I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
wer
E
lect
ro
nics
a
nd
Driv
e
S
y
s
t
em
s
(
I
J
P
E
DS)
Vo
l.
1
6
,
No
.
1
,
Ma
r
ch
20
2
5
,
p
p
.
6
0
8
~
6
2
1
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/ijp
ed
s
.
v
1
6
.i
1
.
p
p
6
0
8
-
621
608
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
p
e
d
s
.
ia
esco
r
e.
co
m
Simula
tion a
nd v
erification o
f
imp
ro
v
ed particle s
w
a
rm
o
ptimiza
tion for
ma
x
imum
powe
r
po
int
tracki
ng
in
pho
tov
o
ltaic
sy
stems under
dyna
mic env
iro
nme
ntal co
ndition
s
M
uh
a
m
m
a
d K
ha
irul Az
m
a
n M
o
hd
J
a
m
ha
ri,
No
ra
zla
n
H
a
s
him
,
Ra
him
i Ba
ha
ro
m
,
M
uh
a
m
m
a
d M
urt
a
dh
a
O
t
hm
a
n
S
c
h
o
o
l
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
ri
n
g
,
Co
ll
e
g
e
o
f
En
g
i
n
e
e
rin
g
,
Un
i
v
e
rsit
i
Tek
n
o
lo
g
i
M
ARA
,
S
h
a
h
Ala
m
,
M
a
lay
sia
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
6
,
2
0
2
4
R
ev
is
ed
Sep
2
0
,
2
0
2
4
Acc
ep
ted
Oct
2
3
,
2
0
2
4
Th
is
p
a
p
e
r
i
n
tro
d
u
c
e
s
a
n
imp
r
o
v
e
d
p
a
rti
c
le
sw
a
rm
o
p
ti
m
iza
ti
o
n
(iP
S
O)
a
lg
o
rit
h
m
d
e
sig
n
e
d
fo
r
m
a
x
i
m
u
m
p
o
we
r
p
o
i
n
t
trac
k
in
g
(
M
P
P
T)
i
n
p
h
o
to
v
o
lt
a
ic
(P
V)
s
y
ste
m
s.
Th
e
p
r
o
p
o
se
d
a
lg
o
rit
h
m
i
n
c
o
rp
o
ra
tes
a
n
o
v
e
l
re
in
it
ializa
ti
o
n
m
e
c
h
a
n
ism
t
h
a
t
d
y
n
a
m
ica
ll
y
d
e
tec
ts
a
n
d
a
d
a
p
ts
t
o
e
n
v
iro
n
m
e
n
tal
c
h
a
n
g
e
s.
Ad
d
it
i
o
n
a
ll
y
,
a
n
e
x
p
o
n
e
n
ti
a
ll
y
d
e
c
re
a
sin
g
i
n
e
rti
a
we
ig
h
t
is
u
ti
li
z
e
d
t
o
b
a
lan
c
e
e
x
p
lo
r
a
ti
o
n
a
n
d
e
x
p
l
o
it
a
ti
o
n
,
e
n
su
r
in
g
ra
p
i
d
c
o
n
v
e
rg
e
n
c
e
to
th
e
g
lo
b
a
l
m
a
x
i
m
u
m
p
o
we
r
p
o
in
t
(G
M
P
P
).
A
d
e
term
in
isti
c
in
it
ializa
ti
o
n
stra
teg
y
is
e
m
p
l
o
y
e
d
to
u
n
if
o
rm
ly
d
istri
b
u
te p
a
rti
c
les
a
c
ro
ss
th
e
se
a
rc
h
sp
a
c
e
,
th
e
re
b
y
in
c
re
a
sin
g
t
h
e
li
k
e
li
h
o
o
d
o
f
id
e
n
ti
fy
in
g
t
h
e
G
M
P
P
.
Th
e
iP
S
O
a
lg
o
rit
h
m
is
t
h
o
r
o
u
g
h
l
y
e
v
a
lu
a
ted
u
sin
g
a
M
AT
LAB/S
imu
li
n
k
sim
u
latio
n
a
n
d
v
a
li
d
a
te
d
wit
h
re
a
l
-
ti
m
e
h
a
rd
wa
re
,
in
c
l
u
d
i
n
g
a
b
o
o
st
DC
-
DC
c
o
n
v
e
rter,
d
S
P
ACE,
a
n
d
a
C
h
r
o
m
a
P
V
sim
u
lato
r.
Co
m
p
a
ra
ti
v
e
a
n
a
l
y
sis
with
c
o
n
v
e
n
ti
o
n
a
l
P
S
O
a
n
d
P
S
O
-
re
in
it
a
l
g
o
rit
h
m
s
u
n
d
e
r
v
a
rio
u
s
irrad
ian
c
e
p
a
tt
e
rn
s
d
e
m
o
n
stra
tes
th
a
t
t
h
e
i
P
S
O
c
o
n
siste
n
t
ly
o
u
t
p
e
rfo
rm
s
in
term
s
o
f
c
o
n
v
e
rg
e
n
c
e
sp
e
e
d
a
n
d
M
P
P
T
e
ff
icie
n
c
y
.
Th
e
stu
d
y
h
ig
h
li
g
h
ts
th
e
r
o
b
u
st
n
e
ss
o
f
t
h
e
iP
S
O
a
lg
o
rit
h
m
in
b
ri
d
g
i
n
g
th
e
o
re
ti
c
a
l
m
o
d
e
ls
wit
h
p
ra
c
ti
c
a
l
a
p
p
li
c
a
t
io
n
s.
K
ey
w
o
r
d
s
:
Ar
tific
ial
in
tellig
en
ce
alg
o
r
ith
m
MA
T
L
AB
/S
im
u
lin
k
Ma
x
im
u
m
p
o
wer
p
o
i
n
t tr
ac
k
in
g
Par
ticle
s
war
m
o
p
tim
izatio
n
PV sy
s
tem
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
No
r
az
lan
Hash
im
Sch
o
o
l o
f
E
lectr
ical
E
n
g
in
ee
r
in
g
,
C
o
lleg
e
o
f
E
n
g
i
n
ee
r
in
g
,
U
n
iv
er
s
iti T
ek
n
o
lo
g
i M
AR
A
4
0
4
5
0
Sh
ah
Alam
,
Ma
la
y
s
ia
E
m
ail:
az
lan
4
4
7
7
@
u
itm
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
So
lar
en
er
g
y
h
as e
m
er
g
ed
as a
cr
itical
s
o
lu
tio
n
to
g
lo
b
al
en
e
r
g
y
ch
allen
g
es,
o
f
f
er
in
g
a
r
en
e
wab
le
an
d
en
v
ir
o
n
m
en
tally
f
r
ien
d
ly
alter
n
ativ
e
to
tr
ad
itio
n
al
en
er
g
y
s
o
u
r
ce
s
[
1
]
.
T
h
e
p
h
o
to
v
o
ltaic
(
PV)
ef
f
ec
t,
wh
ich
d
ir
ec
tly
co
n
v
er
ts
s
o
lar
r
ad
iatio
n
in
to
elec
tr
icity
with
th
e
h
elp
o
f
s
em
ico
n
d
u
cto
r
p
o
s
itiv
e
-
ty
p
e
an
d
n
eg
ativ
e
-
t
y
p
e
(
p
n
)
ju
n
ctio
n
s
,
f
o
r
m
s
th
e
b
asis
o
f
s
o
lar
p
o
wer
g
en
er
atio
n
.
Ho
wev
er
,
th
e
ef
f
icien
cy
o
f
PV
s
y
s
tem
s
is
h
ig
h
ly
s
u
s
ce
p
tib
le
to
en
v
ir
o
n
m
e
n
tal
f
ac
to
r
s
s
u
ch
as
ir
r
ad
ian
ce
an
d
t
em
p
er
atu
r
e,
r
esu
ltin
g
in
n
o
n
li
n
ea
r
p
o
wer
–
v
o
ltag
e
(P
–
V)
an
d
c
u
r
r
en
t
–
v
o
ltag
e
(
I
–
V)
ch
ar
ac
ter
is
t
ic
cu
r
v
es in
PV
ce
lls
.
T
o
m
ax
im
ize
th
e
e
f
f
icien
cy
o
f
PV
s
y
s
tem
s
,
m
ax
im
u
m
p
o
w
er
p
o
in
t
tr
ac
k
in
g
(
MPPT)
alg
o
r
ith
m
s
ar
e
em
p
lo
y
ed
[
2
]
,
[
3
]
.
T
h
ese
alg
o
r
ith
m
s
ar
e
in
teg
r
ated
in
to
DC
–
DC
co
n
v
er
ter
s
to
ex
tr
ac
t
th
e
m
ax
im
u
m
av
ailab
le
p
o
wer
u
n
d
er
v
ar
y
in
g
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
.
T
r
ad
itio
n
al
alg
o
r
ith
m
s
s
u
ch
as
p
er
t
u
r
b
a
n
d
o
b
s
er
v
e
(
P&
O)
,
h
ill
clim
b
in
g
(
HC
)
,
a
n
d
in
c
r
em
e
n
tal
co
n
d
u
ctan
ce
(
I
NC
)
[
4
]
-
[
1
1
]
a
r
e
p
o
p
u
lar
d
u
e
to
t
h
eir
s
im
p
licity
an
d
ef
f
ec
tiv
en
ess
u
n
d
e
r
u
n
i
f
o
r
m
ir
r
ad
ian
ce
,
b
u
t
th
ey
s
tr
u
g
g
le
with
p
ar
tial
s
h
ad
in
g
co
n
d
itio
n
s
(
P
SC
)
wh
er
e
m
u
lt
ip
le
lo
ca
l m
ax
im
u
m
p
o
wer
p
o
in
ts
(
L
MPPs
)
ex
is
t
[
1
2
]
-
[
1
4
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
S
imu
la
tio
n
a
n
d
ve
r
ifica
tio
n
o
f
imp
r
o
ve
d
p
a
r
ticle
s
w
a
r
m
…
(
Mu
h
a
mma
d
K
h
a
ir
u
l A
z
ma
n
M
o
h
d
Ja
m
h
a
r
i
)
609
I
n
r
esp
o
n
s
e
to
t
h
e
lim
itatio
n
s
o
f
co
n
v
en
tio
n
al
al
g
o
r
ith
m
s
,
ar
tific
ial
in
tellig
en
ce
(
AI
)
-
b
as
ed
MPPT
alg
o
r
ith
m
s
h
av
e
b
ee
n
d
e
v
elo
p
ed
.
Am
o
n
g
th
ese,
th
e
p
ar
ticle
s
war
m
o
p
tim
izatio
n
(
PS
O)
tech
n
iq
u
e
h
as
g
ain
ed
s
ig
n
if
ican
t
atten
tio
n
d
u
e
to
its
s
im
p
licity
an
d
r
o
b
u
s
tn
ess
[
1
5
]
.
Ho
wev
er
,
co
n
v
en
tio
n
al
PS
O
alg
o
r
ith
m
s
s
u
f
f
er
f
r
o
m
s
tag
n
atio
n
[
1
6
]
wh
e
n
n
o
t
p
r
o
p
e
r
ly
ad
a
p
ted
to
c
h
an
g
i
n
g
en
v
ir
o
n
m
en
ts
,
an
d
o
f
ten
co
n
v
er
g
e
to
lo
ca
l r
ath
er
th
an
g
lo
b
al
m
ax
im
u
m
p
o
wer
p
o
in
ts
,
esp
ec
ially
with
a
s
m
all
n
u
m
b
er
o
f
p
ar
ticles
[
1
7
]
.
T
o
o
v
er
co
m
e
th
ese
c
h
allen
g
es
,
th
is
p
a
p
er
p
r
esen
ts
an
im
p
r
o
v
ed
PS
O
(
iPS
O)
MPPT
alg
o
r
ith
m
.
T
h
e
iPS
O
alg
o
r
ith
m
in
clu
d
es
a
r
e
al
-
tim
e
m
ec
h
an
is
m
t
o
d
etec
t
d
y
n
am
ic
en
v
ir
o
n
m
en
tal
ch
an
g
es
an
d
r
ein
itialize
MPPT
wh
en
s
ig
n
if
ican
t
ir
r
ad
ian
ce
ch
an
g
es
o
cc
u
r
.
I
t
ex
p
o
n
en
ti
ally
d
ec
r
ea
s
es
th
e
in
er
tia
weig
h
t
to
b
alan
ce
ex
p
lo
r
atio
n
an
d
ex
p
lo
itatio
n
,
th
er
eb
y
ac
ce
ler
atin
g
co
n
v
er
g
en
ce
.
Ad
d
itio
n
ally
,
it
em
p
l
o
y
s
a
d
eter
m
in
is
tic
in
itializatio
n
s
tr
ateg
y
to
d
is
tr
ib
u
te
p
ar
ticles
u
n
if
o
r
m
ly
ac
r
o
s
s
th
e
s
ea
r
ch
s
p
ac
e,
in
cr
ea
s
in
g
th
e
lik
elih
o
o
d
o
f
f
in
d
in
g
t
h
e
g
lo
b
al
m
ax
im
u
m
p
o
wer
p
o
in
t.
T
o
ass
ess
th
e
ef
f
ec
tiv
en
ess
o
f
th
e
p
r
o
p
o
s
ed
iPS
O
alg
o
r
ith
m
,
a
s
tan
d
-
alo
n
e
PV
s
y
s
tem
wit
h
a
b
o
o
s
t
DC
-
DC
co
n
v
er
ter
is
d
ev
elo
p
ed
in
MA
T
L
AB
/Si
m
u
lin
k
an
d
v
alid
ated
in
r
ea
l
-
tim
e
h
ar
d
war
e
u
s
in
g
a
DS1
1
0
4
d
SP
AC
E
(
co
n
tr
o
l
d
esk
)
an
d
a
C
h
r
o
m
a
6
2
0
0
0
H
PV
s
im
u
lato
r
.
T
h
e
iPS
O
'
s
p
er
f
o
r
m
an
ce
is
co
m
p
ar
ed
to
ex
is
tin
g
alg
o
r
ith
m
s
u
n
d
er
u
n
if
o
r
m
ir
r
a
d
ian
ce
,
r
ap
i
d
ir
r
ad
ia
n
ce
s
tep
c
h
an
g
es,
an
d
p
ar
tial sh
ad
in
g
co
n
d
itio
n
s
.
T
h
is
p
ap
e
r
is
o
r
g
an
ized
as
f
o
llo
ws:
s
ec
tio
n
2
o
u
tlin
es
th
e
m
eth
o
d
o
lo
g
y
,
in
clu
d
in
g
th
e
im
p
lem
en
tatio
n
o
f
th
e
iPS
O
;
se
ctio
n
3
p
r
o
v
id
es a
n
o
v
er
v
iew
o
f
th
e
s
y
s
tem
;
se
ctio
n
s
4
an
d
5
co
v
e
r
th
e
s
im
u
latio
n
an
d
h
ar
d
war
e
s
etu
p
,
r
esp
ec
tiv
ely
;
s
ec
tio
n
6
p
r
esen
ts
th
e
r
esu
lts
a
n
d
d
is
cu
s
s
io
n
; a
n
d
s
ec
tio
n
7
c
o
n
clu
d
es th
e
s
tu
d
y
.
2.
M
E
T
H
O
DO
L
O
G
Y
2
.
1
.
I
m
plem
ent
a
t
io
n o
f
iPSO
m
et
ho
d
Par
ticle
s
war
m
o
p
tim
izatio
n
(
PS
O)
is
an
ar
tific
ial
in
tellig
en
ce
o
p
tim
izatio
n
tech
n
i
q
u
e
in
s
p
ir
ed
b
y
th
e
co
llectiv
e
b
eh
a
v
io
r
o
f
b
ir
d
s
an
d
f
is
h
.
I
n
PS
O,
p
o
ten
tial
s
o
lu
tio
n
s
ar
e
r
ep
r
esen
ted
as
p
ar
ticles
with
in
a
m
u
ltid
im
en
s
io
n
al
s
ea
r
ch
s
p
ac
e,
wh
er
e
t
h
ey
a
d
ju
s
t
th
eir
p
o
s
itio
n
s
b
ased
o
n
b
o
t
h
th
eir
in
d
iv
id
u
al
b
est
-
k
n
o
w
n
p
o
s
itio
n
s
an
d
th
e
b
est
-
k
n
o
wn
p
o
s
itio
n
s
with
in
th
e
s
war
m
.
T
h
e
co
n
v
e
n
tio
n
al
PS
O
alg
o
r
it
h
m
in
co
r
p
o
r
ates
an
in
er
tia
weig
h
t,
as
in
tr
o
d
u
ce
d
b
y
Sh
i
an
d
E
b
er
h
a
r
t
in
1
9
9
8
,
to
b
alan
ce
th
e
tr
ad
e
-
o
f
f
b
etwe
en
ex
p
lo
r
atio
n
an
d
ex
p
lo
itatio
n
[
1
8
]
.
T
h
e
iPS
O
alg
o
r
ith
m
d
e
v
elo
p
e
d
in
th
is
r
esear
ch
b
u
ild
s
u
p
o
n
t
h
e
co
n
v
en
tio
n
al
PS
O
b
y
in
teg
r
atin
g
a
n
o
v
el
m
ec
h
an
is
m
aim
ed
at
en
h
a
n
cin
g
o
p
tim
i
za
tio
n
ef
f
icien
cy
.
T
h
is
m
ec
h
a
n
is
m
,
illu
s
tr
ated
in
Fig
u
r
e
1
,
ad
d
r
ess
es
th
e
in
h
er
en
t
lim
itatio
n
s
o
f
th
e
co
n
v
en
t
io
n
al
PS
O.
T
h
e
f
o
llo
win
g
s
ec
tio
n
will
p
r
o
v
id
e
a
d
etailed
d
is
cu
s
s
io
n
o
f
th
is
n
o
v
el
m
ec
h
an
is
m
an
d
its
im
p
ac
t
o
n
th
e
o
p
tim
izatio
n
p
r
o
ce
s
s
.
Fig
u
r
e
1
.
Flo
wch
ar
t
o
f
th
e
iPS
O
o
p
tim
izatio
n
p
r
o
ce
s
s
2
.
2
.
I
nitia
liza
t
io
n a
nd
f
it
nes
s
ca
lc
ula
t
io
n
T
h
e
in
itializatio
n
an
d
f
itn
ess
ca
lcu
latio
n
p
r
o
ce
s
s
b
eg
in
s
b
y
r
a
n
d
o
m
ly
g
en
er
atin
g
a
p
r
ed
ef
i
n
e
d
n
u
m
b
er
o
f
p
ar
ticles (
NP)
with
in
th
e
b
o
u
n
d
ar
ies o
f
th
e
s
ea
r
ch
s
p
ac
e,
a
s
o
u
tlin
ed
in
(
1
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
1
6
,
No
.
1
,
Ma
r
c
h
20
2
5
:
608
-
621
610
=
1
:
−
1
=
+
(
−
)
×
⋅
(
1
)
Her
e,
(
x
)
r
ep
r
esen
ts
th
e
i
n
itial
p
o
s
itio
n
o
f
th
e
(
k
-
1
)
p
a
r
ticle,
L
B
an
d
UB
s
ig
n
if
y
th
e
lo
wer
a
n
d
u
p
p
er
b
o
u
n
d
s
o
f
th
e
s
ea
r
c
h
s
p
ac
e
r
es
p
ec
tiv
ely
,
an
d
r
an
d
is
a
r
an
d
o
m
ly
g
en
er
ate
d
n
u
m
b
er
f
r
o
m
a
u
n
if
o
r
m
d
is
tr
ib
u
tio
n
b
etwe
en
0
an
d
1
.
T
h
e
(
1
)
s
p
ec
if
ies
th
at
ea
ch
p
ar
ticle'
s
p
o
s
itio
n
co
r
r
esp
o
n
d
s
to
th
e
d
u
ty
c
y
cle
o
f
t
h
e
co
n
v
er
ter
,
co
n
s
tr
ain
ed
b
etwe
en
0
an
d
1
.
Du
e
to
th
e
in
h
er
e
n
t
s
to
ch
asti
c
n
atu
r
e
o
f
th
e
PS
O
alg
o
r
ith
m
,
p
ar
ticles
m
ay
in
itiate
th
eir
s
ea
r
ch
f
r
o
m
s
u
b
o
p
tim
al
p
o
s
itio
n
s
,
wh
ich
co
u
ld
p
o
ten
tial
ly
s
lo
w
d
o
wn
co
n
v
er
g
e
n
ce
to
t
h
e
g
lo
b
al
o
p
tim
u
m
.
T
o
m
itig
ate
th
is
is
s
u
e,
in
cr
ea
s
i
n
g
th
e
n
u
m
b
e
r
o
f
p
ar
ticles
(
N
P)
is
o
f
ten
r
ec
o
m
m
en
d
ed
;
h
o
wev
er
,
th
is
a
p
p
r
o
ac
h
ca
n
r
esu
lt i
n
r
e
d
u
ce
d
tr
ac
k
i
n
g
s
p
ee
d
.
T
h
is
t
r
ad
e
-
o
f
f
is
ad
d
r
ess
ed
b
y
im
p
lem
en
ti
n
g
a
d
e
te
r
m
in
is
tic
in
itializatio
n
m
eth
o
d
(
DI
M
)
,
as d
escr
ib
ed
in
[
1
9
]
an
d
illu
s
tr
ated
in
(
2
)
:
=
0
:
(
−
1
)
−
1
=
[
+
0
.
1
⋅
(
−
)
]
+
[
0
.
8
⋅
(
−
)
(
−
1
)
]
.
(
2
)
Fu
r
th
er
m
o
r
e
,
th
e
in
itial
v
elo
city
o
f
ea
ch
p
ar
ticle
(
−
1
)
is
r
an
d
o
m
ly
ass
ig
n
ed
with
in
2
0
%
o
f
th
e
d
esig
n
ated
v
elo
city
r
an
g
e
,
ad
h
er
in
g
to
th
e
co
n
s
tr
ain
t in
(
3
)
:
−
1
=
(
×
×
0
.
2
)
(
3
)
Her
e,
v
min
an
d
v
max
a
r
e
th
e
p
r
ed
eter
m
in
ed
lo
wer
a
n
d
u
p
p
e
r
v
el
o
city
lim
its
,
r
esp
ec
tiv
ely
.
Su
b
s
eq
u
en
tly
,
t
h
e
f
itn
ess
o
f
ea
ch
p
ar
ticle
is
ass
es
s
ed
u
s
in
g
th
e
o
b
jectiv
e
f
u
n
ctio
n
(
x
)
,
as sp
ec
if
ied
in
(
4
)
:
(
)
=
(
(
)
=
(
)
×
(
)
)
(
4
)
wh
er
e
V
PV
, I
PV
,
an
d
P
PV
ar
e
th
e
PV a
r
r
ay
o
u
t
p
u
t v
o
ltag
e,
cu
r
r
en
t a
n
d
p
o
wer
,
r
esp
ec
tiv
ely
.
2
.
3
.
Upda
t
e
po
s
it
io
n a
nd
f
it
nes
s
ca
lcula
t
io
n
E
ac
h
p
ar
ticle
with
in
th
e
alg
o
r
ith
m
iter
ativ
ely
ex
p
l
o
r
es
th
e
s
ea
r
ch
s
p
ac
e
to
id
en
tif
y
th
e
o
p
tim
al
s
o
lu
tio
n
b
y
u
p
d
atin
g
its
p
o
s
itio
n
(
x
)
an
d
v
elo
city
(
v
)
as o
u
tlin
ed
in
(
5
)
:
=
−
1
+
(
5
)
wh
er
e
an
d
ar
e
th
e
p
o
s
itio
n
an
d
v
elo
city
o
f
th
e
i
th
p
a
r
ticle
at
iter
atio
n
(
k
)
,
r
esp
ec
tiv
ely
.
,
as
d
escr
ib
ed
in
(
5
)
,
is
in
f
lu
en
ce
d
b
y
b
o
th
th
e
in
d
iv
id
u
al'
s
b
est h
i
s
to
r
ical
p
o
s
itio
n
(
P
best
)
an
d
th
e
b
est
-
k
n
o
wn
p
o
s
itio
n
am
o
n
g
all
p
ar
ticles
in
t
h
e
s
war
m
(
G
best
)
.
T
h
is
d
u
al
i
n
f
lu
en
ce
aim
s
t
o
b
alan
ce
in
d
iv
id
u
al
lear
n
in
g
an
d
s
o
cial
lea
r
n
in
g
with
in
th
e
s
war
m
.
T
h
e
u
p
d
ate
d
v
elo
city
is
ca
lcu
lated
as f
o
llo
ws:
=
−
1
⋅
−
1
+
1
⋅
(
−
1
−
−
1
)
+
2
⋅
(
−
1
−
−
1
)
(
6
)
wh
er
e
−
1
is
th
e
in
e
r
tia
weig
h
t
co
n
tr
o
llin
g
th
e
v
elo
city
at
ite
r
atio
n
(
k
-
1)
;
c
1
an
d
c
2
ar
e
th
e
ac
ce
ler
atio
n
co
n
s
tan
ts
th
at
g
o
v
er
n
r
elativ
e
v
elo
city
with
r
esp
ec
t to
P
best
a
n
d
G
best
,
r
esp
ec
tiv
ely
.
T
o
ef
f
ec
tiv
ely
m
an
a
g
e
th
e
ex
p
lo
r
atio
n
-
ex
p
l
o
itatio
n
tr
ad
e
-
o
f
f
d
u
r
in
g
th
e
o
p
tim
izatio
n
p
r
o
ce
s
s
,
th
e
in
er
tia
weig
h
t
ω
is
d
y
n
am
ically
ad
ju
s
ted
.
A
lar
g
er
ω
p
r
o
m
o
tes
b
r
o
a
d
er
s
ea
r
ch
b
eh
av
i
o
r
,
f
ac
ilit
atin
g
g
lo
b
al
ex
p
lo
r
atio
n
,
wh
ile
a
s
m
aller
ω
en
h
an
ce
s
th
e
p
ar
ticle'
s
ab
ilit
y
to
f
in
e
-
t
u
n
e
its
s
ea
r
ch
ar
o
u
n
d
its
b
est
-
k
n
o
wn
p
o
s
itio
n
,
th
e
r
eb
y
s
u
p
p
o
r
tin
g
l
o
ca
l
ex
p
lo
itatio
n
.
T
y
p
ically
,
t
h
e
ad
ju
s
tm
en
t
o
f
ω
is
im
p
le
m
en
ted
b
y
lin
ea
r
ly
d
ec
r
ea
s
in
g
its
v
alu
e
o
v
er
th
e
c
o
u
r
s
e
o
f
iter
atio
n
s
,
as illu
s
tr
ated
in
(
7
)
:
+
1
=
(
(
+
)
)
(
7
)
wh
er
e
max
an
d
min
ar
e
t
h
e
m
ax
im
u
m
an
d
m
in
im
u
m
v
al
u
es
o
f
,
r
esp
ec
tiv
ely
;
I
ter
max
is
th
e
m
ax
im
u
m
n
u
m
b
er
o
f
iter
atio
n
s
; a
n
d
(
k
)
an
d
(
k+1
)
ar
e
th
e
c
u
r
r
en
t a
n
d
n
ex
t iter
a
tio
n
n
u
m
b
er
s
,
r
esp
ec
tiv
ely
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
S
imu
la
tio
n
a
n
d
ve
r
ifica
tio
n
o
f
imp
r
o
ve
d
p
a
r
ticle
s
w
a
r
m
…
(
Mu
h
a
mma
d
K
h
a
ir
u
l A
z
ma
n
M
o
h
d
Ja
m
h
a
r
i
)
611
I
n
th
is
r
esear
ch
,
to
ac
ce
ler
ate
c
o
n
v
er
g
en
ce
to
th
e
o
p
tim
al
s
o
lu
tio
n
,
th
e
in
er
tia
weig
h
t
ω
is
d
y
n
am
ically
r
ed
u
ce
d
ac
co
r
d
i
n
g
to
an
e
x
p
o
n
en
tial
d
ec
ay
m
o
d
el,
as
d
etailed
in
(
8
)
.
T
h
is
m
o
d
el
is
d
ep
icted
in
Fig
u
r
e
2
,
wh
ich
co
m
p
ar
es th
e
co
n
v
er
g
en
ce
p
r
o
f
iles
o
f
in
e
r
tia
weig
h
t
d
ec
ay
u
s
in
g
b
o
th
lin
ea
r
a
n
d
ex
p
o
n
en
tia
l m
eth
o
d
s
(
(
7
)
a
n
d
(
8
)
,
r
esp
ec
tiv
ely
)
.
Fo
llo
win
g
ea
ch
iter
atio
n
,
th
e
f
itn
ess
o
f
a
p
ar
ticle
is
ass
e
s
s
ed
u
s
in
g
th
e
f
u
n
ctio
n
d
escr
ib
ed
p
r
ev
io
u
s
ly
i
n
(
4
)
:
+
1
=
(
(
1
−
)
+
)
(
8
)
wh
er
e
is
th
e
d
ec
ay
r
ate,
wh
i
ch
in
th
is
s
tu
d
y
is
s
et
at
0
.
4
5
.
Fig
u
r
e
2
.
C
o
n
v
er
g
e
n
ce
p
lo
t
o
f
ω
2
.
4
.
Select
io
n
I
n
th
e
s
elec
tio
n
p
h
ase
o
f
t
h
is
s
t
u
d
y
,
th
e
t
o
u
r
n
a
m
en
t
s
elec
tio
n
m
eth
o
d
is
em
p
lo
y
e
d
to
d
eter
m
in
e
wh
ich
p
ar
ticles
ad
v
an
ce
t
o
th
e
s
u
b
s
eq
u
en
t
iter
atio
n
.
T
h
is
m
eth
o
d
was
ch
o
s
en
f
o
r
its
s
im
p
licity
an
d
ea
s
e
o
f
im
p
lem
en
tatio
n
.
I
t
in
v
o
lv
es
a
co
m
p
ar
ativ
e
e
v
alu
atio
n
in
wh
i
ch
p
ar
ticles
f
r
o
m
th
e
c
u
r
r
en
t
iter
atio
n
ar
e
m
atch
ed
ag
ain
s
t
th
o
s
e
f
r
o
m
t
h
e
p
r
ev
io
u
s
iter
atio
n
b
ased
o
n
th
eir
f
it
n
ess
v
alu
es.
T
h
e
p
ar
ticle
with
th
e
s
u
p
e
r
io
r
f
itn
ess
v
alu
e
is
r
etain
e
d
f
o
r
th
e
n
ex
t
iter
atio
n
,
en
s
u
r
in
g
th
at
o
n
ly
th
e
m
o
s
t
p
r
o
m
is
in
g
ca
n
d
id
at
es
ar
e
s
elec
ted
f
o
r
p
r
o
g
r
ess
io
n
,
as
d
etailed
in
(
9
)
.
=
{
(
)
>
(
−
1
)
−
1
(
9
)
2
.
5
.
Sto
pp
ing
cr
it
er
io
n
T
h
e
u
p
d
ate
o
f
p
a
r
ticle
p
o
s
itio
n
s
an
d
v
elo
cities
co
n
tin
u
es
iter
a
tiv
ely
u
n
til
a
s
p
ec
if
ied
s
to
p
p
in
g
cr
iter
io
n
is
m
et.
Sto
p
p
in
g
cr
iter
ia
ar
e
cr
u
cial
f
o
r
en
s
u
r
i
n
g
e
f
f
icien
t
al
g
o
r
ith
m
p
er
f
o
r
m
an
ce
an
d
ar
e
g
en
er
ally
tailo
r
e
d
to
th
e
p
ar
ticu
lar
r
e
q
u
ir
em
en
ts
o
f
th
e
alg
o
r
ith
m
a
n
d
th
e
p
r
o
b
le
m
co
n
tex
t.
I
n
t
h
is
s
tu
d
y
,
th
e
s
im
u
latio
n
is
ter
m
in
ated
o
n
ce
a
p
r
ed
eter
m
in
e
d
tim
e
th
r
esh
o
ld
o
f
4
0
s
ec
o
n
d
s
is
r
ea
ch
e
d
.
2
.
6
.
Det
ec
t
io
n o
f
dy
na
m
ic
env
iro
nm
ent
a
l c
ha
ng
es
As
th
e
iter
ativ
e
p
r
o
ce
s
s
p
r
o
g
r
ess
es,
th
e
v
elo
city
o
f
p
ar
ticles
with
in
th
e
alg
o
r
ith
m
ten
d
s
to
d
ec
r
ea
s
e,
wh
ich
ca
n
lead
to
p
o
ten
tial
s
tag
n
atio
n
a
n
d
r
e
d
u
ce
d
ad
ap
ta
b
ilit
y
to
d
y
n
am
ic
en
v
ir
o
n
m
en
tal
c
h
an
g
es.
T
o
ad
d
r
ess
th
is
is
s
u
e,
th
e
iPS
O
alg
o
r
it
h
m
in
co
r
p
o
r
ates
a
r
ei
n
itializatio
n
m
ec
h
an
is
m
.
T
h
is
m
e
ch
an
is
m
tr
ig
g
er
s
a
r
ein
itializatio
n
o
f
th
e
alg
o
r
ith
m
wh
en
s
ig
n
if
ica
n
t
en
v
ir
o
n
m
en
tal
ch
an
g
es
a
r
e
d
etec
ted
,
s
p
ec
if
ically
wh
en
th
e
m
ag
n
itu
d
e
o
f
th
e
n
o
r
m
alize
d
p
o
wer
ex
ce
ed
s
a
th
r
esh
o
ld
v
al
u
e
(
Th
r
e
)
,
as
s
p
ec
if
ied
in
(
1
0
)
.
T
h
e
s
elec
tio
n
o
f
th
is
th
r
esh
o
ld
is
b
ased
o
n
em
p
ir
ic
al
o
b
s
er
v
atio
n
s
ac
r
o
s
s
v
ar
io
u
s
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
a
n
d
is
s
u
p
p
o
r
ted
b
y
ex
is
tin
g
liter
atu
r
e
[
2
0
]
.
T
h
is
ap
p
r
o
ac
h
en
s
u
r
es
th
at
th
e
al
g
o
r
ith
m
r
em
ain
s
r
esp
o
n
s
iv
e
an
d
ef
f
ec
tiv
e
u
n
d
er
v
ar
y
in
g
co
n
d
itio
n
s
.
|
−
1
|
=
|
−
−
1
−
1
|
>
ℎ
(
1
0
)
wh
er
e
an
d
−
1
ar
e
th
e
PV o
u
tp
u
t
p
o
wer
at
iter
atio
n
s
(
k
)
an
d
(
k
-
1
)
,
r
esp
ec
tiv
ely
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
1
6
,
No
.
1
,
Ma
r
c
h
20
2
5
:
608
-
621
612
3.
SYST
E
M
O
VE
R
VI
E
W
Fig
u
r
e
3
illu
s
tr
ates
a
s
tan
d
-
alo
n
e
p
h
o
to
v
o
ltaic
(
SAPV)
s
y
s
tem
eq
u
ip
p
ed
with
a
co
n
v
en
tio
n
al
m
ax
im
u
m
p
o
wer
p
o
in
t
tr
ac
k
i
n
g
(
MPPT)
alg
o
r
ith
m
,
ty
p
ically
im
p
lem
en
ted
u
s
in
g
a
DC
-
DC
b
o
o
s
t
co
n
v
er
ter
.
T
h
is
s
y
s
tem
co
m
p
r
is
es
a
PV
ar
r
ay
,
a
n
MPPT
alg
o
r
ith
m
m
o
d
u
le,
a
DC
-
DC
co
n
v
er
ter
,
a
p
u
ls
e
-
wid
th
m
o
d
u
latio
n
(
PW
M)
g
en
er
ato
r
,
an
d
a
lo
a
d
r
esis
to
r
[
2
1
]
.
T
h
e
DC
-
DC
co
n
v
er
ter
ad
ju
s
ts
th
e
PV
ar
r
ay
’
s
v
o
ltag
e
to
m
atch
th
e
lo
ad
r
eq
u
ir
em
en
ts
,
wh
ile
th
e
MPPT
alg
o
r
ith
m
r
eg
u
lates
th
e
co
n
v
er
ter
'
s
d
u
ty
cy
cle
(
D)
to
m
an
ag
e
th
e
v
o
ltag
e
b
o
o
s
t.
T
h
e
PW
M
g
en
er
ato
r
p
r
o
d
u
ce
s
a
p
u
ls
e
-
wid
th
m
o
d
u
latio
n
s
ig
n
al
b
ased
o
n
th
is
d
u
ty
c
y
cle,
wh
ich
in
tu
r
n
co
n
tr
o
ls
th
e
o
n
/o
f
f
r
atio
o
f
th
e
s
witch
in
g
elem
en
t in
th
e
DC
-
DC
co
n
v
er
ter
to
r
eg
u
late
th
e
o
u
tp
u
t v
o
ltag
e.
Fig
u
r
e
4
d
ep
icts
th
e
two
-
d
io
d
e
m
o
d
el
o
f
a
PV
ce
ll,
o
f
f
er
in
g
a
d
etailed
r
ep
r
esen
tatio
n
o
f
th
e
ce
ll
'
s
ch
ar
ac
ter
is
tics
ess
en
tial
f
o
r
ac
cu
r
ate
s
im
u
latio
n
an
d
an
aly
s
is
.
T
h
is
m
o
d
el
in
co
r
p
o
r
ates
two
d
io
d
es,
ea
c
h
ac
co
u
n
tin
g
f
o
r
d
if
f
er
e
n
t
r
ec
o
m
b
in
atio
n
lo
s
s
es
with
i
n
th
e
ce
ll
[
2
2
]
.
T
h
e
p
h
o
to
-
g
e
n
er
ated
c
u
r
r
en
t
(
I
ph
)
,
in
f
l
u
en
ce
d
b
y
s
o
lar
ir
r
ad
ian
ce
a
n
d
tem
p
e
r
atu
r
e,
f
lo
ws
th
r
o
u
g
h
a
cir
c
u
it
th
at
in
clu
d
es
th
ese
d
io
d
es,
a
s
er
ies
r
esi
s
to
r
(
R
s
)
,
an
d
a
s
h
u
n
t r
esis
to
r
(
R
sh
)
,
th
e
r
eb
y
af
f
ec
tin
g
th
e
ce
ll'
s
o
v
er
all
cu
r
r
en
t
o
u
tp
u
t
(
I
cell
).
=
ℎ
−
1
[
(
+
1
1
)
−
1
]
−
2
[
(
+
2
2
)
−
1
]
−
(
+
)
(
1
1
)
M
P
P
T
a
l
g
o
ri
t
h
m
P
W
M
g
e
n
e
ra
t
o
r
+
-
+
-
I
PV
V
PV
D
u
t
y
c
y
c
l
e
(
D
)
P
W
M
S
i
g
n
a
l
DC
-
D
C
b
o
o
s
t
c
o
n
v
e
r
t
e
r
L
o
a
d
re
s
i
s
t
a
n
c
e
P
V
a
rra
y
R
eq
Fig
u
r
e
1
.
B
lo
ck
d
iag
r
am
o
f
th
e
SAPV sy
s
tem
wi
th
MPPT
I
o1
I
o2
I
P
R
S
I
ph
D
i
od
e
1
D
i
od
e
2
R
P
+
-
I
c
e
l
l
V
c
e
l
l
Fig
u
r
e
2
.
T
h
e
two
-
d
i
o
d
e
PV c
ell
m
o
d
el
Acc
o
r
d
in
g
to
(
1
1
)
,
i
n
th
is
m
o
d
el,
I
ph
r
ep
r
esen
ts
th
e
p
h
o
to
cu
r
r
en
t,
wh
ile
I
o1
an
d
I
o
2
d
en
o
te
th
e
r
ev
er
s
e
s
atu
r
atio
n
cu
r
r
en
ts
f
o
r
d
io
d
es
D
1
an
d
D
2
,
r
esp
ec
tiv
ely
.
V
T1
an
d
V
T2
a
r
e
th
e
th
er
m
al
v
o
ltag
es
ass
o
ciate
d
with
d
io
d
es
D
1
an
d
D
2
.
T
h
e
co
n
s
tan
ts
1
an
d
2
ar
e
th
e
id
ea
li
t
y
f
ac
to
r
s
th
at
in
f
lu
en
ce
th
e
d
io
d
es'
r
esp
o
n
s
e
to
v
ar
iatio
n
s
in
tem
p
er
at
u
r
e
an
d
cu
r
r
en
t
f
l
o
w.
V
cell
s
ig
n
if
ies
th
e
o
u
tp
u
t
v
o
ltag
e
o
f
th
e
s
o
lar
c
ell.
r
ef
er
s
to
th
e
s
er
ies
r
esi
s
tan
ce
,
an
d
P
(
p
ar
allel
r
esis
tan
ce
)
i
s
al
s
o
s
tan
d
ar
d
ized
ac
r
o
s
s
th
e
ce
ll.
T
h
ese
p
ar
a
m
eter
s
co
llectiv
ely
im
p
ac
t th
e
elec
tr
ical
ch
ar
ac
ter
is
tics
an
d
ef
f
icien
cy
o
f
t
h
e
p
h
o
to
v
o
ltaic
ce
ll.
I
n
th
e
cu
r
r
en
t
r
esear
ch
,
we
an
a
ly
ze
a
PV
m
o
d
u
le,
s
p
ec
if
ically
th
e
SP
M0
5
0
-
P
f
r
o
m
So
lar
Po
wer
Ma
r
t
,
wh
ich
co
n
s
is
ts
o
f
3
6
s
o
lar
ce
lls
co
n
n
ec
ted
in
s
er
ies
an
d
o
f
f
er
s
a
p
ea
k
p
o
wer
o
u
t
p
u
t
o
f
5
0
watts
(
W
p
)
.
T
h
e
ch
ar
ac
ter
is
tics
o
f
th
is
m
o
d
u
le
u
n
d
e
r
s
tan
d
ar
d
test
co
n
d
itio
n
s
(
STC)
ar
e
s
y
s
tem
atica
lly
p
r
esen
ted
in
T
ab
le
1
,
in
clu
d
in
g
m
etr
ics
s
u
ch
as
m
a
x
im
u
m
p
o
wer
(
P
max
)
,
v
o
ltag
e
at
m
ax
im
u
m
p
o
wer
(
V
mpp
)
,
c
u
r
r
en
t
at
m
ax
im
u
m
p
o
wer
(
I
mpp
)
,
o
p
en
-
cir
c
u
it
v
o
ltag
e
(
V
oc
)
,
s
h
o
r
t
-
cir
cu
it
c
u
r
r
e
n
t
(
I
sc
)
,
an
d
th
e
tem
p
er
atu
r
e
c
o
ef
f
ici
en
ts
f
o
r
P
max
,
V
oc
,
an
d
I
sc
.
Fig
u
r
e
5
illu
s
tr
ates
th
e
co
n
f
ig
u
r
atio
n
o
f
th
e
PV
ar
r
ay
u
s
ed
i
n
th
is
s
tu
d
y
,
wh
ic
h
co
m
p
r
is
es
a
s
er
ies
ar
r
an
g
em
e
n
t
o
f
f
iv
e
s
u
ch
m
o
d
u
les,
d
esig
n
ated
as
5
S1
P.
T
h
is
s
etu
p
m
ain
tain
s
a
co
n
s
tan
t
te
m
p
er
atu
r
e
o
f
2
5
°C
to
s
im
p
lify
th
e
an
al
y
s
is
an
d
en
s
u
r
e
co
n
s
is
ten
cy
in
ev
al
u
atin
g
th
e
m
o
d
u
les’
p
er
f
o
r
m
an
ce
.
T
h
e
p
h
o
to
v
o
ltaic
(
PV)
ar
r
ay
,
s
h
o
wn
in
Fig
u
r
e
5
,
co
m
p
r
is
es
f
iv
e
m
o
d
u
les
co
n
f
ig
u
r
ed
i
n
t
wo
p
ar
allel
s
tr
in
g
s
with
m
o
d
u
les
co
n
n
ec
t
ed
in
s
er
ies.
T
h
is
ar
r
ay
is
ex
p
o
s
ed
to
d
aily
v
ar
iatio
n
s
in
g
lo
b
al
ir
r
ad
ian
ce
(
G)
.
Un
d
er
u
n
if
o
r
m
ir
r
ad
ia
n
ce
co
n
d
itio
n
s
,
ea
ch
m
o
d
u
le
r
ec
eiv
es
id
en
tical
ir
r
ad
ian
ce
lev
els,
r
esu
ltin
g
in
a
s
in
g
le
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
S
imu
la
tio
n
a
n
d
ve
r
ifica
tio
n
o
f
imp
r
o
ve
d
p
a
r
ticle
s
w
a
r
m
…
(
Mu
h
a
mma
d
K
h
a
ir
u
l A
z
ma
n
M
o
h
d
Ja
m
h
a
r
i
)
613
m
ax
im
u
m
p
o
wer
p
o
in
t
(
MPP)
o
n
th
ei
r
P
-
V
ch
a
r
ac
ter
is
tic
cu
r
v
es.
Ho
wev
er
,
u
n
d
er
p
ar
tial
s
h
ad
in
g
co
n
d
itio
n
s
(
PS
C
)
,
d
if
f
er
en
t
m
o
d
u
les
r
ec
eiv
e
v
ar
y
in
g
ir
r
a
d
ian
ce
lev
els
d
u
e
to
o
b
s
tr
u
ctio
n
s
s
u
ch
as
b
u
ild
in
g
s
,
tr
ee
s
,
o
r
clo
u
d
s
.
T
h
is
d
is
p
ar
ity
lead
s
to
m
u
ltip
le
lo
c
al
m
ax
im
u
m
p
o
we
r
p
o
in
ts
(
L
MPPs
)
alo
n
g
s
id
e
th
e
g
lo
b
al
m
a
x
im
u
m
p
o
wer
p
o
in
t
(
GM
PP
)
o
n
th
e
P
-
V
cu
r
v
es,
co
m
p
licatin
g
th
e
MPP
tr
ac
k
in
g
p
r
o
ce
s
s
.
T
o
in
v
esti
g
ate
th
is
p
h
en
o
m
en
o
n
,
t
h
e
r
esear
c
h
u
tili
ze
s
th
r
ee
s
p
ec
if
ic
ir
r
ad
ian
ce
p
atter
n
s
,
as
d
etailed
in
T
ab
le
2
,
wh
ic
h
s
im
u
late
d
y
n
am
ic
en
v
ir
o
n
m
en
tal
ch
an
g
es.
T
h
e
tab
le
also
p
r
o
v
i
d
es
th
e
MPP
v
alu
es
f
o
r
ea
ch
p
atter
n
,
o
f
f
er
in
g
a
co
m
p
r
eh
e
n
s
iv
e
ev
alu
atio
n
o
f
t
h
e
ar
r
ay
'
s
p
er
f
o
r
m
an
ce
u
n
d
er
v
ar
y
in
g
co
n
d
itio
n
s
.
I
n
th
is
s
tu
d
y
,
a
b
o
o
s
t
co
n
v
er
t
er
s
er
v
es
as
an
in
ter
m
ed
iar
y
b
etwe
en
th
e
PV
ar
r
ay
an
d
th
e
lo
ad
.
T
h
is
ch
o
ice
is
b
ased
o
n
t
h
e
b
o
o
s
t
co
n
v
er
te
r
'
s
s
ig
n
if
ican
t
ad
v
an
tag
es,
in
clu
d
in
g
m
in
im
al
o
u
t
p
u
t
r
ip
p
le
a
n
d
h
ig
h
ef
f
icien
cy
.
Ad
d
itio
n
ally
,
th
e
ci
r
cu
it'
s
o
p
tim
al
p
ar
am
eter
s
ar
e
ca
r
ef
u
lly
lis
ted
in
T
ab
le
3
[
2
1
]
.
T
h
is
co
n
f
ig
u
r
ati
o
n
is
cr
u
cial
f
o
r
im
p
r
o
v
i
n
g
o
v
er
all
s
y
s
tem
p
er
f
o
r
m
an
ce
b
y
e
n
s
u
r
in
g
ef
f
icien
t
en
e
r
g
y
tr
a
n
s
f
er
an
d
m
in
im
izin
g
p
o
wer
lo
s
s
.
T
ab
le
1
.
Par
am
eter
s
o
f
T
h
e
P
V
m
o
d
u
le
o
f
SP
M0
5
0
-
P At
Stc
P
a
r
a
me
t
e
r
s
V
a
l
u
e
s
M
a
x
i
m
u
m
P
o
w
e
r
(
P
max
)
5
0
W
V
o
l
t
a
g
e
a
t
P
ma
x
(
V
m
p
p
)
1
8
.
0
0
V
C
u
r
r
e
n
t
a
t
P
ma
x
(
I
m
pp
)
2
.
7
8
A
O
p
e
n
c
i
r
c
u
i
t
v
o
l
t
a
g
e
(
V
oc
)
2
1
.
8
0
V
S
h
o
r
t
c
i
r
c
u
i
t
c
u
r
r
e
n
t
(
I
sc
)
2
.
9
7
A
Te
mp
e
r
a
t
u
r
e
c
o
e
f
f
i
c
i
e
n
t
o
f
V
oc
-
0
.
3
5
%/
°
C
Te
mp
e
r
a
t
u
r
e
c
o
e
f
f
i
c
i
e
n
t
o
f
I
sc
0
.
0
5
%/
°
C
Te
mp
e
r
a
t
u
r
e
c
o
e
f
f
i
c
i
e
n
t
o
f
p
o
w
e
r
-
0
.
4
5
%/
°
C
N
O
C
T
4
7
°
C
O
p
e
r
a
t
i
n
g
t
e
mp
e
r
a
t
u
r
e
2
5
°
C
-
V
PV
+
M
o
d
u
l
e
A
(
G
A
)
M
o
d
u
l
e
B
(
G
B
)
M
o
d
u
l
e
C
(
G
C
)
M
o
d
u
l
e
D
(
G
D
)
M
o
d
u
l
e
E
(
G
E
)
M
o
d
u
l
e
C
e
l
l
A
r
r
a
y
I
PV
Fig
u
r
e
3
.
PV a
r
r
a
y
o
f
two
p
ar
a
llel f
iv
e
m
o
d
u
les in
s
er
ies
T
ab
le
2
.
Var
io
u
s
ir
r
ad
ian
ce
p
a
tter
n
s
P
a
t
t
e
r
n
M
o
d
u
l
e
i
r
r
a
d
i
a
n
c
e
(
G
=
1
.
0
=
1
0
0
0
W
/
m
2
)
M
a
x
i
m
u
m
p
o
w
e
r
p
o
i
n
t
v
a
l
u
e
G
A
G
B
G
C
G
D
G
E
D
MPP
P
MPP
P
a
t
t
e
r
n
1
(
G
=
1
0
0
0
W
/
m
2
)
1
.
0
1
.
0
1
.
0
1
.
0
1
.
0
M
P
P
1
0
.
5
9
2
5
0
.
2
W
P
a
t
t
e
r
n
2
(
G
=
3
0
0
W
/
m
2
)
0
.
3
0
0
.
3
0
0
.
3
0
0
.
3
0
0
.
3
0
M
P
P
2
0
.
2
4
7
0
.
7
W
P
a
t
t
e
r
n
3
(
P
S
C
)
0
.
6
0
0
.
7
0
0
.
8
0
0
.
9
0
1
.
0
G
M
P
P
0
.
4
5
1
6
4
.
6
W
T
ab
le
3
.
B
o
o
s
t
co
n
v
er
ter
p
ar
a
m
eter
s
P
a
r
a
me
t
e
r
s
V
a
l
u
e
s
S
w
i
t
c
h
i
n
g
f
r
e
q
u
e
n
c
y
,
f
s
2
0
k
H
z
Lo
a
d
r
e
si
s
t
o
r
,
R
L
2
0
0
Ω
B
o
o
st
i
n
d
u
c
t
o
r
,
L
2
mH
F
i
l
t
e
r
c
a
p
a
c
i
t
o
r
s,
C
in
a
n
d
C
out
1
0
0
µ
F
4.
SI
M
UL
A
T
I
O
N
SE
T
UP
T
h
e
in
v
esti
g
ated
alg
o
r
ith
m
s
wer
e
s
im
u
lated
with
th
e
MA
T
L
AB
/Si
m
u
lin
k
s
o
f
twar
e
p
latf
o
r
m
,
as
s
h
o
wn
in
Fig
u
r
e
6
.
T
h
e
cir
c
u
it
p
ar
a
m
eter
s
ar
e
co
n
s
is
ten
t
with
th
o
s
e
s
p
ec
if
ied
in
p
r
ev
i
o
u
s
s
ec
tio
n
s
.
Me
an
wh
ile,
al
l
alg
o
r
ith
m
s
wer
e
e
x
ec
u
ted
u
s
in
g
th
e
MA
T
L
AB
f
u
n
ctio
n
b
l
o
ck
.
T
h
e
p
h
o
to
v
o
ltaic
d
ata
f
o
r
all
ca
s
es
u
n
d
er
in
v
esti
g
atio
n
wer
e
g
e
n
er
ated
u
s
in
g
th
e
PV simu
lato
r
d
etai
led
in
[
2
3
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
1
6
,
No
.
1
,
Ma
r
c
h
20
2
5
:
608
-
621
614
Fig
u
r
e
6
.
MA
T
L
AB
/Si
m
u
lin
k
m
o
d
el
o
f
SAPV sy
s
tem
with
MPPT
5.
H
ARDWA
R
E
SE
T
UP
Fig
u
r
e
7
d
ep
icts
an
ad
v
an
ce
d
h
ar
d
war
e
v
er
if
icatio
n
s
etu
p
d
esig
n
ed
to
ass
ess
MPPT
alg
o
r
ith
m
s
in
p
h
o
to
v
o
ltaic
s
y
s
tem
s
.
At
th
e
h
ea
r
t
o
f
th
is
ar
r
an
g
em
en
t
is
th
e
DS1
1
0
4
d
SP
AC
E
co
n
tr
o
lle
r
,
wh
ich
m
an
a
g
es
r
ea
l
-
tim
e
co
n
tr
o
l
an
d
test
in
g
o
f
MP
PT
alg
o
r
ith
m
s
[
2
4
]
,
[
2
5
]
.
Alo
n
g
s
id
e,
th
e
c
h
r
o
m
a
6
2
0
0
0
H
PV
s
im
u
lato
r
is
p
iv
o
tal
in
r
ep
licatin
g
v
ar
ied
s
o
lar
ir
r
a
d
ian
ce
co
n
d
itio
n
s
,
en
ab
lin
g
r
i
g
o
r
o
u
s
ev
alu
atio
n
o
f
alg
o
r
ith
m
p
er
f
o
r
m
an
ce
u
n
d
er
co
n
tr
o
lled
e
n
v
ir
o
n
m
en
tal
p
a
r
a
m
eter
s
.
Key
m
ea
s
u
r
em
en
t
i
n
s
tr
u
m
en
ts
in
clu
d
e
v
o
ltag
e
a
n
d
cu
r
r
en
t
s
en
s
o
r
s
f
o
r
ac
cu
r
ate
m
o
n
ito
r
i
n
g
o
f
elec
tr
i
ca
l
p
ar
am
eter
s
,
an
o
s
cillo
s
co
p
e
to
v
is
u
alize
v
o
ltag
e
an
d
cu
r
r
en
t
wav
ef
o
r
m
s
,
an
d
a
p
o
r
ta
b
le
DC
-
DC
co
n
v
er
te
r
th
at
e
n
s
u
r
es
co
n
s
is
ten
t
v
o
ltag
e
lev
els
ac
r
o
s
s
s
y
s
tem
co
m
p
o
n
en
ts
.
T
h
is
co
m
p
r
eh
e
n
s
iv
e
s
etu
p
is
ess
en
ti
al
f
o
r
th
e
p
r
ec
is
e
ev
alu
atio
n
o
f
MPPT
alg
o
r
ith
m
s
,
en
s
u
r
in
g
th
eo
r
etica
l
ad
v
an
ce
s
ar
e
s
ea
m
less
ly
tr
an
s
lated
in
to
p
r
ac
tical
im
p
r
o
v
em
en
ts
in
p
h
o
to
v
o
ltaic
s
y
s
tem
ef
f
icien
cy
.
Fig
u
r
e
8
s
h
o
ws
th
e
h
ar
d
war
e
s
im
u
latio
n
cir
cu
it
cr
ea
ted
wit
h
th
e
MA
T
L
AB
/Si
m
u
lin
k
p
la
tf
o
r
m
.
T
h
e
s
ch
em
atic
in
teg
r
ates
s
ev
er
al
s
y
s
tem
co
m
p
o
n
e
n
ts
,
in
clu
d
in
g
an
alo
g
-
to
-
d
ig
ital
co
n
v
er
ter
s
(
ADCs
)
f
o
r
v
o
ltag
e
an
d
cu
r
r
en
t,
a
tim
er
,
a
n
d
th
e
PS
O
-
b
ased
m
ax
im
u
m
p
o
wer
p
o
in
t
tr
ac
k
in
g
(
MPPT)
alg
o
r
ith
m
.
T
h
ese
co
m
p
o
n
e
n
ts
ar
e
co
n
n
ec
ted
v
ia
a
lim
ited
t
o
a
s
et
o
f
p
u
ls
e
-
wid
th
m
o
d
u
l
atio
n
(
PW
M)
ch
an
n
els,
wh
ic
h
co
n
t
r
o
l
th
e
o
u
t
p
u
t
s
ig
n
als to
k
ee
p
th
em
with
in
p
r
ed
ef
in
ed
lim
its
.
Fig
u
r
e
7
.
Har
d
war
e
s
etu
p
v
e
r
i
f
icatio
n
(
MPPT)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
S
imu
la
tio
n
a
n
d
ve
r
ifica
tio
n
o
f
imp
r
o
ve
d
p
a
r
ticle
s
w
a
r
m
…
(
Mu
h
a
mma
d
K
h
a
ir
u
l A
z
ma
n
M
o
h
d
Ja
m
h
a
r
i
)
615
Fig
u
r
e
8
.
Har
d
war
e
Simu
lin
k
cir
cu
it
Fig
u
r
e
9
s
h
o
ws th
e
co
n
tr
o
l d
esk
m
ain
m
o
n
ito
r
i
n
g
win
d
o
w,
u
s
ed
to
o
b
s
er
v
e
an
d
an
aly
ze
o
u
t
p
u
ts
f
r
o
m
th
e
h
ar
d
war
e
s
im
u
latio
n
cir
cu
it
[
2
6
]
.
T
h
is
in
ter
f
ac
e
o
f
f
e
r
s
r
ea
l
-
tim
e
g
r
ap
h
ical
r
e
p
r
esen
tatio
n
s
o
f
p
ar
a
m
eter
s
s
u
ch
as
v
o
ltag
e,
cu
r
r
en
t,
p
o
wer
,
an
d
d
u
ty
cy
cle,
allo
win
g
r
esear
ch
er
s
to
m
o
n
ito
r
th
e
MPPT
alg
o
r
ith
m
's
p
er
f
o
r
m
an
ce
ac
r
o
s
s
v
ar
io
u
s
test
co
n
d
iti
o
n
s
.
T
h
is
s
etu
p
is
ess
en
tial
f
o
r
v
alid
atin
g
th
e
PS
O
alg
o
r
ith
m
'
s
ef
f
ec
tiv
en
ess
in
o
p
tim
izin
g
th
e
p
h
o
to
v
o
ltaic
s
y
s
tem
'
s
p
o
wer
o
u
tp
u
t.
Fig
u
r
e
9
.
C
o
n
tr
o
l
d
esk
m
ai
n
m
o
n
ito
r
in
g
win
d
o
w
6.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
6
.
1
.
Sim
ula
t
io
n
re
s
ult
Af
ter
ca
lcu
latin
g
th
e
PP
V
f
o
r
ea
ch
p
ar
ticle,
th
e
n
ew
p
o
s
itio
n
is
u
p
d
ated
as
o
u
tlin
ed
in
th
e
p
r
ev
io
u
s
s
ec
tio
n
.
T
h
is
p
r
o
ce
s
s
wil
l
co
n
tin
u
e
u
n
til
co
n
v
er
g
en
ce
is
ac
h
iev
ed
at
MPP
(
D
MP
P
=0
.
5
9
,
P
MPP
=2
5
0
.
2
W
)
.
Sin
ce
MPP
T
sampling_ti
me
is
s
et
to
0
.
2
s
in
th
is
s
tu
d
y
,
it
tak
es
1
s
(
NP
MPP
T
sampling_ti
me
)
to
f
in
is
h
in
itializatio
n
an
d
ea
c
h
iter
atio
n
.
Fig
u
r
e
s
1
0
to
1
2
s
h
o
w
th
e
s
im
u
latio
n
p
er
f
o
r
m
a
n
ce
o
f
th
e
PS
O,
PS
O
-
r
ein
it,
a
n
d
i
PS
O
alg
o
r
ith
m
s
in
tr
ac
k
in
g
th
e
m
ax
im
u
m
p
o
we
r
p
o
in
t
u
n
d
er
v
a
r
iab
le
e
n
v
ir
o
n
m
en
tal
c
o
n
d
itio
n
s
.
T
h
e
d
ata
elu
cid
ates
s
ev
er
al
cr
i
tical
asp
ec
ts
r
eg
ar
d
in
g
th
e
ef
f
icac
y
an
d
ad
ap
ta
b
ilit
y
o
f
t
h
ese
alg
o
r
ith
m
s
.
Firstl
y
,
th
e
c
o
n
v
er
g
en
ce
m
etr
ics
an
d
ef
f
icie
n
cy
f
i
g
u
r
es
in
d
icate
v
ar
y
in
g
p
e
r
f
o
r
m
an
ce
lev
els
d
ep
en
d
en
t
o
n
ir
r
a
d
ian
ce
c
o
n
d
itio
n
s
.
Un
d
er
f
u
ll
s
u
n
lig
h
t
(
1
0
0
0
W
/m
²)
,
th
e
iPS
O
alg
o
r
ith
m
s
ac
h
iev
e
h
ig
h
er
e
f
f
icien
cies,
with
MPPT
ef
f
icien
cy
r
ea
c
h
in
g
u
p
to
9
0
.
6
9
%
in
th
e
b
est
ca
s
e
wh
ile
f
o
r
co
n
v
en
tio
n
al
PS
O
an
d
PS
O
-
r
ein
it
th
e
ef
f
icien
cy
ar
e
8
6
.
7
4
%
an
d
9
0
.
1
8
%
r
esp
ec
tiv
ely
.
C
o
n
v
e
r
s
ely
,
u
n
d
er
p
ar
tial
s
h
a
d
in
g
,
th
e
ef
f
icien
cies
ten
d
to
d
ec
r
ea
s
e,
with
th
e
r
ec
o
r
d
ed
ef
f
icien
cy
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
1
6
,
No
.
1
,
Ma
r
c
h
20
2
5
:
608
-
621
616
b
ein
g
8
3
.
2
3
%
f
o
r
PS
O.
T
h
is
r
ed
u
ctio
n
em
p
h
asizes
th
e
d
if
f
ic
u
lties
th
at
co
n
v
en
tio
n
al
PS
O
f
ac
es
in
ad
ap
tin
g
to
f
lu
ctu
atin
g
s
o
lar
ir
r
ad
ian
ce
.
Me
an
wh
ile,
th
e
m
o
d
if
ie
d
alg
o
r
ith
m
s
,
PS
O
-
r
ein
it
an
d
iPS
O,
ex
h
ib
it
im
p
r
o
v
ed
p
er
f
o
r
m
a
n
ce
m
etr
ics
co
m
p
ar
ed
to
c
o
n
v
e
n
tio
n
al
PS
O.
Fo
r
in
s
tan
ce
,
u
n
d
er
p
ar
tial
s
h
ad
in
g
co
n
d
itio
n
s
,
PS
O
-
r
ein
i
t
an
d
iPS
O
r
esp
o
n
d
m
o
r
e
r
a
p
id
ly
to
ch
an
g
es
in
th
e
m
ax
im
u
m
p
o
we
r
p
o
i
n
t,
ac
h
i
ev
in
g
e
f
f
icien
cies
o
f
9
1
.
7
7
%
an
d
9
2
.
4
6
%,
r
esp
ec
tiv
ely
.
T
h
is
s
ig
n
if
ican
t
im
p
r
o
v
em
en
t
o
v
er
c
o
n
v
e
n
tio
n
al
PS
O
in
d
icate
s
th
at
en
h
an
ce
m
en
ts
in
th
e
r
ein
itializatio
n
an
d
o
p
tim
izat
io
n
p
r
o
ce
s
s
es
o
f
th
ese
alg
o
r
ith
m
s
g
r
ea
tly
en
h
an
ce
t
h
eir
ab
ilit
y
to
m
an
a
g
e
en
v
ir
o
n
m
en
t
al
v
a
r
iatio
n
s
.
Fu
r
t
h
er
m
o
r
e
,
co
n
v
er
g
en
ce
tim
es
a
n
d
iter
atio
n
co
u
n
ts
r
ef
lect
th
e
r
esp
o
n
s
iv
en
ess
o
f
th
ese
alg
o
r
ith
m
s
.
Un
d
er
id
ea
l
c
o
n
d
itio
n
s
with
1
0
0
0
W
/m
²
ir
r
a
d
ian
ce
,
th
e
PS
O,
PS
O
-
r
ein
it,
a
n
d
iPS
O
alg
o
r
ith
m
s
co
n
v
er
g
e
to
t
h
e
o
p
tim
al
d
u
t
y
cy
cle
in
6
.
4
s
,
5
.
8
s
,
an
d
4
.
0
s
(
6
.
4
,
5
.
8
,
an
d
4
.
0
iter
atio
n
s
)
.
I
n
less
o
p
tim
al
co
n
d
itio
n
s
,
th
e
iter
atio
n
co
u
n
t
in
cr
ea
s
es
s
lig
h
tly
,
r
ev
ea
lin
g
th
e
in
cr
ea
s
ed
co
m
p
lex
ity
in
t
r
o
d
u
ce
d
b
y
p
ar
tial
s
h
ad
in
g
an
d
th
e
r
esu
ltin
g
s
tr
ain
o
n
th
e
alg
o
r
ith
m
'
s
p
er
f
o
r
m
a
n
ce
.
(
a)
(
b
)
Fig
u
r
e
10
.
Simu
latio
n
tr
ac
k
i
n
g
o
f
th
e
c
o
n
v
e
n
tio
n
al
PS
O
alg
o
r
ith
m
u
n
d
er
v
a
r
y
in
g
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
:
(
a)
d
u
t
y
cy
cle
an
d
(
b
)
PV o
u
tp
u
t p
o
wer
6
.
2
.
H
a
rdwa
re
re
s
ult
Fu
ll
h
ar
d
war
e
tr
ac
k
in
g
r
esu
lts
f
o
r
th
ese
alg
o
r
ith
m
s
,
s
h
o
wn
f
r
o
m
tim
e
t=0
s
to
t=4
0
s
in
Fig
u
r
es
1
3
to
1
5
.
As
in
d
icate
d
,
th
e
iPS
O
co
n
v
er
g
es
to
th
e
d
esire
d
m
ax
im
u
m
p
o
wer
p
o
i
n
t
(
MPP)
with
in
4
.
6
s
ec
o
n
d
s
,
eq
u
iv
alen
t
to
4
.
6
iter
atio
n
s
,
o
u
tp
er
f
o
r
m
in
g
th
e
co
n
v
en
tio
n
al
PS
O
an
d
PS
O
-
r
ein
it
v
ar
ian
ts
,
wh
ich
r
eq
u
ir
ed
5
.
6
an
d
5
.
2
iter
atio
n
s
,
r
esp
ec
tiv
ely
.
T
h
e
co
n
v
en
tio
n
al
PS
O
's
lim
itatio
n
s
ar
e
ev
id
e
n
t
in
C
ases
2
an
d
3
,
wh
er
e
it
is
u
n
a
b
le
to
ad
ap
t
to
v
ar
y
in
g
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
an
d
r
em
ain
s
lo
c
k
ed
at
an
o
l
d
d
u
t
y
cy
cle
(
D
mpp
=
0
.
5
9
)
,
r
esu
ltin
g
in
r
ed
u
ce
d
ef
f
i
cien
cies
o
f
3
5
.
8
8
%
an
d
8
3
.
1
5
%,
r
esp
ec
tiv
ely
.
T
h
e
MPPT
s
p
ee
d
f
o
r
PS
O
-
r
ein
it
in
C
ase
2
is
5
.
2
s
ec
o
n
d
s
,
co
r
r
e
s
p
o
n
d
in
g
t
o
5
.
2
iter
atio
n
s
,
wh
er
ea
s
in
C
ase
3
,
it r
ea
ch
es 7
.
4
s
ec
o
n
d
s
,
eq
u
iv
alen
t
to
7
.
4
iter
atio
n
s
.
C
o
n
cu
r
r
en
tly
,
th
e
MPPT
e
f
f
icien
cy
(
MPPT
eff
)
f
o
r
PS
O
-
r
ein
it
i
n
C
ases
2
a
n
d
3
is
ap
p
r
o
x
im
atel
y
9
2
.
6
2
% a
n
d
8
6
.
3
6
%,
r
esp
ec
tiv
ely
.
T
h
e
iPS
O
alg
o
r
ith
m
ac
h
iev
es
s
ig
n
if
ican
tly
h
ig
h
e
r
e
f
f
icien
c
ies
ac
r
o
s
s
all
s
ce
n
ar
io
s
d
u
e
t
o
its
r
ap
i
d
co
n
v
er
g
en
ce
an
d
ac
cu
r
ate
tr
a
ck
in
g
.
I
t
ac
h
iev
es
an
ef
f
icien
cy
o
f
9
0
.
6
3
%
u
n
d
er
s
tan
d
ar
d
co
n
d
itio
n
s
,
9
4
.
5
5
%
u
n
d
er
lo
w
i
r
r
ad
ian
ce
,
an
d
9
0
.
9
5
%
u
n
d
er
p
ar
tially
s
h
ad
ed
c
o
n
d
itio
n
s
.
T
h
ese
im
p
r
o
v
em
en
ts
e
m
p
h
asize
th
e
v
alu
e
o
f
alg
o
r
ith
m
ic
en
h
an
ce
m
en
ts
f
o
r
en
s
u
r
in
g
r
eliab
le
d
etec
tio
n
an
d
r
a
p
id
ad
ap
tatio
n
to
th
e
o
p
tim
al
d
u
ty
c
y
cle,
r
ein
f
o
r
cin
g
th
e
im
p
o
r
tan
ce
o
f
d
y
n
am
ic
MPPT
alg
o
r
ith
m
s
in
m
ax
im
izin
g
en
er
g
y
y
ield
u
n
d
e
r
v
a
r
y
i
n
g
en
v
ir
o
n
m
en
tal
co
n
d
itio
n
s
.
Fig
u
r
es
1
0
to
1
5
a
n
d
T
a
b
le
4
p
r
o
v
i
d
e
a
co
m
p
ar
ativ
e
an
al
y
s
is
o
f
th
e
PS
O,
PS
O
-
r
ein
it,
an
d
iPS
O
alg
o
r
ith
m
s
,
wh
ile
T
ab
le
5
s
u
m
m
ar
izes
th
eir
av
e
r
ag
e
p
e
r
f
o
r
m
an
ce
ac
r
o
s
s
th
e
th
r
ee
ca
s
es
s
tu
d
ied
.
Simu
latio
n
tr
ac
k
in
g
an
d
h
ar
d
war
e
v
er
if
i
ca
tio
n
o
f
f
e
r
d
ee
p
i
n
s
ig
h
ts
in
to
th
eir
a
p
p
licab
ilit
y
an
d
e
f
f
icien
cy
in
p
h
o
to
v
o
ltaic
s
y
s
tem
s
o
p
er
atin
g
u
n
d
e
r
v
ar
ia
b
le
en
v
ir
o
n
m
e
n
tal
co
n
d
itio
n
s
.
T
h
e
r
esu
lts
co
n
s
is
ten
tly
d
em
o
n
s
tr
ate
th
e
s
u
p
er
io
r
p
er
f
o
r
m
an
ce
o
f
th
e
iPS
O
alg
o
r
ith
m
ac
r
o
s
s
s
ev
er
al
m
etr
ics,
s
u
ch
as
c
o
n
v
e
r
g
en
ce
s
p
ee
d
a
n
d
MPPT
ef
f
icien
cy
.
No
tab
ly
,
in
h
ar
d
war
e
test
in
g
f
o
r
C
ase
2
,
iPS
O
ac
h
iev
ed
a
m
ax
im
u
m
p
o
wer
p
o
in
t
tr
ac
k
in
g
(
MPPT)
ef
f
icie
n
cy
o
f
9
4
.
5
5
%,
s
ig
n
if
ican
tly
o
u
tp
er
f
o
r
m
in
g
o
th
er
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
5
8
i
n
6
.
4
i
t
e
r
a
t
i
on
s
(
6
.
4
s
)
S
t
a
g
n
a
nt
T
r
a
ck
i
ng
P
r
oc
e
s
s
C
a
s
e
2
(
G
=
3
0
0
W
/
m
2
)
C
a
s
e
3
(
P
S
C
)
D
e
l
a
y
P
m
p
p
=
2
5
0
.
2
W
P
m
p
p
=
7
0
.
7
W
P
m
p
p
=
1
6
4
.
6
W
M
P
P
T
e
f
f
i
ci
e
nc
y
=
3
6
.
4
1
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
8
3
.
2
3
%
(
C
a
l
c
ul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
8
6
.
7
4
%
(
C
a
l
c
ul
a
t
e
d
by
E
q.
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
2
5
0
.
2
W
i
n
6
.
4
i
t
e
r
a
t
i
on
s
(
6
.
4
s
)
P
PV
P
p
v
W
P
p
v
W
D
e
l
a
y
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
5
8
i
n
6
.
4
i
t
e
r
a
t
i
on
s
(
6
.
4
s
)
S
t
a
g
n
a
nt
T
r
a
ck
i
ng
P
r
oc
e
s
s
C
a
s
e
2
(
G
=
3
0
0
W
/
m
2
)
C
a
s
e
3
(
P
S
C
)
D
e
l
a
y
P
m
p
p
=
2
5
0
.
2
W
P
m
p
p
=
7
0
.
7
W
P
m
p
p
=
1
6
4
.
6
W
M
P
P
T
e
f
f
i
ci
e
nc
y
=
3
6
.
4
1
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
8
3
.
2
3
%
(
C
a
l
c
ul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
8
6
.
7
4
%
(
C
a
l
c
ul
a
t
e
d
by
E
q.
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
2
5
0
.
2
W
i
n
6
.
4
i
t
e
r
a
t
i
on
s
(
6
.
4
s
)
P
PV
P
p
v
W
P
p
v
W
D
e
l
a
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
S
imu
la
tio
n
a
n
d
ve
r
ifica
tio
n
o
f
imp
r
o
ve
d
p
a
r
ticle
s
w
a
r
m
…
(
Mu
h
a
mma
d
K
h
a
ir
u
l A
z
ma
n
M
o
h
d
Ja
m
h
a
r
i
)
617
alg
o
r
ith
m
s
.
T
h
is
s
tr
o
n
g
p
er
f
o
r
m
an
ce
s
u
g
g
ests
th
at
iPS
O
in
teg
r
ates a
d
v
a
n
ce
d
a
d
ap
tiv
e
m
ec
h
an
is
m
s
,
en
ab
lin
g
a
r
ap
id
a
n
d
ef
f
ec
tiv
e
r
esp
o
n
s
e
to
f
lu
ctu
atio
n
s
in
ir
r
a
d
ian
ce
a
n
d
o
p
tim
izin
g
p
o
wer
o
u
tp
u
t
u
n
d
er
d
iv
er
s
e
co
n
d
itio
n
s
.
T
h
e
co
n
s
is
ten
t
p
er
f
o
r
m
an
ce
o
f
iPS
O
i
n
b
o
th
s
im
u
lated
an
d
p
r
ac
tical
en
v
ir
o
n
m
e
n
ts
h
ig
h
lig
h
t
its
r
o
b
u
s
t
alg
o
r
ith
m
ic
s
tr
u
ctu
r
e
th
at
e
f
f
ec
tiv
ely
alig
n
s
th
eo
r
etica
l
p
r
ed
ictio
n
s
with
ac
tu
al
o
p
er
ati
o
n
al
o
u
tco
m
es.
T
h
e
r
esear
ch
r
ev
ea
ls
a
clo
s
e
co
r
r
elatio
n
b
etwe
en
s
im
u
latio
n
an
d
h
ar
d
war
e
p
er
f
o
r
m
a
n
ce
,
p
ar
ticu
lar
ly
f
o
r
iPS
O.
T
h
is
alig
n
m
en
t v
alid
ates th
e
r
eliab
i
lity
o
f
s
im
u
latio
n
m
o
d
els in
p
r
ed
ictin
g
r
ea
l
-
wo
r
l
d
alg
o
r
ith
m
b
eh
av
io
r
.
(
a)
(
b
)
Fig
u
r
e
1
1
.
Simu
latio
n
tr
ac
k
i
n
g
o
f
th
e
PS
O
-
r
ein
it a
lg
o
r
ith
m
u
n
d
er
v
a
r
y
in
g
en
v
ir
o
n
m
e
n
tal
co
n
d
itio
n
s
:
(
a)
d
u
t
y
cy
cle
an
d
(
b
)
PV o
u
tp
u
t p
o
wer
(
a)
(
b
)
Fig
u
r
e
12
.
Simu
latio
n
tr
ac
k
i
n
g
o
f
th
e
iPS
O
alg
o
r
ith
m
u
n
d
er
v
ar
y
in
g
en
v
ir
o
n
m
e
n
tal
co
n
d
iti
o
n
s
:
(
a)
d
u
t
y
cy
cle
an
d
(
b
)
PV o
u
tp
u
t p
o
wer
C
a
s
e
1
(
G
=
1
0
0
0
W
/
m
2
)
C
a
s
e
2
(
G
=
3
0
0
W
/
m
2
)
C
a
s
e
3
(
P
S
C
)
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
5
8
i
n
5
.
8
i
t
e
r
a
t
i
ons
(
5
.
8
s
)
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
2
4
i
n
4
.
8
i
t
e
r
a
t
i
ons
(
4
.
8
s
)
C
onv
e
r
g
e
s
t
o
D
m
p
p
=
0
.
4
5
i
n
7
.
4
i
t
e
r
a
t
i
ons
(
7
.
4
s
)
D
e
l
a
y
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
3
.
5
3
%
(
C
a
l
c
ul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
1
.
7
7
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
0
.
1
8
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
2
5
0
.
2
W
i
n
5
.
8
i
t
e
r
a
t
i
on
s
(
5
.
8
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
7
0
.
7
W
i
n
4
.
8
i
t
e
r
a
t
i
ons
(
4
.
8
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
1
6
4
.
6
W
i
n
7
.
4
i
t
e
r
a
t
i
on
s
(
7
.
4
s
)
P
PV
P
m
p
p
=
2
5
0
.
2
W
P
m
p
p
=
7
0
.
7
W
P
m
p
p
=
1
6
4
.
6
W
C
a
s
e
1
(
G
=
1
0
0
0
W
/
m
2
)
C
a
s
e
2
(
G
=
3
0
0
W
/
m
2
)
C
a
s
e
3
(
P
S
C
)
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
5
8
i
n
5
.
8
i
t
e
r
a
t
i
ons
(
5
.
8
s
)
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
2
4
i
n
4
.
8
i
t
e
r
a
t
i
ons
(
4
.
8
s
)
C
onv
e
r
g
e
s
t
o
D
m
p
p
=
0
.
4
5
i
n
7
.
4
i
t
e
r
a
t
i
ons
(
7
.
4
s
)
D
e
l
a
y
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
3
.
5
3
%
(
C
a
l
c
ul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
1
.
7
7
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
0
.
1
8
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
2
5
0
.
2
W
i
n
5
.
8
i
t
e
r
a
t
i
on
s
(
5
.
8
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
7
0
.
7
W
i
n
4
.
8
i
t
e
r
a
t
i
ons
(
4
.
8
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
1
6
4
.
6
W
i
n
7
.
4
i
t
e
r
a
t
i
on
s
(
7
.
4
s
)
P
PV
P
m
p
p
=
2
5
0
.
2
W
P
m
p
p
=
7
0
.
7
W
P
m
p
p
=
1
6
4
.
6
W
C
a
s
e
1
(
G
=
1
0
0
0
W
/
m
2
)
C
a
s
e
2
(
G
=
3
0
0
W
/
m
2
)
C
a
s
e
3
(
P
S
C
)
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
5
8
i
n
4
.
0
i
t
e
r
a
t
i
ons
(
4
.
0
s
)
C
onv
e
r
g
e
s
t
o
D
m
p
p
=
0
.
2
4
i
n
2
.
6
i
t
e
r
a
t
i
ons
(
2
.
6
s
)
C
onv
e
r
g
e
s
t
o
D
m
p
p
=
0
.
4
5
i
n
5
.
2
i
t
e
r
a
t
i
ons
(
5
.
2
s
)
D
e
l
a
y
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
4
.
6
1
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
c
i
e
nc
y
=
9
2
.
4
6
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
0
.
6
9
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
2
5
0
.
2
W
i
n
4
.
0
i
t
e
r
a
t
i
on
s
(
4
.
0
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
7
0
.
7
W
i
n
2
.
6
i
t
e
r
a
t
i
ons
(
2
.
6
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
1
6
4
.
6
W
i
n
5
.
2
i
t
e
r
a
t
i
on
s
(
5
.
2
s
)
P
PV
P
m
p
p
=
2
5
0
.
2
W
P
m
p
p
=
7
0
.
7
W
P
m
p
p
=
1
6
4
.
6
W
D
e
l
a
y
C
a
s
e
1
(
G
=
1
0
0
0
W
/
m
2
)
C
a
s
e
2
(
G
=
3
0
0
W
/
m
2
)
C
a
s
e
3
(
P
S
C
)
C
onv
e
r
ge
s
t
o
D
m
p
p
=
0
.
5
8
i
n
4
.
0
i
t
e
r
a
t
i
ons
(
4
.
0
s
)
C
onv
e
r
g
e
s
t
o
D
m
p
p
=
0
.
2
4
i
n
2
.
6
i
t
e
r
a
t
i
ons
(
2
.
6
s
)
C
onv
e
r
g
e
s
t
o
D
m
p
p
=
0
.
4
5
i
n
5
.
2
i
t
e
r
a
t
i
ons
(
5
.
2
s
)
D
e
l
a
y
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
4
.
6
1
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
c
i
e
nc
y
=
9
2
.
4
6
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
M
P
P
T
e
f
f
i
ci
e
nc
y
=
9
0
.
6
9
%
(
C
a
l
cul
a
t
e
d
by
E
q.
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
2
5
0
.
2
W
i
n
4
.
0
i
t
e
r
a
t
i
on
s
(
4
.
0
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
7
0
.
7
W
i
n
2
.
6
i
t
e
r
a
t
i
ons
(
2
.
6
s
)
C
onv
e
r
ge
s
t
o
P
m
p
p
=
1
6
4
.
6
W
i
n
5
.
2
i
t
e
r
a
t
i
on
s
(
5
.
2
s
)
P
PV
P
m
p
p
=
2
5
0
.
2
W
P
m
p
p
=
7
0
.
7
W
P
m
p
p
=
1
6
4
.
6
W
D
e
l
a
y
Evaluation Warning : The document was created with Spire.PDF for Python.