS
CUSS
I
O
N
T
h
e
p
r
o
p
o
s
ed
E
OA
is
d
ev
elo
p
ed
with
t
h
e
lo
s
s
m
o
d
el
o
f
th
e
I
M
in
MA
T
L
AB
/Si
m
u
lin
k
f
o
r
a
1
HP I
M
d
r
iv
e.
T
h
e
alg
o
r
it
h
m
will
d
ed
u
ce
th
e
o
p
tim
al
v
alu
e
o
f
th
e
d
-
ax
is
s
tato
r
cu
r
r
en
t
(
i
ds
)
in
r
ea
l
tim
e,
d
ep
en
d
in
g
o
n
th
e
s
p
ee
d
/lo
ad
co
n
d
itio
n
s
.
Ma
ch
in
e
p
ar
am
eter
s
f
o
r
th
e
1
HP
I
M
d
r
iv
e
ar
e
lis
ted
in
T
ab
le
1
.
T
h
e
n
o
m
in
al
v
al
u
e
o
f
f
lu
x
in
d
-
ax
is
is
tak
en
as
0
.
8
.
T
h
e
AQSMC
p
r
o
p
o
s
ed
in
s
ec
tio
n
2
is
u
s
ed
as
t
h
e
s
p
ee
d
c
o
n
tr
o
ller
in
in
d
ir
ec
t
FOC
s
ch
em
e
as sh
o
wn
in
Fig
u
r
e
1
.
Fig
u
r
e
1
.
B
lo
ck
s
ch
em
atic
o
f
t
h
e
p
r
o
p
o
s
ed
ef
f
icien
c
y
-
o
p
tim
i
ze
d
I
M
d
r
i
v
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
1
,
Ma
r
c
h
20
25
:
151
-
161
156
T
ab
le
1
.
Par
am
eter
s
o
f
1
HP
i
n
d
u
ctio
n
m
o
to
r
P
a
r
a
me
t
e
r
V
a
l
u
e
R
a
t
e
d
p
o
w
e
r
7
5
0
W
N
o
.
o
f
p
h
a
ses
3
Rs
1
0
Ω
Rr
5
.
6
4
Ω
Rc
1
2
7
3
Ω
Ll
s
0
.
0
3
8
6
H
Ll
r
0
.
0
3
8
6
H
Lm
0
.
5
3
5
3
H
R
a
t
e
d
t
o
r
q
u
e
5
.
1
N
m
J
0
.
0
0
8
k
g
m
2
B
0
.
0
0
0
5
0
3
k
g
m
2
/s
P
o
l
e
s
4
R
a
t
e
d
s
p
e
e
d
1
3
8
0
r
p
m
R
a
t
e
d
v
o
l
t
a
g
e
4
1
5
V
(L
-
L)
4
.
1
.
O
pti
m
a
l I
ds
T
h
e
o
p
tim
al
v
alu
es
o
f
co
r
r
esp
o
n
d
in
g
to
ea
c
h
s
p
ee
d
/o
u
tp
u
t
l
o
ad
co
n
d
itio
n
ar
e
f
o
u
n
d
o
u
t
u
s
in
g
E
OA
an
d
is
p
lo
tte
d
in
Fig
u
r
e
2
.
At
a
f
ix
ed
lo
ad
to
r
q
u
e,
s
ay
T
fl
,
if
s
p
ee
d
is
v
a
r
ied
f
r
o
m
1
4
0
0
r
p
m
to
3
0
0
r
p
m
,
th
e
o
p
tim
al
v
alu
e
v
ar
ies
as
s
h
o
wn
in
Fig
u
r
e
2
.
Op
tim
al
v
alu
e
o
f
g
o
es
o
n
d
e
cr
e
as
in
g
a
s
l
o
ad
to
r
q
u
e
i
s
d
ec
r
e
a
s
ed
co
r
r
e
s
p
o
n
d
i
n
g
t
o
a
l
l
s
p
e
ed
co
n
d
i
tio
n
s
,
a
s
o
b
s
er
v
e
d
f
r
o
m
F
ig
u
r
e
2
.
4
.
2
.
Reduct
io
n in P
lo
s
s
T
h
e
r
ed
u
ctio
n
in
p
o
wer
l
o
s
s
b
y
u
s
in
g
o
p
tim
al
co
m
p
ar
ed
to
f
ix
ed
is
illu
s
tr
ated
in
Fig
u
r
e
3
.
T
h
e
m
o
s
t
s
ig
n
if
ican
t
r
ed
u
ctio
n
o
cc
u
r
s
u
n
d
er
h
ea
v
y
lo
ad
a
n
d
lo
w
-
s
p
ee
d
co
n
d
itio
n
s
with
th
e
o
p
ti
m
al
.
A
m
ax
im
u
m
r
ed
u
ctio
n
o
f
1
1
6
W
in
p
o
wer
l
o
s
s
is
o
b
s
er
v
ed
in
th
e
s
im
u
lati
o
n
f
o
r
th
e
1
Hp
I
M
d
r
iv
e.
A
m
ax
im
u
m
p
o
wer
lo
s
s
r
ed
u
ctio
n
o
f
1
1
6
W
is
o
b
s
er
v
e
d
in
th
e
s
im
u
latio
n
f
o
r
th
e
1
H
P
I
M
d
r
iv
e.
E
ac
h
g
r
ap
h
co
r
r
esp
o
n
d
s
to
a
s
p
ec
if
ic
lo
ad
to
r
q
u
e
co
n
d
itio
n
with
s
p
e
ed
v
ar
iatio
n
,
an
d
all
e
x
h
ib
it a
co
n
s
is
ten
t tr
en
d
.
4
.
3
.
E
f
f
iciency
enha
ncem
ent
Simu
latio
n
s
ar
e
ca
r
r
ied
o
u
t f
o
r
all
p
o
s
s
ib
le
s
p
ee
d
/lo
ad
co
n
d
it
io
n
s
,
an
d
p
o
wer
in
p
u
t a
n
d
ef
f
icien
cy
ar
e
n
o
ted
with
f
ix
e
d
i
ds
co
n
tr
o
l
a
n
d
o
p
tim
al
i
ds
co
n
tr
o
l
u
s
in
g
E
OA.
T
h
e
ef
f
icien
c
y
o
f
th
e
s
y
s
tem
o
b
tain
ed
with
f
ix
e
d
i
ds
v
alu
e
f
o
r
d
if
f
e
r
en
t
s
p
ee
d
/lo
ad
to
r
q
u
e
co
n
d
itio
n
s
ar
e
tab
u
l
ated
in
T
ab
le
2
an
d
th
at
co
r
r
esp
o
n
d
in
g
to
o
p
tim
al
i
ds
u
s
in
g
E
OA
ar
e
g
iv
e
n
in
T
a
b
le
3
.
T
h
e
ef
f
icien
cy
o
f
th
e
d
r
iv
e
s
y
s
tem
with
an
d
with
o
u
t
E
OA
alg
o
r
ith
m
ar
e
f
o
u
n
d
o
u
t
in
s
im
u
latio
n
an
d
th
e
cu
r
v
es
ar
e
p
lo
tted
with
r
es
p
ec
t
to
o
u
tp
u
t
p
o
wer
in
Fig
u
r
e
4
.
E
ac
h
cu
r
v
e
co
r
r
esp
o
n
d
s
t
o
a
s
p
ee
d
co
n
d
itio
n
with
v
ar
y
in
g
lo
ad
s
.
A
m
ax
im
u
m
o
f
2
7
.
5
7
%
im
p
r
o
v
em
e
n
t
i
n
ef
f
icien
cy
is
o
b
s
er
v
ed
in
th
e
s
im
u
latio
n
at
3
0
0
r
p
m
,
f
u
ll lo
ad
to
r
q
u
e.
4
.
4
.
L
o
o
k
up
t
a
ble
-
ba
s
ed
ef
f
i
ciency
o
ptim
iza
t
io
n c
o
ntr
o
l
A
lo
o
k
u
p
tab
le
is
also
d
ev
elo
p
ed
u
s
in
g
th
e
o
p
tim
al
v
alu
es
d
er
iv
ed
f
r
o
m
th
e
s
im
u
lated
r
esu
lts
o
f
th
e
E
OA
alg
o
r
ith
m
f
o
r
all
o
p
er
atin
g
s
p
ee
d
/lo
ad
c
o
n
d
itio
n
s
.
I
n
th
is
ap
p
r
o
ac
h
,
th
e
o
p
tim
al
v
al
u
e
o
f
is
r
e
tr
i
ev
ed
f
r
o
m
t
h
is
lo
o
k
u
p
tab
le,
elim
in
atin
g
th
e
n
ee
d
f
o
r
an
aly
tical
d
ed
u
ctio
n
u
s
in
g
th
e
E
OA
alg
o
r
ith
m
.
T
h
is
n
o
t
o
n
ly
s
tr
ea
m
lin
es
th
e
p
r
o
ce
s
s
b
u
t
al
s
o
r
ed
u
ce
s
c
o
m
p
u
tatio
n
al
co
m
p
lex
ity
.
T
h
e
lo
o
k
u
p
tab
le
co
n
tain
in
g
t
h
e
o
p
tim
al
v
alu
es is
p
r
esen
ted
in
T
a
b
le
4
.
Fig
u
r
e
2
.
Op
tim
al
v
alu
es o
f
i
ds
f
o
r
d
i
f
f
er
en
t
s
p
ee
d
/lo
ad
co
n
d
itio
n
s
Fig
u
r
e
3
.
R
ed
u
ctio
n
in
P
loss
f
o
r
d
if
f
er
en
t
s
p
ee
d
/lo
ad
co
n
d
itio
n
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
fficien
cy
en
h
a
n
ce
d
a
d
a
p
tive
q
u
a
s
i
-
s
lid
in
g
mo
d
e
co
n
tr
o
ller
fo
r
va
r
ia
b
le
…
(
S
h
a
ija
P
a
la
ck
a
p
p
illi
l J
a
co
b
)
157
T
ab
le
2
.
E
f
f
icien
cy
o
f
AQSMC I
M
d
r
iv
e
with
f
ix
ed
T
o
r
q
u
e
S
p
e
e
d
(
r
p
m)
3
0
0
5
0
0
7
0
0
1
0
3
5
1
3
8
0
0
.
1
Tf
l
2
2
.
3
7
2
8
.
6
3
3
3
.
8
8
3
8
.
6
8
4
2
.
4
8
0
.
2
Tf
l
3
3
.
1
4
1
.
9
7
4
7
.
2
5
5
3
.
0
1
5
6
.
3
8
0
.
3
Tf
l
3
8
.
0
2
4
7
.
4
5
3
.
5
2
5
9
.
7
9
6
3
.
0
5
0
.
4
Tf
l
3
9
.
4
8
5
0
.
1
5
5
6
.
3
7
6
3
.
0
2
6
6
.
8
1
0
.
5
Tf
l
3
9
.
6
5
5
0
.
5
2
5
6
.
9
8
6
4
.
1
1
6
8
.
7
0
.
6
Tf
l
3
8
.
8
3
4
9
.
9
3
5
7
.
0
1
6
4
.
8
6
9
.
4
7
0
.
7
Tf
l
3
7
.
4
9
4
9
.
0
1
5
6
.
6
2
6
4
.
5
1
6
9
.
6
8
0
.
8
Tf
l
3
6
.
0
9
4
7
.
6
4
5
5
.
3
7
6
4
.
0
6
6
9
.
6
7
0
.
9
Tf
l
3
4
.
6
8
4
6
.
3
8
5
4
.
3
9
6
3
.
3
8
6
9
.
3
8
1
.
0
Tf
l
3
3
.
5
1
4
5
.
1
8
5
3
.
2
4
6
2
.
5
7
6
8
.
8
4
T
ab
le
3
.
E
f
f
icien
cy
o
f
AQSMC I
M
d
r
iv
e
with
E
OA
(
o
p
tim
al
)
T
o
r
q
u
e
S
p
e
e
d
(
r
p
m)
3
0
0
5
0
0
7
0
0
1
0
3
5
1
3
8
0
0
.
1
Tf
l
2
6
.
7
1
3
3
.
9
2
3
9
.
8
2
4
4
.
0
6
4
6
.
4
0
.
2
Tf
l
3
5
.
2
9
4
4
.
1
4
5
0
.
5
3
5
5
.
5
7
5
7
.
9
4
0
.
3
Tf
l
3
9
.
3
7
4
9
.
6
6
5
5
.
2
4
6
0
.
3
1
6
3
.
4
2
0
.
4
Tf
l
4
1
.
5
3
5
1
.
7
2
5
7
.
8
2
6
3
.
1
9
6
6
.
8
4
0
.
5
Tf
l
4
2
.
0
5
5
3
.
2
8
5
9
.
0
3
6
4
.
8
5
6
8
.
7
6
0
.
6
Tf
l
4
3
.
4
5
5
3
.
9
6
0
.
2
5
6
5
.
7
6
6
9
.
5
3
0
.
7
Tf
l
4
3
.
8
5
4
.
2
1
6
0
.
6
6
6
6
.
5
2
6
9
.
7
4
0
.
8
Tf
l
4
3
.
7
5
4
.
6
6
0
.
6
1
6
6
.
5
2
7
0
.
3
0
.
9
Tf
l
4
3
.
7
5
5
4
.
9
1
6
1
.
0
5
6
7
.
0
5
7
0
.
5
9
1
.
0
Tf
l
4
2
.
7
5
5
4
.
7
1
6
1
.
1
3
6
7
.
3
7
0
.
7
5
T
ab
le
4
.
L
o
o
k
u
p
tab
le
f
o
r
o
p
ti
m
al
T
o
r
q
u
e
(
p
u
)
S
p
e
e
d
(
r
p
m)
3
0
0
5
0
0
7
0
0
1
0
3
5
1
3
8
0
0
.
1
Tf
l
0
.
6
8
0
.
6
5
0
.
6
2
0
.
5
8
0
.
5
5
0
.
2
Tf
l
0
.
8
5
0
.
8
2
0
.
7
8
0
.
7
2
0
.
6
8
0
.
3
Tf
l
0
.
9
8
0
.
9
3
0
.
8
9
0
.
8
3
0
.
7
7
0
.
4
Tf
l
1
.
0
7
1
.
0
3
0
.
9
8
0
.
9
1
0
.
8
5
0
.
5
Tf
l
1
.
1
6
1
.
1
1
1
.
0
5
0
.
9
7
0
.
9
1
0
.
6
Tf
l
1
.
2
3
1
.
1
8
1
.
1
2
1
.
0
3
0
.
9
7
0
.
7
Tf
l
1
.
3
0
1
.
2
4
1
.
1
8
1
.
0
9
1
.
0
2
0
.
8
Tf
l
1
.
3
7
1
.
2
9
1
.
2
3
1
.
1
4
1
.
0
6
0
.
9
Tf
l
1
.
4
2
1
.
3
5
1
.
2
8
1
.
1
8
1
.
1
0
1
.
0
Tf
l
1
.
4
7
1
.
4
0
1
.
3
2
1
.
2
2
1
.
1
4
Fig
u
r
e
4
.
E
f
f
icien
cy
c
u
r
v
es f
o
r
f
ix
ed
-
s
p
ee
d
,
v
a
r
y
in
g
-
lo
ad
wi
th
an
d
with
o
u
t E
OA
5.
E
XP
E
R
I
M
E
N
T
A
L
RE
SUL
T
S AN
D
A
ND
DI
SCUS
SI
O
N
A
p
r
o
to
ty
p
e
h
as
b
ee
n
b
u
ilt
with
a
1
HP
in
d
u
ctio
n
m
o
to
r
,
a
DSP
co
n
tr
o
ller
b
o
ar
d
u
s
in
g
a
T
I
C
2
0
0
0
Delf
in
o
MCU
F2
8
3
7
9
D
m
icr
o
co
n
tr
o
ller
,
an
d
an
I
GB
T
-
b
as
ed
I
PM
I
n
v
er
ter
m
o
d
u
le
to
v
alid
ate
s
im
u
latio
n
r
esu
lts
,
th
e
p
h
o
to
g
r
ap
h
o
f
wh
i
ch
is
s
h
o
wn
in
Fig
u
r
e
5
.
T
h
e
m
o
t
o
r
s
p
ee
d
is
s
en
s
ed
b
y
a
2
-
p
h
ase
in
cr
em
en
tal
ty
p
e
o
p
tical
r
o
tar
y
en
co
d
er
wi
th
6
0
0
p
u
ls
es
p
er
r
ev
o
lu
tio
n
,
wh
ich
o
f
f
e
r
s
h
ig
h
r
eso
lu
tio
n
,
ex
ce
llen
t
ac
cu
r
ac
y
,
an
d
q
u
ick
r
esp
o
n
s
e
tim
es.
T
h
e
en
co
d
er
’
s
q
u
ad
r
atu
r
e
o
u
tp
u
t
f
a
cilitates
p
r
ec
is
e
p
o
s
itio
n
an
d
s
p
ee
d
m
ea
s
u
r
em
en
ts
,
m
ak
in
g
it
id
ea
l
f
o
r
a
p
p
licatio
n
s
r
eq
u
ir
in
g
f
in
e
co
n
tr
o
l.
A
d
d
itio
n
ally
,
lo
w
-
p
ass
f
ilter
in
g
ci
r
cu
itry
is
em
p
lo
y
ed
i
n
th
e
cu
r
r
en
t
s
en
s
o
r
s
to
m
in
im
ize
h
ig
h
-
f
r
e
q
u
en
c
y
n
o
is
e,
en
s
u
r
in
g
th
at
th
e
in
teg
r
ity
o
f
th
e
m
ea
s
u
r
em
en
ts
is
p
r
eser
v
ed
.
T
h
e
s
p
ee
d
o
f
th
e
I
M
d
r
iv
e
is
co
n
tr
o
lled
ex
p
er
im
en
t
ally
u
s
in
g
th
e
AQSM
co
n
tr
o
ller
.
T
h
e
p
er
f
o
r
m
a
n
ce
p
ar
am
eter
s
o
f
t
h
ese
co
n
tr
o
ller
s
ar
e
an
aly
ze
d
in
s
im
u
latio
n
a
n
d
ar
e
e
x
p
er
im
e
n
tally
v
alid
ate
d
.
5
.
1
.
E
f
f
iciency
enha
ncem
ent
T
h
e
d
ev
elo
p
ed
I
M
d
r
iv
e
with
AQSM
co
n
tr
o
ller
is
r
u
n
at
h
alf
lo
ad
an
d
3
0
0
r
p
m
,
an
d
th
e
co
r
r
esp
o
n
d
in
g
ef
f
icien
cy
o
f
th
e
d
r
iv
e
is
m
ea
s
u
r
ed
.
T
h
e
o
v
er
all
s
y
s
tem
ef
f
icien
cy
is
3
9
.
6
%
in
s
im
u
latio
n
an
d
3
8
%
in
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
1
,
Ma
r
c
h
20
25
:
151
-
161
158
ex
p
er
im
en
tatio
n
.
T
h
e
T
I
m
icr
o
co
n
tr
o
ller
is
ag
ain
lo
ad
e
d
with
th
e
d
r
iv
e
m
o
d
el
in
c
o
r
p
o
r
atin
g
th
e
E
OA,
wh
ich
p
r
o
v
id
es
t
h
e
o
p
tim
al
v
alu
e,
a
n
d
is
r
u
n
u
n
d
e
r
id
en
tical
s
p
ee
d
an
d
lo
ad
co
n
d
itio
n
s
.
E
f
f
icien
cy
with
t
h
e
E
O
A
im
p
r
o
v
es
t
o
4
2
.
1
%
in
s
im
u
lati
o
n
a
n
d
3
9
.
5
%
in
ex
p
e
r
im
en
t.
T
h
e
h
a
r
d
war
e
d
r
iv
e
ef
f
icien
c
y
w
ith
f
ix
ed
clo
s
ely
m
atch
es
th
e
s
im
u
lated
r
esu
lts
,
with
in
a
to
ler
an
ce
lim
it
o
f
4
.
2
%,
wh
ile
with
th
e
E
OA,
th
e
s
y
s
tem
ef
f
icien
cy
in
h
ar
d
war
e
r
em
ain
s
with
in
a
to
ler
an
ce
lim
it
o
f
6
.
6
%
o
f
th
e
s
im
u
lated
o
u
tco
m
e.
Fo
r
a
n
in
p
u
t
s
p
ee
d
o
f
3
0
0
r
p
m
at
h
alf
-
r
ated
lo
ad
,
th
e
o
p
tim
al
p
r
o
v
i
d
es
a
6
.
3
%
ef
f
icien
cy
im
p
r
o
v
em
e
n
t
in
s
im
u
latio
n
an
d
a
3
.
9
%
in
ex
p
er
im
en
tal
an
aly
s
is
.
T
h
e
cl
o
s
e
ag
r
ee
m
en
t
b
etwe
en
th
e
s
im
u
lated
an
d
th
e
ex
p
er
im
en
tal
r
esu
lts
co
n
f
ir
m
s
th
e
v
alid
ity
o
f
th
e
p
r
o
p
o
s
ed
tech
n
i
q
u
e.
Fig
u
r
e
5
.
Har
d
war
e
s
etu
p
o
f
th
e
d
ev
elo
p
e
d
I
M
d
r
iv
e
5
.
2
.
Sp
ee
d
re
s
po
ns
e
T
h
e
s
p
ee
d
r
esp
o
n
s
e
o
f
th
e
AQ
SM
co
n
tr
o
ller
with
f
ix
ed
u
n
d
e
r
s
im
u
latio
n
an
d
ex
p
er
im
en
tal
an
aly
s
i
s
ar
e
p
r
esen
ted
in
Fig
u
r
e
6
a
n
d
i
ts
tr
an
s
ien
t
an
aly
s
is
in
Fig
u
r
e
7
,
r
esp
ec
tiv
ely
.
T
h
e
s
p
e
ed
r
e
s
p
o
n
s
e
o
f
th
e
A
Q
SM
co
n
tr
o
l
ler
w
ith
o
p
tim
al
u
n
d
er
s
i
m
u
l
at
io
n
an
d
ex
p
er
i
m
en
t
al
an
a
ly
s
i
s
ar
e
p
r
e
s
en
ted
in
Fig
u
r
e
8
.
an
d
i
ts
tr
an
s
ien
t
an
aly
s
is
in
Fig
u
r
e
9
,
r
esp
ec
ti
v
el
y
.
W
h
ile
co
m
p
ar
i
n
g
Fi
g
u
r
e
s
7
a
n
d
9
,
i
t
c
an
b
e
co
n
c
lu
d
ed
th
a
t
b
y
in
co
r
p
o
r
a
tin
g
th
e
E
O
A
a
lg
o
r
i
th
m
n
o
t
o
n
ly
im
p
r
o
v
e
s
th
e
ef
f
ic
ien
cy
b
u
t
a
l
s
o
r
ed
u
c
e
s
th
e
s
e
tt
l
in
g
tim
e,
p
ea
k
tim
e
a
n
d
p
e
ak
o
v
er
s
h
o
o
t in
p
r
ac
t
ic
al
im
p
le
m
en
ta
tio
n
.
Fig
u
r
e
6
.
Sp
ee
d
r
esp
o
n
s
e
o
f
th
e
AQSM
co
n
tr
o
ller
with
f
ix
ed
in
s
im
u
latio
n
an
d
in
h
a
r
d
war
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
fficien
cy
en
h
a
n
ce
d
a
d
a
p
tive
q
u
a
s
i
-
s
lid
in
g
mo
d
e
co
n
tr
o
ller
fo
r
va
r
ia
b
le
…
(
S
h
a
ija
P
a
la
ck
a
p
p
illi
l J
a
co
b
)
159
Fig
u
r
e
7
.
T
r
an
s
ien
t a
n
aly
s
is
o
f
AQSMC wi
th
f
ix
ed
in
s
im
u
latio
n
an
d
i
n
h
ar
d
war
e
Fig
u
r
e
8
.
Sp
ee
d
r
esp
o
n
s
e
o
f
th
e
AQSM
co
n
tr
o
ller
with
o
p
ti
m
al
in
s
im
u
latio
n
an
d
in
h
ar
d
war
e
Fig
u
r
e
9
.
T
r
an
s
ien
t a
n
aly
s
is
o
f
AQSMC wi
th
E
OA
in
s
im
u
latio
n
an
d
i
n
h
ar
d
war
e
6.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
p
r
o
p
o
s
es
an
ad
a
p
tiv
e,
ef
f
icien
cy
-
en
h
a
n
ce
d
,
v
ar
iab
le
-
s
p
ee
d
n
o
n
-
lin
ea
r
c
o
n
t
r
o
ller
f
o
r
o
p
tim
al
s
p
ee
d
co
n
tr
o
l
o
f
I
M
d
r
iv
es,
f
ea
tu
r
i
n
g
r
e
d
u
ce
d
c
o
m
p
u
tatio
n
al
co
m
p
lex
ity
.
An
ad
ap
tiv
e
q
u
asi
-
s
lid
in
g
m
o
d
e
co
n
tr
o
lle
r
is
d
esig
n
e
d
u
s
in
g
a
tan
f
u
n
ctio
n
as
th
e
s
witch
in
g
f
u
n
ctio
n
,
alo
n
g
with
an
in
teg
r
al
co
n
tr
o
l
law
th
at
ad
h
er
es
to
t
h
e
L
y
a
p
u
n
o
v
s
tab
ilit
y
co
n
d
itio
n
.
T
h
e
AQSM
C
o
f
f
er
s
r
o
b
u
s
t
co
n
tr
o
l
p
er
f
o
r
m
an
ce
b
y
ef
f
ec
tiv
ely
m
an
ag
in
g
s
y
s
tem
u
n
ce
r
tain
ties
an
d
n
o
n
-
lin
ea
r
ities
wh
ile
en
s
u
r
in
g
s
tab
ilit
y
an
d
m
in
im
izin
g
c
h
atter
in
g
th
r
o
u
g
h
th
e
r
ea
l
-
tim
e
a
d
ap
tatio
n
o
f
t
h
e
s
lid
in
g
g
ain
.
T
o
e
n
h
an
ce
ef
f
ici
en
cy
,
a
n
ef
f
icie
n
cy
o
p
tim
izatio
n
alg
o
r
it
h
m
(
E
OA)
b
ased
o
n
a
lo
s
s
m
o
d
el
is
in
c
o
r
p
o
r
ated
t
h
at
will
d
y
n
a
m
ically
s
ea
r
ch
f
o
r
th
e
o
p
tim
al
d
-
a
x
is
cu
r
r
en
t
in
r
ea
l
tim
e
ac
r
o
s
s
all
lo
ad
an
d
s
p
ee
d
co
n
d
itio
n
s
.
E
x
ten
s
iv
e
MA
T
L
AB
s
im
u
latio
n
s
d
em
o
n
s
tr
ate
th
at
t
h
e
E
OA
ef
f
ec
tiv
ely
id
en
tifie
s
o
p
tim
al
v
alu
es,
wh
ich
ar
e
s
to
r
ed
i
n
a
lo
o
k
u
p
tab
le
f
o
r
ef
f
icien
t im
p
lem
en
tatio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
1
,
Ma
r
c
h
20
25
:
151
-
161
160
T
h
e
AQSM
co
n
tr
o
ller
,
co
m
b
i
n
ed
with
t
h
e
E
OA,
is
s
u
cc
ess
f
u
lly
im
p
lem
e
n
ted
o
n
a
T
I
F2
8
3
7
9
D
DSP
co
n
tr
o
ller
f
o
r
a
1
HP
I
M
d
r
i
v
e.
R
esu
lts
in
d
icate
a
s
ig
n
if
ican
t
ef
f
icien
cy
im
p
r
o
v
em
e
n
t
o
f
6
.
3
%
in
s
im
u
latio
n
an
d
3
.
9
%
in
ex
p
er
im
en
tal
an
aly
s
is
at
h
alf
lo
ad
an
d
3
0
0
r
p
m
co
m
p
ar
ed
to
th
e
s
y
s
tem
with
o
u
t
th
e
E
OA.
T
h
e
h
ar
d
war
e
ef
f
icien
cy
with
f
ix
e
d
clo
s
ely
m
atch
es
th
e
s
im
u
latio
n
r
esu
lts
,
m
ain
tain
in
g
a
to
ler
a
n
ce
o
f
4
.
2
%.
Ad
d
itio
n
ally
,
with
th
e
E
OA,
th
e
s
y
s
tem
ef
f
i
cien
cy
in
h
a
r
d
war
e
is
with
in
a
to
ler
an
ce
o
f
6
.
5
%
o
f
th
e
s
im
u
lated
r
esu
lts
.
T
h
ese
f
in
d
in
g
s
v
alid
ate
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
’
s
e
f
f
ec
tiv
en
ess
in
e
n
h
an
cin
g
I
M
d
r
iv
e
e
f
f
icien
cy
.
Fu
tu
r
e
wo
r
k
ca
n
ex
p
lo
r
e
e
x
ten
d
in
g
th
is
ap
p
r
o
a
ch
to
h
ig
h
er
-
r
ated
m
o
t
o
r
s
an
d
in
co
r
p
o
r
atin
g
h
y
b
r
i
d
co
n
tr
o
l
t
ec
h
n
iq
u
es
to
f
u
r
th
e
r
en
h
an
ce
ef
f
icien
cy
ac
r
o
s
s
d
iv
er
s
e
in
d
u
s
tr
ial
ap
p
licatio
n
s
,
i
n
clu
d
in
g
elec
tr
ic
v
eh
icles
an
d
r
en
ewa
b
le
en
e
r
g
y
s
y
s
tem
s
,
u
ltima
tely
o
p
tim
izin
g
m
o
to
r
p
er
f
o
r
m
a
n
ce
an
d
s
u
s
tain
ab
ilit
y
.
RE
F
E
R
E
NC
E
S
[
1
]
B
.
K
.
B
o
se
,
“
M
o
d
e
r
n
P
o
w
e
r
El
e
c
t
r
o
n
i
c
s
a
n
d
A
C
D
r
i
v
e
s
,
”
P
ren
t
i
c
e
-
H
a
l
l
,
p
.
7
3
8
,
2
0
0
2
,
[
O
n
l
i
n
e
]
.
A
v
a
i
l
a
b
l
e
:
h
t
t
p
:
/
/
sc
h
o
l
a
r
.
g
o
o
g
l
e
.
c
o
m/
s
c
h
o
l
a
r
?
h
l
=
e
n
&
b
t
n
G
=
S
e
a
r
c
h
&
q
=
i
n
t
i
t
l
e
:
M
o
d
e
r
n
+
P
o
w
e
r
+
E
l
e
c
t
r
o
n
i
c
s
+
a
n
d
+
A
C
+
d
r
i
v
e
s#
0
[
2
]
J.
I
q
b
a
l
,
M
.
U
l
l
a
h
,
S
.
G
.
K
h
a
n
,
B
.
K
h
e
l
i
f
a
,
a
n
d
S
.
Ć
u
k
o
v
i
ć
,
“
N
o
n
l
i
n
e
a
r
c
o
n
t
r
o
l
sy
s
t
e
ms
-
A
b
r
i
e
f
o
v
e
r
v
i
e
w
o
f
h
i
s
t
o
r
i
c
a
l
a
n
d
r
e
c
e
n
t
a
d
v
a
n
c
e
s,”
N
o
n
l
i
n
e
a
r
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
6
,
n
o
.
4
,
p
p
.
3
0
1
–
3
1
2
,
2
0
1
7
,
d
o
i
:
1
0
.
1
5
1
5
/
n
l
e
n
g
-
2
0
1
6
-
0
0
7
7
.
[
3
]
J.
Li
u
,
“
S
l
i
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
u
s
i
n
g
M
A
TLA
B
,
”
S
l
i
d
i
n
g
Mo
d
e
C
o
n
t
r
o
l
U
si
n
g
M
ATL
AB
,
p
p
.
1
–
3
3
2
,
2
0
1
7
.
[
4
]
J.
S
l
o
t
i
n
e
a
n
d
W
.
Li
,
“
A
p
p
l
i
e
d
N
o
n
l
i
n
e
a
r
C
o
n
t
r
o
l
,
”
1
9
9
1
.
[
O
n
l
i
n
e
]
.
A
v
a
i
l
a
b
l
e
:
h
t
t
p
:
/
/
sc
h
o
l
a
r
.
g
o
o
g
l
e
.
c
o
m/
s
c
h
o
l
a
r
?
h
l
=
e
n
&
b
t
n
G
=
S
e
a
r
c
h
&
q
=
i
n
t
i
t
l
e
:
S
l
o
t
i
n
e
+
?
+
Li
+
A
P
P
LI
ED
+
N
O
N
L
I
N
EA
R
+
C
O
N
TR
O
L+
!
#
1
[
5
]
L.
W
u
,
J.
Li
u
,
S
.
V
a
z
q
u
e
z
,
a
n
d
S
.
K
.
M
a
z
u
m
d
e
r
,
“
S
l
i
d
i
n
g
M
o
d
e
C
o
n
t
r
o
l
i
n
P
o
w
e
r
C
o
n
v
e
r
t
e
r
s
a
n
d
D
r
i
v
e
s:
A
R
e
v
i
e
w
,
”
I
E
EE/
C
A
A
J
o
u
rn
a
l
o
f
Au
t
o
m
a
t
i
c
a
S
i
n
i
c
a
,
v
o
l
.
9
,
n
o
.
3
,
p
p
.
3
9
2
–
4
0
6
,
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
JA
S
.
2
0
2
1
.
1
0
0
4
3
8
0
.
[
6
]
M
.
S
.
Za
k
y
,
“
R
o
b
u
st
c
h
a
t
t
e
r
-
f
r
e
e
c
o
n
t
i
n
u
o
u
s
V
S
C
f
o
r
t
h
e
s
p
e
e
d
c
o
n
t
r
o
l
o
f
e
l
e
c
t
r
i
c
a
l
m
o
t
o
r
d
r
i
v
e
s
u
s
i
n
g
a
d
a
p
t
i
v
e
f
e
e
d
b
a
c
k
g
a
i
n
,
”
El
e
c
t
r
i
c
Po
w
e
r
S
y
st
e
m
s R
e
se
a
rc
h
,
v
o
l
.
1
4
0
,
p
p
.
7
8
6
–
7
9
6
,
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
p
sr
.
2
0
1
6
.
0
5
.
0
0
7
.
[
7
]
K
.
M
a
k
h
l
o
u
f
i
,
I
.
K
.
B
o
u
ss
e
r
h
a
n
e
,
a
n
d
S
.
A
.
Ze
g
n
o
u
n
,
“
A
d
a
p
t
i
v
e
f
u
z
z
y
s
l
i
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
l
e
r
d
e
si
g
n
f
o
r
p
m
l
sm
p
o
s
i
t
i
o
n
c
o
n
t
r
o
l
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
P
o
w
e
r
El
e
c
t
ro
n
i
c
s
a
n
d
D
r
i
v
e
S
y
s
t
e
m
s
,
v
o
l
.
1
2
,
n
o
.
2
,
p
p
.
6
7
4
–
6
8
4
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
p
e
d
s
.
v
1
2
.
i
2
.
p
p
6
7
4
-
6
8
4
.
[
8
]
T.
D
.
C
h
u
y
e
n
e
t
a
l
.
,
“
I
mp
r
o
v
i
n
g
c
o
n
t
r
o
l
q
u
a
l
i
t
y
o
f
P
M
S
M
d
r
i
v
e
s
y
st
e
ms
b
a
se
d
o
n
a
d
a
p
t
i
v
e
f
u
z
z
y
sl
i
d
i
n
g
c
o
n
t
r
o
l
met
h
o
d
,
”
2
0
2
2
.
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
p
e
d
s.
v
1
3
.
i
2
.
p
p
8
3
5
-
8
4
5
.
[
9
]
A
.
S
a
g
h
a
f
i
n
i
a
,
H
.
W
.
P
i
n
g
,
M
.
N
.
U
d
d
i
n
,
a
n
d
K
.
S
.
G
a
e
i
d
,
“
A
d
a
p
t
i
v
e
f
u
z
z
y
s
l
i
d
i
n
g
-
mo
d
e
c
o
n
t
r
o
l
i
n
t
o
c
h
a
t
t
e
r
i
n
g
-
f
r
e
e
i
m
d
r
i
v
e
,
”
I
EEE
T
r
a
n
s
a
c
t
i
o
n
s
o
n
I
n
d
u
st
ry
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
5
1
,
n
o
.
1
,
p
p
.
6
9
2
–
7
0
1
,
2
0
1
5
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
A
.
2
0
1
4
.
2
3
2
8
7
1
1
.
[
1
0
]
P
.
J.
S
h
a
i
j
a
a
n
d
A
.
E.
D
a
n
i
e
l
,
“
R
o
b
u
st
S
l
i
d
i
n
g
M
o
d
e
C
o
n
t
r
o
l
S
t
r
a
t
e
g
y
A
p
p
l
i
e
d
t
o
I
F
O
C
I
n
d
u
c
t
i
o
n
M
o
t
o
r
D
r
i
v
e
,
”
i
n
2
0
2
1
4
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
El
e
c
t
ri
c
a
l
,
C
o
m
p
u
t
e
r
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s
,
I
C
EC
C
T
2
0
2
1
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
EC
C
T5
2
1
2
1
.
2
0
2
1
.
9
6
1
6
9
4
8
.
[
1
1
]
Y
.
S
h
t
e
ss
e
l
,
C
.
E
d
w
a
r
d
s
,
L.
F
r
i
d
m
a
n
,
a
n
d
A
.
L
e
v
a
n
t
,
S
l
i
d
i
n
g
M
o
d
e
C
o
n
t
ro
l
a
n
d
O
b
s
e
rv
a
t
i
o
n
,
v
o
l
.
1
0
.
i
n
C
o
n
t
r
o
l
En
g
i
n
e
e
r
i
n
g
,
v
o
l
.
1
0
.
N
e
w
Y
o
r
k
,
N
Y
:
S
p
r
i
n
g
e
r
N
e
w
Y
o
r
k
,
2
0
1
4
.
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
0
-
8
1
7
6
-
4
8
9
3
-
0.
[
1
2
]
C
.
F
.
H
u
a
n
g
,
J
.
S
.
L
i
n
,
T
.
L.
Li
a
o
,
C
.
Y
.
C
h
e
n
,
a
n
d
J
.
J
.
Y
a
n
,
“
Q
u
a
s
i
-
sl
i
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
o
f
c
h
a
o
s
i
n
p
e
r
m
a
n
e
n
t
ma
g
n
e
t
s
y
n
c
h
r
o
n
o
u
s
mo
t
o
r
,
”
M
a
t
h
e
m
a
t
i
c
a
l
Pr
o
b
l
e
m
s
i
n
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
2
0
1
1
,
2
0
1
1
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
1
1
/
9
6
4
2
4
0
.
[
1
3
]
K
.
B
.
S
i
d
d
e
s
h
,
B
.
B
a
n
a
k
a
r
a
,
a
n
d
R
.
S
h
i
v
a
r
u
d
r
a
sw
a
m
y
,
“
En
h
a
n
c
e
d
sl
i
d
i
n
g
mo
d
e
c
o
n
t
r
o
l
l
e
r
p
e
r
f
o
r
m
a
n
c
e
i
n
D
C
-
D
C
b
u
c
k
c
o
n
v
e
r
t
e
r
u
si
n
g
a
t
a
n
h
y
p
e
r
b
o
l
i
c
r
e
a
c
h
i
n
g
l
a
w
a
n
d
c
o
n
st
a
n
t
p
l
u
s
p
r
o
p
o
r
t
i
o
n
a
l
r
e
a
c
h
i
n
g
l
a
w
,
”
B
u
l
l
e
t
i
n
o
f
El
e
c
t
r
i
c
a
l
E
n
g
i
n
e
e
r
i
n
g
a
n
d
I
n
f
o
rm
a
t
i
c
s
,
v
o
l
.
9
,
n
o
.
2
,
p
p
.
5
2
5
–
5
3
2
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
5
9
1
/
e
e
i
.
v
9
i
2
.
2
1
0
0
.
[
1
4
]
P
.
J.
S
h
a
i
j
a
a
n
d
A
.
E.
D
a
n
i
e
l
,
“
P
a
r
a
met
e
r
Tu
n
i
n
g
o
f
S
l
i
d
i
n
g
M
o
d
e
S
p
e
e
d
C
o
n
t
r
o
l
l
e
r
o
f
I
n
d
u
c
t
i
o
n
M
o
t
o
r
D
r
i
v
e
U
si
n
g
T
e
a
c
h
i
n
g
-
Le
a
r
n
i
n
g
B
a
se
d
O
p
t
i
m
i
z
a
t
i
o
n
A
l
g
o
r
i
t
h
m
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
R
e
v
i
e
w
o
f
A
u
t
o
m
a
t
i
c
C
o
n
t
ro
l
,
v
o
l
.
1
5
,
n
o
.
1
,
p
p
.
2
8
–
3
7
,
2
0
2
2
,
d
o
i
:
1
0
.
1
5
8
6
6
/
i
r
e
a
c
o
.
v
1
5
i
1
.
2
1
9
5
3
.
[
1
5
]
J
.
R
.
B
.
A
.
M
o
n
t
e
i
r
o
,
C
.
M
.
R
.
O
l
i
v
e
i
r
a
,
a
n
d
M
.
L
.
A
g
u
i
a
r
,
“
S
l
i
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
o
f
b
r
u
s
h
l
e
s
s
D
C
m
o
t
o
r
s
p
e
e
d
w
i
t
h
c
h
a
t
t
e
r
i
n
g
r
e
d
u
c
t
i
o
n
,
”
I
E
E
E
I
n
t
e
r
n
a
t
i
o
n
a
l
S
y
m
p
o
s
i
u
m
o
n
I
n
d
u
s
t
r
i
a
l
E
l
e
c
t
r
o
n
i
c
s
,
v
o
l
.
2
0
1
5
-
S
e
p
t
e
m
b
e
r
,
p
p
.
5
4
2
–
5
4
7
,
2
0
1
5
,
d
o
i
:
1
0
.
1
1
0
9
/
I
S
I
E
.
2
0
1
5
.
7
2
8
1
5
2
5
.
[
1
6
]
C
.
C
.
S
o
o
n
,
R
.
G
h
a
z
a
l
i
,
M
.
F
.
G
h
a
n
i
,
C
.
M
.
S
h
e
r
n
,
Y
.
M
.
S
a
m,
a
n
d
Z.
H
a
s
,
“
C
h
a
t
t
e
r
i
n
g
A
n
a
l
y
s
i
s
o
f
a
n
O
p
t
i
mi
z
e
d
S
l
i
d
i
n
g
M
o
d
e
C
o
n
t
r
o
l
l
e
r
f
o
r
a
n
E
l
e
c
t
r
o
-
H
y
d
r
a
u
l
i
c
A
c
t
u
a
t
o
r
S
y
st
e
m,
”
J
o
u
r
n
a
l
o
f
R
o
b
o
t
i
c
s
a
n
d
C
o
n
t
r
o
l
(
J
R
C
)
,
v
o
l
.
3
,
n
o
.
2
,
p
p
.
1
6
0
–
1
6
5
,
2
0
2
2
,
d
o
i
:
1
0
.
1
8
1
9
6
/
j
r
c
.
v
3
i
2
.
1
3
6
7
1
.
[
1
7
]
M
.
M
a
n
c
i
n
i
,
E.
C
a
p
e
l
l
o
,
a
n
d
E.
P
u
n
t
a
,
“
S
l
i
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
w
i
t
h
c
h
a
t
t
e
r
i
n
g
a
t
t
e
n
u
a
t
i
o
n
a
n
d
h
a
r
d
w
a
r
e
c
o
n
st
r
a
i
n
t
s
i
n
s
p
a
c
e
c
r
a
f
t
a
p
p
l
i
c
a
t
i
o
n
s,
”
I
FA
C
-
P
a
p
e
rsO
n
L
i
n
e
,
v
o
l
.
5
3
,
n
o
.
2
,
p
p
.
5
1
4
7
–
5
1
5
2
,
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
f
a
c
o
l
.
2
0
2
0
.
1
2
.
1
1
7
4
.
[
1
8
]
O
.
B
a
r
a
mb
o
n
e
s
a
n
d
P
.
A
l
k
o
r
t
a
,
“
A
r
o
b
u
s
t
v
e
c
t
o
r
c
o
n
t
r
o
l
f
o
r
i
n
d
u
c
t
i
o
n
mo
t
o
r
d
r
i
v
e
s
w
i
t
h
a
n
a
d
a
p
t
i
v
e
sl
i
d
i
n
g
-
m
o
d
e
c
o
n
t
r
o
l
l
a
w
,
”
J
o
u
rn
a
l
o
f
t
h
e
Fra
n
k
l
i
n
I
n
st
i
t
u
t
e
,
v
o
l
.
3
4
8
,
n
o
.
2
,
p
p
.
3
0
0
–
3
1
4
,
2
0
1
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
f
r
a
n
k
l
i
n
.
2
0
1
0
.
1
1
.
0
0
8
.
[
1
9
]
P
.
K
.
C
h
o
u
d
h
a
r
y
a
n
d
U
.
K
.
C
h
o
u
d
h
a
r
y
,
“
Ef
f
i
c
i
e
n
c
y
o
p
t
i
m
i
z
a
t
i
o
n
o
f
p
u
mp
mo
t
o
r
d
r
i
v
e
a
t
s
t
e
a
d
y
-
st
a
t
e
c
o
n
d
i
t
i
o
n
,
”
i
n
I
EE
E
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
Po
w
e
r
,
C
o
n
t
r
o
l
,
S
i
g
n
a
l
s
a
n
d
I
n
s
t
ru
m
e
n
t
a
t
i
o
n
En
g
i
n
e
e
ri
n
g
,
I
C
P
C
S
I
2
0
1
7
,
2
0
1
8
,
p
p
.
3
4
2
–
3
4
7
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
P
C
S
I
.
2
0
1
7
.
8
3
9
2
3
1
2
.
[
2
0
]
A
.
M
.
B
a
z
z
i
a
n
d
P
.
T
.
K
r
e
i
n
,
“
R
e
v
i
e
w
o
f
met
h
o
d
s
f
o
r
r
e
a
l
-
t
i
m
e
l
o
ss
mi
n
i
mi
z
a
t
i
o
n
i
n
i
n
d
u
c
t
i
o
n
ma
c
h
i
n
e
s,
”
I
EE
E
T
ra
n
sa
c
t
i
o
n
s
o
n
I
n
d
u
st
r
y
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
4
6
,
n
o
.
6
,
p
p
.
2
3
1
9
–
2
3
2
8
,
2
0
1
0
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
A
.
2
0
1
0
.
2
0
7
0
4
7
5
.
[
2
1
]
P
.
K
.
C
h
o
u
d
h
a
r
y
,
S
.
P
.
D
u
b
e
y
,
B
.
T
i
w
a
r
i
,
a
n
d
B
.
D
e
w
a
n
g
a
n
,
“
Ef
f
i
c
i
e
n
c
y
o
p
t
i
m
i
z
a
t
i
o
n
o
f
i
n
d
u
c
t
i
o
n
m
o
t
o
r
d
r
i
v
e
u
si
n
g
A
r
t
i
f
i
c
i
a
l
N
e
u
r
a
l
N
e
t
w
o
r
k
,
”
i
n
2
0
1
6
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
E
n
e
r
g
y
E
f
f
i
c
i
e
n
t
T
e
c
h
n
o
l
o
g
i
e
s
f
o
r
S
u
st
a
i
n
a
b
i
l
i
t
y
,
I
C
E
ET
S
2
0
1
6
,
2
0
1
6
,
p
p
.
8
2
1
–
8
2
7
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
EETS.
2
0
1
6
.
7
5
8
3
8
6
0
.
[
2
2
]
P
.
M
e
l
o
,
R
.
d
e
,
a
n
d
R
.
Es
t
e
v
e
s
,
“
Ev
a
l
u
a
t
i
o
n
o
f
a
n
En
e
r
g
y
L
o
ss
-
M
i
n
i
m
i
z
a
t
i
o
n
A
l
g
o
r
i
t
h
m
f
o
r
EV
s
B
a
s
e
d
o
n
I
n
d
u
c
t
i
o
n
M
o
t
o
r
,
”
I
n
d
u
c
t
i
o
n
M
o
t
o
rs
-
M
o
d
e
l
l
i
n
g
a
n
d
C
o
n
t
r
o
l
,
2
0
1
2
,
d
o
i
:
1
0
.
5
7
7
2
/
5
2
2
8
0
.
[
2
3
]
D
.
S
.
K
i
r
sc
h
e
n
,
D
.
W
.
N
o
v
o
t
n
y
,
a
n
d
T
.
A
.
L
i
p
o
,
“
O
p
t
i
m
a
l
Ef
f
i
c
i
e
n
c
y
C
o
n
t
r
o
l
o
f
a
n
I
n
d
u
c
t
i
o
n
M
o
t
o
r
D
r
i
v
e
,
”
I
EE
E
T
ra
n
s
a
c
t
i
o
n
s
o
n
En
e
r
g
y
C
o
n
v
e
rsi
o
n
,
v
o
l
.
EC
-
2
,
n
o
.
1
,
p
p
.
7
0
–
7
6
,
M
a
r
.
1
9
8
7
,
d
o
i
:
1
0
.
1
1
0
9
/
T
EC
.
1
9
8
7
.
4
7
6
5
8
0
6
.
[
2
4
]
P
.
F
a
mo
u
r
i
a
n
d
J.
J.
C
a
t
h
e
y
,
“
L
o
ss
mi
n
i
m
i
z
a
t
i
o
n
c
o
n
t
r
o
l
o
f
a
n
i
n
d
u
c
t
i
o
n
m
o
t
o
r
d
r
i
v
e
,
”
I
E
EE
T
r
a
n
s
a
c
t
i
o
n
s
o
n
I
n
d
u
s
t
ry
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
2
7
,
n
o
.
1
,
p
p
.
3
2
–
3
7
,
1
9
9
1
,
d
o
i
:
1
0
.
1
1
0
9
/
2
8
.
6
7
5
2
9
.
[
2
5
]
C
.
M
.
Ta
a
n
d
Y
.
H
o
r
i
,
“
C
o
n
v
e
r
g
e
n
c
e
i
mp
r
o
v
e
m
e
n
t
o
f
e
f
f
i
c
i
e
n
c
y
-
o
p
t
i
mi
z
a
t
i
o
n
c
o
n
t
r
o
l
o
f
i
n
d
u
c
t
i
o
n
m
o
t
o
r
d
r
i
v
e
s
,
”
I
EEE
T
r
a
n
sa
c
t
i
o
n
s
o
n
I
n
d
u
st
ry
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
3
7
,
n
o
.
6
,
p
p
.
1
7
4
6
–
1
7
5
3
,
2
0
0
1
,
d
o
i
:
1
0
.
1
1
0
9
/
2
8
.
9
6
8
1
8
7
.
[
2
6
]
A
.
B
r
u
n
o
,
M
.
C
a
r
u
s
o
,
A
.
O
.
D
I
To
m
m
a
so
,
R
.
M
i
c
e
l
i
,
C
.
N
e
v
o
l
o
s
o
,
a
n
d
F
.
V
i
o
l
a
,
“
S
i
mp
l
e
a
n
d
F
l
e
x
i
b
l
e
P
o
w
e
r
L
o
ss
M
i
n
i
m
i
z
e
r
w
i
t
h
Lo
w
-
C
o
st
M
C
U
I
mp
l
e
me
n
t
a
t
i
o
n
f
o
r
H
i
g
h
-
Ef
f
i
c
i
e
n
c
y
T
h
r
e
e
-
P
h
a
s
e
I
n
d
u
c
t
i
o
n
M
o
t
o
r
D
r
i
v
e
s,
”
I
EEE
T
r
a
n
sa
c
t
i
o
n
s
o
n
I
n
d
u
st
r
y
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
5
7
,
n
o
.
2
,
p
p
.
1
4
7
2
–
1
4
8
1
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
A
.
2
0
2
1
.
3
0
5
1
5
8
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.